1
|
Pokora I, Drzazga Z, Wyderka P, Binek M. Determination of the Effects of a Series of Ten Whole-Body Cryostimulation Sessions on Physiological Responses to Exercise and Skin Temperature Behavior following Exercise in Elite Athletes. J Clin Med 2023; 12:6159. [PMID: 37834804 PMCID: PMC10573447 DOI: 10.3390/jcm12196159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The present study investigated the effects of a series of 10 whole-body cryostimulation (WBC) sessions (3 min; -110 °C) on physiological and thermal responses to a submaximal exercise test in 17 elite athletes. Participants performed an exercise test twice at similar levels of intensity before and after a series of ten WBC sessions. Before and during the test, each participant's oxygen uptake (VO2), heart rate (HR), internal temperature (Ti), and skin temperature in selected areas of the skin were measured, and the mean arterial pressure (MAP), physiological strain index (PSI), and mean skin temperature (Tsk) were calculated. The results show that during exercise, increases in Ti and the PSI were significantly lower after the WBC sessions, and although there were no significant changes in HR or the MAP, the Tsk was significantly higher. Following exercise, an increase in skin temperature asymmetry over the lower-body muscles was detected. A series of WBC sessions induced a tendency toward a decrease in temperature asymmetry over the thigh muscles. In conclusion, a series of ten WBC sessions does not induce significant modifications in physiological variables but does influence the PSI and Ti during exercise. Moreover, a series of ten WBC sessions influences the distribution of skin temperature and the magnitude of temperature asymmetries in the early phase of recovery.
Collapse
Affiliation(s)
- Ilona Pokora
- Department of Physiology, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland
| | - Zofia Drzazga
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Piotr Wyderka
- Department of Physiology, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland
| | - Mariusz Binek
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
2
|
Jacob DW, Morgenthaler LD, Harper JL, Limberg JK. The forearm vascular response to sympathetic activation is attenuated in female, but not male, participants following acute intermittent hypoxia. J Appl Physiol (1985) 2023; 135:352-361. [PMID: 37410902 PMCID: PMC10396222 DOI: 10.1152/japplphysiol.00760.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Acute exposure to hypoxia promotes both an increase in sympathetic nervous system activity (SNA) and local vasodilation. In rodents, intermittent hypoxia (IH)-mediated increases in SNA are associated with an increase in blood pressure in males but not females; notably, the protective effect of female sex is lost following ovariectomy. These data suggest the vascular response to hypoxia and/or SNA following IH may be sex- and/or hormone specific-although mechanisms are unclear. We hypothesized that hypoxia-mediated vasodilation and SNA-mediated vasoconstriction would be unchanged following acute IH in male adults. We further hypothesized that hypoxic vasodilation would be augmented and SNA-mediated vasoconstriction would be attenuated in female adults following acute IH, with the greatest effect when endogenous estradiol was high. Twelve male (25 ± 1 yr) and 10 female (25 ± 1 yr) participants underwent 30 min of IH. Females were studied in a low (early follicular) and high (late follicular) estradiol state. Preceding and following IH, participants completed two trials [steady-state hypoxia and cold pressor test (CPT)], where forearm blood flow and blood pressure were measured and used to determine forearm vascular conductance (FVC). The FVC response to hypoxia (P = 0.67) and sympathetic activation (P = 0.73) were unchanged following IH in males. There was no effect of IH on hypoxic vasodilation in females, regardless of estradiol state (P = 0.75). In contrast, the vascular response to sympathetic activation was attenuated in females following IH (P = 0.02), independent of estradiol state (P = 0.65). Present data highlight sex-related differences in neurovascular responsiveness following acute IH.NEW & NOTEWORTHY We examined the effects of acute intermittent hypoxia (AIH) on the vascular response to sympathetic activation and acute hypoxia. Present findings show, despite no effect of AIH on the vascular response to hypoxia, the forearm vasoconstrictor response to acute sympathetic activation is attenuated in females following AIH, independent of estradiol state. These data provide mechanistic understanding of potential benefits of AIH, as well as the impact of biological sex.
Collapse
Affiliation(s)
- Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Leandra D Morgenthaler
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
3
|
McKenna ZJ, Foster J, Atkins WC, Belval LN, Watso JC, Jarrard CP, Orth BD, Crandall CG. Age alters the thermoregulatory responses to extreme heat exposure with accompanying activities of daily living. J Appl Physiol (1985) 2023; 135:445-455. [PMID: 37410904 PMCID: PMC10538984 DOI: 10.1152/japplphysiol.00285.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Older adults are at greater risk for heat-related morbidity and mortality, due in part to age-related reductions in heat dissipating capabilities. Previous studies investigating the impact of age on responses to heat stress used approaches that lack activities of daily living and therefore may not accurately depict the thermal/physiological strain that would occur during actual heatwaves. We sought to compare the responses of young (18-39 yr) and older (≥65 yr) adults exposed to two extreme heat simulations. Healthy young (n = 20) and older (n = 20) participants underwent two 3-h extreme heat exposures on different days: 1) DRY (47°C and 15% humidity) and 2) HUMID (41°C and 40% humidity). To mimic heat generation comparable with activities of daily living, participants performed 5-min bouts of light physical activity dispersed throughout the heat exposure. Measurements included core and skin temperatures, heart rate, blood pressure, local and whole body sweat rate, forearm blood flow, and perceptual responses. Δ core temperature (Young: 0.68 ± 0.27°C vs. Older: 1.37 ± 0.42°C; P < 0.001) and ending core temperature (Young: 37.81 ± 0.26°C vs. Older: 38.15 ± 0.43°C; P = 0.005) were greater in the older cohort during the DRY condition. Δ core temperature (Young: 0.58 ± 0.25°C vs. Older: 1.02 ± 0.32°C; P < 0.001), but not ending core temperature (Young: 37.67 ± 0.34°C vs. Older: 37.83 ± 0.35°C; P = 0.151), was higher in the older cohort during the HUMID condition. We demonstrated that older adults have diminished thermoregulatory responses to heat stress with accompanying activities of daily living. These findings corroborate previous reports and confirm epidemiological data showing that older adults are at a greater risk for hyperthermia.NEW & NOTEWORTHY Using an experimental model of extreme heat exposure that incorporates brief periods of light physical activity to simulate activities of daily living, the extent of thermal strain reported herein more accurately represents what would occur during actual heatwave conditions. Despite matching metabolic heat generation and environmental conditions, we show that older adults have augmented core temperature responses, likely due to age-related reductions in heat dissipating mechanisms.
Collapse
Affiliation(s)
- Zachary J McKenna
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Josh Foster
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Whitley C Atkins
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Luke N Belval
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Joseph C Watso
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Caitlin P Jarrard
- Cardiovascular and Applied Physiology Laboratory, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Bonnie D Orth
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
4
|
Lima NS, Lefferts EC, Clifford PS. Reactive hyperemia augments local heat-induced skin hyperemia. Exp Physiol 2022; 107:383-389. [PMID: 35218593 DOI: 10.1113/ep090071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? It is valuable to be able to monitor disease or treatment related changes in the microcirculation. Laser doppler flowmetry with local heating allows noninvasive monitoring of the skin microcirculation and its ability to vasodilate. Does reactive hyperemia augment the increase in skin blood flow elicited by local heating? What is the main finding and its importance? The results of this study show that the addition of reactive hyperemia to local heating results in greater vasodilation than heating alone. Thus, reactive hyperemia can augment local heat-induced hyperemia in the skin. ABSTRACT The skin circulation has been proposed as a model of generalized microvascular function which could be monitored noninvasively using laser doppler flowmetry (LDF). The response to heat hyperemia (HH) is commonly used to monitor disease or treatment related changes in microvascular function. We hypothesized that reactive hyperemia would augment the increase in skin blood flow elicited by local heating. Fourteen healthy young adults were subjected to 3 different conditions: reactive hyperemia (RH; skin temperature controlled at 33°C), heat hyperemia (HH; 42°C held for 40 minutes), and HH+RH. Two Peltier-controlled thermomodules with laser LDF probes were placed on the right forearm to continuously monitor skin blood flow. A cuff was placed on the right upper arm to elicit RH by inflation to 220 mmHg for 5 minutes. This procedure was performed with skin temperature at 33°C and again after 40 min of local heating to 42°C. Beat-by-beat mean arterial pressure (MAP) obtained by a photoplethysmographic sensor on the middle finger of the left hand allowed calculation of cutaneous vascular conductance (CVC) as LDF / MAP. Both HH and RH increased LDF (p<0.0001 and p <0.0001, respectively) and CVC (p = 0.0001 and p<0.0001) above baseline values. LDF and CVC values were significantly higher during HH+RH when compared to RH or HH alone (p<0.0001). In summary, HH+RH resulted in greater vasodilation when compared to HH or RH alone. These results indicate that RH can augment local heat-induced hyperemia in the skin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Natalia S Lima
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Elizabeth C Lefferts
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois, United States.,Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Philip S Clifford
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
5
|
Jacob DW, Harper JL, Ivie CL, Ott EP, Limberg JK. Sex differences in the vascular response to sympathetic activation during acute hypoxaemia. Exp Physiol 2021; 106:1689-1698. [PMID: 34187092 DOI: 10.1113/ep089461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Sympathetically mediated vasoconstriction is preserved during hypoxaemia in humans, but our understanding of vascular control comes from predominantly male cohorts. We tested the hypothesis that young women attenuate sympathetically mediated vasoconstriction during steady-state hypoxaemia, whereas men do not? What is the main finding and its importance? Sympathetically mediated vasoconstriction is preserved or even enhanced during steady-state hypoxia in young men, and the peripheral vascular response to sympathetic activation during hypoxaemia is attenuated in young women. These data advance our understanding of sex-related differences in hypoxic vascular control. ABSTRACT Activation of the sympathetic nervous system causes vasoconstriction and a reduction in peripheral blood flow. Sympathetically mediated vasoconstriction may be attenuated during systemic hypoxia to maintain oxygen delivery; however, in predominantly male participants sympathetically mediated vasoconstriction is preserved or even enhanced during hypoxaemia. Given the potential for sex-specific differences in hypoxic vascular control, prior results are limited in application. We tested the hypothesis that young women attenuate sympathetically mediated vasoconstriction during steady-state hypoxaemia, whereas men do not. Healthy young men (n = 13, 25 ± 4 years) and women (n = 11, 24 ± 4 years) completed two trials consisting of a 2-min cold pressor test (CPT, a well-established sympathoexcitatory stimulus) during baseline normoxia and steady-state hypoxaemia. Beat-to-beat blood pressure (finger photoplethysmography) and forearm blood flow (venous occlusion plethysmography) were measured continuously. Total and forearm vascular conductance (TVC and FVC, respectfully) were calculated. A change (Δ) in TVC and FVC from steady-state during the last 1 min of CPT was calculated and differences between normoxia and systemic hypoxia were assessed. In men, the reduction in TVC during CPT was greater during hypoxia compared to normoxia (ΔTVC, P = 0.02), whereas ΔTVC did not differ between conditions in women (P = 0.49). In men, ΔFVC did not differ between normoxia and hypoxia (P = 0.92). In women, the reduction in FVC during CPT was attenuated during hypoxia (ΔFVC, P < 0.01). We confirm sympathetically mediated vasoconstriction is preserved or enhanced during hypoxaemia in young men, whereas peripheral vascular responsiveness to sympathetic activation during hypoxaemia is attenuated in young women. The results advance our understanding of sex-related differences in hypoxic vascular control.
Collapse
Affiliation(s)
- Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Clayton L Ivie
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Elizabeth P Ott
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
6
|
Engelland RE, Hemingway HW, Tomasco OG, Olivencia-Yurvati AH, Romero SA. Neural control of blood pressure is altered following isolated leg heating in aged humans. Am J Physiol Heart Circ Physiol 2020; 318:H976-H984. [PMID: 32142377 DOI: 10.1152/ajpheart.00019.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is a sustained reduction in arterial blood pressure that occurs in aged adults following exposure to acute leg heating. We tested the hypothesis that acute leg heating would decrease arterial blood pressure in aged adults secondary to sympathoinhibition. We exposed 13 young and 10 aged adults to 45 min of leg heating. Muscle sympathetic nerve activity (radial nerve) was measured before leg heating (preheat) and 30 min after (recovery) and is expressed as burst frequency. Neurovascular transduction was examined by assessing the slope of the relation between muscle sympathetic nerve activity and leg vascular conductance measured at rest and during isometric handgrip exercise performed to fatigue. Arterial blood pressure was well maintained in young adults (preheat, 86 ± 6 mmHg vs. recovery, 88 ± 7 mmHg; P = 0.4) due to increased sympathetic nerve activity (preheat, 16 ± 7 bursts/min vs. recovery, 22 ± 10 bursts/min; P < 0.01). However, in aged adults, sympathetic nerve activity did not differ from preheat (37 ± 5 bursts/min) to recovery (33 ± 6 bursts/min, P = 0.1), despite a marked reduction in arterial blood pressure (preheat, 101 ± 7 mmHg vs. recovery, 94 ± 6 mmHg; P < 0.01). Neurovascular transduction did not differ from preheat to recovery for either age group (P ≥ 0.1). The reduction in arterial blood pressure that occurs in aged adults following exposure to acute leg heating is mediated, in part, by a sympathoinhibitory effect that alters the compensatory neural response to hypotension.NEW & NOTEWORTHY There is a sustained reduction in arterial blood pressure that occurs in aged adults following exposure to acute leg heating. However, the neurovascular mechanisms mediating this response remain unknown. Our findings demonstrate for the first time that this reduction in arterial blood pressure is mediated, in part, by a sympathoinhibitory effect that alters the compensatory neural response to hypotension in aged adults.
Collapse
Affiliation(s)
- Rachel E Engelland
- Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Ft. Worth, Texas
| | - Holden W Hemingway
- Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Ft. Worth, Texas
| | - Olivia G Tomasco
- Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Ft. Worth, Texas
| | - Albert H Olivencia-Yurvati
- Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Ft. Worth, Texas.,Department of Surgery, University of North Texas Health Science Center, Ft. Worth, Texas
| | - Steven A Romero
- Department of Physiology and Anatomy, Human Vascular Physiology Laboratory, University of North Texas Health Science Center, Ft. Worth, Texas
| |
Collapse
|
7
|
Chaseling GK, Crandall CG, Gagnon D. Skin blood flow measurements during heat stress: technical and analytical considerations. Am J Physiol Regul Integr Comp Physiol 2019; 318:R57-R69. [PMID: 31596109 DOI: 10.1152/ajpregu.00177.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During heat stress, the skin vasculature can greatly increase conductance secondary to vasodilation. The subsequent increase in skin blood flow allows for convective heat transfer from the core to the skin and between the skin surface and the surrounding environment. Measurement of skin blood flow, therefore, provides valuable information regarding heat exchange between the body and the environment. In addition, assessment of skin blood flow can be used to study vascular control mechanisms. Most often, skin blood flow is measured by venous occlusion plethysmography, Doppler ultrasound, laser-Doppler flowmetry, and, more recently, optical coherence tomography. However, important delimitations to each of these methods, which may be dependent on the research question, must be considered when responses from these approaches are interpreted. In this brief review, we discuss these methods of skin blood flow measurement and highlight potential sources of error and limitations. We also provide recommendations to guide the interpretation of skin blood flow data.
Collapse
Affiliation(s)
- Georgia K Chaseling
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Québec, Canada.,Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, Québec, Canada.,Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Gagnon D, Romero SA, Cramer MN, Kouda K, Poh PYS, Ngo H, Jay O, Crandall CG. Folic acid supplementation does not attenuate thermoregulatory or cardiovascular strain of older adults exposed to extreme heat and humidity. Exp Physiol 2018; 103:1123-1131. [PMID: 29873123 DOI: 10.1113/ep087049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/29/2018] [Indexed: 01/28/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does folic acid supplementation alleviate thermoregulatory and cardiovascular strain of older adults during exposure to extreme heat and humidity? What is the main finding and its importance? Folic acid supplementation for 6 weeks did not affect whole-limb blood flow/vasodilatation, core and skin temperatures, heart rate, blood pressure and cardiac output. Thus, 6 weeks of folic acid supplementation does not alleviate thermoregulatory or cardiovascular strain of healthy older adults exposed to extreme heat and humidity. ABSTRACT Folic acid supplementation reverses age-related reductions in cutaneous vasodilatation during passive heating. However, it is unknown if folic acid supplementation alleviates thermoregulatory and cardiovascular strain experienced by older adults during heat exposure. We evaluated the effect of folic acid supplementation on thermoregulatory and cardiovascular responses of nine healthy older adults (61-72 years, 3 males/6 females) exposed to extreme heat and humidity. Participants rested at 42°C while relative humidity was increased from 30% to 70% in 2% increments every 5 min. The protocol was performed before (CON) and after (FOLIC) 6 weeks of folic acid supplementation (5 mg day-1 ). Local cutaneous vascular conductance (CVC, laser-Doppler flowmetry), forearm vascular conductance (FVC, Doppler ultrasound), mean skin and oesophageal temperatures, heart rate, blood pressure and cardiac output were measured. Folic acid supplementation increased fasting serum folate concentrations (P < 0.01). Absolute CVC was greater throughout the protocol following supplementation (CON: 1.29 ± 0.16 units mmHg-1 vs. FOLIC: 1.65 ± 0.24 units mmHg-1 , P < 0.01). However, normalized CVC (CON: 54 ± 8% vs. FOLIC: 59 ± 7%, P = 0.22), FVC (CON: 3.47 ± 0.76 ml mmHg-1 vs. FOLIC: 3.40 ± 0.56 ml mmHg-1 , P = 0.93), mean skin (P = 0.81) and oesophageal (CON: 36.87 ± 0.28°C vs. folic: 36.90 ± 0.25°C, P = 0.98) temperatures, heart rate (CON: 83 ± 10 beats min-1 vs. FOLIC: 84 ± 8 beats min-1 , P = 0.64), blood pressure (P = 0.71) and cardiac output (P = 0.20) were unaffected by folic acid supplementation. These results demonstrate that 6 weeks of folic acid supplementation does not alleviate thermoregulatory or cardiovascular strain of healthy older adults exposed to extreme heat and humidity.
Collapse
Affiliation(s)
- Daniel Gagnon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA.,Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute, Montréal, QC, Canada.,Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Steven A Romero
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew N Cramer
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ken Kouda
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA.,Wakayama Medical University, Wakayama, Japan
| | - Paula Y S Poh
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hai Ngo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ollie Jay
- Faculty of Health Sciences, University of Sydney, Lidcombe, Australia
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Kim K, Hurr C, Patik JC, Matthew Brothers R. Attenuated cutaneous microvascular function in healthy young African Americans: Role of intradermal l-arginine supplementation. Microvasc Res 2018; 118:1-6. [PMID: 29408444 DOI: 10.1016/j.mvr.2018.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/03/2018] [Accepted: 02/01/2018] [Indexed: 11/17/2022]
Abstract
It has been established that endothelial function in conduit vessels is reduced in young African Americans (AA) relative to Caucasian Americans (CA). However, less is known regarding endothelial function in microvasculature of young AA. We hypothesized that microvascular function in response to local heating of skin is attenuated in young AA relative to age-matched CA due largely to the lack of NO bioavailability, which is in turn improved by intradermal l-arginine supplementation and/or inhibition of arginase. Nine AA and nine CA adults participated in this study. Participants were instrumented with four microdialysis membranes in the cutaneous vasculature of one forearm and were randomly assigned to receive 1) lactated Ringer's solution as a control site; 2) 20 mM NG-nitro-l-arginine (l-NAME) to inhibit NO synthase activity; 3) 10 mM l-arginine to local supplement l-arginine; or 4) a combination of 5.0 mM (S)-(2‑boronoethyl)-l-cysteine-HCL (BEC) and 5.0 mM Nω-hydroxy-nor-l-arginine (nor-NOHA) at a rate of 2.0 μl/min to locally inhibit arginase activity. Cutaneous vascular conductance (CVC) was calculated as red blood cell flux divided by mean arterial pressure. All CVC data were presented as a percentage of maximal CVC (%CVCmax) that was determined by maximal cutaneous vasodilation induced by 44 °C heating plus sodium nitroprusside administration. The response during the 42 °C local heating plateau was blunted in the AA at the control site (CA: 84 ± 12 vs. AA: 62 ± 6 vs. %CVCmax; P < 0.001). This response was improved in AA at the l-arginine site (Control: 62 ± 6 vs. l-arginine: 70 ± 18%CVCmax; P < 0.05) but not in the arginase inhibited site (Control: 62 ± 6 vs. Arginase inhibited: 62 ± 13%CVCmax; P = 0.91). In addition, the AA group had an attenuated NO contribution to the plateau phase during 42 °C local heating relative to the CA group (CA: 56 ± 14 vs. AA: 44 ± 6 Δ %CVCmax; P < 0.001). These findings suggest that 1) cutaneous microvascular function in response to local heating is blunted in young AA when compared to age-matched young CA; 2) this attenuated response is partly related to decrease in NO bioavailability in young AA; and 3) a local infusion of l-arginine, but not arginase inhibition, improves cutaneous microvascular responses to local heating in young AA relative to CA.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Pathology, The University of Alabama at Birmingham, United States
| | - Chansol Hurr
- Department of Pharmacology and Physiology, George Washington University, United States
| | - Jordan C Patik
- Department of Kinesiology, The University of Texas at Arlington, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, United States.
| |
Collapse
|
10
|
Vishwanath K, Gurjar R, Wolf D, Riccardi S, Duggan M, King D. Diffuse optical monitoring of peripheral tissues during uncontrolled internal hemorrhage in a porcine model. BIOMEDICAL OPTICS EXPRESS 2018; 9:569-580. [PMID: 29552394 PMCID: PMC5854059 DOI: 10.1364/boe.9.000569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 05/06/2023]
Abstract
Reliable, continuous and noninvasive blood flow and hemoglobin monitoring in trauma patients remains a critical, but generally unachieved goal. Two optical sensing methods - diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy (DRS) - are used to monitor and detect internal hemorrhage. Specifically, we investigate if cutaneous perfusion measurements acquired using DCS and DRS in peripheral (thighs and ear-lobe) tissues could detect severe hemorrhagic shock in a porcine model. Four animals underwent high-grade hepato-portal injury in a closed abdomen, to induce uncontrolled hemorrhage and were subsequently allowed to bleed for 10 minutes before fluid resuscitation. DRS and DCS measurements of cutaneous blood flow were acquired using fiber optical probes placed on the thigh and earlobe of the animals and were obtained repeatedly starting from 1 to 5 minutes pre-injury, up to several minutes post shock. Clear changes were observed in measured optical spectra across all animals at both sites. DCS-derived cutaneous blood flow decreased sharply during hemorrhage, while DRS-derived vascular saturation and hemoglobin paralleled cardiac output. All derived optical parameters had the steepest changes during the rapid initial hemorrhage unambiguously. This suggests that a combined DCS and DRS based device might provide an easy-to-use, non-invasive, internal-hemorrhage detection system that can be used across a wide array of clinical settings.
Collapse
Affiliation(s)
- Karthik Vishwanath
- Department of Physics, Miami University, Oxford, OH 45056, USA
- Affiliations of authors when experiments were conducted: Radiation Monitoring Devices Inc., 44 Hunt Street, Watertown, MA 02472, USA
| | - Rajan Gurjar
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
- Affiliations of authors when experiments were conducted: Radiation Monitoring Devices Inc., 44 Hunt Street, Watertown, MA 02472, USA
| | - David Wolf
- Warner Babcock Institute for Green Chemistry, 100 Research Drive, Wilmington, MA 01887, USA
- Affiliations of authors when experiments were conducted: Radiation Monitoring Devices Inc., 44 Hunt Street, Watertown, MA 02472, USA
| | - Suzannah Riccardi
- MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
- Affiliations of authors when experiments were conducted: Radiation Monitoring Devices Inc., 44 Hunt Street, Watertown, MA 02472, USA
| | - Michael Duggan
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, 165 Cambridge Street, Suite 810 Boston, MA 02114, USA
| | - David King
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, 165 Cambridge Street, Suite 810 Boston, MA 02114, USA
| |
Collapse
|
11
|
Gagnon D, Romero SA, Cramer MN, Kouda K, Poh PYS, Ngo H, Jay O, Crandall CG. Age Modulates Physiological Responses during Fan Use under Extreme Heat and Humidity. Med Sci Sports Exerc 2018; 49:2333-2342. [PMID: 28609330 DOI: 10.1249/mss.0000000000001348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We examined the effect of electric fan use on cardiovascular and thermoregulatory responses of nine young (26 ± 3 yr) and nine aged (68 ± 4 yr) adults exposed to extreme heat and humidity. METHODS While resting at a temperature of 42°C, relative humidity increased from 30% to 70% in 2% increments every 5 min. On randomized days, the protocol was repeated without or with fan use. HR, core (Tcore) and mean skin (Tsk) temperatures were measured continuously. Whole-body sweat loss was measured from changes in nude body weight. Other measures of cardiovascular (cardiac output), thermoregulatory (local cutaneous and forearm vascular conductance, local sweat rate), and perceptual (thermal and thirst sensations) responses were also examined. RESULTS When averaged over the entire protocol, fan use resulted in a small reduction of HR (-2 bpm, 95% confidence interval [CI], -8 to 3), and slightly greater Tcore (+0.05°C; 95% CI, -0.13 to 0.23) and Tsk (+0.03°C; 95% CI, -0.36 to 0.42) in young adults. In contrast, fan use resulted in greater HR (+5 bpm; 95% CI, 0-10), Tcore (+0.20°C; 95% CI, 0.00-0.41), and Tsk (+0.47°C; 95% CI, 0.18-0.76) in aged adults. A greater whole-body sweat loss during fan use was observed in young (+0.2 kg; 95% CI, -0.2 to 0.6) but not aged (0.0 kg; 95% CI, -0.2 to 0.2) adults. Greater local sweat rate and cutaneous vascular conductance were observed with fan use in aged adults. Other measures of cardiovascular, thermoregulatory, and perceptual responses were unaffected by fan use in both groups. CONCLUSIONS During extreme heat and humidity, fan use elevates physiological strain in aged, but not young, adults.
Collapse
Affiliation(s)
- Daniel Gagnon
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX; 2Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute Research Centre, Montréal, QC, CANADA; 3Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, CANADA; 4Wakayama Medical University, Wakayama, JAPAN; and 5Faculty of Health Sciences, University of Sydney, Lidcombe, AUSTRALIA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Te Lindert BHW, Van Someren EJW. Skin temperature, sleep, and vigilance. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:353-365. [PMID: 30454600 DOI: 10.1016/b978-0-444-63912-7.00021-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A large number of studies have shown a close association between the 24-hour rhythms in core body temperature and sleep propensity. More recently, studies have have begun to elucidate an intriguing association of sleep with skin temperature as well. The present chapter addresses the association of sleep and alertness with skin temperature. It discusses whether the association could reflect common underlying drivers of both sleep propensity and skin vasodilation; whether it could reflect efferents of sleep-regulating brain circuits to thermoregulatory circuits; and whether skin temperature could provide afferent input to sleep-regulating brain circuits. Sleep regulation and concomitant changes in skin temperature are systematically discussed and three parallel factors suggested: a circadian clock mechanism, a homeostatic hourglass mechanism, and a third set of sleep-permissive and wake-promoting factors that gate the effectiveness of signals from the clock and hourglass in the actual induction of sleep or maintenance of alert wakefulness. The chapter moreover discusses how the association between skin temperature and arousal can change with sleep deprivation and insomnia. Finally it addresses whether the promising laboratory findings on the effects of skin temperature manipulations on vigilance can be applied to improve sleep in everyday life.
Collapse
Affiliation(s)
- Bart H W Te Lindert
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Departments of Psychiatry and Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Smith CJ, Craighead DH, Alexander LM. Effects of vehicle microdialysis solutions on cutaneous vascular responses to local heating. J Appl Physiol (1985) 2017; 123:1461-1467. [PMID: 28860170 DOI: 10.1152/japplphysiol.00498.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microdialysis is a minimally invasive technique often paired with laser Doppler flowmetry to examine cutaneous microvascular function, yet presents with several challenges, including incompatibility with perfusion of highly lipophilic compounds. The present study addresses this methodological concern, with an emphasis on the independent effects of commonly used vehicle dialysis solutions to improve solubility of pharmacological agents with otherwise low aqueous solubility. Four microdialysis fibers were placed in the ventral forearm of eight subjects (4 men, 4 women; 25 ± 1 yr) with sites randomized to serve as 1) control (lactated Ringer's), 2) Sodium carbonate-bicarbonate buffer administered at physiological pH [SCB-HCl; pH 7.4, achieved via addition of hydrochloric acid (HCl)], 3) 0.02% ethanol, and 4) 2% dimethyl sulfoxide (DMSO). After baseline (34°C), vehicle solutions were administered throughout a standardized local heating protocol to 42°C. Laser Doppler flowmetry provided an index of blood flow. Cutaneous vascular conductance was calculated and normalized to maximum (%CVCmax, sodium nitroprusside and 43°C local heat). The SCB-HCl solution increased baseline %CVCmax (control: 9.7 ± 0.8; SCB-HCl: 21.5 ± 3.5%CVCmax; P = 0.03), but no effects were observed during heating or maximal vasodilation. There were no differences with perfusion of ethanol or DMSO at any stage of the protocol ( P > 0.05). These data demonstrate the potential confounding effects of some vehicle dialysis solutions on cutaneous vascular function. Notably, this study provides evidence that 2% DMSO and 0.02% ethanol are acceptable vehicles with no confounding local vascular effects to a standardized local heating protocol at the concentrations presented. NEW & NOTEWORTHY This study examined the independent effects of common vehicle solutions on cutaneous vascular responses. A basic buffer (SCB-HCl) caused baseline vasodilation; 2% DMSO and 0.02% ethanol had no effects. This highlights the need for considering potential confounding effects of solubilizing solutions when combined with low aqueous soluble pharmacological agents. Importantly, DMSO and ethanol do not appear to influence cutaneous vascular function during baseline or local heating at the concentrations studied, allowing their use without confounding effects.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Health and Exercise Science, Appalachian State University, Boone, North Carolina
| | - Daniel H Craighead
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University , University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
14
|
Rivas E, McEntire SJ, Herndon DN, Mlcak RP, Suman OE. β-Adrenergic blockade does not impair the skin blood flow sensitivity to local heating in burned and nonburned skin under neutral and hot environments in children. Microcirculation 2017; 24. [PMID: 28071840 DOI: 10.1111/micc.12350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVE We tested the hypothesis that propranolol, a drug given to burn patients to reduce hypermetabolism/cardiac stress, may inhibit heat dissipation by changing the sensitivity of skin blood flow (SkBF) to local heating under neutral and hot conditions. METHODS In a randomized double-blind study, a placebo was given to eight burned children, while propranolol was given to 13 burned children with similar characteristics (mean±SD: 11.9±3 years, 147±20 cm, 45±23 kg, 56±12% Total body surface area burned). Nonburned children (n=13, 11.4±3 years, 152±15 cm, 52±13 kg) served as healthy controls. A progressive local heating protocol characterized SkBF responses in burned and unburned skin and nonburned control skin under the two environmental conditions (23 and 34°C) via laser Doppler flowmetry. RESULTS Resting SkBF was greater in burned and unburned skin compared to the nonburned control (main effect: skin, P<.0001; 57±32 burned; 38±36 unburned vs 9±8 control %SkBFmax ). No difference was found for maximal SkBF capacity to local heating between groups. Additionally, dose-response curves for the sensitivity of SkBF to local heating were not different among burned or unburned skin, and nonburned control skin (EC50 , P>.05) under either condition. CONCLUSION Therapeutic propranolol does not negatively affect SkBF under neutral or hot environmental conditions and further compromise temperature regulation in burned children.
Collapse
Affiliation(s)
- Eric Rivas
- Shriners Hospitals for Children, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Serina J McEntire
- College of Nursing and Health Sciences, Valdosta State University, Valdosta, GA, USA
| | - David N Herndon
- Shriners Hospitals for Children, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Ronald P Mlcak
- Shriners Hospitals for Children, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | - Oscar E Suman
- Shriners Hospitals for Children, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
15
|
Johnson JM, Minson CT, Kellogg DL. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol 2014; 4:33-89. [PMID: 24692134 DOI: 10.1002/cphy.c130015] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this review, we focus on significant developments in our understanding of the mechanisms that control the cutaneous vasculature in humans, with emphasis on the literature of the last half-century. To provide a background for subsequent sections, we review methods of measurement and techniques of importance in elucidating control mechanisms for studying skin blood flow. In addition, the anatomy of the skin relevant to its thermoregulatory function is outlined. The mechanisms by which sympathetic nerves mediate cutaneous active vasodilation during whole body heating and cutaneous vasoconstriction during whole body cooling are reviewed, including discussions of mechanisms involving cotransmission, NO, and other effectors. Current concepts for the mechanisms that effect local cutaneous vascular responses to local skin warming and cooling are examined, including the roles of temperature sensitive afferent neurons as well as NO and other mediators. Factors that can modulate control mechanisms of the cutaneous vasculature, such as gender, aging, and clinical conditions, are discussed, as are nonthermoregulatory reflex modifiers of thermoregulatory cutaneous vascular responses.
Collapse
Affiliation(s)
- John M Johnson
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | |
Collapse
|
16
|
Heffernan MJ, Muller MD. Do peripheral and/or central chemoreflexes influence skin blood flow in humans? Physiol Rep 2014; 2:2/10/e12181. [PMID: 25344478 PMCID: PMC4254106 DOI: 10.14814/phy2.12181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023] Open
Abstract
Voluntary apnea activates the central and peripheral chemoreceptors, leading to a rise in sympathetic nerve activity and limb vasoconstriction (i.e., brachial blood flow velocity and forearm cutaneous vascular conductance decrease to a similar extent). Whether peripheral and/or central chemoreceptors contribute to the cutaneous vasoconstrictor response remains unknown. We performed three separate experiments in healthy young men to test the following three hypotheses. First, inhibition of peripheral chemoreceptors with brief hyperoxia inhalation (100% O2) would attenuate the cutaneous vasoconstrictor response to voluntary apnea. Second, activation of the peripheral chemoreceptors with 5 min of hypoxia (10% O2, 90% N2) would augment the cutaneous vasoconstrictor response to voluntary apnea. Third, activation of the central chemoreceptors with 5 min of hypercapnia (7% CO2, 30% O2, 63% N2) would have no influence on cutaneous responses to voluntary apnea. Studies were performed in the supine posture with skin temperature maintained at thermoneutral levels. Beat-by-beat blood pressure, heart rate, brachial blood flow velocity, and cutaneous vascular conductance were measured and changes from baseline were compared between treatments. Relative to room air, hyperoxia attenuated the vasoconstrictor response to voluntary apnea in both muscle (-16 ± 10 vs. -40 ± 12%, P = 0.023) and skin (-14 ± 6 vs. -24 ± 5%, P = 0.033). Neither hypoxia nor hypercapnia had significant effects on cutaneous responses to apnea. These data indicate that skin blood flow is controlled by the peripheral chemoreceptors but not the central chemoreceptors.
Collapse
Affiliation(s)
- Matthew J. Heffernan
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| | - Matthew D. Muller
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| |
Collapse
|
17
|
Romeijn N, Verweij IM, Koeleman A, Mooij A, Steimke R, Virkkala J, van der Werf Y, Van Someren EJW. Cold hands, warm feet: sleep deprivation disrupts thermoregulation and its association with vigilance. Sleep 2012. [PMID: 23204610 DOI: 10.5665/sleep.2242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Vigilance is affected by induced and spontaneous skin temperature fluctuations. Whereas sleep deprivation strongly affects vigilance, no previous study examined in detail its effect on human skin temperature fluctuations and their association with vigilance. DESIGN In a repeated-measures constant routine design, skin temperatures were assessed continuously from 14 locations while performance was assessed using a reaction time task, including eyes-open video monitoring, performed five times a day for 2 days, after a normal sleep or sleep deprivation night. SETTING Participants were seated in a dimly lit, temperature-controlled laboratory. PATIENTS OR PARTICIPANTS Eight healthy young adults (five males, age 22.0 ± 1.8 yr (mean ± standard deviation)). INTERVENTION One night of sleep deprivation. MEASUREMENTS AND RESULTS Mixed-effect regression models were used to evaluate the effect of sleep deprivation on skin temperature gradients of the upper (ear-mastoid), middle (hand-arm), and lower (foot-leg) body, and on the association between fluctuations in performance and in temperature gradients. Sleep deprivation induced a marked dissociation of thermoregulatory skin temperature gradients, indicative of attenuated heat loss from the hands co-occurring with enhanced heat loss from the feet. Sleep deprivation moreover attenuated the association between fluctuations in performance and temperature gradients; the association was best preserved for the upper body gradient. CONCLUSIONS Sleep deprivation disrupts coordination of fluctuations in thermoregulatory skin temperature gradients. The dissociation of middle and lower body temperature gradients may therefore be evaluated as a marker for sleep debt, and the upper body gradient as a possible aid in vigilance assessment when sleep debt is unknown. Importantly, our findings suggest that sleep deprivation affects the coordination between skin blood flow fluctuations and the baroreceptor-mediated cardiovascular regulation that prevents venous pooling of blood in the lower limbs when there is the orthostatic challenge of an upright posture.
Collapse
Affiliation(s)
- Nico Romeijn
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Heller HC, Grahn DA. Enhancing Thermal Exchange in Humans and Practical Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1089/dst.2012.0004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
ROUSTIT MATTHIEU, CRACOWSKI JEANLUC. Non-invasive Assessment of Skin Microvascular Function in Humans: An Insight Into Methods. Microcirculation 2011; 19:47-64. [DOI: 10.1111/j.1549-8719.2011.00129.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Impact of 10 sessions of whole body cryostimulation on cutaneous microcirculation measured by laser Doppler flowmetry. J Hum Kinet 2011; 30:75-83. [PMID: 23487007 PMCID: PMC3588644 DOI: 10.2478/v10078-011-0075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to evaluate the basic and evoked blood flow in the skin microcirculation of the hand, one day and ten days after a series of 10 whole body cryostimulation sessions, in healthy individuals. The study group included 32 volunteers – 16 women and 16 men. The volunteers underwent 10 sessions of cryotherapy in a cryogenic chamber. The variables were recorded before the series of 10 whole body cryostimulation sessions (first measurement), one day after the last session (second measurement) and ten days later (third measurement). Rest flow, post-occlusive hyperaemic reaction, reaction to temperature and arterio–venous reflex index were evaluated by laser Doppler flowmetry. The values recorded for rest flow, a post-occlusive hyperaemic reaction, a reaction to temperature and arterio – venous reflex index were significantly higher both in the second and third measurement compared to the initial one. Differences were recorded both in men and women. The values of frequency in the range of 0,01 Hz to 2 Hz (heart frequency dependent) were significantly lower after whole-body cryostimulation in both men and women. In the range of myogenic frequency significantly higher values were recorded in the second and third measurement compared to the first one. Recorded data suggest improved response of the cutaneous microcirculation to applied stimuli in both women and men. Positive effects of cryostimulation persist in the tested group for 10 consecutive days.
Collapse
|
21
|
Ganio MS, Brothers RM, Lucas RAI, Hastings JL, Crandall CG. Validity of auscultatory and Penaz blood pressure measurements during profound heat stress alone and with an orthostatic challenge. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1510-6. [PMID: 21832209 DOI: 10.1152/ajpregu.00247.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite frequent reporting of blood pressure (BP) during profound passive heat stress, both with and without a hypotensive challenge, the method by which BP is measured often varies between laboratories. It is unknown whether auscultatory and finger BP measures accurately reflect intra-arterial BP during dynamic changes in cardiac output and peripheral resistance associated with the aforementioned conditions. The purpose of this investigation was to test the hypothesis that auscultatory BP measured at the brachial artery, and finger BP measured by the Penaz method, are valid measures of intra-arterial BP during a passive heat stress and a heat-stressed orthostatic challenge, via lower body negative pressure (LBNP). Absolute (specific aim 1) and the change in (specific aim 2) systolic (SBP), diastolic (DBP), and mean BPs (MBP) were compared at normothermia, after a core temperature increase of 1.47 ± 0.09°C, and during subsequent LBNP. Heat stress did not change auscultatory SBP (6 ± 11 mmHg; P = 0.16), but Penaz SBP (-22 ± 16 mmHg; P < 0.001) and intra-arterial SBP (-11 ± 13 mmHg P = 0.017) decreased. In contrast, DBP and MBP did not differ between methods throughout heat stress. Compared with BP before LBNP, the magnitude of the reduction in BP with all three methods was similar throughout LBNP (P > 0.05). In conclusion, auscultatory SBP and Penaz SBP failed to track the decrease in intra-arterial SBP that occurred during the profound heat stress, while decreases in arterial BP during an orthostatic challenge are comparable between methodologies.
Collapse
Affiliation(s)
- Matthew S Ganio
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|