1
|
Cornish SM, Cordingley DM. Inflammatory pathway communication with skeletal muscle-Does aging play a role? A topical review of the current evidence. Physiol Rep 2024; 12:e16098. [PMID: 38872451 PMCID: PMC11176593 DOI: 10.14814/phy2.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Skeletal muscle plays an integral role in locomotion, but also as part of the integrative physiological system. Recent progress has identified crosstalk between skeletal muscle and various physiological systems, including the immune system. Both the musculoskeletal and immune systems are impacted by aging. Increased age is associated with decreased muscle mass and function, while the immune system undergoes "inflammaging" and immunosenescence. Exercise is identified as a preventative medicine that can mitigate loss of function for both systems. This review summarizes: (1) the inflammatory pathways active in skeletal muscle; and (2) the inflammatory and skeletal muscle response to unaccustomed exercise in younger and older adults. Compared to younger adults, it appears older individuals have a muted pro-inflammatory response and elevated anti-inflammatory response to exercise. This important difference could contribute to decreased regeneration and recovery following unaccustomed exercise in older adults, as well as in chronic disease. The current research provides specific information on the role inflammation plays in altering skeletal muscle form and function, and adaptation to exercise; however, the pursuit of more knowledge in this area will delineate specific interventions that may enhance skeletal muscle recovery and promote resiliency in this tissue particularly with aging.
Collapse
Affiliation(s)
- Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
- Applied Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre for Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dean M Cordingley
- Applied Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Dondero K, Friedman B, Rekant J, Landers‐Ramos R, Addison O. The effects of myosteatosis on skeletal muscle function in older adults. Physiol Rep 2024; 12:e16042. [PMID: 38705872 PMCID: PMC11070439 DOI: 10.14814/phy2.16042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Myosteatosis, or the infiltration of fatty deposits into skeletal muscle, occurs with advancing age and contributes to the health and functional decline of older adults. Myosteatosis and its inflammatory milieu play a larger role in adipose tissue dysfunction, muscle tissue dysfunction, and increased passive muscle stiffness. Combined with the age-related decline of sex hormones and development of anabolic resistance, myosteatosis also contributes to insulin resistance, impaired muscle mechanics, loss of force production from the muscle, and increased risk of chronic disease. Due to its highly inflammatory secretome and the downstream negative effects on muscle metabolism and mechanics, myosteatosis has become an area of interest for aging researchers and clinicians. Thus far, myosteatosis treatments have had limited success, as many lack the potency to completely rescue the metabolic and physical consequences of myosteatosis. Future research is encouraged for the development of reliable assessment methods for myosteatosis, as well as the continued exploration of pharmacological, nutritional, and exercise-related interventions that may lead to the success in attenuating myosteatosis and its clinical consequences within the aging population.
Collapse
Affiliation(s)
- Kathleen Dondero
- Department of Physical Therapy and Rehabilitation ScienceUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Department of KinesiologyTowson UniversityTowsonMarylandUSA
| | - Ben Friedman
- Department of Physical Therapy and Rehabilitation ScienceUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Julie Rekant
- Department of Physical Therapy and Rehabilitation ScienceUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Baltimore Geriatric Research, Education, and Clinical CenterBaltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
| | | | - Odessa Addison
- Department of Physical Therapy and Rehabilitation ScienceUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Baltimore Geriatric Research, Education, and Clinical CenterBaltimore Veterans Affairs Medical CenterBaltimoreMarylandUSA
| |
Collapse
|
3
|
Elliehausen CJ, Anderson RM, Diffee GM, Rhoads TW, Lamming DW, Hornberger TA, Konopka AR. Geroprotector drugs and exercise: friends or foes on healthy longevity? BMC Biol 2023; 21:287. [PMID: 38066609 PMCID: PMC10709984 DOI: 10.1186/s12915-023-01779-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Physical activity and several pharmacological approaches individually combat age-associated conditions and extend healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.
Collapse
Affiliation(s)
- Christian J Elliehausen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rozalyn M Anderson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
4
|
Tate BN, Van Guilder GP, Aly M, Spence LA, Diaz-Rubio ME, Le HH, Johnson EL, McFadden JW, Perry CA. Changes in Choline Metabolites and Ceramides in Response to a DASH-Style Diet in Older Adults. Nutrients 2023; 15:3687. [PMID: 37686719 PMCID: PMC10489641 DOI: 10.3390/nu15173687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
This feeding trial evaluated the impact of the Dietary Approaches to Stop Hypertension diet on changes in plasma choline, choline metabolites, and ceramides in obese older adults; 28 adults consumed 3oz (n = 15) or 6oz (n = 13) of beef within a standardized DASH diet for 12 weeks. Plasma choline, betaine, methionine, dimethylglycine (DMG), phosphatidylcholine (PC), lysophosphotidylcholine (LPC), sphingomyelin, trimethylamine-N-oxide (TMAO), L-carnitine, ceramide, and triglycerides were measured in fasted blood samples. Plasma LPC, sphingomyelin, and ceramide species were also quantified. In response to the study diet, with beef intake groups combined, plasma choline decreased by 9.6% (p = 0.012); DMG decreased by 10% (p = 0.042); PC decreased by 51% (p < 0.001); total LPC increased by 281% (p < 0.001); TMAO increased by 26.5% (p < 0.001); total ceramide decreased by 22.1% (p < 0.001); and triglycerides decreased by 18% (p = 0.021). All 20 LPC species measured increased (p < 0.01) with LPC 16:0 having the greatest response. Sphingomyelin 16:0, 18:0, and 18:1 increased (all p < 0.001) by 10.4%, 22.5%, and 24%, respectively. In contrast, we observed that sphingomyelin 24:0 significantly decreased by 10%. Ceramide 22:0 and 24:0 decreased by 27.6% and 10.9% (p < 0.001), respectively, and ceramide 24:1 increased by 36.8% (p = 0.013). Changes in choline and choline metabolites were in association with anthropometric and cardiometabolic outcomes. These findings show the impact of the DASH diet on choline metabolism in older adults and demonstrate the influence of diet to modify circulating LPC, sphingomyelin, and ceramide species.
Collapse
Affiliation(s)
- Brianna N. Tate
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Gary P. Van Guilder
- High Altitude Exercise Physiology Department, Western Colorado University, Gunnison, CO 81231, USA;
| | - Marwa Aly
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - Lisa A. Spence
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| | - M. Elena Diaz-Rubio
- Proteomic and Metabolomics Facility, Cornell University, Ithaca, NY 14853, USA;
| | - Henry H. Le
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Elizabeth L. Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (H.H.L.); (E.L.J.)
| | - Joseph W. McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; (B.N.T.); (J.W.M.)
| | - Cydne A. Perry
- Department of Applied Health Science, Indiana University School of Public Health, Bloomington, IN 47405, USA; (M.A.); (L.A.S.)
| |
Collapse
|
5
|
Chaillou T, Montiel-Rojas D. Does the blunted stimulation of skeletal muscle protein synthesis by aging in response to mechanical load result from impaired ribosome biogenesis? FRONTIERS IN AGING 2023; 4:1171850. [PMID: 37256189 PMCID: PMC10225510 DOI: 10.3389/fragi.2023.1171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023]
Abstract
Age-related loss of skeletal muscle mass leads to a reduction of strength. It is likely due to an inadequate stimulation of muscle protein synthesis (MPS) in response to anabolic stimuli, such as mechanical load. Ribosome biogenesis is a major determinant of translational capacity and is essential for the control of muscle mass. This mini-review aims to put forth the hypothesis that ribosome biogenesis is impaired by aging in response to mechanical load, which could contribute to the age-related anabolic resistance and progressive muscle atrophy. Recent animal studies indicate that aging impedes muscle hypertrophic response to mechanical overload. This is associated with an impaired transcription of ribosomal DNA (rDNA) by RNA polymerase I (Pol I), a limited increase in total RNA concentration, a blunted activation of AKT/mTOR pathway, and an increased phosphorylation of AMPK. In contrast, an age-mediated impairment of ribosome biogenesis is unlikely in response to electrical stimulations. In human, the hypertrophic response to resistance exercise training is diminished with age. This is accompanied by a deficit in long-term MPS and an absence of increased total RNA concentration. The results addressing the acute response to resistance exercise suggest an impaired Pol I-mediated rDNA transcription and attenuated activation/expression of several upstream regulators of ribosome biogenesis in muscles from aged individuals. Altogether, emerging evidence indicates that impaired ribosome biogenesis could partly explain age-related anabolic resistance to mechanical load, which may ultimately contribute to progressive muscle atrophy. Future research should develop more advanced molecular tools to provide in-depth analysis of muscle ribosome biogenesis.
Collapse
|
6
|
Nutrients, Physical Activity, and Mitochondrial Dysfunction in the Setting of Metabolic Syndrome. Nutrients 2023; 15:nu15051217. [PMID: 36904216 PMCID: PMC10004804 DOI: 10.3390/nu15051217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic risk factors for diabetes, coronary heart disease, non-alcoholic fatty liver disease, and some tumors. It includes insulin resistance, visceral adiposity, hypertension, and dyslipidemia. MetS is primarily linked to lipotoxicity, with ectopic fat deposition from fat storage exhaustion, more than obesity per se. Excessive intake of long-chain saturated fatty acid and sugar closely relates to lipotoxicity and MetS through several pathways, including toll-like receptor 4 activation, peroxisome proliferator-activated receptor-gamma regulation (PPARγ), sphingolipids remodeling, and protein kinase C activation. These mechanisms prompt mitochondrial dysfunction, which plays a key role in disrupting the metabolism of fatty acids and proteins and in developing insulin resistance. By contrast, the intake of monounsaturated, polyunsaturated, and medium-chain saturated (low-dose) fatty acids, as well as plant-based proteins and whey protein, favors an improvement in sphingolipid composition and metabolic profile. Along with dietary modification, regular exercises including aerobic, resistance, or combined training can target sphingolipid metabolism and improve mitochondrial function and MetS components. This review aimed to summarize the main dietary and biochemical aspects related to the physiopathology of MetS and its implications for mitochondrial machinery while discussing the potential role of diet and exercise in counteracting this complex clustering of metabolic dysfunctions.
Collapse
|
7
|
Laurila PP, Wohlwend M, Imamura de Lima T, Luan P, Herzig S, Zanou N, Crisol B, Bou-Sleiman M, Porcu E, Gallart-Ayala H, Handzlik MK, Wang Q, Jain S, D'Amico D, Salonen M, Metallo CM, Kutalik Z, Eichmann TO, Place N, Ivanisevic J, Lahti J, Eriksson JG, Auwerx J. Sphingolipids accumulate in aged muscle, and their reduction counteracts sarcopenia. NATURE AGING 2022; 2:1159-1175. [PMID: 37118545 DOI: 10.1038/s43587-022-00309-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/07/2022] [Indexed: 04/30/2023]
Abstract
Age-related muscle dysfunction and sarcopenia are major causes of physical incapacitation in older adults and currently lack viable treatment strategies. Here we find that sphingolipids accumulate in mouse skeletal muscle upon aging and that both genetic and pharmacological inhibition of sphingolipid synthesis prevent age-related decline in muscle mass while enhancing strength and exercise capacity. Inhibition of sphingolipid synthesis confers increased myogenic potential and promotes protein synthesis. Within the sphingolipid pathway, we show that accumulation of dihydroceramides is the culprit disturbing myofibrillar homeostasis. The relevance of sphingolipid pathways in human aging is demonstrated in two cohorts, the UK Biobank and Helsinki Birth Cohort Study in which gene expression-reducing variants of SPTLC1 and DEGS1 are associated with improved and reduced fitness of older individuals, respectively. These findings identify sphingolipid synthesis inhibition as an attractive therapeutic strategy for age-related sarcopenia and co-occurring pathologies.
Collapse
Affiliation(s)
- Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tanes Imamura de Lima
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Peiling Luan
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sébastien Herzig
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Barbara Crisol
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maroun Bou-Sleiman
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eleonora Porcu
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Michal K Handzlik
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Suresh Jain
- Intonation Research Laboratories, Secunderabad, India
| | - Davide D'Amico
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Minna Salonen
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Nicolas Place
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
8
|
Azuma K, Osuka Y, Kojima N, Sasai H, Kim H, Inoue S. Association of Vitamin K Insufficiency as Evaluated by Serum Undercarboxylated Osteocalcin With Frailty in Community-Dwelling Older Adults. FRONTIERS IN AGING 2022; 3:865178. [PMID: 35821817 PMCID: PMC9261387 DOI: 10.3389/fragi.2022.865178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022]
Abstract
Frailty is the state of having a reduced ability to recover from stress. Intervention in frailty is important for fulfilling healthy longevity. Vitamin K is a fat-soluble vitamin contained in vegetables and fermented foods. Although vitamin K is shown to be associated with several age-related diseases, studies on the association of vitamin K intake and frailty in the elderly population are limited. In the present study, a total of 800 community-dwelling older adults (mean age = 75.9) were recruited for a comprehensive geriatric health examination, including frailty evaluation based on the Japanese version of the Cardiovascular Health Study criteria. Serum concentrations of total osteocalcin (OC) and undercarboxylated osteocalcin (ucOC) were measured. The ratio of ucOC and OC (ucOC/OC), which reflects vitamin K insufficiency, was calculated for each participant, and the values were divided into quartiles. A binary logistic regression analysis was performed to evaluate the risk of frailty for each quartile of ucOC/OC, with the lowest quartile as the reference. Significant association of frailty and the highest quartile of ucOC/OC was found with the odds ratio of 2.49 (p = 0.023) with adjustment with age, sex, body mass index, dietary intake, and several clinical characteristics. When the analysis was repeated in each component of frailty, the highest quartiles of ucOC/OC had the tendency of association with “slow walking speed” and “low activity.” Our findings demonstrated the association between vitamin K insufficiency and frailty in the elderly population. Our analysis also suggests that vitamin K insufficiency could be associated with selected components of frailty.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yosuke Osuka
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Narumi Kojima
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hiroyuki Sasai
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hunkyung Kim
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- *Correspondence: Satoshi Inoue,
| |
Collapse
|
9
|
Li CW, Yu K, Shyh-Chang N, Jiang Z, Liu T, Ma S, Luo L, Guang L, Liang K, Ma W, Miao H, Cao W, Liu R, Jiang LJ, Yu SL, Li C, Liu HJ, Xu LY, Liu RJ, Zhang XY, Liu GS. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle 2022; 13:781-794. [PMID: 35106971 PMCID: PMC8977978 DOI: 10.1002/jcsm.12901] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/26/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Age-associated obesity and muscle atrophy (sarcopenia) are intimately connected and are reciprocally regulated by adipose tissue and skeletal muscle dysfunction. During ageing, adipose inflammation leads to the redistribution of fat to the intra-abdominal area (visceral fat) and fatty infiltrations in skeletal muscles, resulting in decreased overall strength and functionality. Lipids and their derivatives accumulate both within and between muscle cells, inducing mitochondrial dysfunction, disturbing β-oxidation of fatty acids, and enhancing reactive oxygen species (ROS) production, leading to lipotoxicity and insulin resistance, as well as enhanced secretion of some pro-inflammatory cytokines. In turn, these muscle-secreted cytokines may exacerbate adipose tissue atrophy, support chronic low-grade inflammation, and establish a vicious cycle of local hyperlipidaemia, insulin resistance, and inflammation that spreads systemically, thus promoting the development of sarcopenic obesity (SO). We call this the metabaging cycle. Patients with SO show an increased risk of systemic insulin resistance, systemic inflammation, associated chronic diseases, and the subsequent progression to full-blown sarcopenia and even cachexia. Meanwhile in many cardiometabolic diseases, the ostensibly protective effect of obesity in extremely elderly subjects, also known as the 'obesity paradox', could possibly be explained by our theory that many elderly subjects with normal body mass index might actually harbour SO to various degrees, before it progresses to full-blown severe sarcopenia. Our review outlines current knowledge concerning the possible chain of causation between sarcopenia and obesity, proposes a solution to the obesity paradox, and the role of fat mass in ageing.
Collapse
Affiliation(s)
- Chun-Wei Li
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kang Yu
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Taoyan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shilin Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lanfang Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Guang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kun Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenwu Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hefan Miao
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruirui Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Juan Jiang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song-Lin Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Li
- Department of General Surgery, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, China (Tianjin Union Medical Center, Tianjin, China
| | - Hui-Jun Liu
- Department of nursing & Clinical Nutrition, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Long-Yu Xu
- Department of Sport Physiatry, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong-Ji Liu
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yuan Zhang
- Department of stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gao-Shan Liu
- Department of Health Education, Shijingshan Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
10
|
Frandsen J, Sahl RE, Rømer T, Hansen MT, Nielsen AB, Lie‐Olesen MM, Rasmusen HK, Søgaard D, Ingersen A, Rosenkilde M, Westerterp K, Holst JJ, Andersen JL, Markowski AR, Blachnio‐Zabielska A, Clemmensen C, Sacchetti M, Cataldo A, Traina M, Larsen S, Dela F, Helge JW. Extreme duration exercise affects old and younger men differently. Acta Physiol (Oxf) 2022; 235:e13816. [PMID: 35347845 PMCID: PMC9287057 DOI: 10.1111/apha.13816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
Aim & Methods Extreme endurance exercise provides a valuable research model for understanding the adaptive metabolic response of older and younger individuals to intense physical activity. Here, we compare a wide range of metabolic and physiologic parameters in two cohorts of seven trained men, age 30 ± 5 years or age 65 ± 6 years, before and after the participants travelled ≈3000 km by bicycle over 15 days. Results Over the 15‐day exercise intervention, participants lost 2–3 kg fat mass with no significant change in body weight. V̇O2max did not change in younger cyclists, but decreased (p = 0.06) in the older cohort. The resting plasma FFA concentration decreased markedly in both groups, and plasma glucose increased in the younger group. In the older cohort, plasma LDL‐cholesterol and plasma triglyceride decreased. In skeletal muscle, fat transporters CD36 and FABPm remained unchanged. The glucose handling proteins GLUT4 and SNAP23 increased in both groups. Mitochondrial ROS production decreased in both groups, and ADP sensitivity increased in skeletal muscle in the older but not in the younger cohort. Conclusion In summary, these data suggest that older but not younger individuals experience a negative adaptive response affecting cardiovascular function in response to extreme endurance exercise, while a positive response to the same exercise intervention is observed in peripheral tissues in younger and older men. The results also suggest that the adaptive thresholds differ in younger and old men, and this difference primarily affects central cardiovascular functions in older men after extreme endurance exercise.
Collapse
Affiliation(s)
- Jacob Frandsen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Ronni Eg Sahl
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Tue Rømer
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Mikkel Thunestvedt Hansen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Andreas Blaaholm Nielsen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Michelle Munk Lie‐Olesen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Hanne Kruuse Rasmusen
- Department of Cardiology Bispebjerg‐Frederiksberg University Hospital Copenhagen Denmark
| | - Ditte Søgaard
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Arthur Ingersen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Mads Rosenkilde
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Klaas Westerterp
- NUTRIM Maastricht University Medical Centre Maastricht The Netherlands
| | - Jens Juul Holst
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jesper Løvind Andersen
- Department of Orthopedic Surgery M Institute of Sports Medicine Copenhagen Bispebjerg Hospital and Center for Healthy Aging Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Adam Roman Markowski
- Epidemiology and Metabolic disorder Department Medical University of Bialystok Bialystok Poland
| | | | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences University of Rome “Foro Italico” Rome Italy
| | - Angelo Cataldo
- Department of Sports Science (DISMOT) University of Palermo Palermo Italy
| | - Marcello Traina
- Department of Sports Science (DISMOT) University of Palermo Palermo Italy
| | - Steen Larsen
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Clinical Research Centre Medical University of Bialystok Bialystok Poland
| | - Flemming Dela
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Department of Geriatrics Bispebjerg‐Frederiksberg University Hospital Copenhagen Denmark
| | - Jørn Wulff Helge
- Xlab Center for Healthy Aging Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
11
|
Li S, Kim HE. Implications of Sphingolipids on Aging and Age-Related Diseases. FRONTIERS IN AGING 2022; 2:797320. [PMID: 35822041 PMCID: PMC9261390 DOI: 10.3389/fragi.2021.797320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 01/14/2023]
Abstract
Aging is a process leading to a progressive loss of physiological integrity and homeostasis, and a primary risk factor for many late-onset chronic diseases. The mechanisms underlying aging have long piqued the curiosity of scientists. However, the idea that aging is a biological process susceptible to genetic manipulation was not well established until the discovery that the inhibition of insulin/IGF-1 signaling extended the lifespan of C. elegans. Although aging is a complex multisystem process, López-Otín et al. described aging in reference to nine hallmarks of aging. These nine hallmarks include: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. Due to recent advances in lipidomic, investigation into the role of lipids in biological aging has intensified, particularly the role of sphingolipids (SL). SLs are a diverse group of lipids originating from the Endoplasmic Reticulum (ER) and can be modified to create a vastly diverse group of bioactive metabolites that regulate almost every major cellular process, including cell cycle regulation, senescence, proliferation, and apoptosis. Although SL biology reaches all nine hallmarks of aging, its contribution to each hallmark is disproportionate. In this review, we will discuss in detail the major contributions of SLs to the hallmarks of aging and age-related diseases while also summarizing the importance of their other minor but integral contributions.
Collapse
Affiliation(s)
- Shengxin Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, United States
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hyun-Eui Kim
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, United States
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
12
|
Rivas DA, Peng F, Benard T, Ramos da Silva AS, Fielding RA, Margolis LM. miR-19b-3p is associated with a diametric response to resistance exercise in older adults and regulates skeletal muscle anabolism via PTEN inhibition. Am J Physiol Cell Physiol 2021; 321:C977-C991. [PMID: 34705586 PMCID: PMC8714992 DOI: 10.1152/ajpcell.00190.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Understanding paradoxical responses to anabolic stimulation and identifying the mechanisms for this inconsistency in mobility-limited older adults may provide new targets for the treatment of sarcopenia. Our laboratory has discovered that dysregulation in microRNA (miRNA) that target anabolic pathways is a potential mechanism resulting in age-associated decreases in skeletal muscle mass and function (sarcopenia). The objective of the current study was to assess circulating miRNA expression profiles in diametric response of leg lean mass in mobility-limited older individuals after a 6-mo progressive resistance exercise training intervention (PRET) and determine the influence of differentially expressing miRNA on regulation of skeletal muscle mass. Participants were dichotomized by gain (Gainers; mean +561.4 g, n = 33) or loss (Losers; mean −589.8 g, n = 40) of leg lean mass after PRET. Gainers significantly increased fat-free mass 2.4% vs. −0.4% for Losers. Six miRNA (miR-1-3p, miR-19b-3p, miR-92a, miR-126, miR-133a-3p, and miR-133b) were significantly identified to be differentially expressed between Gainers and Losers, with miR-19b-3p being the miRNA most highly associated with increases in fat-free mass. Using an aging mouse model, we then assessed if miR-19b-3p expression was different in young mice with larger muscle mass compared with older mice. Circulating and skeletal muscle miR-19b-3p expression was higher in young compared with old mice and was positively associated with muscle mass and grip strength. We then used a novel integrative approach to determine if differences in circulating miR-19b-3p potentially translate to augmented anabolic response in human skeletal muscle cells in vitro. Results from this analysis identified that overexpression of miR-19b-3p targeted and downregulated PTEN by 64% to facilitate significant ∼50% increase in muscle protein synthetic rate as measured with SUnSET. The combine results of these three models identify miR-19b-3p as a potent regulator of muscle anabolism that may contribute to an inter-individual response to PRET in mobility-limited older adults.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Fei Peng
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Townsend Benard
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Adelino Sanchez Ramos da Silva
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Lee M Margolis
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
13
|
Redox Signaling and Sarcopenia: Searching for the Primary Suspect. Int J Mol Sci 2021; 22:ijms22169045. [PMID: 34445751 PMCID: PMC8396474 DOI: 10.3390/ijms22169045] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, derives from multiple etiological mechanisms. Accumulative research suggests that reactive oxygen species (ROS) generation plays a critical role in the development of this pathophysiological disorder. In this communication, we review the various signaling pathways that control muscle metabolic and functional integrity such as protein turnover, cell death and regeneration, inflammation, organismic damage, and metabolic functions. Although no single pathway can be identified as the most crucial factor that causes sarcopenia, age-associated dysregulation of redox signaling appears to underlie many deteriorations at physiological, subcellular, and molecular levels. Furthermore, discord of mitochondrial homeostasis with aging affects most observed problems and requires our attention. The search for the primary suspect of the fundamental mechanism for sarcopenia will likely take more intense research for the secret of this health hazard to the elderly to be unlocked.
Collapse
|
14
|
Interaction of Fibromodulin and Myostatin to Regulate Skeletal Muscle Aging: An Opposite Regulation in Muscle Aging, Diabetes, and Intracellular Lipid Accumulation. Cells 2021; 10:cells10082083. [PMID: 34440852 PMCID: PMC8393414 DOI: 10.3390/cells10082083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 01/14/2023] Open
Abstract
The objective of this study was to investigate fibromodulin (FMOD) and myostatin (MSTN) gene expressions during skeletal muscle aging and to understand their involvements in this process. The expressions of genes related to muscle aging (Atrogin 1 and Glb1), diabetes (RAGE and CD163), and lipid accumulation (CD36 and PPARγ) and those of FMOD and MSTN were examined in CTX-injected, aged, MSTN−/−, and high-fat diet (HFD) mice and in C2C12 myoblasts treated with ceramide or grown under adipogenic conditions. Results from CTX-injected mice and gene knockdown experiments in C2C12 cells suggested the involvement of FMOD during muscle regeneration and myoblast proliferation and differentiation. Downregulation of the FMOD gene in MSTN−/− mice, and MSTN upregulation and FMOD downregulation in FMOD and MSTN knockdown C2C12 cells, respectively, during their differentiation, suggested FMOD negatively regulates MSTN gene expression, and MSTN positively regulates FMOD gene expression. The results of our in vivo and in vitro experiments indicate FMOD inhibits muscle aging by negatively regulating MSTN gene expression or by suppressing the action of MSTN protein, and that MSTN promotes muscle aging by positively regulating the expressions of Atrogin1, CD36, and PPARγ genes in muscle.
Collapse
|
15
|
The Importance of Lipidomic Approach for Mapping and Exploring the Molecular Networks Underlying Physical Exercise: A Systematic Review. Int J Mol Sci 2021; 22:ijms22168734. [PMID: 34445440 PMCID: PMC8395903 DOI: 10.3390/ijms22168734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Maintaining appropriate levels of physical exercise is an optimal way for keeping a good state of health. At the same time, optimal exercise performance necessitates an integrated organ system response. In this respect, physical exercise has numerous repercussions on metabolism and function of different organs and tissues by enhancing whole-body metabolic homeostasis in response to different exercise-related adaptations. Specifically, both prolonged and intensive physical exercise produce vast changes in multiple and different lipid-related metabolites. Lipidomic technologies allow these changes and adaptations to be clarified, by using a biological system approach they provide scientific understanding of the effect of physical exercise on lipid trajectories. Therefore, this systematic review aims to indicate and clarify the identifying biology of the individual response to different exercise workloads, as well as provide direction for future studies focused on the body’s metabolome exercise-related adaptations. It was performed using five databases (Medline (PubMed), Google Scholar, Embase, Web of Science, and Cochrane Library). Two author teams reviewed 105 abstracts for inclusion and at the end of the screening process 50 full texts were analyzed. Lastly, 14 research articles specifically focusing on metabolic responses to exercise in healthy subjects were included. The Oxford quality scoring system scale was used as a quality measure of the reviews. Information was extracted using the participants, intervention, comparison, outcomes (PICOS) format. Despite that fact that it is well-known that lipids are involved in different sport-related changes, it is unclear what types of lipids are involved. Therefore, we analyzed the characteristic lipid species in blood and skeletal muscle, as well as their alterations in response to chronic and acute exercise. Lipidomics analyses of the studies examined revealed medium- and long-chain fatty acids, fatty acid oxidation products, and phospholipids qualitative changes. The main cumulative evidence indicates that both chronic and acute bouts of exercise determine significant changes in lipidomic profiles, but they manifested in very different ways depending on the type of tissue examined. Therefore, this systematic review may offer the possibility to fully understand the individual lipidomics exercise-related response and could be especially important to improve athletic performance and human health.
Collapse
|
16
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. Sarcopenia versus cancer cachexia: the muscle wasting continuum in healthy and diseased aging. Biogerontology 2021; 22:459-477. [PMID: 34324116 DOI: 10.1007/s10522-021-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Muscle wasting is one of the major health problems in older adults and is traditionally associated to sarcopenia. Nonetheless, muscle loss may also occur in older adults in the presence of cancer, and in this case, it is associated to cancer cachexia. The clinical management of these conditions is a challenge due to, at least in part, the difficulties in their differential diagnosis. Thus, efforts have been made to better comprehend the pathogenesis of sarcopenia and cancer cachexia, envisioning the improvement of their clinical discrimination and treatment. To add insights on this topic, this review discusses the current knowledge on key molecular players underlying sarcopenia and cancer cachexia in a comparative perspective. Data retrieved from this analysis highlight that while sarcopenia is characterized by the atrophy of fast-twitch muscle fibers, in cancer cachexia an increase in the proportion of fast-twitch fibers appears to happen. The molecular drivers for these specificmuscle remodeling patterns are still unknown; however, among the predominant contributors to sarcopenia is the age-induced neuromuscular denervation, and in cancer cachexia, the muscle disuse experienced by cancer patients seems to play an important role. Moreover, inflammation appears to be more severe in cancer cachexia. Impairment of nutrition-related mediators may also contribute to sarcopenia and cancer cachexia, being distinctly modulated in each condition.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal. .,Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The goal of this review is to highlight the need for new biomarkers for the diagnosis and treatment of musculoskeletal disorders, especially osteoporosis and sarcopenia. These conditions are characterized by loss of bone and muscle mass, respectively, leading to functional deterioration and the development of disabilities. Advances in high-resolution lipidomics platforms are being used to help identify new lipid biomarkers for these diseases. RECENT FINDINGS It is now well established that bone and muscle have important endocrine functions, including the release of bioactive factors in response to mechanical and biochemical stimuli. Bioactive lipids are a prominent set of these factors and some of these lipids are directly related to the mass and function of bone and muscle. Recent lipidomics studies have shown significant dysregulation of lipids in aged muscle and bone, including alterations in diacylglycerols and ceramides. Studies have shown that alterations in some types of plasma lipids are associated with aging including reduced bone mineral density and the occurrence of osteoporosis. Musculoskeletal disorders are a major burden in our society, especially for older adults. The development and application of new lipidomics methods is making significant advances in identifying new biomarkers for these diseases. These studies will not only lead to improved detection, but new mechanistic insights that could lead to new therapeutic targets and interventions.
Collapse
Affiliation(s)
- Chenglin Mo
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, USA.
| | - Yating Du
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - Thomas M O'Connell
- Department of Otolaryngology, Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
18
|
Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology. Metabolites 2021; 11:metabo11030151. [PMID: 33799958 PMCID: PMC8001908 DOI: 10.3390/metabo11030151] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Dynamic changes in circulating and tissue metabolites and lipids occur in response to exercise-induced cellular and whole-body energy demands to maintain metabolic homeostasis. The metabolome and lipidome in a given biological system provides a molecular snapshot of these rapid and complex metabolic perturbations. The application of metabolomics and lipidomics to map the metabolic responses to an acute bout of aerobic/endurance or resistance exercise has dramatically expanded over the past decade thanks to major analytical advancements, with most exercise-related studies to date focused on analyzing human biofluids and tissues. Experimental and analytical considerations, as well as complementary studies using animal model systems, are warranted to help overcome challenges associated with large human interindividual variability and decipher the breadth of molecular mechanisms underlying the metabolic health-promoting effects of exercise. In this review, we provide a guide for exercise researchers regarding analytical techniques and experimental workflows commonly used in metabolomics and lipidomics. Furthermore, we discuss advancements in human and mammalian exercise research utilizing metabolomic and lipidomic approaches in the last decade, as well as highlight key technical considerations and remaining knowledge gaps to continue expanding the molecular landscape of exercise biology.
Collapse
|
19
|
Wood N, Straw S, Scalabrin M, Roberts LD, Witte KK, Bowen TS. Skeletal muscle atrophy in heart failure with diabetes: from molecular mechanisms to clinical evidence. ESC Heart Fail 2021; 8:3-15. [PMID: 33225593 PMCID: PMC7835554 DOI: 10.1002/ehf2.13121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Two highly prevalent and growing global diseases impacted by skeletal muscle atrophy are chronic heart failure (HF) and type 2 diabetes mellitus (DM). The presence of either condition increases the likelihood of developing the other, with recent studies revealing a large and relatively poorly characterized clinical population of patients with coexistent HF and DM (HFDM). HFDM results in worse symptoms and poorer clinical outcomes compared with DM or HF alone, and cardiovascular-focused disease-modifying agents have proven less effective in HFDM indicating a key role of the periphery. This review combines current clinical knowledge and basic biological mechanisms to address the critical emergence of skeletal muscle atrophy in patients with HFDM as a key driver of symptoms. We discuss how the degree of skeletal muscle wasting in patients with HFDM is likely underpinned by a variety of mechanisms that include mitochondrial dysfunction, insulin resistance, inflammation, and lipotoxicity. Given many atrophic triggers (e.g. ubiquitin proteasome/autophagy/calpain activity and supressed IGF1-Akt-mTORC1 signalling) are linked to increased production of reactive oxygen species, we speculate that a higher pro-oxidative state in HFDM could be a unifying mechanism that promotes accelerated fibre atrophy. Overall, our proposal is that patients with HFDM represent a unique clinical population, prompting a review of treatment strategies including further focus on elucidating potential mechanisms and therapeutic targets of muscle atrophy in these distinct patients.
Collapse
Affiliation(s)
- Nathanael Wood
- Faculty of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Sam Straw
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Klaus K. Witte
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | |
Collapse
|
20
|
Abstract
Significance: Cell senescence was originally defined by an acute loss of replicative capacity and thus believed to be restricted to proliferation-competent cells. More recently, senescence has been recognized as a cellular stress and damage response encompassing multiple pathways or senescence domains, namely DNA damage response, cell cycle arrest, senescence-associated secretory phenotype, senescence-associated mitochondrial dysfunction, autophagy/mitophagy dysfunction, nutrient and stress signaling, and epigenetic reprogramming. Each of these domains is activated during senescence, and all appear to interact with each other. Cell senescence has been identified as an important driver of mammalian aging. Recent Advances: Activation of all these senescence domains has now also been observed in a wide range of post-mitotic cells, suggesting that senescence as a stress response can occur in nondividing cells temporally uncoupled from cell cycle arrest. Here, we review recent evidence for post-mitotic cell senescence and speculate about its possible relevance for mammalian aging. Critical Issues: Although a majority of senescence domains has been found to be activated in a range of post-mitotic cells during aging, independent confirmation of these results is still lacking for most of them. Future Directions: To define whether post-mitotic senescence plays a significant role as a driver of aging phenotypes in tissues such as brain, muscle, heart, and others. Antioxid. Redox Signal. 34, 308-323.
Collapse
Affiliation(s)
- Thomas von Zglinicki
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Molecular Biology and Genetics, Arts and Sciences Faculty, Near East University, Nicosia, Turkey
| | - Tengfei Wan
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Satomi Miwa
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
21
|
Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021; 26:molecules26020407. [PMID: 33466753 PMCID: PMC7829870 DOI: 10.3390/molecules26020407] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
Collapse
|
22
|
Straight CR, Toth MJ, Miller MS. Current perspectives on obesity and skeletal muscle contractile function in older adults. J Appl Physiol (1985) 2021; 130:10-16. [PMID: 33211593 PMCID: PMC7944932 DOI: 10.1152/japplphysiol.00739.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity has become one of the most pressing public health issues of the 21st century and currently affects a substantial proportion of the older adult population. Although the cardiometabolic complications are well documented, research from the past 20 years has drawn attention to the detrimental effects of obesity on physical performance in older adults. Obesity-related declines in physical performance are due, in part, to compromised muscle strength and power. Recent evidence suggests there are a number of mechanisms potentially underlying reduced whole muscle function, including alterations in myofilament protein function and cellular contractile properties, and these may be related to morphological adaptations, such as shifts in fiber type composition and increased intramyocellular lipid content within skeletal muscle. To date, even less research has focused on how exercise and weight loss interventions for obese older adults affect these mechanisms. In light of this work, we provide an update on the current knowledge related to obesity and skeletal muscle contractile function and highlight a number of questions to address potential etiologic mechanisms as well as intervention strategies, which may help advance our understanding of how physical performance can be improved among obese older adults.
Collapse
Affiliation(s)
- Chad R Straight
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Michael J Toth
- Departments of Medicine, Molecular Physiology and Biophysics, and Orthopaedics and Rehabilitation, University of Vermont, Burlington, Vermont
| | - Mark S Miller
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
23
|
Endo Y, Nourmahnad A, Sinha I. Optimizing Skeletal Muscle Anabolic Response to Resistance Training in Aging. Front Physiol 2020; 11:874. [PMID: 32792984 PMCID: PMC7390896 DOI: 10.3389/fphys.2020.00874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Loss of muscle mass and strength with aging, also termed sarcopenia, results in a loss of mobility and independence. Exercise, particularly resistance training, has proven to be beneficial in counteracting the aging-associated loss of skeletal muscle mass and function. However, the anabolic response to exercise in old age is not as robust, with blunted improvements in muscle size, strength, and function in comparison to younger individuals. This review provides an overview of several physiological changes which may contribute to age-related loss of muscle mass and decreased anabolism in response to resistance training in the elderly. Additionally, the following supplemental therapies with potential to synergize with resistance training to increase muscle mass are discussed: nutrition, creatine, anti-inflammatory drugs, testosterone, and growth hormone (GH). Although these interventions hold some promise, further research is necessary to optimize the response to exercise in elderly patients.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Atousa Nourmahnad
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
24
|
Lynch GM, Murphy CH, Castro EDM, Roche HM. Inflammation and metabolism: the role of adiposity in sarcopenic obesity. Proc Nutr Soc 2020; 79:1-13. [PMID: 32669148 DOI: 10.1017/s0029665120007119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sarcopenic obesity is characterised by the double burden of diminished skeletal muscle mass and the presence of excess adiposity. From a mechanistic perspective, both obesity and sarcopenia are associated with sub-acute, chronic pro-inflammatory states that impede metabolic processes, disrupting adipose and skeletal functionality, which may potentiate disease. Recent evidence suggests that there is an important cross-talk between metabolism and inflammation, which has shifted focus upon metabolic-inflammation as a key emerging biological interaction. Dietary intake, physical activity and nutritional status are important environmental factors that may modulate metabolic-inflammation. This paradigm will be discussed within the context of sarcopenic obesity risk. There is a paucity of data in relation to the nature and the extent to which nutritional status affects metabolic-inflammation in sarcopenic obesity. Research suggests that there may be scope for the modulation of sarcopenic obesity with alterations in diet. The potential impact of increasing protein consumption and reconfiguration of dietary fat composition in human dietary interventions are evaluated. This review will explore emerging data with respect to if and how different dietary components may modulate metabolic-inflammation, particularly with respect to adiposity, within the context of sarcopenic obesity.
Collapse
Affiliation(s)
- G M Lynch
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - C H Murphy
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - E de Marco Castro
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - H M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| |
Collapse
|
25
|
McKendry J, Thomas ACQ, Phillips SM. Muscle Mass Loss in the Older Critically Ill Population: Potential Therapeutic Strategies. Nutr Clin Pract 2020; 35:607-616. [PMID: 32578900 DOI: 10.1002/ncp.10540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/29/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle plays a critical role in everyday life, and its age-associated reduction has severe health consequences. The pre-existing presence of sarcopenia, combined with anabolic resistance, protein undernutrition, and the pro-catabolic/anti-anabolic milieu induced by aging and exacerbated in critical care, may accelerate the rate at which skeletal muscle is lost in patients with critical illness. Advancements in intensive care unit (ICU)-care provision have drastically improved survival rates; therefore, attention can be redirected toward other significant issues affecting ICU patients (e.g., length of stay, days on ventilation, nosocomial disease development, etc.). Thus, strategies targeting muscle mass and function losses within an ICU setting are essential to improve patient-related outcomes. Notably, loading exercise and protein provision are the most compelling. Many older ICU patients seldom meet the recommended protein intake, and loading exercise is difficult to conduct in the ICU. Nevertheless, the incorporation of physical therapy (PT), neuromuscular electrical stimulation, and early mobilization strategies may be beneficial. Furthermore, a number of nutrition practices within the ICU have been shown to improve patient-related outcomes ((e.g., feeding strategy [i.e., oral, early enteral, or parenteral]), be hypocaloric (∼70%-80% energy requirements), and increase protein provision (∼1.2-2.5 g/kg/d)). The aim of this brief review is to discuss the dysregulation of muscle mass maintenance in an older ICU population and highlight the potential benefits of strategic nutrition practice, specifically protein, and PT within the ICU. Finally, we provide some general guidelines that may serve to counteract muscle mass loss in patients with critical illness.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aaron C Q Thomas
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Abstract
Calorie restriction (CR), the reduction of dietary intake below energy requirements while maintaining optimal nutrition, is the only known nutritional intervention with the potential to attenuate aging. Evidence from observational, preclinical, and clinical trials suggests the ability to increase life span by 1-5 years with an improvement in health span and quality of life. CR moderates intrinsic processes of aging through cellular and metabolic adaptations and reducing risk for the development of many cardiometabolic diseases. Yet, implementation of CR may require unique considerations for the elderly and other specific populations. The objectives of this review are to summarize the evidence for CR to modify primary and secondary aging; present caveats for implementation in special populations; describe newer, alternative approaches that have comparative effectiveness and fewer deleterious effects; and provide thoughts on the future of this important field of study.
Collapse
Affiliation(s)
- Emily W Flanagan
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA;
| | - Jasper Most
- Nutrition and Movement Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jacob T Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA;
| | - Leanne M Redman
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA;
| |
Collapse
|
27
|
Bergman BC, Goodpaster BH. Exercise and Muscle Lipid Content, Composition, and Localization: Influence on Muscle Insulin Sensitivity. Diabetes 2020; 69:848-858. [PMID: 32312901 DOI: 10.2337/dbi18-0042] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 11/13/2022]
Abstract
Accumulation of lipid in skeletal muscle is thought to be related to the development of insulin resistance and type 2 diabetes. Initial work in this area focused on accumulation of intramuscular triglyceride; however, bioactive lipids such as diacylglycerols and sphingolipids are now thought to play an important role. Specific species of these lipids appear to be more negative toward insulin sensitivity than others. Adding another layer of complexity, localization of lipids within the cell appears to influence the relationship between these lipids and insulin sensitivity. This article summarizes how accumulation of total lipids, specific lipid species, and localization of lipids influence insulin sensitivity in humans. We then focus on how these aspects of muscle lipids are impacted by acute and chronic aerobic and resistance exercise training. By understanding how exercise alters specific species and localization of lipids, it may be possible to uncover specific lipids that most heavily impact insulin sensitivity.
Collapse
|
28
|
Saleem M, Herrmann N, Dinoff A, Marzolini S, Mielke MM, Andreazza A, Oh PI, Vattem Venkata SL, Haughey NJ, Lanctôt KL. Association Between Sphingolipids and Cardiopulmonary Fitness in Coronary Artery Disease Patients Undertaking Cardiac Rehabilitation. J Gerontol A Biol Sci Med Sci 2020; 75:671-679. [PMID: 30535238 PMCID: PMC7931966 DOI: 10.1093/gerona/gly273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 11/23/2022] Open
Abstract
The long-term benefits conferred by cardiac rehabilitation (CR) in those with coronary artery disease (CAD) are strongly linked with an improvement in cardiopulmonary fitness. This study aimed to determine the association between peripheral sphingolipids and cardiopulmonary fitness in CAD subjects undertaking CR. Patients with CAD (n = 100, mean age = 64 ± 6 years, 85% male, mean years of education = 17 ± 3 years) underwent 6 months of CR with blood collected at baseline, 3 and 6 months. Cardiopulmonary fitness was assessed by measuring peak oxygen uptake (VO2peak) at all time points. High performance liquid chromatography coupled electrospray ionization tandem mass spectrometry was used to quantify plasma sphingolipid concentrations. Cross-sectional and longitudinal associations between sphingolipids and VO2peak were assessed using linear regressions and mixed models, respectively. Higher concentrations of sphingomyelin C18:1 (β = -0.26, p = .01), ceramides C16:0 (β = -0.24, p = .02), C18:0 (β = -0.29, p = .002), C20:0 (β = -0.24, p = .02) and C24:1 (β = -0.24, p = .01) and monohexylceramide C18:0 (β = -0.23, p = .02) were associated with poorer VO2peak at baseline. An improvement in VO2peak was associated with a decrease in sphingomyelin C18:1 (b = -10.09, p = .006), ceramides C16:0 (b = -9.25, p = .0003), C18:0 (b = -5.44, p = .0003) and C24:1 (b = -2.46, p = .006) and monohexylceramide C18:0 (b = -5.37, p = .005). Specific long chain sphingolipids may be useful markers of fitness and response to exercise in CAD.
Collapse
Affiliation(s)
- Mahwesh Saleem
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Psychiatry, University of Toronto, Canada
| | - Adam Dinoff
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, Canada
| | | | - Michelle M Mielke
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
- Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Ana Andreazza
- Centre for Addiction and Mental Health, Toronto, Canada
| | - Paul I Oh
- Toronto Rehabilitation Institute, Toronto, Canada
- Division of Clinical Pharmacology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | | | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Psychiatry, University of Toronto, Canada
- Toronto Rehabilitation Institute, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Søgaard D, Baranowski M, Dela F, Helge JW. The Influence of Age and Cardiorespiratory Fitness on Bioactive Lipids in Muscle. J Gerontol A Biol Sci Med Sci 2020; 74:778-786. [PMID: 30252030 DOI: 10.1093/gerona/gly214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 01/21/2023] Open
Abstract
Reduced insulin sensitivity is observed with aging and often explained by decreased physical activity. The mechanisms involved are not clarified, but bioactive lipids may play a role. We aimed to evaluate the influence of age and cardiorespiratory fitness on ceramide and diacylglycerol content in muscle and key proteins in lipid metabolism and insulin signaling. Healthy males were stratified by age into trained and untrained groups including 27 young (23.2 ± 0.3 years) and 33 aged (65.2 ± 0.6 years). Maximal oxygen uptake and body composition were measured and fasting blood samples and muscle biopsies obtained. Muscle ceramide and diacylglycerol were determined by thin-layer and gas-liquid chromatography and proteins by western blotting. We show that HOMA-IR was higher and VO2 peak lower in aged compared with young. Total, saturated, C16:0 and C18:0 ceramide content were lower in muscle from aged compared with young. Intramuscular C18:1n9 and C20:4n6 content were higher in trained versus untrained. Content of total unsaturated and C16:1n7 diacylglycerol fatty acids were higher and C24:0 lower in muscle of aged versus young. Cardiorespiratory fitness had no impact on total diacylglycerol content. In conclusion, these data argue against intramuscular ceramide or diacylglycerol accumulation as driver of age-related insulin resistance in lean individuals.
Collapse
Affiliation(s)
- Ditte Søgaard
- Xlab, Centre of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | - Flemming Dela
- Xlab, Centre of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jørn Wulff Helge
- Xlab, Centre of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Reidy PT, Mahmassani ZS, McKenzie AI, Petrocelli JJ, Summers SA, Drummond MJ. Influence of Exercise Training on Skeletal Muscle Insulin Resistance in Aging: Spotlight on Muscle Ceramides. Int J Mol Sci 2020; 21:ijms21041514. [PMID: 32098447 PMCID: PMC7073171 DOI: 10.3390/ijms21041514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Intramuscular lipid accumulation has been associated with insulin resistance (IR), aging, diabetes, dyslipidemia, and obesity. A substantial body of evidence has implicated ceramides, a sphingolipid intermediate, as potent antagonists of insulin action that drive insulin resistance. Indeed, genetic mouse studies that lower ceramides are potently insulin sensitizing. Surprisingly less is known about how physical activity (skeletal muscle contraction) regulates ceramides, especially in light that muscle contraction regulates insulin sensitivity. The purpose of this review is to critically evaluate studies (rodent and human) concerning the relationship between skeletal muscle ceramides and IR in response to increased physical activity. Our review of the literature indicates that chronic exercise reduces ceramide levels in individuals with obesity, diabetes, or hyperlipidemia. However, metabolically healthy individuals engaged in increased physical activity can improve insulin sensitivity independent of changes in skeletal muscle ceramide content. Herein we discuss these studies and provide context regarding the technical limitations (e.g., difficulty assessing the myriad ceramide species, the challenge of obtaining information on subcellular compartmentalization, and the paucity of flux measurements) and a lack of mechanistic studies that prevent a more sophisticated assessment of the ceramide pathway during increased contractile activity that lead to divergences in skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Paul T. Reidy
- Department of Kinesiology and Health, Miami University, 420 S Oak St, Oxford, OH 45056, USA;
| | - Ziad S. Mahmassani
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
| | - Alec I. McKenzie
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
| | - Jonathan J. Petrocelli
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, 250 1850 E, Salt Lake City, UT 84112, USA;
| | - Micah J. Drummond
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
- Correspondence:
| |
Collapse
|
31
|
Kukreti H, Amuthavalli K. MicroRNA-34a causes ceramide accumulation and effects insulin signaling pathway by targeting ceramide kinase (CERK) in aging skeletal muscle. J Cell Biochem 2020; 121:3070-3089. [PMID: 32056304 DOI: 10.1002/jcb.29312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022]
Abstract
Aging skeletal muscle shows perturbations in metabolic functions. MicroRNAs have been shown to play a critical role in aging and metabolic functions of skeletal muscle. MicroRNA-34a (miR-34a) is implicated in the brain and cardiac aging, however, its role in aging muscle is unclear. We analyzed levels of miR-34a, ceramide kinase (CERK) and other insulin signaling molecules in skeletal muscle from old mice. In addition to in vivo model, levels of these molecules were also analyzed in myoblast derived from insulin resistant (IR) humans and C2C12 myoblasts overexpressing mir-34a. Our results show that miR-34a is elevated in the muscles of 2-year-old mice and in the myoblasts of IR humans. Overexpression of miR-34a in C2C12 myoblasts leads to alterations in the insulin signaling pathway, which were rescued by its antagonism. Our analyses revealed that miR-34a targets CERK resulting in ceramide accumulation, activation of PP2A and the pJNK pathway in muscle and C2C12 myoblasts. Also, myostatin (Mstn) levels were increased in 2-year-old mouse muscle and Mstn treatment upregulated miR-34a in C2C12 myoblasts. In addition, miR-34a expression and ceramide levels did not increase during aging in Mstn-/- mice muscle. In summary, we, therefore, propose that Mstn levels increase in aging muscle and upregulate miR-34a, which inhibits CERK resulting in increased ceramide levels. This ceramide accumulation activates PP2A and pJNK causing hypophosphorylation of AKT and hyperphosphorylation of IRS1 (Ser307), respectively, impairing insulin signaling pathway and eventually inhibiting the sarcolemma localization of GLUT4. These changes would result in reduced glucose uptake and insulin resistance. This study is the first to explain the phenomenon of ceramide accrual and impairment of insulin signaling pathway in aging muscle through a miR-34a based mechanism. In conclusion, our results suggest that Mstn and miR-34a antagonism can help ameliorate ceramide accumulation and loss of insulin sensitivity in aging skeletal muscle.
Collapse
Affiliation(s)
- Himani Kukreti
- Department of Biochemistry, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Kottaiswamy Amuthavalli
- Department of Biochemistry, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| |
Collapse
|
32
|
Targeting Age-Dependent Functional and Metabolic Decline of Human Skeletal Muscle: The Geroprotective Role of Exercise, Myokine IL-6, and Vitamin D. Int J Mol Sci 2020; 21:ijms21031010. [PMID: 32033000 PMCID: PMC7037081 DOI: 10.3390/ijms21031010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the elderly, whole-body health largely relies on healthy skeletal muscle, which controls body stability, locomotion, and metabolic homeostasis. Age-related skeletal muscle structural/functional deterioration is associated with a higher risk of severe comorbid conditions and poorer outcomes, demanding major socioeconomic costs. Thus, the need for efficient so-called geroprotective strategies to improve resilience and ensure a good quality of life in older subjects is urgent. Skeletal muscle senescence and metabolic dysregulation share common cellular/intracellular mechanisms, potentially representing targets for intervention to preserve muscle integrity. Many factors converge in aging, and multifaceted approaches have been proposed as interventions, although they have often been inconclusive. Physical exercise can counteract aging and metabolic deficits, not only in maintaining tissue mass, but also by preserving tissue secretory function. Indeed, skeletal muscle is currently considered a proper secretory organ controlling distant organ functions through immunoactive regulatory small peptides called myokines. This review provides a current perspective on the main biomolecular mechanisms underlying age-dependent and metabolic deterioration of skeletal muscle, herein discussed as a secretory organ, the functional integrity of which largely depends on exercise and myokine release. In particular, muscle-derived interleukin (IL)-6 is discussed as a nutrient-level biosensor. Overall, exercise and vitamin D are addressed as optimal geroprotective strategies in view of their multi-target effects.
Collapse
|
33
|
Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr 2020; 12:14. [PMID: 32082422 PMCID: PMC7014712 DOI: 10.1186/s13098-020-0523-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
As age increases, the risk of developing type 2 diabetes increases, which is associated with senile skeletal muscle dysfunction. During skeletal muscle aging, mitochondrial dysfunction, intramyocellular lipid accumulation, increased inflammation, oxidative stress, modified activity of insulin sensitivity regulatory enzymes, endoplasmic reticulum stress, decreased autophagy, sarcopenia and over-activated renin-angiotensin system may occur. These changes can impair skeletal muscle insulin sensitivity and increase the risk of insulin resistance and type 2 diabetes during skeletal muscle aging. This review of the mechanism of the increased risk of insulin resistance during skeletal muscle aging will provide a more comprehensive explanation for the increased incidence of type 2 diabetes in elderly individuals, and will also provide a more comprehensive perspective for the prevention and treatment of type 2 diabetes in elderly populations.
Collapse
Affiliation(s)
- Jian Shou
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Pei-Jie Chen
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| | - Wei-Hua Xiao
- School of Kinesiology, Shanghai University of Sport, 200 Hengren Road, Yangpu District, Shanghai, 200438 China
| |
Collapse
|
34
|
Norman JE, Rutkowsky J, Bodine S, Rutledge JC. The Potential Mechanisms of Exercise-induced Cognitive Protection: A Literature Review. Curr Pharm Des 2019; 24:1827-1831. [PMID: 29623829 DOI: 10.2174/1381612824666180406105149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
Dementia has become a major health concern for the aging population of the United States. Studies indicate that participation in moderate exercise, with training, has been shown to have a beneficial impact on cognition. Thus, exercise and its effects on cognitive function has become an important area of research. This review summarizes the current literature on the potential mechanisms of the benefits of exercise for cognitive function.
Collapse
Affiliation(s)
- Jennifer E Norman
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, United States
| | - Jennifer Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Sue Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA, United States
| | - John C Rutledge
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, United States
| |
Collapse
|
35
|
Wennberg AMV, Schafer MJ, LeBrasseur NK, Savica R, Bui HH, Hagen CE, Hollman JH, Petersen RC, Mielke MM. Plasma Sphingolipids are Associated With Gait Parameters in the Mayo Clinic Study of Aging. J Gerontol A Biol Sci Med Sci 2019; 73:960-965. [PMID: 28977376 DOI: 10.1093/gerona/glx139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 12/31/2022] Open
Abstract
Background Disrupted gait has been associated with an increased risk of frailty, disability, and death, but the causal molecular pathways are not well understood. Sphingolipids, including ceramides, are associated with multiple age-related diseases. Ceramides promote atrophy, necrosis, and proteolysis in cellular and animal models, and ceramide C16:0 levels are negatively correlated with muscle mass in men. However, there is a paucity of evidence examining sphingolipids and physical function. Methods We examined the cross-sectional association between plasma ceramides, sphingosine-1-phosphate (S1P), and ceramide/S1P ratios and gait, a robust measure of physical function, in 340 clinically normal participants aged 70 years and older enrolled in the Mayo Clinic Study of Aging. GAITRite® instrumentation was used to measure gait speed, cadence, step width, double support time, and intra-individual stride time variability. Based on previous studies, we hypothesized that higher plasma levels of ceramide C16:0 would be associated with worse gait. Results Multivariable adjusted linear regression models revealed that higher levels of ceramide C16:0 were associated with slower gait speed, decreased cadence, and increased double support time. Conclusions These results suggest an association between plasma ceramide C16:0 and physical function. Longitudinal studies are needed to determine whether elevated ceramide C16:0 can be utilized as a prognostic marker for functional decline.
Collapse
Affiliation(s)
| | - Marissa J Schafer
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Minnesota
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Minnesota.,Department of Physiology, Mayo Clinic Rochester, Minnesota
| | - Rodolfo Savica
- Department of Health Sciences Research, Mayo Clinic Rochester, Minnesota.,Department of Neurology, Mayo Clinic Rochester, Minnesota
| | - Hai H Bui
- Eli Lilly and Company, Indianapolis, Indiana
| | - Clinton E Hagen
- Department of Health Sciences Research, Mayo Clinic Rochester, Minnesota
| | - John H Hollman
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Rochester, Minnesota
| | | | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic Rochester, Minnesota.,Department of Neurology, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
36
|
Meex RCR, Blaak EE, van Loon LJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes Rev 2019; 20:1205-1217. [PMID: 31240819 PMCID: PMC6852205 DOI: 10.1111/obr.12862] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
Insulin resistance and muscle mass loss often coincide in individuals with type 2 diabetes. Most patients with type 2 diabetes are overweight, and it is well established that obesity and derangements in lipid metabolism play an important role in the development of insulin resistance in these individuals. Specifically, increased adipose tissue mass and dysfunctional adipose tissue lead to systemic lipid overflow and to low-grade inflammation via altered secretion of adipokines and cytokines. Furthermore, an increased flux of fatty acids from the adipose tissue may contribute to increased fat storage in the liver and in skeletal muscle, resulting in an altered secretion of hepatokines, mitochondrial dysfunction, and impaired insulin signalling in skeletal muscle. Recent studies suggest that obesity and lipid derangements in adipose tissue can also lead to the development of muscle atrophy, which would make insulin resistance and muscle atrophy two sides of the same coin. Unfortunately, the exact relationship between lipid accumulation, type 2 diabetes, and muscle atrophy remains largely unexplored. The aim of this review is to discuss the relationship between type 2 diabetes and muscle loss and to discuss some of the joint pathways through which lipid accumulation in organs may affect peripheral insulin sensitivity and muscle mass.
Collapse
Affiliation(s)
- Ruth C R Meex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
37
|
Rivas DA, Rice NP, Ezzyat Y, McDonald DJ, Cooper BE, Fielding RA. Sphingosine-1-phosphate analog FTY720 reverses obesity but not age-induced anabolic resistance to muscle contraction. Am J Physiol Cell Physiol 2019; 317:C502-C512. [PMID: 31241988 DOI: 10.1152/ajpcell.00455.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sarcopenia, the age-associated loss of skeletal muscle mass and function, is coupled with declines in physical functioning leading to subsequent higher rates of disability, frailty, morbidity, and mortality. Aging and obesity independently contribute to muscle atrophy that is assumed to be a result of the activation of mutual physiological pathways. Understanding mechanisms contributing to the induction of skeletal muscle atrophy with aging and obesity is important for determining targets that may have pivotal roles in muscle loss in these conditions. We find that aging and obesity equally induce an anabolic resistance to acute skeletal muscle contraction as observed with decreases in anabolic signaling activation after contraction. Furthermore, treatment with the sphingosine-1-phosphate analog FTY720 for 4 wk increased lean mass and strength, and the anabolic signaling response to contraction was improved in obese but not older animals. To determine the role of chronic inflammation and different fatty acids on anabolic resistance in skeletal muscle cells, we overexpressed IKKβ with and without exposure to saturated fatty acid (SFA; palmitic acid), polyunsaturated fatty acid (eicosapentaenoic acid), and monounsaturated fatty acid (oleic acid). We found that IKKβ overexpression increased inflammation markers in muscle cells, and this chronic inflammation exacerbated anabolic resistance in response to SFA. Pretreatment with FTY720 reversed the inflammatory effects of palmitic acid in the muscle cells. Taken together, these data demonstrate chronic inflammation can induce anabolic resistance, SFA aggravates these effects, and FTY720 can reverse this by decreasing ceramide accumulation in skeletal muscle.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Nicholas P Rice
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Yassine Ezzyat
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Devin J McDonald
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Brittany E Cooper
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| |
Collapse
|
38
|
Tong T, Kim M, Park T. α-Ionone attenuates high-fat diet-induced skeletal muscle wasting in mice via activation of cAMP signaling. Food Funct 2019; 10:1167-1178. [PMID: 30734800 DOI: 10.1039/c8fo01992d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle atrophy is a common and debilitating condition that lacks a pharmacological therapy. Our aim was to investigate the potential of α-ionone, a naturally occurring flavoring agent, in preventing muscle atrophy and to delineate the mechanisms involved. We found that α-ionone not only stimulated myogenesis but also attenuated palmitic-acid-induced atrophy of cultured skeletal myotubes, as evidenced by an increased myotube diameter and length, fusion index, and cellular protein content. These beneficial actions of α-ionone were abrogated by cAMP inhibitor. The antiatrophic effects of α-ionone on cultured myotubes were confirmed in a corresponding mouse model. The skeletal muscle mass, muscle protein content, myofiber diameter, and muscle strength were greater in α-ionone-treated mice than in untreated animals fed high-fat diet. Furthermore, α-ionone increased cAMP concentration and enhanced its downstream PKA-CREB signaling in skeletal muscle of mice fed high-fat diet. Thus, α-ionone is a promising agent that may enhance skeletal muscle mass and strength.
Collapse
Affiliation(s)
- Tao Tong
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| | | | | |
Collapse
|
39
|
Jęśko H, Stępień A, Lukiw WJ, Strosznajder RP. The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Mol Neurobiol 2019; 56:3501-3521. [PMID: 30140974 PMCID: PMC6476865 DOI: 10.1007/s12035-018-1286-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Bioactive sphingolipids: sphingosine, sphingosine-1-phosphate (S1P), ceramide, and ceramide-1-phosphate (C1P) are increasingly implicated in cell survival, proliferation, differentiation, and in multiple aspects of stress response in the nervous system. The opposite roles of closely related sphingolipid species in cell survival/death signaling is reflected in the concept of tightly controlled sphingolipid rheostat. Aging has a complex influence on sphingolipid metabolism, disturbing signaling pathways and the properties of lipid membranes. A metabolic signature of stress resistance-associated sphingolipids correlates with longevity in humans. Moreover, accumulating evidence suggests extensive links between sphingolipid signaling and the insulin-like growth factor I (IGF-I)-Akt-mTOR pathway (IIS), which is involved in the modulation of aging process and longevity. IIS integrates a wide array of metabolic signals, cross-talks with p53, nuclear factor κB (NF-κB), or reactive oxygen species (ROS) and influences gene expression to shape the cellular metabolic profile and stress resistance. The multiple connections between sphingolipids and IIS signaling suggest possible engagement of these compounds in the aging process itself, which creates a vulnerable background for the majority of neurodegenerative disorders.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland
| | - Adam Stępień
- Central Clinical Hospital of the Ministry of National Defense, Department of Neurology, Military Institute of Medicine, Warsaw, Szaserów, 128, 04-141, Poland
| | - Walter J Lukiw
- LSU Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University School of Medicine, New Orleans, USA
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland.
| |
Collapse
|
40
|
The effect of resistance exercise upon age-related systemic and local skeletal muscle inflammation. Exp Gerontol 2019; 121:19-32. [PMID: 30905721 DOI: 10.1016/j.exger.2019.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/16/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
AIM Chronic inflammation increases with age and is correlated positively to visceral fat mass, but inversely to muscle mass. We investigated the hypothesis that resistance training would increase muscle mass and strength together with a concomitant drop in local and systemic inflammation level independent of any changes in visceral fat tissue in elderly. METHODS 25 subjects (mean 67, range 62-70 years) were randomized to 1 year of heavy resistance training (HRT) or control (CON), and tested at 0, 4 and 12 months for physical performance, body composition (DXA), vastus lateralis muscle area (MRI) local and systemic inflammation (blood and muscle). In addition, systemic and local muscle immunological responses to acute exercise was determined before and after the training period. RESULTS Increases in muscle mass (≈2%, p < 0.05), vastus lateralis area (≈9%. P < 0.05), isometric (≈15%) and dynamic (≈15%) muscle strength (p < 0.05) were found in the HRT group after 12 months training. HRT did not alter overall or visceral fat mass (p > 0.05). Blood C-Reactive Protein declined over time in both groups (p < 0.05), whereas muscle inflammation markers were unchanged to 1 year of HRT. Acute exercise increased plasma IL-6 and FGF-19 (p < 0.05), decreased FGF-21 (p < 0.05) and CCL-20 (p < 0.05), and increased GDNF in muscle (p < 0.001) similarly before and after 1 year in both groups. CONCLUSION Long term resistance training increased muscle strength and improved muscle mass, but did not alter visceral fat mass and did not show any specific effect upon resting or exercise induced markers of inflammation.
Collapse
|
41
|
Muscle-Saturated Bioactive Lipids Are Increased with Aging and Influenced by High-Intensity Interval Training. Int J Mol Sci 2019; 20:ijms20051240. [PMID: 30871020 PMCID: PMC6429484 DOI: 10.3390/ijms20051240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/16/2022] Open
Abstract
Ceramide and diacylglycerol are linked to insulin resistance in rodents, but in humans the data are inconsistent. Insulin resistance is frequently observed with aging, but the role of ceramide and diacylglycerol is not clarified. Training improves metabolic health and, therefore, we aimed to elucidate the influence of age and high-intensity interval training (HIIT) on ceramide and diacylglycerol content in muscle. Fourteen young (33 ± 1) and 22 older (63 ± 1) overweight to obese subjects performed 6 weeks HIIT three times a week. Maximal oxygen uptake and body composition were measured and muscle biopsies and fasting blood samples were obtained. Muscle ceramide and diacylglycerol were measured by gas-liquid chromatography and proteins in insulin signaling, lipid and glucose metabolism were measured by Western blotting. Content of ceramide and diacylglycerol total, saturated, C16:0 and C18:0 fatty acids and C18:1 ceramide were higher in older compared to young. HIIT reduced saturated and C18:0 ceramides, while the content of the proteins involved in glucose (GLUT4, glycogen synthase, hexokinase II, AKT) and lipid metabolism (adipose triglyceride lipase, fatty acid binding protein) were increased after HIIT. We demonstrate a higher content of saturated ceramide and diacylglycerol fatty acids in the muscle of older subjects compared to young. Moreover, the content of saturated ceramides was reduced and muscle glucose metabolism improved at protein level after HIIT. This study highlights an increased content of saturated ceramides in aging which could be speculated to influence insulin sensitivity.
Collapse
|
42
|
Conte M, Armani A, Conte G, Serra A, Franceschi C, Mele M, Sandri M, Salvioli S. Muscle-specific Perilipin2 down-regulation affects lipid metabolism and induces myofiber hypertrophy. J Cachexia Sarcopenia Muscle 2019; 10:95-110. [PMID: 30288961 PMCID: PMC6438344 DOI: 10.1002/jcsm.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/06/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Perilipin2 (Plin2) belongs to a family of five highly conserved proteins, known for their role in lipid storage. Recent data indicate that Plin2 has an important function in cell metabolism and is involved in several human pathologies, including liver steatosis and Type II diabetes. An association between Plin2 and lower muscle mass and strength has been found in elderly and inactive people, but its function in skeletal muscle is still unclear. Here, we addressed the role of Plin2 in adult muscle by gain and loss of function experiments. METHODS By mean of in vivo Plin2 down-regulation (shPlin2) and overexpression (overPlin2) in murine tibialis anterior muscle, we analysed the effects of Plin2 genetic manipulations on myofiber size and lipid composition. An analysis of skeletal muscle lipid composition was also performed in vastus lateralis samples from young and old patients undergoing hip surgery. RESULTS We found that Plin2 down-regulation was sufficient to induce a 30% increase of myofiber cross-sectional area, independently of mTOR pathway. Alterations of lipid content and modulation of genes involved in lipid synthesis occurred in hypertrophic muscles. In particular, we showed a decrease of triglycerides, ceramides, and phosphatidylcoline:phosphatidylethanolamine ratio, a condition known to impact negatively on muscle function. Plin2 overexpression did not change fibre size; however, lipid composition was strongly affected in a way that is similar to that observed in human samples from old patients. CONCLUSIONS Altogether these data indicate that Plin2 is a critical mediator for the control of muscle mass, likely, but maybe not exclusively, through its critical role in the regulation of intracellular lipid content and composition.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Andrea Armani
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Andrea Serra
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.,Research Center of Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | | | - Marcello Mele
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.,Research Center of Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
43
|
Coen PM, Musci RV, Hinkley JM, Miller BF. Mitochondria as a Target for Mitigating Sarcopenia. Front Physiol 2019; 9:1883. [PMID: 30687111 PMCID: PMC6335344 DOI: 10.3389/fphys.2018.01883] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is the loss of muscle mass, strength, and physical function that is characteristic of aging. The progression of sarcopenia is gradual but may be accelerated by periods of muscle loss during physical inactivity secondary to illness or injury. The loss of mobility and independence and increased comorbidities associated with sarcopenia represent a major healthcare challenge for older adults. Mitochondrial dysfunction and impaired proteostatic mechanisms are important contributors to the complex etiology of sarcopenia. As such, interventions that target improving mitochondrial function and proteostatic maintenance could mitigate or treat sarcopenia. Exercise is currently the only effective option to treat sarcopenia and does so, in part, by improving mitochondrial energetics and protein turnover. Exercise interventions also serve as a discovery tool to identify molecular targets for development of alternative therapies to treat sarcopenia. In summary, we review the evidence linking mitochondria and proteostatic maintenance to sarcopenia and discuss the therapeutic potential of interventions addressing these two factors to mitigate sarcopenia.
Collapse
Affiliation(s)
- Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | - J Matthew Hinkley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
44
|
Reidy PT, McKenzie AI, Mahmassani Z, Morrow VR, Yonemura NM, Hopkins PN, Marcus RL, Rondina MT, Lin YK, Drummond MJ. Skeletal muscle ceramides and relationship with insulin sensitivity after 2 weeks of simulated sedentary behaviour and recovery in healthy older adults. J Physiol 2018; 596:5217-5236. [PMID: 30194727 PMCID: PMC6209761 DOI: 10.1113/jp276798] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Insulin sensitivity (as determined by a hyperinsulinaemic-euglyceamic clamp) decreased 15% after reduced activity. Despite not fully returning to baseline physical activity levels, insulin sensitivity unexpectedly, rebounded above that recorded before 2 weeks of reduced physical activity by 14% after the recovery period. Changes in insulin sensitivity in response to reduced activity were primarily driven by men but, not women. There were modest changes in ceramides (nuclear/myofibrillar fraction and serum) following reduced activity and recovery but, in the absence of major changes to body composition (i.e. fat mass), ceramides were not related to changes in inactivity-induced insulin sensitivity in healthy older adults. ABSTRACT Older adults are at risk of physical inactivity as they encounter debilitating life events. It is not known how insulin sensitivity is affected by modest short-term physical inactivity and recovery in healthy older adults, nor how insulin sensitivity is related to changes in serum and muscle ceramide content. Healthy older adults (aged 64-82 years, five females, seven males) were assessed before (PRE), after 2 weeks of reduced physical activity (RA) and following 2 weeks of recovery (REC). Insulin sensitivity (hyperinsulinaemic-euglyceamic clamp), lean mass, muscle function, skeletal muscle subfraction, fibre-specific, and serum ceramide content and indices of skeletal muscle inflammation were assessed. Insulin sensitivity decreased by 15 ± 6% at RA (driven by men) but rebounded above PRE by 14 ± 5% at REC. Mid-plantar flexor muscle area and leg strength decreased with RA, although only muscle size returned to baseline levels following REC. Body fat did not change and only minimal changes in muscle inflammation were noted across the intervention. Serum and intramuscular ceramides (nuclear/myofibrillar fraction) were modestly increased at RA and REC. However, ceramides were not related to changes in inactivity-induced insulin sensitivity in healthy older adults. Short-term inactivity induced insulin resistance in older adults in the absence of significant changes in body composition (i.e. fat mass) are not related to changes in ceramides.
Collapse
Affiliation(s)
- Paul T. Reidy
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Alec I. McKenzie
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Ziad Mahmassani
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Vincent R. Morrow
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Nikol M. Yonemura
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Paul N. Hopkins
- Cardiovascular GeneticsDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Robin L. Marcus
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Matthew T. Rondina
- Department of Internal Medicine & Molecular Medicine ProgramUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Yu Kuei Lin
- Department of Internal Medicine, Division of EndocrinologyMetabolism and DiabetesUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Micah J. Drummond
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
45
|
Margolis LM, Rivas DA. Potential Role of MicroRNA in the Anabolic Capacity of Skeletal Muscle With Aging. Exerc Sport Sci Rev 2018; 46:86-91. [PMID: 29346160 DOI: 10.1249/jes.0000000000000147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Age-induced loss of skeletal muscle mass and function, termed sarcopenia, may be the result of diminished response to anabolic stimulation. This review will explore the hypothesis that alterations in the expression of microRNA with aging contributes to reduced muscle plasticity resulting in impaired skeletal muscle adaptations to exercise-induced anabolic stimulation.
Collapse
Affiliation(s)
- Lee M Margolis
- Nutrition, Exercise, Physiology, and Sarcopenia Laboratory, U.S. Department of Agriculture Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | | |
Collapse
|
46
|
Beals JW, Skinner SK, McKenna CF, Poozhikunnel EG, Farooqi SA, van Vliet S, Martinez IG, Ulanov AV, Li Z, Paluska SA, Burd NA. Altered anabolic signalling and reduced stimulation of myofibrillar protein synthesis after feeding and resistance exercise in people with obesity. J Physiol 2018; 596:5119-5133. [PMID: 30113718 DOI: 10.1113/jp276210] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/15/2018] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Lifestyle modifications that include the regular performance of exercise are probably important for counteracting the negative consequences of obesity on postprandial myofibrillar protein synthetic responses to protein dense food ingestion. We show that the interactive effect of resistance exercise and feeding on the stimulation of myofibrillar protein synthesis rates is diminished with obesity compared to normal weight adults. The blunted myofibrillar protein synthetic response with resistance exercise in people with obesity may be underpinned by alterations in muscle anabolic signalling phosphorylation (p70S6K and 4E-BP1). The results obtained in the present study suggest that further exercise prescription manipulation may be necessary to optimize post-exercise myofibrillar protein synthesis rates in adults with obesity. ABSTRACT We aimed to determine whether obesity alters muscle anabolic and inflammatory signalling phosphorylation and also muscle protein synthesis within the myofibrillar (MYO) and sarcoplasmic (SARC) protein fractions after resistance exercise. Nine normal weight (NW) (21 ± 1 years, body mass index 22 ± 1 kg m-2 ) and nine obese (OB) (22 ± 1 years, body mass index 36 ± 2 kg m-2 ) adults received l-[ring-13 C6 ]phenylalanine infusions with blood and muscle sampling at basal and fed-state of the exercise (EX) and non-exercise (CON) legs. Participants performed unilateral leg extensions and consumed pork (36 g of protein) immediately after exercise. Basal muscle Toll-like receptor 4 (TLR4) protein was similar between OB and NW groups (P > 0.05) but increased at 300 min after pork ingestion only in the OB group (P = 0.03). Resistance exercise reduced TLR4 protein in the OB group at 300 min (EX vs. CON leg in OB: P = 0.04). Pork ingestion increased p70S6K phosphorylation at 300 min in CON and EX of the OB and NW groups (P > 0.05), although the response was lower in the EX leg of OB vs. NW at 300 min (P = 0.05). Basal MYO was similar between the NW and OB groups (P > 0.05) and was stimulated by pork ingestion in the EX and CON legs in both groups (Δ from basal NW: CON 0.04 ± 0.01% h-1 ; EX 0.10 ± 0.02% h-1 ; OB: CON 0.06 ± 0.01% h-1 ; EX 0.06 ± 0.01% h-1 ; P < 0.05). MYO was more strongly stimulated in the EX vs. CON legs in NW (P = 0.02) but not OB (P = 0.26). SARC was feeding sensitive but not further potentiated by resistance exercise in both groups. Our results suggest that obesity may attenuate the effectiveness of resistance exercise to augment fed-state MYO.
Collapse
Affiliation(s)
- Joseph W Beals
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah K Skinner
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Colleen F McKenna
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elizabeth G Poozhikunnel
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Samee A Farooqi
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isabel G Martinez
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
47
|
Si H, Wang X, Zhang L, Parnell LD, Admed B, LeRoith T, Ansah TA, Zhang L, Li J, Ordovás JM, Si H, Liu D, Lai CQ. Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice. FASEB J 2018; 33:965-977. [PMID: 30096038 PMCID: PMC6355074 DOI: 10.1096/fj.201800554rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We recently reported that epicatechin, a bioactive compound that occurs naturally in various common foods, promoted general health and survival of obese diabetic mice. It remains to be determined whether epicatechin extends health span and delays the process of aging. In the present study, epicatechin or its analogue epigallocatechin gallate (EGCG) (0.25% w/v in drinking water) was administered to 20-mo-old male C57BL mice fed a standard chow. The goal was to determine the antiaging effect. The results showed that supplementation with epicatechin for 37 wk strikingly increased the survival rate from 39 to 69%, whereas EGCG had no significant effect. Consistently, epicatechin improved physical activity, delayed degeneration of skeletal muscle (quadriceps), and shifted the profiles of the serum metabolites and skeletal muscle general mRNA expressions in aging mice toward the profiles observed in young mice. In particular, we found that dietary epicatechin significantly reversed age-altered mRNA and protein expressions of extracellular matrix and peroxisome proliferator–activated receptor pathways in skeletal muscle, and reversed the age-induced declines of the nicotinate and nicotinamide pathway both in serum and skeletal muscle. The present study provides evidence that epicatechin supplementation can exert an antiaging effect, including an increase in survival, an attenuation of the aging-related deterioration of skeletal muscles, and a protection against the aging-related decline in nicotinate and nicotinamide metabolism.—Si, H., Wang, X., Zhang, L., Parnell, L. D., Ahmed, B., LeRoith, T., Ansah, T.-A., Zhang, L., Li, J., Ordovás, J. M., Si, H., Liu, D., Lai, C.-Q. Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice.
Collapse
Affiliation(s)
- Hongwei Si
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Xiaoyong Wang
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Longyun Zhang
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Laurence D Parnell
- United States Department of Agriculture (USDA) Agricultural Research Service, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Bulbul Admed
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Twum-Ampofo Ansah
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Lijuan Zhang
- Department of Human Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Jianwei Li
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA.,Research Institute on Food and Health Sciences, Madrid Institute of Advanced Studies (IMDEA), Campus of Universal Excellence (CEI), Autonomous University of Madrid (UAM), Madrid, Spain.,Superior Council of Scientific Investigations (CSIC), Madrid, Spain
| | - Hongzong Si
- Institute of Computational Science and Engineering, Qingdao University, Qingdao, China; and
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia, USA
| | - Chao-Qiang Lai
- United States Department of Agriculture (USDA) Agricultural Research Service, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Tong T, Kim M, Park T. α-Cedrene, a Newly Identified Ligand of MOR23, Increases Skeletal Muscle Mass and Strength. Mol Nutr Food Res 2018; 62:e1800173. [PMID: 29901851 DOI: 10.1002/mnfr.201800173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/03/2018] [Indexed: 01/24/2023]
Abstract
SCOPE Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. In this study, the effects of α-cedrene are tested, a natural ligand of mouse olfactory receptor 23 (MOR23) whose ectopic function regulating myogenesis on skeletal muscle growth was reported recently. METHODS AND RESULTS α-Cedrene not only stimulated hypertrophy but also attenuated free fatty acid-induced atrophy of cultured skeletal myotubes, as evidenced by an increased myotube diameter, fusion index, and total cellular protein content. These hypertrophic and antiatrophic properties of α-cedrene in cultured myotubes were confirmed in corresponding mouse models. The skeletal muscle mass, total muscle protein content, average cross-sectional area of myofibers, and muscle strength were significantly greater in α-cedrene-treated mice compared with untreated animals during either a regular chow diet or high-fat diet. Receptor knockdown experiments using RNA interference in cultured skeletal myotubes revealed that the hypertrophic and antiatrophic properties of α-cedrene may be mediated by MOR23. Furthermore, α-cedrene induced the expression of MOR23 and enhanced its downstream cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cyclic AMP-responsive element-binding protein (CREB) signaling in the skeletal muscle of mice fed chow or high-fat diet. CONCLUSIONS α-Cedrene is a promising agent that may be applied to enhance the mass and strength of skeletal muscle.
Collapse
Affiliation(s)
- Tao Tong
- Brain Korea 21 PLUS Project, Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Minji Kim
- Brain Korea 21 PLUS Project, Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Taesun Park
- Brain Korea 21 PLUS Project, Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| |
Collapse
|
49
|
de Oliveira Silva A, Dutra MT, de Moraes WMAM, Funghetto SS, Lopes de Farias D, Dos Santos PHF, Vieira DCL, Nascimento DDC, Orsano VSM, Schoenfeld BJ, Prestes J. Resistance training-induced gains in muscle strength, body composition, and functional capacity are attenuated in elderly women with sarcopenic obesity. Clin Interv Aging 2018; 13:411-417. [PMID: 29588579 PMCID: PMC5858549 DOI: 10.2147/cia.s156174] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objectives The purpose of this study was to compare the effects of resistance training (RT) on body composition, muscle strength, and functional capacity in elderly women with and without sarcopenic obesity (SO). Methods A total of 49 women (aged ≥60 years) were divided in two groups: without SO (non-SO, n=41) and with SO (n=8). Both groups performed a periodized RT program consisting of two weekly sessions for 16 weeks. All measures were assessed at baseline and postintervention, including anthropometry and body composition (dual-energy X-ray absorptiometry), muscle strength (one repetition maximum) for chest press and 45° leg press, and functional capacity (stand up, elbow flexion, timed "up and go"). Results After the intervention, only the non-SO group presented significant reductions in percentage body fat (-2.2%; P=0.006), waist circumference (-2.7%; P=0.01), waist-to-hip ratio (-2.3; P=0.02), and neck circumference (-1.8%; P=0.03) as compared with baseline. Muscle strength in the chest press and biceps curl increased in non-SO only (12.9% and 11.3%, respectively), while 45° leg press strength increased in non-SO (50.3%) and SO (40.5%) as compared with baseline. Performance in the chair stand up and timed "up and go" improved in non-SO only (21.4% and -8.4%, respectively), whereas elbow flexion performance increased in non-SO (23.8%) and SO (21.4%). Effect sizes for motor tests were of higher magnitude in the non-SO group, and in general, considered "moderate" compared to "trivial" in the SO group. Conclusion Results suggest that adaptations induced by 16 weeks of RT are attenuated in elderly woman with SO, compromising improvements in adiposity indices and gains in muscle strength and functional capacity.
Collapse
Affiliation(s)
- Alessandro de Oliveira Silva
- University Center of Brasilia (UniCEUB), Brasília, Brazil.,Integrated Colleges of the Central Plateau Educational Union (FACIPLAC), Brasília, Brazil
| | | | | | | | | | | | | | - Dahan da Cunha Nascimento
- Catholic University of Brasilia (UCB), Brasília, Brazil.,University Center of the Federal District (UDF), Brasília, Brazil
| | | | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, United States
| | | |
Collapse
|
50
|
Musci RV, Hamilton KL, Miller BF. Targeting mitochondrial function and proteostasis to mitigate dynapenia. Eur J Appl Physiol 2018; 118:1-9. [PMID: 28986697 PMCID: PMC5756099 DOI: 10.1007/s00421-017-3730-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 12/25/2022]
Abstract
Traditionally, interventions to treat skeletal muscle aging have largely targeted sarcopenia-the age-related loss of skeletal muscle mass. Dynapenia refers to the age-related loss in skeletal muscle function due to factors outside of muscle mass, which helps to inform treatment strategies for aging skeletal muscle. There is evidence that mechanisms to maintain protein homeostasis and proteostasis, deteriorate with age. One key mechanism to maintain proteostasis is protein turnover, which is an energetically costly process. When there is a mismatch between cellular energy demands and energy provision, inelastic processes related to metabolism are maintained, but there is competition for the remaining energy between the elastic processes of somatic maintenance and growth. With aging, mitochondrial dysfunction reduces ATP generation capacity, constraining the instantaneous supply of energy, thus compromising growth and somatic maintenance processes. Further, with age the need for somatic maintenance increases because of the accumulation of protein damage. In this review, we highlight the significant role mitochondria have in maintaining skeletal muscle proteostasis through increased energy provision, protein turnover, and substrate flux. In addition, we provide evidence that improving mitochondrial function could promote a cellular environment that is conducive to somatic maintenance, and consequently for mitigating dynapenia. Finally, we highlight interventions, such as aerobic exercise, that could be used to improve mitochondrial function and improve outcomes related to dynapenia.
Collapse
Affiliation(s)
- Robert V Musci
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| | - Karyn L Hamilton
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| | - Benjamin F Miller
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA.
| |
Collapse
|