1
|
Haynes J, Palaniappan B, Crutchley JM, Sundaram U. Regulation of Enterocyte Brush Border Membrane Primary Na-Absorptive Transporters in Human Intestinal Organoid-Derived Monolayers. Cells 2024; 13:1623. [PMID: 39404387 PMCID: PMC11482628 DOI: 10.3390/cells13191623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In the small intestine, sodium (Na) absorption occurs primarily via two apical transporters, Na-hydrogen exchanger 3 (NHE3) and Na-glucose cotransporter 1 (SGLT1). The two primary Na-absorptive pathways were previously shown to compensatorily regulate each other in rabbit and rat intestinal epithelial cells. However, whether NHE3 and SGLT1 regulate one another in normal human enterocytes is unknown, mainly due to a lack of appropriate experimental models. To investigate this, we generated 2D enterocyte monolayers from human jejunal 3D organoids and used small interfering RNAs (siRNAs) to knock down NHE3 or SGLT1. Molecular and uptake studies were performed to determine the effects on NHE3 and SGLT1 expression and activity. Knockdown of NHE3 by siRNA in enterocyte monolayers was verified by qPCR and Western blot analysis and resulted in reduced NHE3 activity. However, in NHE3 siRNA-transfected cells, SGLT1 activity was significantly increased. siRNA knockdown of SGLT1 was confirmed by qPCR and Western blot analysis and resulted in reduced SGLT1 activity. However, in SGLT1 siRNA-transfected cells, NHE3 activity was significantly increased. These results demonstrate for the first time the functionality of siRNA in patient-derived organoid monolayers. Furthermore, they show that the two primary Na absorptive pathways in human enterocytes reciprocally regulate one another.
Collapse
Affiliation(s)
| | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA
| |
Collapse
|
2
|
Raulien N, Friedrich K, Strobel S, Raps S, Hecker F, Pierer M, Schilling E, Lainka E, Kallinich T, Baumann S, Fritz-Wallace K, Rolle-Kampczyk U, von Bergen M, Aigner A, Ewe A, Schett G, Cross M, Rossol M, Wagner U. Glucose-oxygen deprivation constrains HMGCR function and Rac1 prenylation and activates the NLRP3 inflammasome in human monocytes. Sci Signal 2024; 17:eadd8913. [PMID: 39012939 DOI: 10.1126/scisignal.add8913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/03/2023] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
Hypoxia and low glucose abundance often occur simultaneously at sites of inflammation. In monocytes and macrophages, glucose-oxygen deprivation stimulates the assembly of the NLRP3 inflammasome to generate the proinflammatory cytokine IL-1β. We found that concomitant glucose deprivation and hypoxia activated the NLRP3 inflammasome by constraining the function of HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate kinase pathway. HMGCR is involved in the synthesis of geranylgeranyl pyrophosphate (GGPP), which is required for the prenylation and lipid membrane integration of proteins. Under glucose-oxygen deprivation, GGPP synthesis was decreased, leading to reduced prenylation of the small GTPase Rac1, increased binding of nonprenylated Rac1 to the scaffolding protein IQGAP1, and enhanced activation of the NLRP3 inflammasome. In response to restricted oxygen and glucose supply, patient monocytes with a compromised mevalonate pathway due to mevalonate kinase deficiency or Muckle-Wells syndrome released more IL-1β than did control monocytes. Thus, reduced GGPP synthesis due to inhibition of HMGCR under glucose-oxygen deprivation results in proinflammatory innate responses, which are normally kept in check by the prenylation of Rac1. We suggest that this mechanism is also active in inflammatory autoimmune conditions.
Collapse
Affiliation(s)
- Nora Raulien
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
- Institute of Anatomy, University Leipzig, Leipzig, Germany
| | - Kathleen Friedrich
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Sarah Strobel
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Stefanie Raps
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Friederike Hecker
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Matthias Pierer
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Erik Schilling
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| | - Elke Lainka
- Department of Pediatric Gastroenterology, Hepatology and Liver Transplantation, University Children's Hospital Essen, Essen, Germany
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Baumann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Katarina Fritz-Wallace
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
- Institute for Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Cross
- Leipzig Medical Center, Clinic for Hematology and Cell Therapy, University Clinic Leipzig, Leipzig, Germany
| | - Manuela Rossol
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
- Molecular Immunology, Faculty of Health Sciences, Brandenburg Technische Universität Cottbus-Senftenberg, Senftenberg, Germany
| | - Ulf Wagner
- Division of Rheumatology, Department of Endocrinology, Nephrology, Rheumatology, Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Dengler F, Hammon HM, Liermann W, Görs S, Bachmann L, Helm C, Ulrich R, Delling C. Cryptosporidium parvumcompetes with the intestinal epithelial cells for glucose and impairs systemic glucose supply in neonatal calves. Vet Res 2023; 54:40. [PMID: 37138353 PMCID: PMC10156424 DOI: 10.1186/s13567-023-01172-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/10/2023] [Indexed: 05/05/2023] Open
Abstract
Cryptosporidiosis is one of the main causes of diarrhea in children and young livestock. The interaction of the parasite with the intestinal host cells has not been characterized thoroughly yet but may be affected by the nutritional demand of the parasite. Hence, we aimed to investigate the impact of C. parvum infection on glucose metabolism in neonatal calves. Therefore, N = 5 neonatal calves were infected with C. parvum on the first day of life, whereas a control group was not (N = 5). The calves were monitored clinically for one week, and glucose absorption, turnover and oxidation were assessed using stable isotope labelled glucose. The transepithelial transport of glucose was measured using the Ussing chamber technique. Glucose transporters were quantified on gene and protein expression level using RT-qPCR and Western blot in the jejunum epithelium and brush border membrane preparations. Plasma glucose concentration and oral glucose absorption were decreased despite an increased electrogenic phlorizin sensitive transepithelial transport of glucose in infected calves. No difference in the gene or protein abundance of glucose transporters, but an enrichment of glucose transporter 2 in the brush border was observed in the infected calves. Furthermore, the mRNA for enzymes of the glycolysis pathway was increased indicating enhanced glucose oxidation in the infected gut. In summary, C. parvum infection modulates intestinal epithelial glucose absorption and metabolism. We assume that the metabolic competition of the parasite for glucose causes the host cells to upregulate their uptake mechanisms and metabolic machinery to compensate for the energy losses.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria.
- Institute of Veterinary Physiology, Leipzig University, An den Tierkliniken 7, Leipzig, Germany.
| | - Harald M Hammon
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | - Wendy Liermann
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
| | - Lisa Bachmann
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, Brodaer Strasse 2, Neubrandenburg, Germany
| | - Christiane Helm
- Institute of Veterinary Pathology, Leipzig University, An den Tierkliniken 33-37, Leipzig, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Leipzig University, An den Tierkliniken 33-37, Leipzig, Germany
| | - Cora Delling
- Institute of Parasitology, Leipzig University, An den Tierkliniken 35, Leipzig, Germany
| |
Collapse
|
4
|
Dengler F, Sternberg F, Grages M, Kästner SBR, Verhaar N. Adaptive mechanisms in no flow vs. low flow ischemia in equine jejunum epithelium: Different paths to the same destination. Front Vet Sci 2022; 9:947482. [PMID: 36157182 PMCID: PMC9493374 DOI: 10.3389/fvets.2022.947482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/17/2022] [Indexed: 01/18/2023] Open
Abstract
Intestinal ischemia reperfusion injury (IRI) is a frequent complication of equine colic. Several mechanisms may be involved in adaptation of the intestinal epithelium to IRI and might infer therapeutic potential, including hypoxia-inducible factor (HIF) 1α, AMP-activated protein kinase (AMPK), nuclear factor-erythroid 2-related factor 2 (NRF2), and induction of autophagy. However, the mechanisms supporting adaptation and thus cellular survival are not completely understood yet. We investigated the activation of specific adaptation mechanisms in both no and low flow ischemia and reperfusion simulated in equine jejunum epithelium in vivo. We found an activation of HIF1α in no and low flow ischemia as indicated by increased levels of HIF1α target genes and phosphorylation of AMPKα tended to increase during ischemia. Furthermore, the protein expression of the autophagy marker LC3B in combination with decreased expression of nuclear-encoded mitochondrial genes indicates an increased rate of mitophagy in equine intestinal IRI, possibly preventing damage by mitochondria-derived reactive oxygen species (ROS). Interestingly, ROS levels were increased only shortly after the onset of low flow ischemia, which may be explained by an increased antioxidative defense, although NFR2 was not activated in this setup. In conclusion, we could demonstrate that a variety of adaptation mechanisms manipulating different aspects of cellular homeostasis are activated in IRI irrespective of the ischemia model, and that mitophagy might be an important factor for epithelial survival following small intestinal ischemia in horses that should be investigated further.
Collapse
Affiliation(s)
- Franziska Dengler
- Department of Biochemical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Franziska Dengler
| | - Felix Sternberg
- Department of Biochemical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Marei Grages
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabine BR Kästner
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Verhaar
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Tang X, Xiong K. Epidermal growth factor activates EGFR/AMPK signalling to up-regulate the expression of SGLT1 and GLUT2 to promote intestinal glucose absorption in lipopolysaccharide challenged IPEC-J2 cells and piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2073832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| |
Collapse
|
6
|
Butyrate Protects Porcine Colon Epithelium from Hypoxia-Induced Damage on a Functional Level. Nutrients 2021; 13:nu13020305. [PMID: 33498991 PMCID: PMC7911740 DOI: 10.3390/nu13020305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
The large intestinal epithelium is confronted with the necessity to adapt quickly to varying levels of oxygenation. In contrast to other tissues, it meets this requirement successfully and remains unharmed during (limited) hypoxic periods. The large intestine is also the site of bacterial fermentation producing short-chain fatty acids (SCFA). Amongst these SCFA, butyrate has been reported to ameliorate many pathological conditions. Thus, we hypothesized that butyrate protects the colonocytes from hypoxic damage. We used isolated porcine colon epithelium mounted in Ussing chambers, incubated it with or without butyrate and simulated hypoxia by changing the gassing regime to test this hypothesis. We found an increase in transepithelial conductance and a decrease in short-circuit current across the epithelia when simulating hypoxia for more than 30 min. Incubation with 50 mM butyrate significantly ameliorated these changes to the epithelial integrity. In order to characterize the protective mechanism, we compared the effects of butyrate to those of iso-butyrate and propionate. These two SCFAs exerted similar effects to butyrate. Therefore, we propose that the protective effect of butyrate on colon epithelium under hypoxia is not (only) based on its nutritive function, but rather on the intracellular signaling effects of SCFA.
Collapse
|
7
|
Ida-Yonemochi H, Otsu K, Harada H, Ohshima H. Functional Expression of Sodium-Dependent Glucose Transporter in Amelogenesis. J Dent Res 2020; 99:977-986. [PMID: 32345094 DOI: 10.1177/0022034520916130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glucose is an essential source of energy for mammalian cells and is transported into the cells by glucose transporters. There are 2 types of glucose transporters: one is a passive glucose transporter, GLUT (SLC2A), and the other is a sodium-dependent active glucose transporter, SGLT (SLC5A). We previously reported that the expression of GLUTs during tooth development is precisely and spatiotemporally controlled and that the glucose uptake mediated by GLUT1 plays a crucial role in early tooth morphogenesis and tooth size determination. This study aimed to clarify the localization and roles of SGLT1 and SGLT2 in murine ameloblast differentiation by using immunohistochemistry, immunoelectron microscopy, an in vitro tooth organ culture experiment, and in vivo administration of an inhibitor of SGLT1/2, phloridzin. SGLT1, which has high affinity with glucose, was immunolocalized in the early secretory ameloblasts and the ruffle-ended ameloblasts in the maturation stage. However, SGLT2, which has high glucose transport capacity, was observed in the stratum intermedium, papillary layer, and ameloblasts at the maturation stage and colocalized with Na+-K+-ATPase. The inhibition of SGLT1/2 by phloridzin in the tooth germs induced the disturbance of ameloblast differentiation and enamel matrix formation both in vitro (organ culture) and in vivo (mouse model). The expression of SGLT1 and SGLT2 was significantly upregulated in hypoxic conditions in the ameloblast-lineage cells. These findings suggest that the active glucose uptake mediated by SGLT1 and SGLT2 is strictly regulated and dependent on the intra- and extracellular microenvironments during tooth morphogenesis and that the appropriate passive and active glucose transport is an essential event in amelogenesis.
Collapse
Affiliation(s)
- H Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Japan
| | - K Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Shiwa-gun, Japan
| | - H Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Shiwa-gun, Japan
| | - H Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Japan
| |
Collapse
|
8
|
Dengler F. Activation of AMPK under Hypoxia: Many Roads Leading to Rome. Int J Mol Sci 2020; 21:ijms21072428. [PMID: 32244507 PMCID: PMC7177550 DOI: 10.3390/ijms21072428] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is known as a pivotal cellular energy sensor, mediating the adaptation to low energy levels by deactivating anabolic processes and activating catabolic processes in order to restore the cellular ATP supply when the cellular AMP/ATP ratio is increased. Besides this well-known role, it has also been shown to exert protective effects under hypoxia. While an insufficient supply with oxygen might easily deplete cellular energy levels, i.e., ATP concentration, manifold other mechanisms have been suggested and are heavily disputed regarding the activation of AMPK under hypoxia independently from cellular AMP concentrations. However, an activation of AMPK preceding energy depletion could induce a timely adaptation reaction preventing more serious damage. A connection between AMPK and the master regulator of hypoxic adaptation via gene transcription, hypoxia-inducible factor (HIF), has also been taken into account, orchestrating their concerted protective action. This review will summarize the current knowledge on mechanisms of AMPK activation under hypoxia and its interrelationship with HIF.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Veterinary Physiology, University of Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
9
|
Delling C, Daugschies A, Bangoura B, Dengler F. Cryptosporidium parvum alters glucose transport mechanisms in infected enterocytes. Parasitol Res 2019; 118:3429-3441. [PMID: 31667591 DOI: 10.1007/s00436-019-06471-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022]
Abstract
The parasite Cryptosporidium parvum Tyzzer 1912 destroys parts of the intestinal brush border membrane which is important for the uptake of nutrients like glucose. In this study, glucose transport mechanisms of the host cells (IPEC-J2 cells) infected by C. parvum were investigated. The mRNA expression levels of glucose transporters (GLUT) 1 and 2 and Na+-coupled glucose transporter (SGLT) 1 were compared in infected and uninfected cells over an infection time of 24-96 h by RT-qPCR. Furthermore, the protein expression of SGLT 1 and GLUT 2 was quantified in western blot studies. While the protein expression of SGLT 1 was not altered in infected cells, mRNA expression of SGLT 1 and GLUT 1 was significantly increased 24 h p. i. and decreased 96 h p. i. The mRNA expression of GLUT 2 was significantly decreased 24 h, 72 h, and 96 h p. i. and also correlated significantly with the infection dose at 72 h p. i. In contrast to that, the protein expression of GLUT 2 was significantly increased 48 h p. i., associated with a significantly higher intracellular glucose level in infected cells compared with control cells at that time point of infection. This points to an adaptation of the host cells' glucose uptake taking place in the acute phase of the infection. A better understanding of these molecular mechanisms following a C. parvum infection may probably lead to an improvement of therapy strategies in the future.
Collapse
Affiliation(s)
- Cora Delling
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany.
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany
- Albrecht Daniel Thaer Institute, An den Tierkliniken 29, 04103, Leipzig, Germany
| | - Berit Bangoura
- Wyoming State Veterinary Laboratory, Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY, 82070, USA
| | - Franziska Dengler
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 7, 04103, Leipzig, Germany
| |
Collapse
|
10
|
Dengler F, Gäbel G. The Fast Lane of Hypoxic Adaptation: Glucose Transport Is Modulated via A HIF-Hydroxylase-AMPK-Axis in Jejunum Epithelium. Int J Mol Sci 2019; 20:ijms20204993. [PMID: 31601024 PMCID: PMC6834319 DOI: 10.3390/ijms20204993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelium is able to adapt to varying blood flow and, thus, oxygen availability. Still, the adaptation fails under pathologic situations. A better understanding of the mechanisms underlying the epithelial adaptation to hypoxia could help to improve the therapeutic approach. We hypothesized that the short-term adaptation to hypoxia is mediated via AMP-activated protein kinase (AMPK) and that it is coupled to the long-term adaptation by a common regulation mechanism, the HIF-hydroxylase enzymes. Further, we hypothesized the transepithelial transport of glucose to be part of this short-term adaptation. We conducted Ussing chamber studies using isolated lagomorph jejunum epithelium and cell culture experiments with CaCo-2 cells. The epithelia and cells were incubated under 100% and 21% O2, respectively, with the panhydroxylase inhibitor dimethyloxalylglycine (DMOG) or under 1% O2. We showed an activation of AMPK under hypoxia and after incubation with DMOG by Western blot. This could be related to functional effects like an impairment of Na+-coupled glucose transport. Inhibitor studies revealed a recruitment of glucose transporter 1 under hypoxia, but not after incubation with DMOG. Summing up, we showed an influence of hydroxylase enzymes on AMPK activity and similarities between hypoxia and the effects of hydroxylase inhibition on functional changes.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Veterinary Physiology, University of Leipzig, 04103 Leipzig, Germany.
| | - Gotthold Gäbel
- Institute of Veterinary Physiology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
11
|
Coping With Hypoxia: Adaptation of Glucose Transport Mechanisms Across Equine Jejunum Epithelium. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.05.221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|