1
|
Parstorfer M, Poschet G, Brüning K, Friedmann‐Bette B. Exercise-induced effects on the metabolome of endurance and strength-trained athletes in comparison with sedentary subjects: A pilot study. Physiol Rep 2025; 13:e70206. [PMID: 39903553 PMCID: PMC11793010 DOI: 10.14814/phy2.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/16/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Little is known about the exercise-induced adaptations of the metabolome in endurance and strength athletes in comparison with sedentary subjects. In order to analyze exercise-induced effects, quantitative, targeted metabolomics (Biocrates MxP® Quant 500) were performed in plasma samples before and after one bout of endurance or resistance exercise (RE) in 12 strength-trained weightlifters (ST), 10 endurance-trained runners (ET) and 12 sedentary controls (CG) at the end of each of three characteristic training phases. Performance and anthropometric data were significantly different between CG and athletes. A significant exercise-induced increase in lactate (Lac) was observed in all groups after all exercise tests. After endurance exercise (EE), there were significant increases in acetylcarnitine, arachidonic acid, and docosahexaenoic acid in CG and ET while aconitic acid, hippuric acid, glutamate, hexoses, xanthine were significantly increased in ET only. Only CG showed increases in several triglycerides following EE. RE, however, induced significant increases in Lac only. In summary, EE induces distinct increases in some metabolites of the fatty acid metabolism and the oxidative defense system in ET and CG. There are some indications for specific adaptations of the energy metabolism after long lasting endurance training with a distinct exercise-induced response of the metabolome in ET.
Collapse
Affiliation(s)
- Mario Parstorfer
- Department of Sports Medicine, Medical Clinic VIIUniversity Hospital HeidelbergHeidelbergGermany
- Olympic Training CenterHeidelbergGermany
| | - Gernot Poschet
- Center for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | | | - Birgit Friedmann‐Bette
- Department of Sports Medicine, Medical Clinic VIIUniversity Hospital HeidelbergHeidelbergGermany
| |
Collapse
|
2
|
Nakhod VI, Butkova TV, Malsagova KA, Petrovskiy DV, Izotov AA, Nikolsky KS, Kaysheva AL. Sample Preparation for Metabolomic Analysis in Exercise Physiology. Biomolecules 2024; 14:1561. [PMID: 39766268 PMCID: PMC11673972 DOI: 10.3390/biom14121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolomics investigates final and intermediate metabolic products in cells. Assessment of the human metabolome relies principally on the analysis of blood, urine, saliva, sweat, and feces. Tissue biopsy is employed less frequently. Understanding the metabolite composition of biosamples from athletes can significantly improve our knowledge of molecular processes associated with the efficiency of training and recovery. Such knowledge may also lead to new management opportunities. Successful execution of metabolomic studies requires simultaneous qualitative and quantitative analyses of numerous small biomolecules in samples under test. Unlike genomics and proteomics, which do not allow for direct assessment of enzymatic activity, metabolomics focuses on biochemical phenotypes, providing unique information about health and physiological features. Crucial factors in ensuring the efficacy of metabolomic analysis are the meticulous selection and pre-treatment of samples.
Collapse
Affiliation(s)
| | | | - Kristina A. Malsagova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (V.I.N.); (T.V.B.); (D.V.P.); (A.A.I.); (K.S.N.); (A.L.K.)
| | | | | | | | | |
Collapse
|
3
|
Azevedo RA, Cruz R, Silva‐Cavalcante MD, Lima‐Silva AE, Bertuzzi R. The blood serum metabolome profile after different phases of a 4-km cycling time trial: Secondary analysis of a randomized controlled trial. Eur J Sport Sci 2024; 24:721-731. [PMID: 38874966 PMCID: PMC11235909 DOI: 10.1002/ejsc.12108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 06/15/2024]
Abstract
It has been assumed that exercise intensity variation throughout a cycling time trial (TT) occurs in alignment of various metabolic changes to prevent premature task failure. However, this assumption is based on target metabolite responses, which limits our understanding of the complex interconnection of metabolic responses during exercise. The current study characterized the metabolomic profile, an untargeted metabolic analysis, after specific phases of a cycling 4-km TT. Eleven male cyclists performed three separated TTs in a crossover counterbalanced design, which were interrupted at the end of the fast-start (FS, 600 ± 205 m), even-pace (EP, 3600 ± 190 m), or end-spurt (ES, 4000 m) phases. Blood samples were taken before any exercise and 5 min after exercise cessation, and the metabolomic profile characterization was performed using Nuclear Magnetic Resonance metabolomics. Power output (PO) was also continually recorded. There were higher PO values during the FS and ES compared to the EP (all p < 0.05), which were accompanied by distinct metabolomic profiles. FS showed high metabolite expression in TCA cycle and its related pathways (e.g., glutamate, citric acid, and valine metabolism); whereas, the EP elicited changes associated with antioxidant effects and oxygen delivery adjustment. Finally, ES was related to pathways involved in NAD turnover and serotonin metabolism. These findings suggest that the specific phases of a cycling TT are accompanied by distinct metabolomic profiles, providing novel insights regarding the relevance of specific metabolic pathways on the process of exercise intensity regulation.
Collapse
Affiliation(s)
- Rafael A. Azevedo
- School of Physical Education and SportEndurance Sports Research Group (GEDAE‐USP)University of Sao PauloSao PauloBrazil
- Faculdade de Medicina FMUSPApplied Physiology and Nutrition Research Group ‐ Center of Lifestyle MedicineUniversidade de São PauloSao PauloBrazil
| | - Ramon Cruz
- School of Physical Education and SportEndurance Sports Research Group (GEDAE‐USP)University of Sao PauloSao PauloBrazil
- Department of Physical EducationSports CenterFederal University of Santa CatarinaFlorianopolisSanta CatarinaBrazil
| | - Marcos D. Silva‐Cavalcante
- School of Physical Education and SportEndurance Sports Research Group (GEDAE‐USP)University of Sao PauloSao PauloBrazil
- Faculty of NutritionPost‐graduate Program in NutritionFederal University of AlagoasMaceióAlagoasBrazil
| | - Adriano E. Lima‐Silva
- Human Performance Research GroupFederal University of Technology – ParanaParanaBrazil
| | - Romulo Bertuzzi
- School of Physical Education and SportEndurance Sports Research Group (GEDAE‐USP)University of Sao PauloSao PauloBrazil
| |
Collapse
|
4
|
Kang P, Wang AZX. Microbiota-gut-brain axis: the mediator of exercise and brain health. PSYCHORADIOLOGY 2024; 4:kkae007. [PMID: 38756477 PMCID: PMC11096970 DOI: 10.1093/psyrad/kkae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
The brain controls the nerve system, allowing complex emotional and cognitive activities. The microbiota-gut-brain axis is a bidirectional neural, hormonal, and immune signaling pathway that could link the gastrointestinal tract to the brain. Over the past few decades, gut microbiota has been demonstrated to be an essential component of the gastrointestinal tract that plays a crucial role in regulating most functions of various body organs. The effects of the microbiota on the brain occur through the production of neurotransmitters, hormones, and metabolites, regulation of host-produced metabolites, or through the synthesis of metabolites by the microbiota themselves. This affects the host's behavior, mood, attention state, and the brain's food reward system. Meanwhile, there is an intimate association between the gut microbiota and exercise. Exercise can change gut microbiota numerically and qualitatively, which may be partially responsible for the widespread benefits of regular physical activity on human health. Functional magnetic resonance imaging (fMRI) is a non-invasive method to show areas of brain activity enabling the delineation of specific brain regions involved in neurocognitive disorders. Through combining exercise tasks and fMRI techniques, researchers can observe the effects of exercise on higher brain functions. However, exercise's effects on brain health via gut microbiota have been little studied. This article reviews and highlights the connections between these three interactions, which will help us to further understand the positive effects of exercise on brain health and provide new strategies and approaches for the prevention and treatment of brain diseases.
Collapse
Affiliation(s)
- Piao Kang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | |
Collapse
|
5
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
6
|
Moderate-intensity continuous training has time-specific effects on the lipid metabolism of adolescents. J Transl Int Med 2023; 11:57-69. [DOI: 10.2478/jtim-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Abstract
Background and Objectives
Moderate-intensity continuous training (MICT) is used to observe lipidomic effects in adults. However, the efects of MICT on lipid metabolism in adolescents remain unclear. Therefore, we aimed to longitudinally characterize the lipid profile in adolescents during different periods of 6-week MICT.
Methods
Fifteen adolescents undertook bicycle training at 65% of maximal oxygen consumption. Plasma samples were collected at four time points (T0, T1, T2, and T3). Targeted lipidomics was assessed by ultra-performance liquid chromatography–tandem mass spectrometry to characterize the plasma lipid profiles of the participants to identify the lipids present at differing concentrations and changes in lipid species with time.
Results
MICT afected the plasma lipid profiles of the adolescents. The concentrations of diglycerides, phosphatidylinositol, lysophosphatidic acid, lysophosphatidylcholine, and lysophosphatidylethanolamine were increased at T1, decreased at T2, and increased again at T3. Fatty acids (FAs) showed an opposite trend. Ether-linked alkylphosphatidylcholine and triglycerides were significantly increased and remained high. Sphingolipid concentrations initially decreased and then remained low. Therefore, a single bout of exercise had substantial efects on lipid metabolism, but by T3, fewer lipid species were present at significantly diferent concentrations and the magnitudes of the remaining diferences were smaller than those at earlier times. Among all the changed lipids, only DG(14:1/18:1), HexCer(d18:1/22:1) and FA(22:0) showed no significant correlations with any other 51 lipids (P < 0.05). Glycerides and phospholipids showed positive correlations with each other (P < 0.05), but FAs were significantly negatively correlated with glycerides and phospholipids while positively with other FAs (P < 0.05). Pathway enrichment analysis showed that 50% of the metabolic pathways represented were related to lipid metabolism and lipid biosynthesis.
Conclusion
MICT increases ether-linked alkylphosphatidylcholine and triglyceride concentrations. Diglyceride, phosphatidylinositol, and lysophosphatidylcholine concentrations initially rise and then decrease 6 weeks after MICT, but FA concentrations show an opposite trend. These changes might correlate with lipid metabolism or biosynthesis pathways.
Collapse
|
7
|
Wang T, Zeng Y, Ma C, Meng J, Wang J, Ren W, Wang C, Yuan X, Yang X, Yao X. Plasma Non-targeted Metabolomics Analysis of Yili Horses Raced on Tracks With Different Surface Hardness. J Equine Vet Sci 2023; 121:104197. [PMID: 36572130 DOI: 10.1016/j.jevs.2022.104197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In this study, the plasma non-targeted metabolomics of Yili horses were characterized before and after exercise on tracks that differed in surface hardness to better understand exercise-related biochemical changes. Blood samples were obtained from eight trained Yili horses before and immediately after exercise. Samples were used for metabolomic analysis by ultra-performance liquid chromatography-Q-EXACTIVE mass spectrometry. In total, 938 significantly different metabolites involving sugar, lipid, and amino acid metabolism were detected in the plasma, with significant increases in glucose, glucoheptanoic acid, lactic acid, malic acid, and methylmalonic acid and significant decreases in creatinine, D-tryptophan, carnitine, and citric acid after exercise. Among these metabolites, acetylcarnitine, tuliposide, vitamin C, and methylmalonic acid showed regular changes in concentration after exercise on tracks that differed in surface hardness, providing new insights into equine exercise physiology. The findings indicated the potential of vitamin C and methylmalonic acid as novel biomarkers of equine locomotor injury.
Collapse
Affiliation(s)
- Tongliang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjinag, China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjinag, China; Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi, Xinjinag, China; Xinjiang Agricultural University Horse Industry Research Institute, Urumqi, Xinjinag, China
| | - Chaoxin Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjinag, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjinag, China; Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi, Xinjinag, China; Xinjiang Agricultural University Horse Industry Research Institute, Urumqi, Xinjinag, China
| | - Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjinag, China; Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi, Xinjinag, China; Xinjiang Agricultural University Horse Industry Research Institute, Urumqi, Xinjinag, China
| | - Wanlu Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjinag, China
| | - Chuankun Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjinag, China
| | - Xinxin Yuan
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjinag, China
| | - Xixi Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjinag, China
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjinag, China; Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi, Xinjinag, China; Xinjiang Agricultural University Horse Industry Research Institute, Urumqi, Xinjinag, China.
| |
Collapse
|
8
|
Kistner S, Mack CI, Rist MJ, Krüger R, Egert B, Biniaminov N, Engelbert AK, Seifert S, Dörr C, Ferrario PG, Neumann R, Altmann S, Bub A. Acute effects of moderate vs. vigorous endurance exercise on urinary metabolites in healthy, young, physically active men-A multi-platform metabolomics approach. Front Physiol 2023; 14:1028643. [PMID: 36798943 PMCID: PMC9927024 DOI: 10.3389/fphys.2023.1028643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction: Endurance exercise alters whole-body as well as skeletal muscle metabolism and physiology, leading to improvements in performance and health. However, biological mechanisms underlying the body's adaptations to different endurance exercise protocols are not entirely understood. Methods: We applied a multi-platform metabolomics approach to identify urinary metabolites and associated metabolic pathways that distinguish the acute metabolic response to two endurance exercise interventions at distinct intensities. In our randomized crossover study, 16 healthy, young, and physically active men performed 30 min of continuous moderate exercise (CME) and continuous vigorous exercise (CVE). Urine was collected during three post-exercise sampling phases (U01/U02/U03: until 45/105/195 min post-exercise), providing detailed temporal information on the response of the urinary metabolome to CME and CVE. Also, fasting spot urine samples were collected pre-exercise (U00) and on the following day (U04). While untargeted two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) led to the detection of 608 spectral features, 44 metabolites were identified and quantified by targeted nuclear magnetic resonance (NMR) spectroscopy or liquid chromatography-mass spectrometry (LC-MS). Results: 104 urinary metabolites showed at least one significant difference for selected comparisons of sampling time points within or between exercise trials as well as a relevant median fold change >1.5 or <0. 6 ¯ (NMR, LC-MS) or >2.0 or <0.5 (GC×GC-MS), being classified as either exercise-responsive or intensity-dependent. Our findings indicate that CVE induced more profound alterations in the urinary metabolome than CME, especially at U01, returning to baseline within 24 h after U00. Most differences between exercise trials are likely to reflect higher energy requirements during CVE, as demonstrated by greater shifts in metabolites related to glycolysis (e.g., lactate, pyruvate), tricarboxylic acid cycle (e.g., cis-aconitate, malate), purine nucleotide breakdown (e.g., hypoxanthine), and amino acid mobilization (e.g., alanine) or degradation (e.g., 4-hydroxyphenylacetate). Discussion: To conclude, this study provided first evidence of specific urinary metabolites as potential metabolic markers of endurance exercise intensity. Future studies are needed to validate our results and to examine whether acute metabolite changes in urine might also be partly reflective of mechanisms underlying the health- or performance-enhancing effects of endurance exercise, particularly if performed at high intensities.
Collapse
Affiliation(s)
- Sina Kistner
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany,*Correspondence: Sina Kistner, ; Achim Bub,
| | - Carina I. Mack
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Manuela J. Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Ralf Krüger
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Björn Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Nathalie Biniaminov
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Ann Katrin Engelbert
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Stephanie Seifert
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Claudia Dörr
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Paola G. Ferrario
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Rainer Neumann
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefan Altmann
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany,TSG ResearchLab gGmbH, Zuzenhausen, Germany
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany,Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany,*Correspondence: Sina Kistner, ; Achim Bub,
| |
Collapse
|
9
|
Rodas G, Ferrer E, Reche X, Sanjuan-Herráez JD, McCall A, Quintás G. A targeted metabolic analysis of football players and its association to player load: Comparison between women and men profiles. Front Physiol 2022; 13:923608. [PMID: 36246100 PMCID: PMC9561103 DOI: 10.3389/fphys.2022.923608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Professional athletes undertake a variety of training programs to enhance their physical performance, technical-tactical skills, while protecting their health and well-being. Regular exercise induces widespread changes in the whole body in an extremely complex network of signaling, and evidence indicates that phenotypical sex differences influence the physiological adaptations to player load of professional athletes. Despite that there remains an underrepresentation of women in clinical studies in sports, including football. The objectives of this study were twofold: to study the association between the external load (EPTS) and urinary metabolites as a surrogate of the adaptation to training, and to assess the effect of sex on the physiological adaptations to player load in professional football players. Targeted metabolic analysis of aminoacids, and tryptophan and phenylalanine metabolites detected progressive changes in the urinary metabolome associated with the external training load in men and women’s football teams. Overrepresentation analysis and multivariate analysis of metabolic data showed significant differences of the effect of training on the metabolic profiles in the men and women teams analyzed. Collectively, our results demonstrate that the development of metabolic models of adaptation in professional football players can benefit from the separate analysis of women and men teams, providing more accurate insights into how adaptation to the external load is related to changes in the metabolic phenotypes. Furthermore, results support the use of metabolomics to understand changes in specific metabolic pathways provoked by the training process.
Collapse
Affiliation(s)
- Gil Rodas
- Medical and Performance Department, Barça Innovation Hub, Futbol Club Barcelona, Barcelona, Spain
- Sports and Exercise Medicine Unit, Hospital Clinic and Sant Joan de Deu, Barcelona, Spain
- *Correspondence: Gil Rodas,
| | - Eva Ferrer
- Medical and Performance Department, Barça Innovation Hub, Futbol Club Barcelona, Barcelona, Spain
- Sports and Exercise Medicine Unit, Hospital Clinic and Sant Joan de Deu, Barcelona, Spain
| | - Xavier Reche
- Medical and Performance Department, Barça Innovation Hub, Futbol Club Barcelona, Barcelona, Spain
| | | | - Alan McCall
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | | |
Collapse
|
10
|
Kadyrov M, Whiley L, Brown B, Erickson KI, Holmes E. Associations of the Lipidome with Ageing, Cognitive Decline and Exercise Behaviours. Metabolites 2022; 12:metabo12090822. [PMID: 36144226 PMCID: PMC9505967 DOI: 10.3390/metabo12090822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most recognisable features of ageing is a decline in brain health and cognitive dysfunction, which is associated with perturbations to regular lipid homeostasis. Although ageing is the largest risk factor for several neurodegenerative diseases such as dementia, a loss in cognitive function is commonly observed in adults over the age of 65. Despite the prevalence of normal age-related cognitive decline, there is a lack of effective methods to improve the health of the ageing brain. In light of this, exercise has shown promise for positively influencing neurocognitive health and associated lipid profiles. This review summarises age-related changes in several lipid classes that are found in the brain, including fatty acyls, glycerolipids, phospholipids, sphingolipids and sterols, and explores the consequences of age-associated pathological cognitive decline on these lipid classes. Evidence of the positive effects of exercise on the affected lipid profiles are also discussed to highlight the potential for exercise to be used therapeutically to mitigate age-related changes to lipid metabolism and prevent cognitive decline in later life.
Collapse
Affiliation(s)
- Maria Kadyrov
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Belinda Brown
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA 6009, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL 32804, USA
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Correspondence: (M.K.); (B.B.); (E.H.)
| |
Collapse
|
11
|
Belhaj MR, Lawler NG, Hawley JA, Broadhurst DI, Hoffman NJ, Reinke SN. Metabolomics reveals mouse plasma metabolite responses to acute exercise and effects of disrupting AMPK-glycogen interactions. Front Mol Biosci 2022; 9:957549. [PMID: 36090035 PMCID: PMC9449498 DOI: 10.3389/fmolb.2022.957549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction: The AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that becomes activated by exercise and binds glycogen, an important energy store required to meet exercise-induced energy demands. Disruption of AMPK-glycogen interactions in mice reduces exercise capacity and impairs whole-body metabolism. However, the mechanisms underlying these phenotypic effects at rest and following exercise are unknown. Furthermore, the plasma metabolite responses to an acute exercise challenge in mice remain largely uncharacterized. Methods: Plasma samples were collected from wild type (WT) and AMPK double knock-in (DKI) mice with disrupted AMPK-glycogen binding at rest and following 30-min submaximal treadmill running. An untargeted metabolomics approach was utilized to determine the breadth of plasma metabolite changes occurring in response to acute exercise and the effects of disrupting AMPK-glycogen binding. Results: Relative to WT mice, DKI mice had reduced maximal running speed (p < 0.0001) concomitant with increased body mass (p < 0.01) and adiposity (p < 0.001). A total of 83 plasma metabolites were identified/annotated, with 17 metabolites significantly different (p < 0.05; FDR<0.1) in exercised (↑6; ↓11) versus rested mice, including amino acids, acylcarnitines and steroid hormones. Pantothenic acid was reduced in DKI mice versus WT. Distinct plasma metabolite profiles were observed between the rest and exercise conditions and between WT and DKI mice at rest, while metabolite profiles of both genotypes converged following exercise. These differences in metabolite profiles were primarily explained by exercise-associated increases in acylcarnitines and steroid hormones as well as decreases in amino acids and derivatives following exercise. DKI plasma showed greater decreases in amino acids following exercise versus WT. Conclusion: This is the first study to map mouse plasma metabolomic changes following a bout of acute exercise in WT mice and the effects of disrupting AMPK-glycogen interactions in DKI mice. Untargeted metabolomics revealed alterations in metabolite profiles between rested and exercised mice in both genotypes, and between genotypes at rest. This study has uncovered known and previously unreported plasma metabolite responses to acute exercise in WT mice, as well as greater decreases in amino acids following exercise in DKI plasma. Reduced pantothenic acid levels may contribute to differences in fuel utilization in DKI mice.
Collapse
Affiliation(s)
- Mehdi R. Belhaj
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Nathan G. Lawler
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian National Phenome Centre and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - John A. Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - David I. Broadhurst
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Nolan J. Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
- *Correspondence: Nolan J. Hoffman, ; Stacey N. Reinke,
| | - Stacey N. Reinke
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, WA, Australia
- *Correspondence: Nolan J. Hoffman, ; Stacey N. Reinke,
| |
Collapse
|
12
|
Babu AF, Csader S, Männistö V, Tauriainen MM, Pentikäinen H, Savonen K, Klåvus A, Koistinen V, Hanhineva K, Schwab U. Effects of exercise on NAFLD using non-targeted metabolomics in adipose tissue, plasma, urine, and stool. Sci Rep 2022; 12:6485. [PMID: 35444259 PMCID: PMC9019539 DOI: 10.1038/s41598-022-10481-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/01/2022] [Indexed: 02/08/2023] Open
Abstract
The mechanisms by which exercise benefits patients with non-alcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, remain poorly understood. A non-targeted liquid chromatography-mass spectrometry (LC–MS)-based metabolomics analysis was used to identify metabolic changes associated with NAFLD in humans upon exercise intervention (without diet change) across four different sample types—adipose tissue (AT), plasma, urine, and stool. Altogether, 46 subjects with NAFLD participated in this randomized controlled intervention study. The intervention group (n = 21) performed high-intensity interval training (HIIT) for 12 weeks while the control group (n = 25) kept their sedentary lifestyle. The participants' clinical parameters and metabolic profiles were compared between baseline and endpoint. HIIT significantly decreased fasting plasma glucose concentration (p = 0.027) and waist circumference (p = 0.028); and increased maximum oxygen consumption rate and maximum achieved workload (p < 0.001). HIIT resulted in sample-type-specific metabolite changes, including accumulation of amino acids and their derivatives in AT and plasma, while decreasing in urine and stool. Moreover, many of the metabolite level changes especially in the AT were correlated with the clinical parameters monitored during the intervention. In addition, certain lipids increased in plasma and decreased in the stool. Glyco-conjugated bile acids decreased in AT and urine. The 12-week HIIT exercise intervention has beneficial ameliorating effects in NAFLD subjects on a whole-body level, even without dietary changes and weight loss. The metabolomics analysis applied to the four different sample matrices provided an overall view on several metabolic pathways that had tissue-type specific changes after HIIT intervention in subjects with NAFLD. The results highlight especially the role of AT in responding to the HIIT challenge, and suggest that altered amino acid metabolism in AT might play a critical role in e.g. improving fasting plasma glucose concentration. Trial registration ClinicalTrials.gov (NCT03995056).
Collapse
Affiliation(s)
- Ambrin Farizah Babu
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland
| | - Susanne Csader
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Milla-Maria Tauriainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Anton Klåvus
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland
| | - Ville Koistinen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland.,Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20014, Turku, Finland
| | - Kati Hanhineva
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland.,Afekta Technologies Ltd., Yliopistonranta 1L, 70211, Kuopio, Finland.,Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20014, Turku, Finland
| | - Ursula Schwab
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland. .,Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
13
|
The Importance of Lipidomic Approach for Mapping and Exploring the Molecular Networks Underlying Physical Exercise: A Systematic Review. Int J Mol Sci 2021; 22:ijms22168734. [PMID: 34445440 PMCID: PMC8395903 DOI: 10.3390/ijms22168734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Maintaining appropriate levels of physical exercise is an optimal way for keeping a good state of health. At the same time, optimal exercise performance necessitates an integrated organ system response. In this respect, physical exercise has numerous repercussions on metabolism and function of different organs and tissues by enhancing whole-body metabolic homeostasis in response to different exercise-related adaptations. Specifically, both prolonged and intensive physical exercise produce vast changes in multiple and different lipid-related metabolites. Lipidomic technologies allow these changes and adaptations to be clarified, by using a biological system approach they provide scientific understanding of the effect of physical exercise on lipid trajectories. Therefore, this systematic review aims to indicate and clarify the identifying biology of the individual response to different exercise workloads, as well as provide direction for future studies focused on the body’s metabolome exercise-related adaptations. It was performed using five databases (Medline (PubMed), Google Scholar, Embase, Web of Science, and Cochrane Library). Two author teams reviewed 105 abstracts for inclusion and at the end of the screening process 50 full texts were analyzed. Lastly, 14 research articles specifically focusing on metabolic responses to exercise in healthy subjects were included. The Oxford quality scoring system scale was used as a quality measure of the reviews. Information was extracted using the participants, intervention, comparison, outcomes (PICOS) format. Despite that fact that it is well-known that lipids are involved in different sport-related changes, it is unclear what types of lipids are involved. Therefore, we analyzed the characteristic lipid species in blood and skeletal muscle, as well as their alterations in response to chronic and acute exercise. Lipidomics analyses of the studies examined revealed medium- and long-chain fatty acids, fatty acid oxidation products, and phospholipids qualitative changes. The main cumulative evidence indicates that both chronic and acute bouts of exercise determine significant changes in lipidomic profiles, but they manifested in very different ways depending on the type of tissue examined. Therefore, this systematic review may offer the possibility to fully understand the individual lipidomics exercise-related response and could be especially important to improve athletic performance and human health.
Collapse
|
14
|
Paley EL. Towards Understanding COVID-19: Molecular Insights, Co-infections, Associated Disorders, and Aging. J Alzheimers Dis Rep 2021; 5:571-600. [PMID: 34514341 PMCID: PMC8385430 DOI: 10.3233/adr-210010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND COVID-19 can be related to any diseases caused by microbial infection(s) because 1) co-infection with COVID-19-related virus and other microorganism(s) and 2) because metabolites produced by microorganisms such as bacteria, fungi, and protozoan can be involved in necrotizing pneumonia and other necrotizing medical conditions observed in COVID-19. OBJECTIVE By way of illustration, the microbial metabolite of aromatic amino acid tryptophan, a biogenic amine tryptamine inducing neurodegeneration in cell and animal models, also induces necrosis. METHODS This report includes analysis of COVID-19 positivity by zip codes in Florida and relation of the positivity to population density, possible effect of ecological and social factors on spread of COVID-19, autopsy analysis of COVID-19 cases from around the world, serum metabolomics analysis, and evaluation of autoantigenome related to COVID-19. RESULTS In the present estimations, COVID-19 positivity percent per zip code population varied in Florida from 4.65% to 44.3% (February 2021 data). COVID-19 analysis is partially included in my book Microbial Metabolism and Disease (2021). The autoantigenome related to COVID-19 is characterized by alterations in protein biosynthesis proteins including aminoacyl-tRNA synthetases. Protein biosynthesis alteration is a feature of Alzheimer's disease. Serum metabolomics of COVID-19 positive patients show alteration in shikimate pathway metabolism, which is associated with the presence of Alzheimer's disease-associated human gut bacteria. CONCLUSION Such alterations in microbial metabolism and protein biosynthesis can lead to toxicity and neurodegeneration as described earlier in my book Protein Biosynthesis Interference in Disease (2020).
Collapse
Affiliation(s)
- Elena L. Paley
- Expert BioMed, Inc. and Nonprofit Public Charity Stop Alzheimers Corp., Miami-Dade, FL, USA
| |
Collapse
|
15
|
Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology. Metabolites 2021; 11:metabo11030151. [PMID: 33799958 PMCID: PMC8001908 DOI: 10.3390/metabo11030151] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Dynamic changes in circulating and tissue metabolites and lipids occur in response to exercise-induced cellular and whole-body energy demands to maintain metabolic homeostasis. The metabolome and lipidome in a given biological system provides a molecular snapshot of these rapid and complex metabolic perturbations. The application of metabolomics and lipidomics to map the metabolic responses to an acute bout of aerobic/endurance or resistance exercise has dramatically expanded over the past decade thanks to major analytical advancements, with most exercise-related studies to date focused on analyzing human biofluids and tissues. Experimental and analytical considerations, as well as complementary studies using animal model systems, are warranted to help overcome challenges associated with large human interindividual variability and decipher the breadth of molecular mechanisms underlying the metabolic health-promoting effects of exercise. In this review, we provide a guide for exercise researchers regarding analytical techniques and experimental workflows commonly used in metabolomics and lipidomics. Furthermore, we discuss advancements in human and mammalian exercise research utilizing metabolomic and lipidomic approaches in the last decade, as well as highlight key technical considerations and remaining knowledge gaps to continue expanding the molecular landscape of exercise biology.
Collapse
|
16
|
Kang G, Lee H, Shin M, Kim J, Lee S, Park Y. The Efficacy of Pilates on Urinary Incontinence in Korean Women: A Metabolomics Approach. Metabolites 2021; 11:metabo11020118. [PMID: 33669564 PMCID: PMC7922627 DOI: 10.3390/metabo11020118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Pilates has been known as exercise intervention that improves the function of pelvic floor muscle (PFM) associated with impacting urinary incontinence (UI). This study investigated the effect of Pilates on UI in Korean women by determining the change in functional movement of PFM (FMP) and metabolic profiles. UI group with Pilates (UIP, n = 13) participated in 8-weeks Oov Pilates program, and 8 subjects were assigned to Control and UI group with no Pilates (UINP), respectively. Before and after 8 weeks, plasma samples were collected from all participants, and ultrasonography was used to measure the functional change of PFM for calculating FMP ratio. Plasma samples were analyzed by mass spectrometry to identify the change of metabolic features. After 8-weeks intervention, FMP ratio was remarkably decreased in UIP (48.1% ↓, p < 0.001), but not in Control and UINP (p > 0.05). In metabolic features, L-Glutamine (m/z: 147.07 [M + H]+), L-Cystathionine (m/z: 240.09 [M + NH4]+), L-Arginine (m/z: 197.1 [M + Na]+), and L-1-Pyrroline-3-hydroxy-5-carboxylate (m/z: 147.07 [M + NH4]+) were significantly elevated solely in UIP (p < 0.001). Our study elucidated that Pilates can ameliorate the FMP and enhance the specific metabolic characteristics, which was potentially associated with invigorated PFM contractility to effectively control the bladder base and continence.
Collapse
Affiliation(s)
- Gyumin Kang
- School of Bio-Medical Science, Korea University, 2511 Sejong-ro, Sejong 30019, Korea;
| | - Haelim Lee
- Department of Sports Medicine, College of Health Science, CHA University, 120 Haeryong-ro, Donggyo-dong, Pocheon 11160, Korea;
| | - Malsoon Shin
- School of Global Sport Studies, Korea University, 2511 Sejong-ro, Sejong 30019, Korea;
| | - Jaekwan Kim
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Korea;
- Korea Basic Science Institute, Seoul 02841, Korea
| | - Sungki Lee
- Department of Sports Medicine, College of Health Science, CHA University, 120 Haeryong-ro, Donggyo-dong, Pocheon 11160, Korea;
- Correspondence: (S.L.); (Y.P.)
| | - Youngja Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Korea;
- Omics Research Center, 2511 Sejong-ro, Sejong 30019, Korea
- Correspondence: (S.L.); (Y.P.)
| |
Collapse
|
17
|
Tabone M, Bressa C, García-Merino JA, Moreno-Pérez D, Van EC, Castelli FA, Fenaille F, Larrosa M. The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes. Sci Rep 2021; 11:3558. [PMID: 33574413 PMCID: PMC7878499 DOI: 10.1038/s41598-021-82947-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/06/2020] [Indexed: 01/30/2023] Open
Abstract
Physical exercise can produce changes in the microbiota, conferring health benefits through mechanisms that are not fully understood. We sought to determine the changes driven by exercise on the gut microbiota and on the serum and fecal metabolome using 16S rRNA gene analysis and untargeted metabolomics. A total of 85 serum and 12 fecal metabolites and six bacterial taxa (Romboutsia, Escherichia coli TOP498, Ruminococcaceae UCG-005, Blautia, Ruminiclostridium 9 and Clostridium phoceensis) were modified following a controlled acute exercise session. Among the bacterial taxa, Ruminiclostridium 9 was the most influenced by fecal and serum metabolites, as revealed by linear multivariate regression analysis. Exercise significantly increased the fecal ammonia content. Functional analysis revealed that alanine, aspartate and glutamate metabolism and the arginine and aminoacyl-tRNA biosynthesis pathways were the most relevant modified pathways in serum, whereas the phenylalanine, tyrosine and tryptophan biosynthesis pathway was the most relevant pathway modified in feces. Correlation analysis between fecal and serum metabolites suggested an exchange of metabolites between both compartments. Thus, the performance of a single exercise bout in cross-country non-professional athletes produces significant changes in the microbiota and in the serum and fecal metabolome, which may have health implications.
Collapse
Affiliation(s)
- Mariangela Tabone
- MAS Microbiota Research Group, Faculty of Biomedical Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain
| | - Carlo Bressa
- MAS Microbiota Research Group, Faculty of Biomedical Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain
| | - Jose Angel García-Merino
- MAS Microbiota Research Group, Faculty of Biomedical Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain
| | - Diego Moreno-Pérez
- Departamento de Educación, Métodos de Investigación y Evaluación, Universidad Pontificia de Comillas, ICAI-ICADE, 28015, Cantoblanco, Madrid, Spain
| | - Emeline Chu Van
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, 91191, Gif sur Yvette, France
| | - Florence A Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, 91191, Gif sur Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, 91191, Gif sur Yvette, France.
| | - Mar Larrosa
- MAS Microbiota Research Group, Faculty of Biomedical Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain.
| |
Collapse
|
18
|
Metabolic Alterations Associated with γ-Hydroxybutyric Acid and the Potential of Metabolites as Biomarkers of Its Exposure. Metabolites 2021; 11:metabo11020101. [PMID: 33578991 PMCID: PMC7916753 DOI: 10.3390/metabo11020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
γ-Hydroxybutyric acid (GHB) is an endogenous short chain fatty acid that acts as a neurotransmitter and neuromodulator in the mammalian brain. It has often been illegally abused or misused due to its strong anesthetic effect, particularly in drug-facilitated crimes worldwide. However, proving its ingestion is not straightforward because of the difficulty in distinguishing between endogenous and exogenous GHB, as well as its rapid metabolism. Metabolomics and metabolism studies have recently been used to identify potential biomarkers of GHB exposure. This mini-review provides an overview of GHB-associated metabolic alterations and explores the potential of metabolites for application as biomarkers of GHB exposure. For this, we discuss the biosynthesis and metabolism of GHB, analytical issues of GHB in biological samples, alterations in metabolic pathways, and changes in the levels of GHB conjugates in biological samples from animal and human studies. Metabolic alterations in organic acids, amino acids, and polyamines in urine enable discrimination between GHB-ingested animals or humans and controls. The potential of GHB conjugates has been investigated in a variety of clinical settings. Despite the recent growth in the application of metabolomics and metabolism studies associated with GHB exposure, it remains challenging to distinguish between endogenous and exogenous GHB. This review highlights the significance of further metabolomics and metabolism studies for the discovery of practical peripheral biomarkers of GHB exposure.
Collapse
|
19
|
Branched-chain amino acid supplementation improves cycling performance in untrained cyclists. J Sci Med Sport 2020; 24:412-417. [PMID: 33162329 DOI: 10.1016/j.jsams.2020.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To investigate the effects of acute branched-chain amino acid (BCAA) supplementation on cycling performance and neuromuscular fatigue during a prolonged, self-paced cycling time-trial. DESIGN Randomised double-blind counterbalanced crossover. METHODS Eighteen recreationally active men (mean±SD; age: 24.7±4.8 years old; body-weight, BW: 67.1±6.1kg; height: 171.7±4.9cm) performed a cycling time-trial on an electromagnetically-braked cycle ergometer. Participants were instructed to complete the individualised total work in the shortest time possible, while ingesting either BCAAs (pre-exercise: 0.084gkg-1 BW; during exercise: 0.056gkg-1h-1) or a non-caloric placebo solution. Rating of perceived exertion, power, cadence and heart rate were recorded throughout, while maximal voluntary contraction, muscle voluntary activation level and electrically evoked torque using single and doublet stimulations were assessed at baseline, immediately post-exercise and 20-min post-exercise. RESULTS Supplementation with BCAA reduced (287.9±549.7s; p=0.04) time-to-completion and ratings of perceived exertion (p≤0.01), while concomitantly increasing heart rate (p=0.02). There were no between-group differences (BCAA vs placebo) in any of the neuromuscular parameters, but significant decreases (All p≤0.01) in maximal voluntary contraction, muscle voluntary activation level and electrically evoked torque (single and doublet stimulations) were recorded immediately following the trial, and these did not recover to pre-exercise values by the 20min recovery time-point. CONCLUSIONS Compared to a non-caloric placebo, acute BCAA supplementation significantly improved performance in cycling time-trial among recreationally active individuals without any notable changes in either central or peripheral factors. This improved performance with acute BCAA supplementation was associated with a reduced rating of perceived exertion.
Collapse
|
20
|
Quintas G, Reche X, Sanjuan-Herráez JD, Martínez H, Herrero M, Valle X, Masa M, Rodas G. Urine metabolomic analysis for monitoring internal load in professional football players. Metabolomics 2020; 16:45. [PMID: 32222832 DOI: 10.1007/s11306-020-01668-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The design of training programs for football players is not straightforward due to intra- and inter-individual variability that leads to different physiological responses under similar training loads. OBJECTIVE To study the association between the external load, defined by variables obtained using electronic performance tracking systems (EPTS), and the urinary metabolome as a surrogate of the metabolic adaptation to training. METHODS Urine metabolic and EPTS data from 80 professional football players collected in an observational longitudinal study were analyzed by ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry and assessed by partial least squares (PLS) regression. RESULTS PLS models identified steroid hormone metabolites, hypoxanthine metabolites, acetylated amino acids, intermediates in phenylalanine metabolism, tyrosine, tryptophan metabolites, and riboflavin among the most relevant variables associated with external load. Metabolic network analysis identified enriched pathways including steroid hormone biosynthesis and metabolism of tyrosine and tryptophan. The ratio of players showing a deviation from the PLS model of adaptation to exercise was higher among those who suffered a muscular lesion compared to those who did not. CONCLUSIONS There was a significant association between the external load and the urinary metabolic profile, with alteration of biochemical pathways associated with long-term adaptation to training. Future studies should focus on the validation of these findings and the development of metabolic models to identify professional football players at risk of developing muscular injuries.
Collapse
Affiliation(s)
- Guillermo Quintas
- Health & Biomedicine Unit, Leitat Technological Center, Terrassa, Spain.
| | - Xavier Reche
- Medical and Performance Department, Futbol Club Barcelona, Barcelona, Spain
| | | | | | | | - Xavier Valle
- Medical and Performance Department, Futbol Club Barcelona, Barcelona, Spain
| | - Marc Masa
- Health & Biomedicine Unit, Leitat Technological Center, Terrassa, Spain
| | - Gil Rodas
- Medical and Performance Department, Futbol Club Barcelona, Barcelona, Spain.
- Barça Innovation Hub, Barcelona, Spain.
| |
Collapse
|
21
|
Kesting S, Weeber P, Schönfelder M, Renz BW, Wackerhage H, von Luettichau I. Exercise as a Potential Intervention to Modulate Cancer Outcomes in Children and Adults? Front Oncol 2020; 10:196. [PMID: 32154183 PMCID: PMC7047207 DOI: 10.3389/fonc.2020.00196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
Exercise is recommended for the healthy population as it increases fitness and prevents diseases. Moreover, exercise is also applied as an adjunct therapy for patients with various chronic diseases including cancer. Childhood cancer is a rare, heterogeneous disease that differs from adult cancer. Improved therapeutic strategies have increased childhood cancer survival rates to above 80% in developed countries. Although this is higher than the average adult cancer survival rate of about 50%, therapy results often in substantial long-term side effects in childhood cancer survivors. Exercise in adult cancer patients has many beneficial effects and may slow down tumor progression and improve survival in some cancer types, suggesting that exercise may influence cancer cell behavior. In contrast to adults, there is not much data on general effects of exercise in children. Whilst it seems possible that exercise might delay cancer progression or improve survival in children as well, there is no reliable data yet to support this hypothesis. Depending on the type of cancer, animal studies of adult cancer types show that the exercise-induced increase of the catecholamines epinephrine and norepinephrine, have suppressive as well as promoting effects on cancer cells. The diverse effects of exercise in adult cancer patients require investigating whether these results can be achieved in children with cancer.
Collapse
Affiliation(s)
- Sabine Kesting
- Kinderklinik München Schwabing, Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine, Technical University of Munich, Munich, Germany.,Chair of Preventive Pediatrics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Peter Weeber
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Martin Schönfelder
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Bernhard W Renz
- Department of General, Visceral, and Transplantation Surgery, Hospital of the University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henning Wackerhage
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Irene von Luettichau
- Kinderklinik München Schwabing, Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
22
|
Sakaguchi CA, Nieman DC, Signini EF, Abreu RM, Catai AM. Metabolomics-Based Studies Assessing Exercise-Induced Alterations of the Human Metabolome: A Systematic Review. Metabolites 2019; 9:metabo9080164. [PMID: 31405020 PMCID: PMC6724094 DOI: 10.3390/metabo9080164] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
This systematic review provides a qualitative appraisal of 24 high-quality metabolomics-based studies published over the past decade exploring exercise-induced alterations of the human metabolome. Of these papers, 63% focused on acute metabolite changes following intense and prolonged exercise. The best studies utilized liquid chromatography mass spectrometry (LC-MS/MS) analytical platforms with large chemical standard libraries and strong, multivariate bioinformatics support. These studies reported large-fold changes in diverse lipid-related metabolites, with more than 100 increasing two-fold or greater within a few hours post-exercise. Metabolite shifts, even after strenuous exercise, typically return to near pre-exercise levels after one day of recovery. Few studies investigated metabolite changes following acute exercise bouts of shorter durations (< 60 min) and workload volumes. Plasma metabolite shifts in these types of studies are modest in comparison. More cross-sectional and exercise training studies are needed to improve scientific understanding of the human system’s response to varying, chronic exercise workloads. The findings derived from this review provide direction for future investigations focused on the body’s metabolome response to exercise.
Collapse
Affiliation(s)
- Camila A Sakaguchi
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.
| | - David C Nieman
- North Carolina Research Campus, Appalachian State University, Kannapolis, NC 28081, USA
| | - Etore F Signini
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Raphael M Abreu
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Aparecida M Catai
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| |
Collapse
|