1
|
Halvorson BD, Bao Y, Singh KK, Frisbee SJ, Hachinski V, Whitehead SN, Melling CWJ, Chantler PD, Goldman D, Frisbee JC. Thromboxane-induced cerebral microvascular rarefaction predicts depressive symptom emergence in metabolic disease. J Appl Physiol (1985) 2024; 136:122-140. [PMID: 37969083 PMCID: PMC11551004 DOI: 10.1152/japplphysiol.00410.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023] Open
Abstract
Previous studies have suggested that the loss of microvessel density in the peripheral circulation with evolving metabolic disease severity represents a significant contributor to impaired skeletal muscle oxygenation and fatigue-resistance. Based on this and our recent work, we hypothesized that cerebral microvascular rarefaction was initiated from the increased prooxidant and proinflammatory environment with metabolic disease and is predictive of the severity of the emergence of depressive symptoms in obese Zucker rats (OZRs). In male OZR, cerebrovascular rarefaction followed the emergence of elevated oxidant and inflammatory environments characterized by increased vascular production of thromboxane A2 (TxA2). The subsequent emergence of depressive symptoms in OZR was associated with the timing and severity of the rarefaction. Chronic intervention with antioxidant (TEMPOL) or anti-inflammation (pentoxifylline) therapy blunted the severity of rarefaction and depressive symptoms, although the effectiveness was limited. Blockade of TxA2 production (dazmegrel) or action (SQ-29548) resulted in a stronger therapeutic effect, suggesting that vascular production and action represent a significant contributor to rarefaction and the emergence of depressive symptoms with chronic metabolic disease (although other pathways clearly contribute as well). A de novo biosimulation of cerebrovascular oxygenation in the face of progressive rarefaction demonstrates the increased probability of generating hypoxic regions within the microvascular networks, which could contribute to impaired neuronal metabolism and the emergence of depressive symptoms. The results of the present study also implicate the potential importance of aggressive prodromic intervention in reducing the severity of chronic complications arising from metabolic disease.NEW & NOTEWORTHY With clinical studies linking vascular disease risk to depressive symptom emergence, we used obese Zucker rats, a model of chronic metabolic disease, to identify potential mechanistic links between these two negative outcomes. Depressive symptom severity correlated with the extent of cerebrovascular rarefaction, after increased vascular oxidant stress/inflammation and TxA2 production. Anti-TxA2 interventions prevasculopathy blunted rarefaction and depressive symptoms, while biosimulation indicated that cerebrovascular rarefaction increased hypoxia within capillary networks as a potential contributing mechanism.
Collapse
Affiliation(s)
- Brayden D Halvorson
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Yuki Bao
- Department of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Krishna K Singh
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Vladimir Hachinski
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - C W James Melling
- Department of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia, United States
| | - Daniel Goldman
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Burrage EN, Coblentz T, Prabhu SS, Childers R, Bryner RW, Lewis SE, DeVallance E, Kelley EE, Chantler PD. Xanthine oxidase mediates chronic stress-induced cerebrovascular dysfunction and cognitive impairment. J Cereb Blood Flow Metab 2023; 43:905-920. [PMID: 36655326 PMCID: PMC10196752 DOI: 10.1177/0271678x231152551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
Xanthine oxidase (XO) mediates vascular function. Chronic stress impairs cerebrovascular function and increases the risk of stroke and cognitive decline. Our study determined the role of XO on stress-induced cerebrovascular dysfunction and cognitive decline. We measured middle cerebral artery (MCA) function, free radical formation, and working memory in 6-month-old C57BL/6 mice who underwent 8 weeks of control conditions or unpredictable chronic mild stress (UCMS) with or without febuxostat (50 mg/L), a XO inhibitor. UCMS mice had an impaired MCA dilation to acetylcholine vs. controls (p < 0.0001), and increased total free radical formation, XOR protein levels, and hydrogen peroxide production in the liver compared to controls. UCMS increased hydrogen peroxide production in the brain and cerebrovasculature compared to controls. Working memory, using the y-maze test, was impaired (p < 0.05) in UCMS mice compared to control mice. However, blocking XO using febuxostat prevented the UCMS-induced impaired MCA response, while free radical production and hydrogen peroxide levels were similar to controls in the liver and brain of UCMS mice treated with febuxostat. Further, UCMS + Feb mice did not have a significant reduction in working memory. These data suggest that the cerebrovascular dysfunction associated with chronic stress may be driven by XO, which leads to a reduction in working memory.
Collapse
Affiliation(s)
- Emily N Burrage
- Department of Neuroscience, West
Virginia University School of Medicine, Morgantown, WV, USA
| | - Tyler Coblentz
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Saina S Prabhu
- Department of Pharmaceutical
Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ryan Childers
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Randy W Bryner
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sarah E Lewis
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Evan DeVallance
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Eric E Kelley
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Paul D Chantler
- Department of Neuroscience, West
Virginia University School of Medicine, Morgantown, WV, USA
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
3
|
Dearing C, Handa RJ, Myers B. Sex differences in autonomic responses to stress: implications for cardiometabolic physiology. Am J Physiol Endocrinol Metab 2022; 323:E281-E289. [PMID: 35793480 PMCID: PMC9448273 DOI: 10.1152/ajpendo.00058.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Chronic stress is a significant risk factor for negative health outcomes. Furthermore, imbalance of autonomic nervous system control leads to dysregulation of physiological responses to stress and contributes to the pathogenesis of cardiometabolic and psychiatric disorders. However, research on autonomic stress responses has historically focused on males, despite evidence that females are disproportionality affected by stress-related disorders. Accordingly, this mini-review focuses on the influence of biological sex on autonomic responses to stress in humans and rodent models. The reviewed literature points to sex differences in the consequences of chronic stress, including cardiovascular and metabolic disease. We also explore basic rodent studies of sex-specific autonomic responses to stress with a focus on sex hormones and hypothalamic-pituitary-adrenal axis regulation of cardiovascular and metabolic physiology. Ultimately, emerging evidence of sex differences in autonomic-endocrine integration highlights the importance of sex-specific studies to understand and treat cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Carley Dearing
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
4
|
Greaney JL, Saunders EFH, Alexander LM. Short-term salicylate treatment improves microvascular endothelium-dependent dilation in young adults with major depressive disorder. Am J Physiol Heart Circ Physiol 2022; 322:H880-H889. [PMID: 35363580 PMCID: PMC9018008 DOI: 10.1152/ajpheart.00643.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS)-mediated reductions in nitric oxide (NO)-dependent dilation are evident in adults with major depressive disorder (MDD); however, the upstream mechanisms remain unclear. Here, we hypothesized that nuclear factor-κB (NF-κB) activation-induced ROS production contributes to microvascular endothelial dysfunction in MDD. Thirteen treatment-naive adults with MDD (6 women; 19-23 yr) and 10 healthy nondepressed adults (HAs; 5 women; 20-25 yr) were tested before and after (open-label design) systemic NF-κB knockdown (nonacetylated salicylate; 3,000-4,500 mg/day × 4 days). Red cell flux (laser Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of the endothelium-dependent agonist acetylcholine (ACh), alone and in combination with NO synthase inhibition [NG-nitro-l-arginine methyl ester (l-NAME)] or ROS scavenging (apocynin). Serum salicylate concentrations following treatment were not different between groups (22.8 ± 7.4 HAs vs. 20.8 ± 4.3 mg/dL MDD; P = 0.46). When compared with HAs, the NO-dependent component of ACh-induced dilation was blunted in adults with MDD before (P = 0.023), but not after (P = 0.27), salsalate treatment. In adults with MDD, the magnitude of improvement in endothelium-dependent dilation following salsalate treatment was inversely related to the degree of functional impairment at baseline (R2 = 0.43; P = 0.025). Localized ROS scavenging improved NO-dependent dilation before (P < 0.01), but not after (P > 0.05), salsalate treatment. Salsalate did not alter systemic concentrations of pro- or anti-inflammatory cytokines (all P > 0.05). These data suggest that NF-κB activation, via increased vascular ROS production, contributes to blunted NO-dependent dilation in young adults with MDD but otherwise free of clinical disease. These data provide the first direct evidence for a mechanistic role of vascular inflammation-associated endothelial dysfunction in human depression.NEW & NOTEWORTHY Our data indicate that short-term treatment with therapeutic doses of the nuclear factor-κB (NF-κB) inhibitor salsalate improved nitric oxide (NO)-mediated endothelium-dependent dilation in adults with major depressive disorder (MDD). In adults with MDD, acute localized scavenging of reactive oxygen species (ROS) with apocynin improved NO-dependent dilation before, but not after, salsalate administration. These data suggest that activation of NF-κB, in part via stimulation of vascular ROS production, contributes to blunted NO-mediated endothelium-dependent dilation in young adults with MDD.
Collapse
Affiliation(s)
- Jody L Greaney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Erika F H Saunders
- Department of Psychiatry and Behavior Health, Penn State College of Medicine, Hershey, Pennsylvania
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
5
|
Greaney JL, Darling AM, Mogle J, Saunders EFH. Microvascular β-Adrenergic Receptor-Mediated Vasodilation Is Attenuated in Adults With Major Depressive Disorder. Hypertension 2022; 79:1091-1100. [PMID: 35232218 PMCID: PMC9010365 DOI: 10.1161/hypertensionaha.122.18985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with sympathetic overactivity and alterations in peripheral adrenergic receptor function; however, no studies have directly assessed vasoconstrictor responsiveness in adults with MDD. We tested the hypotheses that β-adrenergic receptor-mediated vasodilation would be blunted in adults with MDD compared with healthy nondepressed adults (HA) and would functionally contribute to exaggerated norepinephrine-induced vasoconstriction. METHODS In 13 HA (8 female; 24±4 years) and in 12 adults with MDD (8 female; 22±3 yrs), red blood cell flux was measured during graded intradermal microdialysis perfusion of the β-adrenergic receptor agonist isoproterenol (10-10 to 10-4 mol/L) and, separately, during the perfusion of norepinephrine (10-12 to 10-2 mol/L), alone and in combination with the β-adrenergic receptor antagonist propranolol (2 mmol/L). Nonadrenergic vasoconstriction was assessed via perfusion of angiotensin II (10-12 to 10-4 mol/L). RESULTS Isoproterenol-induced vasodilation was blunted in adults with MDD (188.9±70.1 HA versus 128.3±39.4 au MDD, P=0.025). Net norepinephrine-induced vasoconstriction was exaggerated in adults with MDD (-0.16±0.54 HA versus -0.75±0.56 au MDD, P=0.014); however, there were no group differences in angiotensin II-induced vasoconstriction. Propranolol potentiated norepinephrine-induced vasoconstriction in HA (-0.16±0.54 norepinephrine versus -1.60±1.40 au propranolol, P<0.01) but had no effect in adults with MDD (-0.75±0.56 norepinephrine versus -1.58±1.56 au propranolol, P=0.08). CONCLUSIONS β-adrenergic receptor-mediated microvascular vasodilation was blunted in adults with MDD and contributed to exaggerated adrenergic vasoconstriction. The relative loss of the vasoprotective effect of β-adrenergic receptor-mediated vasodilation may contribute to increased peripheral resistance, thereby driving the development of hypertension in adults with MDD.
Collapse
Affiliation(s)
- Jody L. Greaney
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Ashley M. Darling
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX
| | - Jacqueline Mogle
- Edna Bennett Pierce Prevention Research Center, The Pennsylvania State University, University Park, PA
| | | |
Collapse
|
6
|
Meng LB, Zhang YM, Luo Y, Gong T, Liu DP. Chronic Stress A Potential Suspect Zero of Atherosclerosis: A Systematic Review. Front Cardiovasc Med 2022; 8:738654. [PMID: 34988123 PMCID: PMC8720856 DOI: 10.3389/fcvm.2021.738654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis (AS) is a chronic vascular inflammatory disease, in which the lipid accumulation in the intima of the arteries shows yellow atheromatous appearance, which is the pathological basis of many diseases, such as coronary artery disease, peripheral artery disease and cerebrovascular disease. In recent years, it has become the main cause of death in the global aging society, which seriously endangers human health. As a result, research on AS is increasing. Lesions of atherosclerosis contain macrophages, T cells and other cells of the immune response, together with cholesterol that infiltrates from the blood. Recent studies have shown that chronic stress plays an important role in the occurrence and development of AS. From the etiology of disease, social, environmental and genetic factors jointly determine the occurrence of disease. Atherosclerotic cardio-cerebrovascular disease (ASCVD) is often caused by chronic stress (CS). If it cannot be effectively prevented, there will be biological changes in the body environment successively, and then the morphological changes of the corresponding organs. If the patient has a genetic predisposition and a combination of environmental factors triggers the pathogenesis, then chronic stress can eventually lead to AS. Therefore, this paper discusses the influence of chronic stress on AS in the aspects of inflammation, lipid metabolism, endothelial dysfunction, hemodynamics and blood pressure, plaque stability, autophagy, ferroptosis, and cholesterol efflux.
Collapse
Affiliation(s)
- Ling-Bing Meng
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan-Meng Zhang
- Department of Internal Medicine, The Third Medical Centre of Chinese People's Liberation Army (PLA) General Hospital, The Training Site for Postgraduate of Jinzhou Medical University, Beijing, China
| | - Yue Luo
- Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tao Gong
- Department of Neurology, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - De-Ping Liu
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Abstract
Major depression is a complex psychiatric disorder characterized by affective, cognitive, and physiological impairments that lead to maladaptive behavior. The high lifetime prevalence of this disabling condition, coupled with limitations of existing medications, make necessary the development of improved therapeutics. This requires animal models that allow investigation of key biological correlates of the disorder. Described in this article is the unpredictable chronic mild stress mouse model that can be used to screen for antidepressant drug candidates. Originally designed for rats, this model has been adapted for mice to capitalize on the advantages of this species as an experimental model, including inter-strain variability, which permits an exploration of the contribution of genetic background; the ability to create transgenic animals; and lower cost. Thus, because it combines genetic features and socio-environmental chronic stressful events, the unpredictable chronic mild stress model in mice is a relevant and valuable paradigm to gain insight into the etiological and developmental components of major depression, as well as to identify novel treatments for this condition. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Unpredictable Chronic Mild Stress (UCMS) Test in Mice Basic Protocol 2: Assessment Of Self-Directed Activity And Anhedonia in Mice.
Collapse
Affiliation(s)
- Mathieu Nollet
- Department of Life Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute at Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Infante T, Costa D, Napoli C. Novel Insights Regarding Nitric Oxide and Cardiovascular Diseases. Angiology 2021; 72:411-425. [PMID: 33478246 DOI: 10.1177/0003319720979243] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a powerful mediator with biological activities such as vasodilation and prevention of vascular smooth muscle cell proliferation as well as functional regulation of cardiac cells. Thus, impaired production or reduced bioavailability of NO predisposes to the onset of different cardiovascular (CV) diseases. Alterations in the redox balance associated with excitation-contraction coupling have been identified in heart failure (HF), thus contributing to contractile abnormalities and arrhythmias. For its ability to influence cell proliferation and angiogenesis, NO may be considered a therapeutic option for the management of several CV diseases. Several clinical studies and trials investigated therapeutic NO strategies for systemic hypertension, atherosclerosis, and/or prevention of in stent restenosis, coronary heart disease (CHD), pulmonary arterial hypertension (PAH), and HF, although with mixed results in long-term treatment and effective dose administered in selected groups of patients. Tadalafil, sildenafil, and cinaguat were evaluated for the treatment of PAH, whereas vericiguat was investigated in the treatment of HF patients with reduced ejection fraction. Furthermore, supplementation with hydrogen sulfide, tetrahydrobiopterin, and nitrite/nitrate has shown beneficial effects at the vascular level.
Collapse
Affiliation(s)
- Teresa Infante
- Department of Advanced Clinical and Surgical Sciences, 18994University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Dario Costa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, 18994University of Campania "L. Vanvitelli," Naples, Italy
| | - Claudio Napoli
- Department of Advanced Clinical and Surgical Sciences, 18994University of Campania "Luigi Vanvitelli," Naples, Italy.,IRCCS SDN, Naples, Italy
| |
Collapse
|
9
|
Dudek KA, Dion‐Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. Eur J Neurosci 2021; 53:183-221. [PMID: 31421056 PMCID: PMC7891571 DOI: 10.1111/ejn.14547] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a chronic and recurrent psychiatric condition characterized by depressed mood, social isolation and anhedonia. It will affect 20% of individuals with considerable economic impacts. Unfortunately, 30-50% of depressed individuals are resistant to current antidepressant treatments. MDD is twice as prevalent in women and associated symptoms are different. Depression's main environmental risk factor is chronic stress, and women report higher levels of stress in daily life. However, not every stressed individual becomes depressed, highlighting the need to identify biological determinants of stress vulnerability but also resilience. Based on a reverse translational approach, rodent models of depression were developed to study the mechanisms underlying susceptibility vs resilience. Indeed, a subpopulation of animals can display coping mechanisms and a set of biological alterations leading to stress resilience. The aetiology of MDD is multifactorial and involves several physiological systems. Exacerbation of endocrine and immune responses from both innate and adaptive systems are observed in depressed individuals and mice exhibiting depression-like behaviours. Increasing attention has been given to neurovascular health since higher prevalence of cardiovascular diseases is found in MDD patients and inflammatory conditions are associated with depression, treatment resistance and relapse. Here, we provide an overview of endocrine, immune and vascular changes associated with stress vulnerability vs. resilience in rodents and when available, in humans. Lack of treatment efficacy suggests that neuron-centric treatments do not address important causal biological factors and better understanding of stress-induced adaptations, including sex differences, could contribute to develop novel therapeutic strategies including personalized medicine approaches.
Collapse
Affiliation(s)
- Katarzyna A. Dudek
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Ellen Tuck
- Smurfit Institute of GeneticsTrinity CollegeDublinIreland
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| |
Collapse
|
10
|
Greaney JL, Koffer RE, Saunders EFH, Almeida DM, Alexander LM. Self-Reported Everyday Psychosocial Stressors Are Associated With Greater Impairments in Endothelial Function in Young Adults With Major Depressive Disorder. J Am Heart Assoc 2020; 8:e010825. [PMID: 30741602 PMCID: PMC6405663 DOI: 10.1161/jaha.118.010825] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Despite the epidemiological associations between psychological stress, depression, and increased cardiovascular disease risk, no studies have examined the relation between naturally occurring psychosocial stressors and directly measured microvascular function in adults with major depressive disorder (MDD). We tested the hypothesis that young adults with MDD exposed to everyday psychosocial stressors would exhibit more severe impairments in endothelium‐dependent dilation (EDD) compared with: (1) healthy nondepressed adults (HCs); and (2) adults with MDD without acute psychosocial stress exposure. Methods and Results Twenty HCs (22±1 years) and 23 otherwise healthy adults with MDD (20±0.3 years) participated in the study. Participants completed a psychosocial experiences survey to document their exposure to any of 6 stressors over the preceding 24 hours (eg, arguments, work stressors). Red cell flux (laser Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of acetylcholine (10−10 to 10−1mol/L). EDD was expressed as a percentage of maximum vascular conductance (flux/mm Hg). Multiple linear regression was used to determine the associations between stress, EDD, and MDD. Adults with MDD reported a greater number and severity of psychosocial stressors compared with HCs (all P<0.05). EDD was blunted in adults with MDD (HCs: 91±2 versus MDD: 74±3%; P<0.001). Exposure to any stressor was related to more severe impairments in EDD in patients with MDD (no stressor: 81±3 versus 1+ stressors: 69±5%; P=0.04) but not in HCs (P=0.48). Conclusions These data indicate that exposure to everyday psychosocial stressors is associated with greater impairments in endothelial function in patients with MDD, suggesting a potential mechanistic link between daily stress and depression in increased cardiovascular risk.
Collapse
Affiliation(s)
- Jody L Greaney
- 1 Noll Laboratory Department of Kinesiology The Pennsylvania State University State College PA
| | - Rachel E Koffer
- 2 Department of Human Development and Family Studies The Pennsylvania State University State College PA
| | | | - David M Almeida
- 2 Department of Human Development and Family Studies The Pennsylvania State University State College PA
| | - Lacy M Alexander
- 1 Noll Laboratory Department of Kinesiology The Pennsylvania State University State College PA
| |
Collapse
|
11
|
Greaney JL, Saunders EFH, Santhanam L, Alexander LM. Oxidative Stress Contributes to Microvascular Endothelial Dysfunction in Men and Women With Major Depressive Disorder. Circ Res 2019; 124:564-574. [PMID: 30582458 DOI: 10.1161/circresaha.118.313764] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE In rodent models of depression, oxidative stress-induced reductions in NO bioavailability contribute to impaired endothelium-dependent dilation. Endothelial dysfunction is evident in major depressive disorder (MDD); however, the molecular mediators remain undefined. OBJECTIVE We sought to translate preclinical findings to humans by testing the role of oxidative stress in mediating microvascular endothelial dysfunction, including potential modulatory influences of sex, in MDD. METHODS AND RESULTS Twenty-four treatment-naive, otherwise healthy, young adults with MDD (14 women; 18-23 years) and 20 healthy adults (10 women; 19-30 years) participated. Red blood cell flux (laser Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of the endothelium-dependent agonist acetylcholine, alone and in combination with an NO synthase inhibitor (L-NAME), a superoxide scavenger (Tempol), and an NADPH oxidase inhibitor (apocynin), as well as during perfusion of the endothelium-independent agonist sodium nitroprusside. Tissue oxidative stress markers (eg, nitrotyrosine abundance, superoxide production) were also quantified. Endothelium-dependent dilation was blunted in MDD and mediated by reductions in NO-dependent dilation. Endothelium-independent dilation was likewise attenuated in MDD. In MDD, there were no sex differences in either NO-mediated endothelium-dependent dilation or endothelium-independent dilation. Acute scavenging of superoxide or inhibition of NADPH oxidase improved NO-dependent dilation in MDD. Expression and activity of oxidative stress markers were increased in MDD. In a subset of adults with MDD treated with a selective serotonin reuptake inhibitor for their depressive symptoms and in remission (n=8; 7 women; 19-37 years), NO-mediated endothelium-dependent dilation was preserved, but endothelium-independent dilation was impaired, compared with healthy adults. CONCLUSIONS Oxidative stress-induced reductions in NO-dependent dilation, as well as alterations in vascular smooth muscle function, directly contribute to microvascular dysfunction in MDD. Strategies targeting vascular oxidative stress may be viable therapeutic options for improving NO-mediated endothelial function and reducing cardiovascular risk in MDD.
Collapse
Affiliation(s)
- Jody L Greaney
- From the Noll Laboratory, Department of Kinesiology, Pennsylvania State University, University Park (J.L.G., L.M.A.)
| | - Erika F H Saunders
- Department of Psychiatry, Penn State College of Medicine, Hershey, PA (E.F.H.S.)
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (L.S.)
| | - Lacy M Alexander
- From the Noll Laboratory, Department of Kinesiology, Pennsylvania State University, University Park (J.L.G., L.M.A.)
| |
Collapse
|
12
|
Residual avoidance: A new, consistent and repeatable readout of chronic stress-induced conflict anxiety reversible by antidepressant treatment. Neuropharmacology 2019; 153:98-110. [DOI: 10.1016/j.neuropharm.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
|
13
|
Branyan KW, Devallance ER, Lemaster KA, Skinner RC, Bryner RW, Olfert IM, Kelley EE, Frisbee JC, Chantler PD. Role of Chronic Stress and Exercise on Microvascular Function in Metabolic Syndrome. Med Sci Sports Exerc 2019; 50:957-966. [PMID: 29271845 DOI: 10.1249/mss.0000000000001531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The present study examined the effect of unpredictable chronic mild stress (UCMS) on peripheral microvessel function in healthy and metabolic syndrome (MetS) rodents and whether exercise training could prevent the vascular dysfunction associated with UCMS. METHODS Lean and obese (model of MetS) Zucker rats (LZR and OZR) were exposed to 8 wk of UCMS, exercise (Ex), UCMS + Ex, or control conditions. At the end of the intervention, gracilis arterioles (GA) were isolated and hung in a pressurized myobath to assess endothelium-dependent (EDD) and endothelium-independent (EID) dilation. Levels of nitric oxide (NO) and reactive oxygen species (ROS) were measured through 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate and dihydroethidium staining, respectively. RESULTS Compared with LZR controls, EDD and EID were lower (P = 0.0001) in LZR-UCMS. The OZR-Ex group had a higher EDD (P = 0.0001) and EID (P = 0.003) compared with OZR controls, whereas only a difference in EDD (P = 0.01) was noted between the LZR-control and LZR-Ex groups. Importantly, EDD and EID were higher in the LZR (P = 0.0001; P = 0.02) and OZR (P = 0.0001; P = 0.02) UCMS + Ex groups compared with UCMS alone. Lower NO bioavailability and higher ROS were noted in the LZR-UCMS group (P = 0.0001), but not OZR-UCMS, compared with controls. The Ex and UCMS-Ex groups had higher NO bioavailability (P = 0.0001) compared with the control and UCMS groups, but ROS levels remained high. CONCLUSIONS The comorbidity between UCMS and MetS does not exacerbate the effects of one another on GA EDD responses, but does lead to the development of other vasculopathy adaptations, which can be partially explained by alterations in NO and ROS production. Importantly, exercise training alleviates most of the negative effects of UCMS on GA function.
Collapse
Affiliation(s)
- Kayla W Branyan
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Evan R Devallance
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Kent A Lemaster
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - R Christopher Skinner
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Randy W Bryner
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - I Mark Olfert
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Eric E Kelley
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Jefferson C Frisbee
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| | - Paul D Chantler
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV
| |
Collapse
|
14
|
Yao BC, Meng LB, Hao ML, Zhang YM, Gong T, Guo ZG. Chronic stress: a critical risk factor for atherosclerosis. J Int Med Res 2019; 47:1429-1440. [PMID: 30799666 PMCID: PMC6460614 DOI: 10.1177/0300060519826820] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic stress refers to the non-specific systemic reaction that occurs when the body is stimulated by various internal and external negative factors over a long time. The physiological response to chronic stress exposure has long been recognized as a potent modulator in the occurrence of atherosclerosis. Furthermore, research has confirmed the correlation between atherosclerosis and cardiovascular events. Chronic stress is pervasive during negative life events and may lead to the formation of plaque. Several epidemiological studies have shown that chronic stress is an independent risk factor for the development of vascular disease and for increased morbidity and mortality in patients with pre-existing coronary artery disease. One possible mechanism for this process is that chronic stress causes endothelial injury, directly activating macrophages, promoting foam cell formation and generating the formation of atherosclerotic plaque. This mechanism involves numerous variables, including inflammation, signal pathways, lipid metabolism and endothelial function. The mechanism of chronic stress in atherosclerosis should be further investigated to provide a theoretical basis for efforts to eliminate the effect of chronic stress on the cardiocerebral vascular system.
Collapse
Affiliation(s)
- Bo-Chen Yao
- 1 Graduate College, Tianjin Medical University, Tianjin, China.,2 Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Ling-Bing Meng
- 3 Neurology Department, Beijing Hospital, National Center of Gerontology, Dong Dan, Beijing, P. R. China
| | - Meng-Lei Hao
- 4 Department of geriatric medicine, Qinghai University, Xining, Qinghai, China
| | - Yuan-Meng Zhang
- 5 Internal medicine, Jinzhou Medical University, Linghe District, Jinzhou City, Liaoning Province, China
| | - Tao Gong
- 1 Graduate College, Tianjin Medical University, Tianjin, China
| | - Zhi-Gang Guo
- 2 Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
15
|
D'Errico JN, Stapleton PA. Developmental onset of cardiovascular disease-Could the proof be in the placenta? Microcirculation 2019; 26:e12526. [PMID: 30597690 PMCID: PMC6599488 DOI: 10.1111/micc.12526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
The Barker Hypothesis states change to the maternal environment may have significant impacts on fetal development, setting the stage for adult disease to occur. The development of the maternofetal vasculature during implantation and maintenance during pregnancy is extremely precise, yet dynamic. Delays or dysfunction in the orchestration of anatomical remodeling, maintenance of blood pressure, or responsiveness to metabolic demand may have severe consequences to the developing fetus. While these intermissions may not be fatal to the developing fetus, an interruption, reduction, or an inability to meet fetal demand of blood flow during crucial stages of development may predispose young to disease later in life. Maternal inability to meet fetal demand can be attributed to improper placental development and vascular support through morphological change or physiological function will significantly limit nutrient delivery and waste exchange to the developing fetus. Therefore, we present an overview of the uteroplacental vascular network, maternal cardiovascular adaptations that occur during pregnancy, placental blood flow, and common maternal comorbidities and/or exposures that may perturb maternal homeostasis and affect fetal development. Overall, we examine uterine microvasculature pathophysiology contributing to a hostile gestational environment and fetal predisposition to disease as it relates to the Barker Hypothesis.
Collapse
Affiliation(s)
- Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey.,Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey
| |
Collapse
|
16
|
Vieira JO, Duarte JO, Costa-Ferreira W, Crestani CC. Influence of pre-existing hypertension on neuroendocrine and cardiovascular changes evoked by chronic stress in female rats. Psychoneuroendocrinology 2018; 97:111-119. [PMID: 30015006 DOI: 10.1016/j.psyneuen.2018.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/07/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
This study investigated neuroendocrine, autonomic, and cardiovascular changes evoked by daily exposure to the same type of stressor (homotypic) or different aversive stressor stimuli (heterotypic) in 60-days-old female normotensive Wistar rats and female spontaneously hypertensive rats (SHR). Both strains of rats were exposed for 10 consecutive days to either the homotypic stressor repeated restraint stress (RRS) or the heterotypic stressor chronic unpredictable stress (CUS). As expected, SHR had higher baseline blood pressure values and impaired baroreflex activity in relation to normotensive animals. Besides, SHR presented higher plasma corticosterone levels and decreased thymus weight. Both RRS and CUS increased baseline plasma corticosterone concentration and decreased body weight gain in both normotensive and SHR rats. In addition, both stress protocols caused hypertrophy of adrenal glands in normotensive rats. Regarding the cardiovascular effects, RRS increased basal heart rate in both rat strains, which was mediated by an increase in sympathetic tone to the heart. Besides, RRS increased baroreflex-mediated tachycardia in SHR animals, while CUS increased cardiac parasympathetic activity and pacemaker activity in normotensive rats. Taken together, these results indicate a stress type-specific effect, as identified by a vulnerability of both strains to the deleterious cardiovascular effects evoked by the homotypic stressor and a resilience to the impact of the heterotypic stressor. Vulnerability of hypertensive rats was evidenced by the absence of CUS-evoked adaptive cardiovascular responses and an increase of baroreflex tachycardia in SHR animals subjected to RRS. The somatic and HPA axis changes were overall independent of the chronic stress regimen and pre-existing hypertension.
Collapse
Affiliation(s)
- Jonas O Vieira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP - Univ Estadual Paulista Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP - Univ Estadual Paulista Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP - Univ Estadual Paulista Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil; Joint UFSCar-UNESP - Univ Estadual Paulista Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
17
|
Carnevali L, Statello R, Sgoifo A. The Utility of Rodent Models of Stress for Disentangling Individual Vulnerability to Depression and Cardiovascular Comorbidity. Curr Cardiol Rep 2018; 20:111. [DOI: 10.1007/s11886-018-1064-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Brooks S, Branyan KW, DeVallance E, Skinner R, Lemaster K, Sheets JW, Pitzer CR, Asano S, Bryner RW, Olfert IM, Frisbee JC, Chantler PD. Psychological stress-induced cerebrovascular dysfunction: the role of metabolic syndrome and exercise. Exp Physiol 2018; 103:761-776. [PMID: 29436736 PMCID: PMC5927836 DOI: 10.1113/ep086892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/09/2018] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure. ABSTRACT Chronic unresolvable stress leads to the development of depression and cardiovascular disease. There is a high prevalence of depression with the metabolic syndrome (MetS), but to what extent the MetS concurrent with psychological stress affects cerebrovascular function is unknown. We investigated the differential effect of MetS on cerebrovascular structure/function in rats (16-17 weeks old) following 8 weeks of unpredictable chronic mild stress (UCMS) and whether exercise training could limit any cerebrovascular dysfunction. In healthy lean Zucker rats (LZR), UCMS decreased (28%, P < 0.05) ex vivo middle cerebral artery (MCA) endothelium-dependent dilatation (EDD), but changes in MCA remodelling and stiffness were not evident, though cerebral microvessel density (MVD) decreased (30%, P < 0.05). The presence of UCMS and MetS (obese Zucker rats; OZR) decreased MCA EDD (35%, P < 0.05) and dilatation to sodium nitroprusside (20%, P < 0.05), while MCA stiffness increased and cerebral MVD decreased (31%, P < 0.05), which were linked to reduced nitric oxide and increased oxidative levels. Aerobic exercise prevented UCMS impairments in MCA function and MVD in LZR, and partly restored MCA function, stiffness and MVD in OZR. Our data suggest that the benefits of exercise with UCMS were due to a reduction in oxidative stress and increased production of nitric oxide in the cerebral vessels. In conclusion, UCMS significantly impaired MCA structure and function, but the effects of UCMS were more substantial in OZR vs. LZR. Importantly, aerobic exercise when combined with UCMS prevented the MCA dysfunction through subtle shifts in nitric oxide and oxidative stress in the cerebral microvasculature.
Collapse
Affiliation(s)
- Steven Brooks
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Kayla W Branyan
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Evan DeVallance
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Roy Skinner
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Kent Lemaster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - J Whitney Sheets
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Christopher R Pitzer
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Shinichi Asano
- Department of Health and Human Performance, Fairmont State University, WV, USA
| | - Randall W Bryner
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
- Center for Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV, USA
- Center for Translational Stroke Research, West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
19
|
Frisbee SJ, Singh SS, Jackson DN, Lemaster KA, Milde SA, Shoemaker JK, Frisbee JC. Beneficial Pleiotropic Antidepressive Effects of Cardiovascular Disease Risk Factor Interventions in the Metabolic Syndrome. J Am Heart Assoc 2018; 7:e008185. [PMID: 29581223 PMCID: PMC5907597 DOI: 10.1161/jaha.117.008185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/01/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although the increased prevalence and severity of clinical depression and elevated cardiovascular disease risk represent 2 vexing public health issues, the growing awareness of their combined presentation compounds the challenge. The obese Zucker rat, a model of the metabolic syndrome, spontaneously develops significant depressive symptoms in parallel with the progression of the metabolic syndrome and, thus, represents a compelling model for study. The primary objective was to assess the impact on both cardiovascular outcomes, specifically vascular structure and function, and depressive symptoms in obese Zucker rats after aggressive treatment for cardiovascular disease risk factors with long-term exercise or targeted pharmacological interventions. METHODS AND RESULTS We chronically treated obese Zucker rats with clinically relevant interventions against cardiovascular disease risk factors to determine impacts on vascular outcomes and depressive symptom severity. While most of the interventions (chronic exercise, anti-hypertensive, the interventions (long-term exercise, antihypertensive, antidyslipidemia, and antidiabetic) were differentially effective at improving vascular outcomes, only those that also resulted in a significant improvement to oxidant stress, inflammation, arachidonic acid metabolism (prostacyclin versus thromboxane A2), and their associated sequelae were effective at also blunting depressive symptom severity. Using multivariable analyses, discrimination between the effectiveness of treatment groups to maintain behavioral outcomes appeared to be dependent on breaking the cycle of inflammation and oxidant stress, with the associated outcomes of improving endothelial metabolism and both cerebral and peripheral vascular structure and function. CONCLUSIONS This initial study provides a compelling framework from which to further interrogate the links between cardiovascular disease risk factors and depressive symptoms and suggests mechanistic links and potentially effective avenues for intervention.
Collapse
Affiliation(s)
- Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sarah S Singh
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kent A Lemaster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Samantha A Milde
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Tao LY, Huang MY, Saroj-Thapa, Wang JN, Wu SZ, He F, Huang KY, Xue YJ, Lingwei-Jin, Liao LM, Tang JF, Ji KT. Effects of macrophage migration inhibitory factor on cardiac reperfusion injury in mice with depression induced by constant-darkness. J Affect Disord 2018; 229:403-409. [PMID: 29331700 DOI: 10.1016/j.jad.2017.12.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022]
Abstract
RATIONALE Depression is associated with coronary artery disease and increases adverse outcomes and mortality in patients with acute myocardial infarction, but the underlying pathophysiological mechanisms remain unclear. OBJECTIVE To evaluate the effect of macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury in mice with constant darkness-induced depression. METHODS AND RESULTS Twenty C57BL/6 mice (8 weeks old, male) were randomly divided into 2 groups: one group was housed in a 12h light/dark cycle environment (LD) and the other in a constant darkness environment (DD). After 3 weeks, constant darkness-exposed (DD) mice displayed depression-like behavior as indicated by increased immobility in the forced swim test (FST) and lower sucrose preference rate. Western blotting revealed cardiac MIF expression was significantly lower in the DD mice than that in the LD mice. Next, 84 mice were randomly divided into 4 groups: LD sham group, LD I/R group, DD sham group, and DD I/R group. Following ischemia and reperfusion, mice in the DD I/R group had a larger infarct area and lower heart function index than mice in the LD I/R group (P < 0.05 for both). The cardiac pAMPK and pACC expression levels of the DD I/R group were also lower in the DD I/R group (P < 0.05). CONCLUSION DD-induced depression might cause decreased expression of MIF in the heart, resulting in downregulation of MIF-AMPK signaling and a subsequent adverse outcome after a cardiac I/R injury.
Collapse
Affiliation(s)
- Lu-Yuan Tao
- Department of Cardiology, Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ming-Yuan Huang
- Department of Cardiology, Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Saroj-Thapa
- Department of Cardiology, Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiao-Ni Wang
- Department of Cardiology, Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shao-Ze Wu
- Department of Cardiology, Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Fei He
- Department of Cardiology, Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kai-Yu Huang
- Department of Cardiology, Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yang-Jing Xue
- Department of Cardiology, Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lingwei-Jin
- Department of Nephrology, Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lian-Ming Liao
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350122, China
| | - Ji-Fei Tang
- Department of Cardiology, Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Kang-Ting Ji
- Department of Cardiology, Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
21
|
Brooks SD, Hileman SM, Chantler PD, Milde SA, Lemaster KA, Frisbee SJ, Shoemaker JK, Jackson DN, Frisbee JC. Protection from chronic stress- and depressive symptom-induced vascular endothelial dysfunction in female rats is abolished by preexisting metabolic disease. Am J Physiol Heart Circ Physiol 2018; 314:H1085-H1097. [PMID: 29451819 DOI: 10.1152/ajpheart.00648.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While it is known that chronic stress and clinical depression are powerful predictors of poor cardiovascular outcomes, recent clinical evidence has identified correlations between the development of metabolic disease and depressive symptoms, creating a combined condition of severely elevated cardiovascular disease risk. In this study, we used the obese Zucker rat (OZRs) and the unpredictable chronic mild stress (UCMS) model to determine the impact of preexisting metabolic disease on the relationship between chronic stress/depressive symptoms and vascular function. Additionally, we determined the impact of metabolic syndrome on sex-based protection from chronic stress/depressive effects on vascular function in female lean Zucker rats (LZRs). In general, vasodilator reactivity was attenuated under control conditions in OZRs compared with LZRs. Although still impaired, conduit arterial and resistance arteriolar dilator reactivity under control conditions in female OZRs was superior to that in male or ovariectomized (OVX) female OZRs, largely because of better maintenance of vascular nitric oxide and prostacyclin levels. However, imposition of metabolic syndrome in combination with UCMS in OZRs further impaired dilator reactivity in both vessel subtypes to a similarly severe extent and abolished any protective effect in female rats compared with male or OVX female rats. The loss of vascular protection in female OZRs with UCMS was reflected in vasodilator metabolite levels, which closely matched those in male and OVX female OZRs subjected to UCMS. These results suggest that presentation of metabolic disease in combination with depressive symptoms can overwhelm the vasoprotection identified in female rats and, thereby, may reflect a severe impairment to normal endothelial function. NEW & NOTEWORTHY This study addresses the protection from chronic stress- and depression-induced vascular dysfunction identified in female compared with male or ovariectomized female rats. We determined the impact of preexisting metabolic disease, a frequent comorbidity of clinical depression in humans, on that vascular protection. With preexisting metabolic syndrome, female rats lost all protection from chronic stress/depressive symptoms and became phenotypically similar to male and ovariectomized female rats, with comparably poor vasoactive dilator metabolite profiles.
Collapse
Affiliation(s)
- Steven D Brooks
- Department of Physiology and Pharmacology, West Virginia University , Morgantown, West Virginia
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University , Morgantown, West Virginia
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University , Morgantown, West Virginia
| | - Samantha A Milde
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Kent A Lemaster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - J Kevin Shoemaker
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
22
|
Brooks SD, Hileman SM, Chantler PD, Milde SA, Lemaster KA, Frisbee SJ, Shoemaker JK, Jackson DN, Frisbee JC. Protection from vascular dysfunction in female rats with chronic stress and depressive symptoms. Am J Physiol Heart Circ Physiol 2018; 314:H1070-H1084. [PMID: 29451821 DOI: 10.1152/ajpheart.00647.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The increasing prevalence and severity of clinical depression are strongly correlated with vascular disease risk, creating a comorbid condition with poor outcomes but demonstrating a sexual disparity whereby female subjects are at lower risk than male subjects for subsequent cardiovascular events. To determine the potential mechanisms responsible for this protection against stress/depression-induced vasculopathy in female subjects, we exposed male, intact female, and ovariectomized (OVX) female lean Zucker rats to the unpredictable chronic mild stress (UCMS) model for 8 wk and determined depressive symptom severity, vascular reactivity in ex vivo aortic rings and middle cerebral arteries (MCA), and the profile of major metabolites regulating vascular tone. While all groups exhibited severe depressive behaviors from UCMS, severity was significantly greater in female rats than male or OVX female rats. In all groups, endothelium-dependent dilation was depressed in aortic rings and MCAs, although myogenic activation and vascular (MCA) stiffness were not impacted. Higher-resolution results from pharmacological and biochemical assays suggested that vasoactive metabolite profiles were better maintained in female rats with normal gonadal sex steroids than male or OVX female rats, despite increased depressive symptom severity (i.e., higher nitric oxide and prostacyclin and lower H2O2 and thromboxane A2 levels). These results suggest that female rats exhibit more severe depressive behaviors with UCMS but are partially protected from the vasculopathy that afflicts male rats and female rats lacking normal sex hormone profiles. Determining how female sex hormones afford partial vascular protection from chronic stress and depression is a necessary step for addressing the burden of these conditions on cardiovascular health. NEW & NOTEWORTHY This study used a translationally relevant model for chronic stress and elevated depressive symptoms to determine how these factors impact conduit and resistance arteriolar function in otherwise healthy rats. While chronic stress leads to an impaired vascular reactivity associated with elevated oxidant stress, inflammation, and reduced metabolite levels, we demonstrated partial protection from vascular dysfunction in female rats with normal sex hormone profiles compared with male or ovariectomized female rats.
Collapse
Affiliation(s)
- Steven D Brooks
- Department of Physiology and Pharmacology, West Virginia University , Morgantown, West Virginia
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University , Morgantown, West Virginia
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University , Morgantown, West Virginia
| | - Samantha A Milde
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Kent A Lemaster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Stephanie J Frisbee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - J Kevin Shoemaker
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Faculty of Health Sciences, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
23
|
Vieira JO, Duarte JO, Costa-Ferreira W, Morais-Silva G, Marin MT, Crestani CC. Sex differences in cardiovascular, neuroendocrine and behavioral changes evoked by chronic stressors in rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:426-437. [PMID: 28823849 DOI: 10.1016/j.pnpbp.2017.08.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022]
Abstract
This study investigated the physiological, somatic and behavioral changes evoked by daily exposure to the same type of stressor (homotypic) or different aversive stressor stimuli (heterotypic) in male and female rats. For this, adult Wistar rats were subjected to a 10days regimen of repeated restraint stress (RRS, homotypic stressor) or chronic variable stress (CVS, heterotypic stressor). Effects evoked by CVS included: (i) adrenal hypertrophy and decreased body weight gain in male animals, (ii) a sympathetically-mediated increase in basal heart rate in males, and (iii) a rise in plasma corticosterone concentration and anxiogenic effects in female animals. The homotypic stressor RRS also induced an increase in plasma corticosterone and anxiogenic effects in females, decreased body weight gain in males and evoked a sympathetically-mediated increase in heart rate in both sexes. Changes in cardiovascular function and autonomic activity evoked by both stressors were followed by impairment of baroreflex activity in males, but not female animals. Both chronic stressors evoked changes in blood pressure responsiveness to vasoconstrictor and vasodilator agents in both sexes. Taken together, these results indicate that regardless of chronic stress regimen males are more vulnerable to somatic effects of chronic stressors, while females appear to be more susceptible to neuroendocrine and behavioral changes. Present findings also indicate that females are selectively vulnerable to cardiovascular and autonomic changes evoked by homotypic stressors. Nevertheless, homotypic and heterotypic stressors similarly affect cardiovascular function and autonomic activity in males.
Collapse
Affiliation(s)
- Jonas O Vieira
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Gessynger Morais-Silva
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Marcelo T Marin
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
24
|
Dadomo H, Gioiosa L, Cigalotti J, Ceresini G, Parmigiani S, Palanza P. What is stressful for females? Differential effects of unpredictable environmental or social stress in CD1 female mice. Horm Behav 2018; 98:22-32. [PMID: 29187314 DOI: 10.1016/j.yhbeh.2017.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Stressful life events are a major factor in the etiology of several diseases, such as cardiovascular, inflammatory and psychiatric disorders (i.e., depression and anxiety), with the two sexes greatly differing in vulnerability. In humans and other animals, physiological and behavioral responses to stress are strongly dependent on gender, and conditions that are stressful for males are not necessarily stressful for females. Hence the need of an animal model of social chronic stress specifically designed for females. In the present study we aimed to compare the effects of two different chronic stress procedures in female mice, by investigating the impact of 4weeks of nonsocial unpredictable, physical stress by the Chronic Mild Stress paradigm (CMS; Exp.1) or of Social Instability Stress (SIS; Exp.2) on physiological, endocrine and behavioral parameters in adult female mice. CMS had a pronounced effect on females' response to novelty (i.e., either novel environment or novel social stimulus), body weight growth and hormonal profile. Conversely, 4weeks of social instability did not alter females' response to novelty nor hormonal levels but induced anhedonia. Our findings thus showed that female mice were more sensitive to nonsocial stress due to unpredictable physical environment than to social instability stressors. Neither of these stress paradigms, however, induced a consistent behavioral and physiological stress response in female mice comparable to that induced by chronic stress procedures in male mice, thus confirming the difficulties of developing a robust and validated model of chronic psychosocial stress in female mice.
Collapse
Affiliation(s)
- Harold Dadomo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Gioiosa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Jenny Cigalotti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Graziano Ceresini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Parmigiani
- Department of Chemistry, Life Sciences and Environmental Sustainaibility, University of Parma, Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
25
|
Asano S, O'Connell GC, Lemaster KC, DeVallance ER, Branyan KW, Simpkins JW, Frisbee JC, Barr TL, Chantler PD. Circulating leucocytes perpetuate stroke-induced aortic dysfunction. Exp Physiol 2017; 102:1321-1331. [PMID: 28737253 DOI: 10.1113/ep086510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does a stroke event influence aortic endothelial function; and what is the role of peripheral circulating leucocytes in stroke on the vascular reactivity of the aorta? What is the main finding and its importance? In vitro co-culture experiments demonstrated that aortic endothelium-dependent relaxation was impaired when rat aortic rings were co-cultured with leucocytes stimulated with serum from stroke patients. Impaired vascular reactivity was not observed in aortic rings without leucocytes stimulated with serum from stroke patients or age-matched control patients with or without leucocytes. These data suggest that leucocyte-dependent altered aortic endothelium-dependent relaxation with stroke and the systemic consequences of stroke on vascular inflammation may occur in the aorta. Post-stroke inflammation has been linked to poor stroke outcomes. The vascular endothelium senses and responds to circulating factors, in particular inflammatory cytokines. Although stroke-associated local cerebrovascular dysfunction is well reported, the effects of a stroke on conduit artery function are not fully understood. We tested the hypothesis that serum from stroke patients triggers leucocyte-dependent aortic endothelial dysfunction that is associated with elevated concentrations of cytokines. Total leucocytes were isolated from healthy individuals, and the cells were incubated in serum from control subjects or stroke patients for 6 h. The quantity of cytokines in media was determined using an immunoassay. Vascular reactivity was determined by the rat aortic rings that were co-cultured with or without leucocytes and stimulated with serum samples from control subjects or stroke patients. Endothelium-dependent dilatation was significantly impaired in aortic rings co-cultured with leucocytes plus serum from stroke patients (50 ± 30 versus 85 ± 13%, P < 0.05) versus serum from control subjects. In contrast, no difference was observed in aortic function stimulated with serum from control subjects or stroke patients without total leucocytes. Likewise, total leucocyte-derived cytokine concentrations were significantly increased in a time-dependent manner on stimulation with serum from stroke patients (P < 0.05). These observations support the concept that the increased response of leucocytes drives the development of stroke-associated vascular endothelial dysfunction. As such, pharmacologically targeting the source of inflammatory cytokines might alleviate stroke-associated peripheral vascular dysfunction.
Collapse
Affiliation(s)
- Shinichi Asano
- Division of Exercise Physiology, West Virginia University, Morgantown, WV, USA.,Health and Human Performance, Fairmont State University, Fairmont, WV, USA
| | | | - Kent C Lemaster
- Department of Medical Biophysics, Western University, Ontario, Canada
| | - Evan R DeVallance
- Division of Exercise Physiology, West Virginia University, Morgantown, WV, USA
| | - Kayla W Branyan
- Division of Exercise Physiology, West Virginia University, Morgantown, WV, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA.,Center for Basic and Translational Stroke Research, School of Medicine, West Virginia University, Morgantown, WV, USA
| | | | - Taura L Barr
- Valtari Bio Incorporated, Morgantown, WV, USA.,Center for Basic and Translational Stroke Research, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University, Morgantown, WV, USA.,Center for Basic and Translational Stroke Research, School of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
26
|
Crestani CC. Emotional Stress and Cardiovascular Complications in Animal Models: A Review of the Influence of Stress Type. Front Physiol 2016; 7:251. [PMID: 27445843 PMCID: PMC4919347 DOI: 10.3389/fphys.2016.00251] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/09/2016] [Indexed: 01/22/2023] Open
Abstract
Emotional stress has been recognized as a modifiable risk factor for cardiovascular diseases. The impact of stress on physiological and psychological processes is determined by characteristics of the stress stimulus. For example, distinct responses are induced by acute vs. chronic aversive stimuli. Additionally, the magnitude of stress responses has been reported to be inversely related to the degree of predictability of the aversive stimulus. Therefore, the purpose of the present review was to discuss experimental research in animal models describing the influence of stressor stimulus characteristics, such as chronicity and predictability, in cardiovascular dysfunctions induced by emotional stress. Regarding chronicity, the importance of cardiovascular and autonomic adjustments during acute stress sessions and cardiovascular consequences of frequent stress response activation during repeated exposure to aversive threats (i.e., chronic stress) is discussed. Evidence of the cardiovascular and autonomic changes induced by chronic stressors involving daily exposure to the same stressor (predictable) vs. different stressors (unpredictable) is reviewed and discussed in terms of the impact of predictability in cardiovascular dysfunctions induced by stress.
Collapse
Affiliation(s)
- Carlos C Crestani
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista Araraquara, Brasil
| |
Collapse
|
27
|
Frisbee JC, Brooks SD, Stanley SC, d'Audiffret AC. An Unpredictable Chronic Mild Stress Protocol for Instigating Depressive Symptoms, Behavioral Changes and Negative Health Outcomes in Rodents. J Vis Exp 2015. [PMID: 26650668 DOI: 10.3791/53109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic, unresolved stress is a major risk factor for the development of clinical depression. While many preclinical models of stress-induced depression have been reported, the unpredictable chronic mild stress (UCMS) protocol is an established translationally-relevant model for inducing behavioral symptoms commonly associated with clinical depression, such as anhedonia, altered grooming behavior, and learned helplessness in rodents. The UCMS protocol also induces physiological (e.g., hypercortisolemia, hypertension) and neurological (e.g., anhedonia, learned helplessness) changes that are clinically associated with depression. Importantly, UCMS-induced depressive symptoms can be ameliorated through chronic, but not acute, treatment with common SSRIs. As such, the UCMS protocol offers many advantages over acute stress protocols or protocols that utilize more extreme stressors. Our protocol involves randomized, daily exposures to 7 distinct stressors: damp bedding, removal of bedding, cage tilt, alteration of light/dark cycles, social stresses, shallow water bath, and predator sounds/smells. By subjecting rodents 3-4 hr daily to these mild stressors for 8 weeks, we demonstrate both significant behavioral changes and poor health outcomes to the cardiovascular system. This approach allows for in-depth interrogation of the neurological, behavioral, and physiological alterations associated with chronic stress-induced depression, as well as for testing of new potential therapeutic agents or intervention strategies.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center;
| | - Steven D Brooks
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center
| | - Shyla C Stanley
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center
| | - Alexandre C d'Audiffret
- Division of Vascular and Endovascular Surgery, Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center
| |
Collapse
|
28
|
Fiedorowicz JG, Ellingrod VL, Kaplan MJ, Sen S. The development of depressive symptoms during medical internship stress predicts worsening vascular function. J Psychosom Res 2015; 79:243-5. [PMID: 26115588 PMCID: PMC4522220 DOI: 10.1016/j.jpsychores.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We sought to prospectively determine whether the onset of internship stress and any subsequent depression alters physiological markers of early vascular disease METHODS We explored potential mechanisms linking stress and depression to vascular disease in a prospective cohort of 37 participants exposed to medical internship stress, an established precipitant of depressive symptomatology. RESULTS Change in depressive symptom score from baseline over one year of internship stress was inversely correlated with change in the reactive hyperemia index (RHI), a measure of peripheral endothelial function (r=0.41, p=0.01). The change in depressive symptoms in the first six months of internship was similarly related to change in RHI over one year (r=0.38, p=0.02). While the development of depressive symptoms did not significantly impact changes in endothelial progenitor cells (EPCs), EPCs did significantly decrease with the year of internship stress (11.9 to 3.4cells/ml blood; p=0.01). CONCLUSION Endothelial function may be a critical link between stress, depression, and cardiovascular disease and a feasible surrogate outcome for prospective studies.
Collapse
Affiliation(s)
- Jess G. Fiedorowicz
- Department of Psychiatry, The University of Iowa, Iowa City, IA,Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA,Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA
| | - Vicki L. Ellingrod
- College of Pharmacy, University of Michigan, Ann Arbor, MI,Department of Psychiatry, University of Michigan, Ann Arbor, MI
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Srijan Sen
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States; Molecular and Behavioral Neuroscience Institute, Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
29
|
Zanier-Gomes PH, de Abreu Silva TE, Zanetti GC, Benati ÉR, Pinheiro NM, Murta BMT, Crema VO. Depressive behavior induced by social isolation of predisposed female rats. Physiol Behav 2015. [PMID: 26209499 DOI: 10.1016/j.physbeh.2015.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depression is a mood disorder that is more prevalent in women and has been closely associated with chronic stress. Many models of depression have been suggested that consider different forms of stress. In fact, stress is present in the life of every human being, but only a few develop depression. Accordingly, it seems wrong to consider all stressed animals to be depressed, emphasizing the importance of predisposition for this mood disorder. Based on this finding, we evaluated a predisposition to depressive behavior of female rats on the forced swim test (FST), and the more immobile the animal was during the FST, the more predisposed to depression it was considered to be. Then, animals were subjected to the stress of social isolation for 21 days and were re-evaluated by the FST. The Predisposed/Isolated rats presented higher immobility times. Once all the rats had prior experience in the FST, we calculated an Index of Increase by Isolation, confirming the previous results. Based on this result, we considered the Predisposed/Isolated group as presenting depressive behavior ('Depressed') and the Nonpredisposed/Nonisolated group as the control group ('Nondepressed'). The animals were distributed into 4 new groups: Nondepressed/Vehicle, Nondepressed/Amitriptyline, Depressed/Vehicle, Depressed/Amitriptyline. After 21 days of treatment, only the Depressed/Vehicle group differed from the other 3 groups, demonstrating the efficacy of amitriptyline in treating the depressive behavior of the Depressed animals, validating the model. This study shows that conducting an FST prior to any manipulation can predict predisposition to depressive behavior in female rats and that the social isolation of predisposed animals for 21 days is effective in inducing depressive behavior. This behavior can be considered real depressive behavior because it takes into account predisposition, chronic mild stress, and the prevalent gender.
Collapse
Affiliation(s)
| | | | | | | | - Nanci Mendes Pinheiro
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | | | - Virgínia Oliveira Crema
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
30
|
Golbidi S, Frisbee JC, Laher I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am J Physiol Heart Circ Physiol 2015; 308:H1476-98. [DOI: 10.1152/ajpheart.00859.2014] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/03/2015] [Indexed: 01/01/2023]
Abstract
Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| | - Jefferson C. Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| |
Collapse
|
31
|
DiVincenzo L, Reber M, Perera V, Chilian WM. Connecting the dots—Establishing causality between chronic stress, depression, and cardiovascular disease. J Appl Physiol (1985) 2014; 117:957-8. [DOI: 10.1152/japplphysiol.00856.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lola DiVincenzo
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Megan Reber
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Vidushani Perera
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - William M. Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|