1
|
Gabbett TJ, Oetter E. From Tissue to System: What Constitutes an Appropriate Response to Loading? Sports Med 2024:10.1007/s40279-024-02126-w. [PMID: 39527327 DOI: 10.1007/s40279-024-02126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Optimal loading involves the prescription of an exercise stimulus that promotes positive tissue adaptation, restoring function in patients undergoing rehabilitation and improving performance in healthy athletes. Implicit in optimal loading is the need to monitor the response to load, but what constitutes a normal response to loading? And does it differ among tissues (e.g., muscle, tendon, bone, cartilage) and systems? In this paper, we discuss the "normal" tissue response to loading schema and demonstrate the complex interaction among training intensity, volume, and frequency, as well as the impact of these training variables on the recovery of specific tissues and systems. Although the response to training stress follows a predictable time course, the recovery of individual tissues to training load (defined herein as the readiness to receive a similar training stimulus without deleterious local and/or systemic effects) varies markedly, with as little as 30 min (e.g., cartilage reformation after walking and running) or 72 h or longer (e.g., eccentric exercise-induced muscle damage) required between loading sessions of similar magnitude. Hyperhydrated and reactive tendons that have undergone high stretch-shorten cycle activity benefit from a 48-h refractory period before receiving a similar training dose. In contrast, bone cells desensitize quickly to repetitive loading, with almost all mechanosensitivity lost after as few as 20 loading cycles. To optimize loading, an additional dose (≤ 60 loading cycles) of bone-centric exercise (e.g., plyometrics) can be performed following a 4-8 h refractory period. Low-stress (i.e., predominantly aerobic) activity can be repeated following a short (≤ 24 h) refractory period, while greater recovery is needed (≥ 72 h) between repeated doses of high stress (i.e., predominantly anaerobic) activity. The response of specific tissues and systems to training load is complex; at any time, it is possible that practitioners may be optimally loading one tissue or system while suboptimally loading another. The consideration of recovery timeframes of different tissues and systems allows practitioners to determine the "normal" response to load. Importantly, we encourage practitioners to interpret training within an athlete monitoring framework that considers external and internal load, athlete-reported responses, and objective markers, to contextualize load-response data.
Collapse
Affiliation(s)
- Tim J Gabbett
- Gabbett Performance Solutions, Brisbane, QLD, 4011, Australia.
| | | |
Collapse
|
2
|
Chang H, Zhang J, Yan J, Yang X, Chen B, Zhang J. Effects of Blood Flow Restriction Training on Muscle Strength and Hypertrophy in Untrained Males: A Systematic Review and Meta-Analysis Based on a Comparison with High-Load Resistance Training. Life (Basel) 2024; 14:1442. [PMID: 39598240 PMCID: PMC11595635 DOI: 10.3390/life14111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
This meta-analysis examined the efficacy of low-load resistance training with blood flow restriction (LL-BFR) versus high-load resistance training (HL-RT) on muscle strength and hypertrophy, exploring factors affecting outcomes. We searched Embase, CNKI, Wanfang, PubMed, Ovid Medline, ProQuest, Cochrane Library, Embase, and Scopus from inception to July 2024. After assessing the risk of bias using the Cochrane tool, a meta-analysis was conducted to calculate the overall effect size. Subgroup analyses were performed to explore the impact of different modulating factors on training effects. LL-BFR was found to be inferior to HL-RT with regard to muscle strength gains (SMD = -0.33, 95% CI: -0.49 to -0.18, p < 0.0001). However, subgroup analyses revealed that LL-BFR achieved muscle strength gains comparable to HL-RT under individualized pressure (SMD = -0.07, p = 0.56), intermittent cuff inflation (SMD = -0.07, p = 0.65), and a higher number of training sessions (SMD = -0.12, p = 0.30). No significant difference in muscle mass gains was observed between LL-BFR and HL-RT (SMD = 0.01, p = 0.94), and this conclusion remained consistent after controlling for modulating variables. HL-RT is superior to LL-BFR in enhancing muscle strength gains. Nevertheless, under appropriate conditions, including individualized pressure prescription, intermittent cuff inflation, and a higher number of training sessions, LL-BFR can achieve muscle strength gains comparable to HL-RT, emphasizing the importance of tailored training programs. Both methods exhibit similar effects on muscle mass gains, indicating that LL-BFR serves as an effective alternative for individuals who cannot perform HL-RT because of physical limitations or injury concerns.
Collapse
Affiliation(s)
- Hualong Chang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China; (H.C.)
| | - Jie Zhang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China; (H.C.)
| | - Jing Yan
- College of Education, Anyang Normal University, Anyang 455000, China
| | - Xudong Yang
- Department of Sports Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Biao Chen
- Renji College, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianli Zhang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Praetorius A. [Blood flow restriction training (BFRT) in patients before and after total knee arthroplasty]. ORTHOPADIE (HEIDELBERG, GERMANY) 2024; 53:853-857. [PMID: 39120683 DOI: 10.1007/s00132-024-04543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND In healthy individuals, blood flow restriction training (BFRT) has shown positive effects on muscle mass, strength, fatigue resistance, as well as tendon and bone metabolism. BFRT reduces blood flow in the extremities using inflatable cuffs, creating local muscular hypoxia, which produces an anabolic metabolic environment. This promotes significant muscular and cardiovascular adaptations even at low mechanical training loads. KNEE ENDOPROSTHESES BFRT also shows promising initial results in pre- and postoperative applications for knee endoprostheses (KTEP). Both preoperative and postoperative BFRT can improve muscle strength and joint function, accelerate recovery, and alleviate pain. Although the method is generally safe, potential risks such as discomfort and rare side effects must be considered. Clear application protocols are still lacking, necessitating further research and individualized programs to achieve optimal training effects. BFRT thus offers an innovative way to effectively rehabilitate patients despite their low load tolerance.
Collapse
Affiliation(s)
- Arthur Praetorius
- Klinik für Arthroskopische Chirurgie, Sporttraumatologie und Sportmedizin, Motoriklabor Athletikum Rhein Ruhr, BG Klinikum Duisburg, Großenbaumer Allee 250, 47259, Duisburg, Deutschland.
| |
Collapse
|
4
|
de Queiros VS, Aniceto RR, Rolnick N, Formiga MF, Vieira JG, Cabral BGDAT, Dantas PMS. Commentary: Blood flow restriction combined with resistance training on muscle strength and thickness improvement in young adults: a systematic review, meta-analysis, and meta-regression. Front Physiol 2024; 15:1486727. [PMID: 39483750 PMCID: PMC11524815 DOI: 10.3389/fphys.2024.1486727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Affiliation(s)
- Victor S. de Queiros
- Graduate Program in Healthy Science, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Rodrigo R. Aniceto
- Study and Research Group in Biomechanics and Psychophysiology of Exercise, Federal Institute of Education, Science and Technology of Rio Grande do Norte, Nova Cruz-RN, Brazil
- Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraiba, João Pessoa, Brazil
| | - Nicholas Rolnick
- Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, United States
- The Human Performance Mechanic, Bronx, NY, United States
| | - Magno F. Formiga
- Graduate Program in Physiotherapy and Functioning, Department of Physiotherapy, Federal University of Ceará, Fortaleza, Brazil
| | - João G. Vieira
- Graduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Breno Guilherme de Araújo Tinôco Cabral
- Graduate Program in Healthy Science, Federal University of Rio Grande do Norte, Natal-RN, Brazil
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Paulo Moreira Silva Dantas
- Graduate Program in Healthy Science, Federal University of Rio Grande do Norte, Natal-RN, Brazil
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| |
Collapse
|
5
|
Rodrigo-Mallorca D, Muñoz-Gómez E, Mollà-Casanova S, Ricart-Luna B, Cerrillo-Sanchis J, Chulvi-Medrano I. Effects of flossing technique on ankle mobility and vertical jump performance. J Bodyw Mov Ther 2024; 40:627-631. [PMID: 39593655 DOI: 10.1016/j.jbmt.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 11/28/2024]
Abstract
CONTEXT Flossing may report benefits on range of motion. However, it's unknown whether flossing using pneumatic tourniquets may influence performance in bilateral countermovement jumping tests. OBJECTIVE To analyze the acute effects induced by a flossing protocol with a pneumatic tourniquet placed at the intermalleolar level on jumping ability in basketball players. STUDY DESIGN cross-sectional study. METHODS 54 basketball players (mean (SD) 17.16 (1.27) years; 22.23 (1.99) kg/m2) from a professional club were recruited. After a familiarization phase, a pressurized cuff (continuous pressure at 180 mmHg) was placed at the intermalleolar level for 2 min performing plantar and dorsal flexion movements without load. The Leg Motion test and the Countermovement jump were used to measure ankle dorsiflexion and vertical jump height. RESULTS After the intervention, a significant ankle dorsiflexion improvement was observed in the left leg in males (12.48 (5.08) vs. 13.44 (5.23) cm, p < 0.05) and in both ankles in females (right: 9.59 (3.29) vs. 10.74 (3.34) cm, p < 0.05; left: 9.91 (2.77) vs. 10.96 (2.57) cm, p < 0.05). However, the intervention showed no significant difference in bilateral jumping ability in neither group (p > 0.05). CONCLUSIONS The application of intermalleolar flossing using pneumatic tourniquet in elite basketball players did not interfere in jumping ability, and it may improve ankle range of motion. These findings may help clinicians make decisions in practice.
Collapse
Affiliation(s)
- Darío Rodrigo-Mallorca
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| | - Elena Muñoz-Gómez
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, 46010, Valencia, Spain.
| | - Sara Mollà-Casanova
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, 46010, Valencia, Spain
| | | | | | - Iván Chulvi-Medrano
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Bielitzki R, Behrens M, Behrendt T, Franz A, Centner C, Hughes L, Patterson SD, Owens J, Behringer M, Schega L. The Discrepancy Between External and Internal Load/Intensity during Blood Flow Restriction Exercise: Understanding Blood Flow Restriction Pressure as Modulating Factor. SPORTS MEDICINE - OPEN 2024; 10:95. [PMID: 39227485 PMCID: PMC11371992 DOI: 10.1186/s40798-024-00759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Physical exercise induces acute psychophysiological responses leading to chronic adaptations when the exercise stimulus is applied repeatedly, at sufficient time periods, and with appropriate magnitude. To maximize long-term training adaptations, it is crucial to control and manipulate the external load and the resulting psychophysiological strain. Therefore, scientists have developed a theoretical framework that distinguishes between the physical work performed during exercise (i.e., external load/intensity) and indicators of the body's psychophysiological response (i.e., internal load/intensity). However, the application of blood flow restriction (BFR) during exercise with low external loads/intensities (e.g., ≤ 30% of the one-repetition-maximum, ≤ 50% of maximum oxygen uptake) can induce physiological and perceptual responses, which are commonly associated with high external loads/intensities. This current opinion aimed to emphasize the mismatch between external and internal load/intensity when BFR is applied during exercise. In this regard, there is evidence that BFR can be used to manipulate both external load/intensity (by reducing total work when exercise is performed to exhaustion) and internal load/intensity (by leading to higher physiological and perceptual responses compared to exercise performed with the same external load/intensity without BFR). Furthermore, it is proposed to consider BFR as an additional exercise determinant, given that the amount of BFR pressure can determine not only the internal but also external load/intensity. Finally, terminological recommendations for the use of the proposed terms in the scientific context and for practitioners are given, which should be considered when designing, reporting, discussing, and presenting BFR studies, exercise, and/or training programs.
Collapse
Affiliation(s)
- Robert Bielitzki
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Tom Behrendt
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Franz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christoph Centner
- Department of Sport and Science, University of Freiburg, Freiburg, Germany
| | - Luke Hughes
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK
| | - Stephen D Patterson
- Faculty of Sport, Technology and Health Science, St Mary's University, Twickenham, London, UK
| | - Johnny Owens
- Clinical Education Owens Recovery Science, San Antonio, TX, USA
| | - Michael Behringer
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt a. M., Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
7
|
Marrone W, Andrews R, Reynolds A, Vignona P, Patel S, O'Malley M. Rehabilitation and Return to Sports after Achilles Tendon Repair. Int J Sports Phys Ther 2024; 19:1152-1165. [PMID: 39246413 PMCID: PMC11379499 DOI: 10.26603/001c.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Rehabilitation protocols post-Achilles tendon repair vary widely, particularly regarding weight bearing (WB) and immobilization duration, impacting recovery trajectories significantly. This commentary focuses on rehabilitation strategies following acute Achilles tendon repair (ATR), emphasizing early mobilization and progressive loading. Techniques such as blood flow restriction training (BFRT) and progressive loading to restore strength and tendon mechanical properties are discussed in the context of optimizing recovery, minimizing tendon elongation and facilitating safe return to sport (RTS). This manuscript highlights current evidence and clinical insights to guide practitioners in optimizing rehabilitation protocols for athletes recovering from ATR, aiming to improve functional outcomes and support safe return to athletic activity.
Collapse
Affiliation(s)
| | | | | | | | - Snehal Patel
- Sports Medicine Institute Hospital for Special Surgery
| | | |
Collapse
|
8
|
Ma F, He J, Wang Y. Blood flow restriction combined with resistance training on muscle strength and thickness improvement in young adults: a systematic review, meta-analysis, and meta-regression. Front Physiol 2024; 15:1379605. [PMID: 39189029 PMCID: PMC11345148 DOI: 10.3389/fphys.2024.1379605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Background High-intensity resistance training is known to be the most effective method for enhancing muscle strength and thickness, but it carries potential injury risks. Blood flow restriction (BFR) combined with resistance training has been proposed as a safer alternative method for improving muscle strength and thickness. Methods A meta-analysis was conducted, including 20 studies from five databases that met the inclusion criteria, to assess the efficacy of BFR combined with resistance training compared to traditional resistance training (NOBFR). The analysis focused on changes in muscle strength and thickness. Subgroup analysis and meta-regression were performed to explore the effects of tourniquet width and pressure. Results The findings showed that BFR combined with resistance training is comparable to traditional resistance training in enhancing muscle strength [0.11, 95%CI: (-0.08 to 0.29), I 2 = 0%] and muscle thickness [-0.07, 95% CI: (-0.25 to 0.12), I 2 = 0%]. Subgroup analysis indicated no significant differences in muscle strength (P = 0.66) and thickness (P = 0.87) between low-intensity BFR training and other intensity levels. Meta-regression suggested that tourniquet width and pressure might affect intervention outcomes, although the effects were not statistically significant (P > 0.05). Conclusion BFR combined with resistance training offers a viable alternative to high-intensity resistance training with reduced injury risks. We recommend interventions of 2-3 sessions per week at 20%-40% of 1 RM, using a wider cuff and applying an arterial occlusion pressure of 50%-80% to potentially enhance muscle strength and thickness. It is also recommended to release tourniquet pressure during rest intervals to alleviate discomfort. This protocol effectively improves muscle strength with minimal cardiac workload and reduced risk of adverse events. Systematic Review Registration [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023495465], identifier [CRD42023495465].
Collapse
Affiliation(s)
| | | | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
9
|
Yang K, Chee CS, Abdul Kahar J, Tengku Kamalden TF, Li R, Qian S. Effects of blood flow restriction training on physical fitness among athletes: a systematic review and meta-analysis. Sci Rep 2024; 14:16615. [PMID: 39025894 PMCID: PMC11258269 DOI: 10.1038/s41598-024-67181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Blood flow restriction training (BFRT) is an effective, scientific and safe training method, but its effect on the overall quality of athletes remains unclear. The aim of this systematic review with meta-analysis was to clarify the effects of BFRT on the physical fitness among athletes. Based on the PRISMA guidelines, searches were performed in PubMed, Web of Science, SPORTDiscus, and SCOUPS, the Cochrane bias risk assessment tool was used to assess methodological quality, and RevMan 5.4 and STATA 15.0 software were used to analyze the data. A meta-analysis of 28 studies with a total sample size of 542 athletes aged 14-26 years and assessed as low risk for quality was performed. Our results revealed that the BFRT intervention had small to large improvements in the athletes' strength (ES = 0.74-1.03), power (ES = 0.46), speed (ES = 0.54), endurance (ES = 1.39-1.40), body composition (ES = 0.28-1.23), while there was no significant effect on body mass (p > 0.05). Subgroup analyses revealed that moderator variables (training duration, frequency, load, cuff pressure, and pressurization time) also had varying degrees of effect on athletes' physical fitness parameters. In conclusion, BFRT had a positive effect on the physical fitness parameters of the athletes, with significantly improved strength, power, speed, endurance and body composition, but not body mass parameters. When the training frequency ≥ 3 times/week, cuff pressure ≥ 160 mmHg, and pressurization time ≥ 10 min, the BFRT group was more favorable for the improvement of physical fitness parameters.
Collapse
Affiliation(s)
- Kun Yang
- Department of Sports Studies, Faculty of Educational Studies, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chen Soon Chee
- Department of Sports Studies, Faculty of Educational Studies, Universiti Putra Malaysia, Selangor, Malaysia.
| | - Johan Abdul Kahar
- Department of Orthopedics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Rui Li
- Department of Sports Studies, Faculty of Educational Studies, Universiti Putra Malaysia, Selangor, Malaysia.
| | - Shaowen Qian
- Department of Physical Education, Wuhan Sports University, Wuhan, China
| |
Collapse
|
10
|
Bechan Vergara I, Puig-Diví A, Amestoy Alonso B, Milà-Villarroel R. Effects of low-load blood flow restriction training in healthy adult tendons: A systematic review and meta-analysis. J Bodyw Mov Ther 2024; 39:13-23. [PMID: 38876617 DOI: 10.1016/j.jbmt.2023.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/18/2023] [Accepted: 11/24/2023] [Indexed: 06/16/2024]
Abstract
OBJECTIVE To systematically review the effects of low-load blood flow restriction training (LL-BFR) on healthy adult tendons. DESIGN A systematic review with meta-analysis. LITERATURE SEARCH Six electronic databases were searched by two researchers. STUDY SELECTION CRITERIA Clinical trials comparing the effects of LL-BFR to high-load resistance training (HL-RT) or low-load resistance training (LL-RT) in healthy adult tendons. DATA SYNTHESIS Two reviewers selected the eligible clinical trials, and one reviewer exported the data. Two reviewers evaluated the study quality and risk of bias using the PEDro scale and the ROB2 scale. We performed meta-analysis where appropriate using a random-effects model. We rated the quality of evidence using GRADE. RESULTS Six studies were eligible. We analyzed tendon cross-sectional area (CSA) and tendon stiffness as the outcomes. Across all comparisons, there was low-to moderate-quality evidence of a difference between LL-BFR and LL-RT immediately after exercise. There was high-quality evidence of no difference between LL-BFR and HL-RT in the long term. CONCLUSION The effects of LL-BFR on the tendons depends on the time and dose of the intervention. LL-BFR could be useful to increase the CSA of the tendons in a similar or superior way to HL-RT after 8 weeks of intervention.
Collapse
Affiliation(s)
- Ilan Bechan Vergara
- Blanquerna School of Health Sciences - Ramon Llull University, c/ Padilla, 326, 08025, Barcelona, Spain.
| | - Albert Puig-Diví
- Blanquerna School of Health Sciences - Ramon Llull University, c/ Padilla, 326, 08025, Barcelona, Spain.
| | - Beñat Amestoy Alonso
- Neuroscience Lab (part of IDIBAPS, Barcelona), Calle Marina 312 3-4, 08025, Barcelona, Spain.
| | - Raimon Milà-Villarroel
- Blanquerna School of Health Sciences - Ramon Llull University, c/ Padilla, 326, 08025, Barcelona, Spain.
| |
Collapse
|
11
|
Geng Y, Wu X, Zhang Y, Zhang M. Potential Moderators of the Effects of Blood Flow Restriction Training on Muscle Strength and Hypertrophy: A Meta-analysis Based on a Comparison with High-Load Resistance Training. SPORTS MEDICINE - OPEN 2024; 10:58. [PMID: 38773002 PMCID: PMC11109065 DOI: 10.1186/s40798-024-00719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/21/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND While it has been examined whether there are similar magnitudes of muscle strength and hypertrophy adaptations between low-load resistance training combined with blood-flow restriction training (BFR-RT) and high-load resistance training (HL-RT), some important potential moderators (e.g., age, sex, upper and lower limbs, frequency and duration etc.) have yet to be analyzed further. Furthermore, training status, specificity of muscle strength tests (dynamic versus isometric or isokinetic) and specificity of muscle mass assessments (locations of muscle hypertrophy assessments) seem to exhibit different effects on the results of the analysis. The role of these influencing factors, therefore, remains to be elucidated. OBJECTIVES The aim of this meta-analysis was to compare the effects of BFR- versus HL-RT on muscle adaptations, when considering the influence of population characteristics (training status, sex and age), protocol characteristics (upper or lower limbs, duration and frequency) and test specificity. METHODS Studies were identified through database searches based on the following inclusion criteria: (1) pre- and post-training assessment of muscular strength; (2) pre- and post-training assessment of muscular hypertrophy; (3) comparison of BFR-RT vs. HL-RT; (4) score ≥ 4 on PEDro scale; (5) means and standard deviations (or standard errors) are reported or allow estimation from graphs. In cases where the fifth criterion was not met, the data were requested directly from the authors. RESULTS The main finding of the present study was that training status was an important influencing factor in the effects of BFR-RT. The trained individuals may gain greater muscle strength and hypertrophy with BFR-RT as compared to HL-RT. However, the results showed that the untrained individuals experienced similar muscle mass gains and superior muscle strength gains in with HL-RT compared to BFR-RT. CONCLUSION Compared to HL-RT, training status is an important factor influencing the effects of the BFR-RT, in which trained can obtain greater muscle strength and hypertrophy gains in BFR-RT, while untrained individuals can obtain greater strength gains and similar hypertrophy in HL-RT.
Collapse
Affiliation(s)
- Yu Geng
- Department of Physical Education, Jiyang College of Zhejiang A&F University, Zhuji, 311800, People's Republic of China.
| | - Xueping Wu
- School of Physical Education, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Yong Zhang
- Department of Rehabilitation Medicine, School of Medicine, Shaoxing University, Zhejiang, People's Republic of China
| | - Meng Zhang
- School of Physical Education, Huzhou University, Zhejiang, People's Republic of China
| |
Collapse
|
12
|
Lambrianides Y, Epro G, Arampatzis A, Karamanidis K. Evidence of different sensitivity of muscle and tendon to mechano-metabolic stimuli. Scand J Med Sci Sports 2024; 34:e14638. [PMID: 38671559 DOI: 10.1111/sms.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
This study aimed to examine the temporal dynamics of muscle-tendon adaptation and whether differences between their sensitivity to mechano-metabolic stimuli would lead to non-uniform changes within the triceps surae (TS) muscle-tendon unit (MTU). Twelve young adults completed a 12-week training intervention of unilateral isometric cyclic plantarflexion contractions at 80% of maximal voluntary contraction until failure to induce a high TS activity and hence metabolic stress. Each participant trained one limb at a short (plantarflexed position, 115°: PF) and the other at a long (dorsiflexed position, 85°: DF) MTU length to vary the mechanical load. MTU mechanical, morphological, and material properties were assessed biweekly via simultaneous ultrasonography-dynamometry and magnetic resonance imaging. Our hypothesis that tendon would be more sensitive to the operating magnitude of tendon strain but less to metabolic stress exercise was confirmed as tendon stiffness, Young's modulus, and tendon size were only increased in the DF condition following the intervention. The PF leg demonstrated a continuous increment in maximal AT strain (i.e., higher mechanical demand) over time along with lack of adaptation in its biomechanical properties. The premise that skeletal muscle adapts at a higher rate than tendon and does not require high mechanical load to hypertrophy or increase its force potential during exercise was verified as the adaptive changes in morphological and mechanical properties of the muscle did not differ between DF and PF. Such differences in muscle-tendon sensitivity to mechano-metabolic stimuli may temporarily increase MTU imbalances that could have implications for the risk of tendon overuse injury.
Collapse
Affiliation(s)
- Yiannis Lambrianides
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK
| | - Gaspar Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, UK
- Department of Sport Science, Faculty for Mathematics and Natural Sciences, University of Koblenz, Koblenz, Germany
| |
Collapse
|
13
|
Johnson SA, Sikes KJ, Johnson JW, Van Zeeland E, Wist S, Santangelo KS, King MR, Frisbie DD. Blood flow restriction training does not negatively alter the mechanical strength or histomorphology of uninjured equine superficial digital flexor tendons. Equine Vet J 2024. [PMID: 38659234 DOI: 10.1111/evj.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Low load exercise training with blood flow restriction (BFR) has become increasingly used by human physical therapists to prescribe controlled exercise following orthopaedic injury; its effects on the equine superficial digital flexor tendon (SDFT), however, are unknown. OBJECTIVE To investigate outcomes of pressure specific BFR walking exercise on uninjured equine SDFT biomechanics and histomorphology. STUDY DESIGN Controlled in vivo experiment. METHODS Four forelimbs of four horses were exposed to 40 BFR-walk sessions (10-min interval walking) on a treadmill over a 56-day study period with their contralateral forelimbs serving as untreated controls. Similarly, four forelimbs of four control horses were exposed to 40 sham cuff walk sessions. On study Day 56, all horses (n = 8) were humanely euthanised and forelimb SDFTs underwent non-destructive biomechanical testing and corresponding histomorphological analysis. Significance in biomechanical parameters between treatment groups was analysed using a mixed-effects ANOVA with Tukey's post-hoc tests. RESULTS Statistically significant differences in SDFT stiffness for both first (p = 0.02) and last cycles (p = 0.03) were appreciated within the BFR treated group only, with BFR exposed forelimbs being significantly stiffer than the contralateral unexposed forelimbs. When normalised to cross-sectional area, no significant differences were appreciated among treatment groups in elastic modulus for the first (p = 0.5) or last cycles (p = 0.4). No histological differences were appreciated among treatment groups according to Bonar, Movin, or musculotendinous junction evaluation criteria. MAIN LIMITATIONS Short-term comparisons were performed in a small sample population without correlation to performance outcome measures. Optimal occlusion percentages and walk protocols remain unknown. CONCLUSIONS This study demonstrated no negative impact of BFR on mechanical strength of the equine SDFT; however, evidence suggests that BFR results in increased tendon stiffness based on biomechanical testing and subsequent calculations. No consistent detrimental histomorphological changes were seen.
Collapse
Affiliation(s)
- Sherry A Johnson
- Department of Clinical Sciences, Orthopaedic Research Center at the Translational Medicine Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Orthopaedic Research Center at the Translational Medicine Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - James W Johnson
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Emily Van Zeeland
- Department of Clinical Sciences, Orthopaedic Research Center at the Translational Medicine Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sara Wist
- Department of Clinical Sciences, Orthopaedic Research Center at the Translational Medicine Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kelly S Santangelo
- Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Melissa R King
- Department of Clinical Sciences, Orthopaedic Research Center at the Translational Medicine Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - David D Frisbie
- Department of Clinical Sciences, Orthopaedic Research Center at the Translational Medicine Institute, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
14
|
Hughes L, Centner C. Idiosyncratic bone responses to blood flow restriction exercise: new insights and future directions. J Appl Physiol (1985) 2024; 136:283-297. [PMID: 37994414 PMCID: PMC11212818 DOI: 10.1152/japplphysiol.00723.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
Applying blood flow restriction (BFR) during low-load exercise induces beneficial adaptations of the myotendinous and neuromuscular systems. Despite the low mechanical tension, BFR exercise facilitates a localized hypoxic environment and increase in metabolic stress, widely regarded as the primary stimulus for tissue adaptations. First evidence indicates that low-load BFR exercise is effective in promoting an osteogenic response in bone, although this has previously been postulated to adapt primarily during high-impact weight-bearing exercise. Besides studies investigating the acute response of bone biomarkers following BFR exercise, first long-term trials demonstrate beneficial adaptations in bone in both healthy and clinical populations. Despite the increasing number of studies, the physiological mechanisms are largely unknown. Moreover, heterogeneity in methodological approaches such as biomarkers of bone metabolism measured, participant and study characteristics, and time course of measurement renders it difficult to formulate accurate conclusions. Furthermore, incongruity in the methods of BFR application (e.g., cuff pressure) limits the comparability of datasets and thus hinders generalizability of study findings. Appropriate use of biomarkers, effective BFR application, and befitting study design have the potential to progress knowledge on the acute and chronic response of bone to BFR exercise and contribute toward the development of a novel strategy to protect or enhance bone health. Therefore, the purpose of the present synthesis review is to 1) evaluate current mechanistic evidence; 2) discuss and offer explanations for similar and contrasting data findings; and 3) create a methodological framework for future mechanistic and applied research.
Collapse
Affiliation(s)
- Luke Hughes
- Department of Sport Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
- Praxisklinik Rennbahn, Muttenz, Switzerland
| |
Collapse
|
15
|
Jerger S, Centner C, Lauber B, Seynnes O, Friedrich T, Lolli D, Gollhofer A, König D. Specific collagen peptides increase adaptions of patellar tendon morphology following 14-weeks of high-load resistance training: A randomized-controlled trial. Eur J Sport Sci 2023; 23:2329-2339. [PMID: 37424319 DOI: 10.1080/17461391.2023.2232758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
ABSTRACTThe purpose of this study was to investigate the effect of a supplementation with specific collagen peptides (SCP) combined with resistance training (RT) on changes in structural properties of the patellar tendon. Furthermore, tendon stiffness as well as maximal voluntary knee extension strength and cross-sectional area (CSA) of the rectus femoris muscle were assessed. In a randomized, placebo-controlled study, 50 healthy, moderately active male participants completed a 14-week resistance training program with three weekly sessions (70-85% of 1 repetition maximum [1RM]) for the knee extensors. While the SCP group received 5g of specific collagen peptides daily, the other group received the same amount of a placebo (PLA) supplement. The SCP supplementation led to a significant greater (p < 0.05) increase in patellar tendon CSA compared with the PLA group at 60% and 70% of the patellar tendon length starting from the proximal insertion. Both groups increased tendon stiffness (p < 0.01), muscle CSA (p < 0.05) and muscular strength (p < 0.001) throughout the intervention without significant differences between the groups. The current study shows that in healthy, moderately active men, supplementation of SCP in combination with RT leads to greater increase in patellar tendon CSA than RT alone. Since underlying mechanisms of tendon hypertrophy are currently unknown, further studies should investigate potential mechanisms causing the increased morphology adaptions following SCP supplementation.Trial registration: German Clinical Trials Register identifier: DRKS00029244..
Collapse
Key Words
- 1RM, one repetition maximum
- CSA, cross-sectional area
- ECM, extracellular matrix
- FOV, field of view
- MRI, magnetic resonance imaging
- MVC, maximal voluntary contraction
- Magnetic resonance imaging
- PLA, placebo
- RT, resistance training
- SCP, specific collagen peptides
- SEM, standard error of the mean
- cross sectional area
- supplementation
- tendon properties
- ultrasound
Collapse
Affiliation(s)
- Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
- Praxisklinik Rennbahn, Muttenz, Switzerland
| | - Benedikt Lauber
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Olivier Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Till Friedrich
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - David Lolli
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel König
- Centre of Sport, Science and University Sports, Department of Sports Science, Division for Nutrition, Exercise and Health, University of Vienna, Wien 1150, Austria
- Faculty of Life Sciences, Department of Nutritional Sciences, Division for Nutrition, Exercise and Health, University of Vienna, Wien 1090, Austria
| |
Collapse
|
16
|
Davids CJ, Roberts LA, Bjørnsen T, Peake JM, Coombes JS, Raastad T. Where Does Blood Flow Restriction Fit in the Toolbox of Athletic Development? A Narrative Review of the Proposed Mechanisms and Potential Applications. Sports Med 2023; 53:2077-2093. [PMID: 37578669 PMCID: PMC10587223 DOI: 10.1007/s40279-023-01900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Blood flow-restricted exercise is currently used as a low-intensity time-efficient approach to reap many of the benefits of typical high-intensity training. Evidence continues to lend support to the notion that even highly trained individuals, such as athletes, still benefit from this mode of training. Both resistance and endurance exercise may be combined with blood flow restriction to provide a spectrum of adaptations in skeletal muscle, spanning from myofibrillar to mitochondrial adjustments. Such diverse adaptations would benefit both muscular strength and endurance qualities concurrently, which are demanded in athletic performance, most notably in team sports. Moreover, recent work indicates that when traditional high-load resistance training is supplemented with low-load, blood flow-restricted exercise, either in the same session or as a separate training block in a periodised programme, a synergistic and complementary effect on training adaptations may occur. Transient reductions in mechanical loading of tissues afforded by low-load, blood flow-restricted exercise may also serve a purpose during de-loading, tapering or rehabilitation of musculoskeletal injury. This narrative review aims to expand on the current scientific and practical understanding of how blood flow restriction methods may be applied by coaches and practitioners to enhance current athletic development models.
Collapse
Affiliation(s)
- Charlie J Davids
- Sport, Performance, and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia.
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia.
- Sport Performance Innovation and Knowledge Excellence (SPIKE), Queensland Academy of Sport, Brisbane, QLD, Australia.
| | - Llion A Roberts
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
- Sport Performance Innovation and Knowledge Excellence (SPIKE), Queensland Academy of Sport, Brisbane, QLD, Australia
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
| | - Thomas Bjørnsen
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Jonathan M Peake
- Sport Performance Innovation and Knowledge Excellence (SPIKE), Queensland Academy of Sport, Brisbane, QLD, Australia
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Truls Raastad
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| |
Collapse
|
17
|
Castilla-López C, Romero-Franco N. Low-load strength resistance training with blood flow restriction compared with high-load strength resistance training on performance of professional soccer players: a randomized controlled trial. J Sports Med Phys Fitness 2023; 63:1146-1154. [PMID: 37535339 DOI: 10.23736/s0022-4707.23.14974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
BACKGROUND The aim of this study is to evaluate the effectiveness of low-load blood flow restriction strength resistance training (LL-BFR) compared to high load strength resistance training (HL) on performance of professional soccer players. METHODS Eighteen male players from National Soccer Professional League were randomly allocated into two groups: LL-BFR, who performed a 6-weeks strength training program with low load (20-35% of one-repetition maximum-[1RM]), or HL, who performed a 6-week resistance training program with high load (70-85% 1RM). Before and after, thigh girth, vertical jump, lower limb strength, vertical force-velocity profile (F-v), and 30-m sprint were evaluated. RESULTS After the training program, both LL-BFR and HL induced significant increases compared to baseline in thigh girth (+3.3% for LL-BFR and +3.1% for HL) and maximal velocity during sprinting (+6.0 and +6.2%, respectively), without between-group differences. In reference to FV, only HL players improved imbalance (-54.4%), maximal theoretical force production (+10.4%) and decreased extension velocity (-20.5%) compared to baseline, without between-group differences. Only LL-BFR induced increases in maximum voluntary contraction of left hamstring compared to baseline (+13.8%), without between-group differences. No differences were shown for the rest of variables (P>0.05). CONCLUSIONS Although LL-BFR may increase muscle circumference and sprint ability, these results are similar to those induced with HL in male professional soccer. In terms of F-v, only HL induced improvements, but these changes were not greater than those observed after LL-BFR.
Collapse
Affiliation(s)
| | - Natalia Romero-Franco
- Department of Nursing and Physiotherapy, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IIdISBa), Palma, Spain
| |
Collapse
|
18
|
Kwan KYC, Ng KWK, Rao Y, Zhu C, Qi S, Tuan RS, Ker DFE, Wang DM. Effect of Aging on Tendon Biology, Biomechanics and Implications for Treatment Approaches. Int J Mol Sci 2023; 24:15183. [PMID: 37894875 PMCID: PMC10607611 DOI: 10.3390/ijms242015183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Tendon aging is associated with an increasing prevalence of tendon injuries and/or chronic tendon diseases, such as tendinopathy, which affects approximately 25% of the adult population. Aged tendons are often characterized by a reduction in the number and functionality of tendon stem/progenitor cells (TSPCs), fragmented or disorganized collagen bundles, and an increased deposition of glycosaminoglycans (GAGs), leading to pain, inflammation, and impaired mobility. Although the exact pathology is unknown, overuse and microtrauma from aging are thought to be major causative factors. Due to the hypovascular and hypocellular nature of the tendon microenvironment, healing of aged tendons and related injuries is difficult using current pain/inflammation and surgical management techniques. Therefore, there is a need for novel therapies, specifically cellular therapy such as cell rejuvenation, due to the decreased regenerative capacity during aging. To augment the therapeutic strategies for treating tendon-aging-associated diseases and injuries, a comprehensive understanding of tendon aging pathology is needed. This review summarizes age-related tendon changes, including cell behaviors, extracellular matrix (ECM) composition, biomechanical properties and healing capacity. Additionally, the impact of conventional treatments (diet, exercise, and surgery) is discussed, and recent advanced strategies (cell rejuvenation) are highlighted to address aged tendon healing. This review underscores the molecular and cellular linkages between aged tendon biomechanical properties and the healing response, and provides an overview of current and novel strategies for treating aged tendons. Understanding the underlying rationale for future basic and translational studies of tendon aging is crucial to the development of advanced therapeutics for tendon regeneration.
Collapse
Affiliation(s)
- Ka Yu Carissa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Kerry Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenxian Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200040, China;
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.Y.C.K.); (K.W.K.N.); (Y.R.); (C.Z.); (R.S.T.); (D.F.E.K.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Ehiogu UD, Schöffl V, Jones G. Rehabilitation of Annular Pulley Injuries of the Fingers in Climbers: A Clinical Commentary. Curr Sports Med Rep 2023; 22:345-352. [PMID: 37800745 DOI: 10.1249/jsr.0000000000001107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
ABSTRACT The annular pulley ligaments of the fingers are one of the most injured anatomical structures in those who participate in climbing. Despite this, there is a paucity of guidance clearly describing the rehabilitation and physical preparation parameters to return to sport following such injuries. The foundation of effective rehabilitation is the judicious application of progressive loading to increase the morphological and material properties of the damaged tissues. We maintain the optimal management of the climbing athlete after a traumatic annular flexor pulley system rupture should be grounded in the principles of strength and conditioning.
Collapse
Affiliation(s)
| | | | - Gareth Jones
- School of Health and Applied Sciences, Leeds Becket University, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
20
|
Hjortshoej MH, Aagaard P, Storgaard CD, Juneja H, Lundbye‐Jensen J, Magnusson SP, Couppé C. Hormonal, immune, and oxidative stress responses to blood flow-restricted exercise. Acta Physiol (Oxf) 2023; 239:e14030. [PMID: 37732509 PMCID: PMC10909497 DOI: 10.1111/apha.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Heavy-load free-flow resistance exercise (HL-FFRE) is a widely used training modality. Recently, low-load blood-flow restricted resistance exercise (LL-BFRRE) has gained attention in both athletic and clinical settings as an alternative when conventional HL-FFRE is contraindicated or not tolerated. LL-BFRRE has been shown to result in physiological adaptations in muscle and connective tissue that are comparable to those induced by HL-FFRE. The underlying mechanisms remain unclear; however, evidence suggests that LL-BFRRE involves elevated metabolic stress compared to conventional free-flow resistance exercise (FFRE). AIM The aim was to evaluate the initial (<10 min post-exercise), intermediate (10-20 min), and late (>30 min) hormonal, immune, and oxidative stress responses observed following acute sessions of LL-BFRRE compared to FFRE in healthy adults. METHODS A systematic literature search of randomized and non-randomized studies was conducted in PubMed, Embase, Cochrane Central, CINAHL, and SPORTDiscus. The Cochrane Risk of Bias (RoB2, ROBINS-1) and TESTEX were used to evaluate risk of bias and study quality. Data extractions were based on mean change within groups. RESULTS A total of 12525 hits were identified, of which 29 articles were included. LL-BFRRE demonstrated greater acute increases in growth hormone responses when compared to overall FFRE at intermediate (SMD 2.04; 95% CI 0.87, 3.22) and late (SMD 2.64; 95% CI 1.13, 4.16) post-exercise phases. LL-BFRRE also demonstrated greater increase in testosterone responses compared to late LL-FFRE. CONCLUSION These results indicate that LL-BFRRE can induce increased or similar hormone and immune responses compared to LL-FFRE and HL-FFRE along with attenuated oxidative stress responses compared to HL-FFRE.
Collapse
Affiliation(s)
- M. H. Hjortshoej
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
- Centre for Health and RehabilitationUniversity College AbsalonSlagelseDenmark
| | - P. Aagaard
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - C. D. Storgaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - H. Juneja
- Centre for Health and RehabilitationUniversity College AbsalonSlagelseDenmark
| | - J. Lundbye‐Jensen
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - S. P. Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
| | - C. Couppé
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
| |
Collapse
|
21
|
Chang H, Yan J, Lu G, Chen B, Zhang J. Muscle strength adaptation between high-load resistance training versus low-load blood flow restriction training with different cuff pressure characteristics: a systematic review and meta-analysis. Front Physiol 2023; 14:1244292. [PMID: 37693006 PMCID: PMC10485702 DOI: 10.3389/fphys.2023.1244292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose: In this systematic review and meta-analysis, blood flow restriction (BFR) with low-load resistance training (BFR-RT) was compared with high-load resistance training (HL-RT) on muscle strength in healthy adults. The characteristics of cuff pressure suitable for muscle strength gain were also investigated by analyzing the effects of applying different occlusion pressure prescriptions and cuff inflation patterns on muscle strength gain. Methods: Literature search was conducted using PubMed, Ovid Medline, ProQuest, Cochrane Library, Embase, and Scopus databases to identify literature published until May 2023. Studies reporting the effects of BFR-RT interventions on muscle strength gain were compared with those of HL-RT. The risk of bias in the included trials was assessed using the Cochrane tool, followed by a meta-analysis to calculate the combined effect. Subgroup analysis was performed to explore the beneficial variables. Results: Nineteen articles (42 outcomes), with a total of 458 healthy adults, were included in the meta-analysis. The combined effect showed higher muscle strength gain with HL-RT than with BFR-RT (p = 0.03, SMD = -0.16, 95% CI: -0.30 to -0.01). The results of the subgroup analysis showed that the BFR-RT applied with incremental and individualized pressure achieved muscle strength gain similar to the HL-RT (p = 0.8, SMD = -0.05, 95% CI: -0.44 to 0.34; p = 0.68, SMD = -0.04, 95% CI: -0.23 to 0.15), but muscle strength gain obtained via BFR-RT applied with absolute pressure was lower than that of HL-RT (p < 0.05, SMD = -0.45, 95% CI: -0.71 to -0.19). Furthermore, muscle strength gain obtained by BFR-RT applied with intermittent pressure was similar to that obtained by HL-RT (p = 0.88, SMD = -0.02, 95% CI: -0.27 to 0.23), but muscle strength gain for BFR-RT applied with continuous pressure showed a less prominent increase than that for HL-RT (p < 0.05, SMD = -0.3, 95% CI: -0.48 to -0.11). Conclusion: In general, HL-RT produces superior muscle strength gains than BFR-RT. However, the application of individualized, incremental, and intermittent pressure exercise protocols in BFR-RT elicits comparable muscle strength gains to HL-RT. Our findings indicate that cuff pressure characteristics play a significant role in establishing a BFR-RT intervention program for enhancing muscle strength in healthy adults. Clinical Trial Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails; Identifier: PROSPERO (CRD42022364934).
Collapse
Affiliation(s)
- Hualong Chang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Jing Yan
- College of Education, Anyang Normal University, Anyang, China
| | - Guiwei Lu
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Biao Chen
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Jianli Zhang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
22
|
Keller M, Faude O, Gollhofer A, Centner C. Can We Make Blood Flow Restriction Training More Accessible? Validity of a Low-Cost Blood Flow Restriction Device to Estimate Arterial Occlusion Pressure. J Strength Cond Res 2023; 37:1581-1587. [PMID: 36728035 DOI: 10.1519/jsc.0000000000004434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Keller, M, Faude, O, Gollhofer, A, and Centner, C. Can we make blood flow restriction training more accessible? Validity of a low-cost blood flow restriction device to estimate arterial occlusion pressure. J Strength Cond Res 37(8): 1581-1587, 2023-Evidence indicates that low-load resistance training with blood flow restriction (BFR) results in comparable gains in muscle mass and muscle strength as high-load resistance training without BFR. Low-load BFR training is a promising tool for areas such as rehabilitation because individuals are exposed to low mechanical stress. However, BFR training is only safe and effective when the cuff pressure is individually adjusted to the arterial occlusion pressure (AOP). Generally, thresholds for AOP are typically determined with sophisticated laboratory material, including Doppler ultrasound and tourniquet systems. Therefore, this study investigated the validity of a low-cost BFR product with automatic AOP assessment (AirBands International) compared with the gold standard for determining the individual AOP. Valid measurements were obtained at the arms and legs in 104 healthy volunteers. For the arms ( n = 49), a Bland-Altman analysis revealed a mean difference of 7 ± 13 mm Hg between the 2 methods, with slightly higher pressure levels for the gold standard (131 ± 14 mm Hg) than for the low-cost device (125 ± 17 mm Hg). For the legs ( n = 55), the low-cost device reached its maximum pressure capacity in 70% of subjects during AOP identification, making the results on the legs unreliable. Although the low-cost device is a valid tool for identifying the individual AOP in the arms, the device cannot be recommended for use at the legs because of its limited pressure capacity. When using the low-cost device for BFR training at the arms, it is recommended to apply the cuff pressure to 60% of the individual AOP to meet current BFR training guidelines.
Collapse
Affiliation(s)
- Martin Keller
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Oliver Faude
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany; and
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany; and
- Praxisklinik Rennbahn, Muttenz, Switzerland
| |
Collapse
|
23
|
Holt NC, Mayfield DL. Muscle-tendon unit design and tuning for power enhancement, power attenuation, and reduction of metabolic cost. J Biomech 2023; 153:111585. [PMID: 37126884 PMCID: PMC10949972 DOI: 10.1016/j.jbiomech.2023.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The contractile elements in skeletal muscle fibers operate in series with elastic elements, tendons and potentially aponeuroses, in muscle-tendon units (MTUs). Elastic strain energy (ESE), arising from either work done by muscle fibers or the energy of the body, can be stored in these series elastic elements (SEEs). MTUs vary considerably in their design in terms of the relative lengths and stiffnesses of the muscle fibers and SEEs, and the force and work generating capacities of the muscle fibers. However, within an MTU it is thought that contractile and series elastic elements can be matched or tuned to maximize ESE storage. The use of ESE is thought to improve locomotor performance by enhancing contractile element power during activities such as jumping, attenuating contractile element power during activities such as landing, and reducing the metabolic cost of movement during steady-state activities such as walking and running. The effectiveness of MTUs in these potential roles is contingent on factors such as the source of mechanical energy, the control of the flow of energy, and characteristics of SEE recoil. Hence, we suggest that MTUs specialized for ESE storage may vary considerably in the structural, mechanical, and physiological properties of their components depending on their functional role and required versatility.
Collapse
Affiliation(s)
- N C Holt
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| | - D L Mayfield
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
24
|
Khair RM, Stenroth L, Cronin NJ, Ponkilainen V, Reito A, Finni T. Exploration of muscle-tendon biomechanics one year after Achilles tendon rupture and the compensatory role of flexor hallucis longus. J Biomech 2023; 152:111586. [PMID: 37080080 DOI: 10.1016/j.jbiomech.2023.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
Achilles tendon (AT) rupture leads to long-term structural and functional impairments. Currently, the predictors of good recovery after rupture are poorly known. Thus, we aimed to explore the interconnections between structural, mechanical, and neuromuscular parameters and their associations with factors that could explain good recovery in patients with non-surgically treated AT rupture. A total of 35 patients with unilateral rupture (6 females) participated in this study. Muscle-tendon structural, mechanical, and neuromuscular parameters were measured 1-year after rupture. Interconnections between the inter-limb differences (Δ) were explored using partial correlations, followed by multivariable linear regression to find associations between the measured factors and the following markers that indicate good recovery: 1) tendon length, 2) tendon non-uniform displacement, and 3) flexor hallucis longus (FHL) normalized EMG amplitude difference between limbs. Δmedial gastrocnemius (MG) (β = -0.12, p = 0.007) and Δlateral gastrocnemius (β = -0.086, p = 0.030) subtendon lengths were associated with MG tendon Δstiffness. MG (β = 11.56, p = 0.003) and soleus (β = 2.18, p = 0.040) Δsubtendon lengths explained 48 % of variance in FHL EMG amplitude. Regression models for tendon length and non-uniform displacement were not significant. Smaller inter-limb differences in Achilles subtendon lengths were associated with smaller differences in the AT stiffness between limbs, and a smaller contribution of FHL muscle to the plantarflexion torque. In the injured limb, the increased contribution of FHL appears to partially counteract a smaller contribution from MG due to the elongated tendon, however the role of FHL should not be emphasized during rehabilitation to allow recovery of the TS muscles.
Collapse
Affiliation(s)
- Ra'ad M Khair
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.
| | - Lauri Stenroth
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Neil J Cronin
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; School of Sport and Exercise, University of Gloucestershire, UK
| | | | - Aleksi Reito
- Central Finland Central Hospital Nova, Jyväskylä, Finland
| | - Taija Finni
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
25
|
Quantifying the Generality of Strength Adaptation: A Meta-Analysis. Sports Med 2023; 53:637-648. [PMID: 36396899 DOI: 10.1007/s40279-022-01790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Isotonic exercise is the most common mode of strength training. Isotonic strength is often measured in the movement that was exercised, but isometric and isokinetic movements are also commonly used to quantify changes in muscular strength. Previous research suggests that increasing strength in one movement may not lead to an increase in strength in a different movement. Quantifying the increase in strength in a movement not trained may be important for understanding strength training adaptations and making recommendations for resistance exercise and rehabilitation programs. OBJECTIVE To quantify changes in non-specific strength relative to a control. DESIGN A systematic review and random effects meta-analysis was conducted investigating the effects of isotonic strength training on isotonic and isokinetic/isometric strength. SEARCH AND INCLUSION This systematic review was conducted in Google scholar, PubMed, Academic Search Premier, and MENDELEY. To be included in this review paper the article needed to meet the following criteria: (1) report sufficient data for our variables of interest (i.e., changes in isotonic strength and changes in isokinetic or isometric strength); (2) include a time-matched non-exercise control; (3) be written in English; (4) include healthy human participants over the age of 18 years; (5) the participants had to train and test isotonically; (6) the participants had to be tested isokinetically or isometrically on a device different from that they trained on; (7) the non-specific strength task had to test a muscle involved in the training (i.e., could not have trained chest press and test handgrip strength); and (8) the control group and the experimental group had to perform the same number of strength tests. RESULTS We completed two separate searches. In the original search a total of 880 papers were screened and nine papers met the inclusion criteria. In the secondary search a total of 2594 papers were screened and three additional papers were added (total of 12 studies). The overall effect of resistance training on changes in strength within a movement that was not directly trained was 0.8 (Cohen's d) with a standard error of 0.286. This overall effect was significant (t = 2.821, p = 0.01) and the 95% confidence interval (CI) is 0.22-1.4. The overall effect of resistance training on strength changes within a movement that was directly trained was 1.84 (Cohen's d) with a standard error of 0.296. This overall effect was significant (t = 6.221, p < 0.001) and the 95% CI is 1.23-2.4. CONCLUSION The results of our meta-analysis suggest that strength increases in both the specific and non-specific strength tests. However, the smaller effect size associated with non-specific strength suggests that it will be difficult for a single study to meaningfully investigate the transfer of strength training adaptions.
Collapse
|
26
|
Pavlou K, Korakakis V, Whiteley R, Karagiannis C, Ploutarchou G, Savva C. The effects of upper body blood flow restriction training on muscles located proximal to the applied occlusive pressure: A systematic review with meta-analysis. PLoS One 2023; 18:e0283309. [PMID: 36952451 PMCID: PMC10035935 DOI: 10.1371/journal.pone.0283309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Blood flow restriction combined with low load resistance training (LL-BFRT) is associated with increases in upper limb muscle strength and size. The effect of LL-BFRT on upper limb muscles located proximal to the BFR cuff application is unclear. OBJECTIVE The aim of this systematic review was to evaluate the effect of LL-BFRT compared to low load, or high load resistance training (LL-RT, HL-RT) on musculature located proximal to cuff placement. METHODS Six electronic databases were searched for randomized controlled trials (RCTs). Two reviewers independently evaluated the risk of bias using the PEDro scale. We performed a meta-analysis using a random effects model, or calculated mean differences (fixed-effect) where appropriate. We judged the certainty of evidence using the GRADE approach. RESULTS The systematic literature searched yielded 346 articles, of which 9 studies were eligible. The evidence for all outcomes was of very low to low certainty. Across all comparisons, a significant increase in bench press and shoulder flexion strength was found in favor of LL-BFRT compared to LL-RT, and in shoulder lean mass and pectoralis major thickness in favor of the LL-BFRT compared to LL-RT and HL-RT, respectively. No significant differences were found between LL-BFRT and HL-RT in muscle strength. CONCLUSION With low certainty LL-BFRT appears to be equally effective to HL-RT for improving muscle strength in upper body muscles located proximal to the BFR stimulus in healthy adults. Furthermore, LL-BFRT may induce muscle size increase, but these adaptations are not superior to LL-RT or HL-RT.
Collapse
Affiliation(s)
- Kyriakos Pavlou
- Department of Health Science, European University Cyprus, Engomi, Nicosia, Cyprus
| | - Vasileios Korakakis
- Department of Population Health Sciences, School of Life Course & Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Rod Whiteley
- Aspetar, Orthopaedic and Sport Medicine Hospital, Doha, Qatar
| | - Christos Karagiannis
- Department of Health Science, European University Cyprus, Engomi, Nicosia, Cyprus
| | - George Ploutarchou
- Department of Health Science, European University Cyprus, Engomi, Nicosia, Cyprus
| | - Christos Savva
- Department of Health Science, European University Cyprus, Engomi, Nicosia, Cyprus
| |
Collapse
|
27
|
Thomas E, Ficarra S, Nakamura M, Paoli A, Bellafiore M, Palma A, Bianco A. Effects of Different Long-Term Exercise Modalities on Tissue Stiffness. SPORTS MEDICINE - OPEN 2022; 8:71. [PMID: 35657537 PMCID: PMC9166919 DOI: 10.1186/s40798-022-00462-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022]
Abstract
AbstractStiffness is a fundamental property of living tissues, which may be modified by pathologies or traumatic events but also by nutritional, pharmacological and exercise interventions. This review aimed to understand if specific forms of exercise are able to determine specific forms of tissue stiffness adaptations. A literature search was performed on PubMed, Scopus and Web of Science databases to identify manuscripts addressing adaptations of tissue stiffness as a consequence of long-term exercise. Muscular, connective, peripheral nerve and arterial stiffness were considered for the purpose of this review. Resistance training, aerobic training, plyometric training and stretching were retrieved as exercise modalities responsible for tissue stiffness adaptations. Differences were observed related to each specific modality. When exercise was applied to pathological cohorts (i.e. tendinopathy or hypertension), stiffness changed towards a physiological condition. Exercise interventions are able to determine tissue stiffness adaptations. These should be considered for specific exercise prescriptions. Future studies should concentrate on identifying the effects of exercise on the stiffness of specific tissues in a broader spectrum of pathological populations, in which a tendency for increased stiffness is observed.
Collapse
|
28
|
Lazarczuk SL, Maniar N, Opar DA, Duhig SJ, Shield A, Barrett RS, Bourne MN. Mechanical, Material and Morphological Adaptations of Healthy Lower Limb Tendons to Mechanical Loading: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:2405-2429. [PMID: 35657492 PMCID: PMC9474511 DOI: 10.1007/s40279-022-01695-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Exposure to increased mechanical loading during physical training can lead to increased tendon stiffness. However, the loading regimen that maximises tendon adaptation and the extent to which adaptation is driven by changes in tendon material properties or tendon geometry is not fully understood. OBJECTIVE To determine (1) the effect of mechanical loading on tendon stiffness, modulus and cross-sectional area (CSA); (2) whether adaptations in stiffness are driven primarily by changes in CSA or modulus; (3) the effect of training type and associated loading parameters (relative intensity; localised strain, load duration, load volume and contraction mode) on stiffness, modulus or CSA; and (4) whether the magnitude of adaptation in tendon properties differs between age groups. METHODS Five databases (PubMed, Scopus, CINAHL, SPORTDiscus, EMBASE) were searched for studies detailing load-induced adaptations in tendon morphological, material or mechanical properties. Standardised mean differences (SMDs) with 95% confidence intervals (CIs) were calculated and data were pooled using a random effects model to estimate variance. Meta regression was used to examine the moderating effects of changes in tendon CSA and modulus on tendon stiffness. RESULTS Sixty-one articles met the inclusion criteria. The total number of participants in the included studies was 763. The Achilles tendon (33 studies) and the patella tendon (24 studies) were the most commonly studied regions. Resistance training was the main type of intervention (49 studies). Mechanical loading produced moderate increases in stiffness (standardised mean difference (SMD) 0.74; 95% confidence interval (CI) 0.62-0.86), large increases in modulus (SMD 0.82; 95% CI 0.58-1.07), and small increases in CSA (SMD 0.22; 95% CI 0.12-0.33). Meta-regression revealed that the main moderator of increased stiffness was modulus. Resistance training interventions induced greater increases in modulus than other training types (SMD 0.90; 95% CI 0.65-1.15) and higher strain resistance training protocols induced greater increases in modulus (SMD 0.82; 95% CI 0.44-1.20; p = 0.009) and stiffness (SMD 1.04; 95% CI 0.65-1.43; p = 0.007) than low-strain protocols. The magnitude of stiffness and modulus differences were greater in adult participants. CONCLUSIONS Mechanical loading leads to positive adaptation in lower limb tendon stiffness, modulus and CSA. Studies to date indicate that the main mechanism of increased tendon stiffness due to physical training is increased tendon modulus, and that resistance training performed at high compared to low localised tendon strains is associated with the greatest positive tendon adaptation. PROSPERO registration no.: CRD42019141299.
Collapse
Affiliation(s)
- Stephanie L Lazarczuk
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia.
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Nirav Maniar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
| | - Steven J Duhig
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Anthony Shield
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rod S Barrett
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Matthew N Bourne
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
29
|
McMahon G. No Strain, No Gain? The Role of Strain and Load Magnitude in Human Tendon Responses and Adaptation to Loading. J Strength Cond Res 2022; 36:2950-2956. [DOI: 10.1519/jsc.0000000000004288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Jerger S, Centner C, Lauber B, Seynnes O, Sohnius T, Jendricke P, Oesser S, Gollhofer A, König D. Effects of specific collagen peptide supplementation combined with resistance training on Achilles tendon properties. Scand J Med Sci Sports 2022; 32:1131-1141. [PMID: 35403756 DOI: 10.1111/sms.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to investigate the effect of specific collagen peptides (SCP) combined with resistance training (RT) on changes in tendinous and muscular properties. In a randomized, placebo-controlled study, 40 healthy male volunteers (age: 26.3 ± 4.0 years) completed a 14 weeks high-load resistance training program. One group received a daily dosage of 5g SCP while the other group received 5g of a placebo (PLA) supplement. Changes in Achilles tendon cross-sectional area (CSA), tendon stiffness, muscular strength, and thickness of the plantar flexors were measured. The SCP supplementation led to a significantly (p = 0.002) greater increase in tendon CSA (+11.0%) compared with the PLA group (+4.7%). Moreover, the statistical analysis revealed a significantly (p = 0.014) greater increase in muscle thickness in the SCP group (+7.3%) compared with the PLA group (+2.7%). Finally, tendon stiffness and muscle strength increased in both groups, with no statistical difference between the groups. In conclusion, the current study shows that the supplementation of specific collagen peptides combined with RT is associated with a greater hypertrophy in tendinous and muscular structures than RT alone in young physically active men. These effects might play a role in reducing tendon stress (i.e., deposition of collagen in load-bearing structures) during daily activities.
Collapse
Affiliation(s)
- Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Praxisklinik Rennbahn, Muttenz, Switzerland
| | - Benedikt Lauber
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Olivier Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Tim Sohnius
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Patrick Jendricke
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | | | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Daniel König
- Department for Nutrition, Exercise and Health, Centre of Sports Science, University of Vienna, Vienna, Austria.,Department for Nutrition, Exercise and Health, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Lambrianides Y, Epro G, Smith K, Mileva KN, James D, Karamanidis K. Impact of Different Mechanical and Metabolic Stimuli on the Temporal Dynamics of Muscle Strength Adaptation. J Strength Cond Res 2022; 36:3246-3255. [DOI: 10.1519/jsc.0000000000004300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Burton I, McCormack A. Blood Flow Restriction Resistance Training in Tendon Rehabilitation: A Scoping Review on Intervention Parameters, Physiological Effects, and Outcomes. Front Sports Act Living 2022; 4:879860. [PMID: 35548459 PMCID: PMC9083008 DOI: 10.3389/fspor.2022.879860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To identify current evidence on blood flow restriction training (BFRT) in tendon injuries and healthy tendons, evaluating physiological tendon effects, intervention parameters, and outcomes. Methods This scoping review was reported in accordance with the PRISMA Extension for Scoping Reviews (PRISMA-ScR). Databases searched included MEDLINE, CINAHL, AMED, EMBase, SPORTDiscus, Cochrane library (Controlled trials, Systematic reviews), and five trial registries. Two independent reviewers screened studies at title/abstract and full text. Following screening, data was extracted and charted, and presented as figures and tables alongside a narrative synthesis. Any study design conducted on adults, investigating the effects of BFRT on healthy tendons or tendon pathology were included. Data were extracted on physiological tendon effects, intervention parameters and outcomes with BFRT. Results Thirteen studies were included, three on tendinopathy, two on tendon ruptures, and eight on healthy Achilles, patellar, and supraspinatus tendons. A variety of outcomes were assessed, including pain, function, strength, and tendon morphological and mechanical properties, particularly changes in tendon thickness. BFRT intervention parameters were heterogeneously prescribed. Conclusion Despite a dearth of studies to date on the effects of BFRT on healthy tendons and in tendon pathologies, preliminary evidence for beneficial effects of BFRT on tendons and clinical outcomes is encouraging. As BFRT is a relatively novel method, definitive conclusions, and recommendations on BFRT in tendon rehabilitation cannot be made at present, which should be addressed in future research, due to the potential therapeutic benefits highlighted in this review.
Collapse
Affiliation(s)
- Ian Burton
- Musculoskeletal (MSK) Service, Fraserburgh Physiotherapy Department, Fraserburgh Hospital, National Health Service (NHS) Grampian, Aberdeen, United Kingdom
- *Correspondence: Ian Burton
| | | |
Collapse
|
33
|
Høgsholt M, Jørgensen SL, Rolving N, Mechlenburg I, Tønning LU, Bohn MB. Exercise With Low-Loads and Concurrent Partial Blood Flow Restriction Combined With Patient Education in Females Suffering From Gluteal Tendinopathy: A Feasibility Study. Front Sports Act Living 2022; 4:881054. [PMID: 35498515 PMCID: PMC9047753 DOI: 10.3389/fspor.2022.881054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction To date, there exists no gold standard conservative treatment for lateral hip pain due to tendinopathy of the gluteus medius and/or minimus tendon (GT), a condition often complicated by pain and disability. Higher loads during everyday activities and exercise seems to be contraindicated with GT. The purpose of this study was to evaluate the feasibility of exercise with low-loads concurrent partial blood flow restriction (LL-BFR) and patient education for patients present GT. Methods Recruitment took place at three hospitals in the Central Denmark Region. The intervention consisted of daily sessions for 8 weeks with one weekly supervised session. From week three patients exercised with applied partial blood flow restriction by means of a pneumatic cuff around the proximal thigh of the affected leg. Throughout the intervention patients received patient education on their hip condition. Sociodemographic and clinical variables were collected at baseline. The feasibility of LL-BFR was conducted by adherence to the exercise protocol and drop-out rate. Patient reported outcome measures (The Victorian Institute of Sport Assessment-Gluteal Questionnaire, EuroQol - 5 Dimensions-Visual Analogue Scale, Oxford Hip Score, Copenhagen Hip and Groin Outcome Score), maximal voluntary isometric hip abduction-, hip extension, and knee extension strength (Nm/kg) measured using a handheld dynamometer, and functional capacity tests (30 second chair-stand test and a stair-climb test) was conducted as secondary outcomes. Results Sixteen women with a median (IQR) age of 51 (46–60) years were included. Median (IQR) Body Mass Index was 26.69 (23.59–30.46) kg/m2. Adherence to the total number of training sessions and the LL-BFR was 96.4 and 94.4%, respectively. Two patients dropped out due to (i) illness before initiation of LL-BFR and (ii) pain in the affected leg related to the LL-BFR-exercise. At follow-up both pain levels and patient-reported outcome measures improved. Isometric hip abduction-, hip extension-, and knee extension strength on both legs and functional performance increased. Conclusion: LL-BFR-exercise seems feasible for treatment of GT. At follow-up, a high adherence and low drop-out rate were observed. Further, patients reported clinically relevant reductions in pain, and showed significant increases in isometric hip and knee strength.
Collapse
Affiliation(s)
- Mathias Høgsholt
- Department of Occupational and Physical Therapy, Horsens Regional Hospital, Horsens, Denmark
| | - Stian Langgård Jørgensen
- Department of Occupational and Physical Therapy, Horsens Regional Hospital, Horsens, Denmark
- H-HIP, Department of Orthopedic Surgery, Horsens Regional Hospital, Horsens, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nanna Rolving
- Center of Rehabilitation Research, DEFACTUM, Central Denmark Region, Aarhus, Denmark
- Department of Physical and Occupational Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Inger Mechlenburg
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Lisa Urup Tønning
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Marie Bagger Bohn
- H-HIP, Department of Orthopedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| |
Collapse
|
34
|
Exercise Effects on the Biomechanical Properties of the Achilles Tendon—A Narrative Review. BIOLOGY 2022; 11:biology11020172. [PMID: 35205039 PMCID: PMC8869522 DOI: 10.3390/biology11020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/01/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The Achilles tendon influences the running economy because of its ability to store and release strain energy, and it remains one of the most vulnerable tendons among athletes and recreational runners. Exercised-related mechanical loading appears to induce changes in the Achilles tendon morphology and mechanical material properties. Both acute and relatively long-term exercise induces tendon adaptation, although biomechanical changes, e.g., cross-sectional area, plantarflexion moment, Young’s modulus, and stiffness, in response to exercise duration, type, and loading-regimes differ widely. Furthermore, a strong Achilles tendon can be developed by chronic exposure to habitual mechanical loading from daily exercise, which is associated with greater energy storage, release and overall health. Abstract The morphological and mechanical properties (e.g., stiffness, stress, and force) of the Achilles tendon (AT) are generally associated with its tendinosis and ruptures, particularly amongst runners. Interest in potential approaches to reduce or prevent the risk of AT injuries has grown exponentially as tendon mechanics have been efficiently improving. The following review aims to discuss the effect of different types of exercise on the AT properties. In this review article, we review literature showing the possibility to influence the mechanical properties of the AT from the perspective of acute exercise and long-term training interventions, and we discuss the reasons for inconsistent results. Finally, we review the role of the habitual state in the AT properties. The findings of the included studies suggest that physical exercise could efficiently improve the AT mechanical properties. In particular, relatively long-term and low-intensity eccentric training may be a useful adjunct to enhance the mechanical loading of the AT.
Collapse
|
35
|
Muscle growth adaptations to high-load training and low-load training with blood flow restriction in calf muscles. Eur J Appl Physiol 2022; 122:623-634. [PMID: 34981201 DOI: 10.1007/s00421-021-04862-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/22/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE To compare muscle growth adaptations between traditional high-load training and low-load training with blood flow restriction (BFR) in the calf muscles over 6 weeks. METHODS 27 trained individuals performed calf exercise in both legs for 6 weeks. Each leg was randomly assigned to one of the two conditions: (1) Traditional (70% of 1RM) training (TRAD); and (2) Low-load (30% of 1RM) training with BFR. In addition, subjects performed standing calf raises with or without BFR. Measures were taken pre- and post-intervention. RESULTS For the posterior muscle site, there was no condition (BFR vs. TRAD) × time (pre vs. post) interaction (p = 0.15). In addition, there was no main effect for condition (p = 0.83) or time (p = 0.20). For the lateral muscle site, there was no condition × time interaction (p = 0.47). In addition, there was no main effect for condition (p = 0.10) or time (p = 0.57). For the medial muscle site, there was no condition × time interaction (p = 0.60). In addition, there was no main effect for condition (p = 0.44) or time (p = 0.72). For RPE, there was no condition × time interaction. However, there was a main effect for condition (p < 0.05) with BFR having higher RPE. For discomfort, there was no condition × time interaction. However, there was a main effect for condition (p < 0.001) with the BFR condition displaying higher discomfort. CONCLUSION No muscle growth was detected in the calf musculature. BFR was not more effective at eliciting muscle hypertrophy compared to traditional training. However, it was accompanied with higher exertion and discomfort.
Collapse
|
36
|
The Effect of Blood Flow Restriction on Muscle Hypertrophy and Tendon Thickness in Healthy Adults' Distal Lower-Extremity: A Critically Appraised Topic. J Sport Rehabil 2022; 31:635-639. [PMID: 34983020 DOI: 10.1123/jsr.2021-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022]
|
37
|
Hughes L, Hackney KJ, Patterson SD. Optimization of Exercise Countermeasures to Spaceflight Using Blood Flow Restriction. Aerosp Med Hum Perform 2022; 93:32-45. [PMID: 35063054 DOI: 10.3357/amhp.5855.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION: During spaceflight missions, astronauts work in an extreme environment with several hazards to physical health and performance. Exposure to microgravity results in remarkable deconditioning of several physiological systems, leading to impaired physical condition and human performance, posing a major risk to overall mission success and crew safety. Physical exercise is the cornerstone of strategies to mitigate physical deconditioning during spaceflight. Decades of research have enabled development of more optimal exercise strategies and equipment onboard the International Space Station. However, the effects of microgravity cannot be completely ameliorated with current exercise countermeasures. Moreover, future spaceflight missions deeper into space require a new generation of spacecraft, which will place yet more constraints on the use of exercise by limiting the amount, size, and weight of exercise equipment and the time available for exercise. Space agencies are exploring ways to optimize exercise countermeasures for spaceflight, specifically exercise strategies that are more efficient, require less equipment, and are less time-consuming. Blood flow restriction exercise is a low intensity exercise strategy that requires minimal equipment and can elicit positive training benefits across multiple physiological systems. This method of exercise training has potential as a strategy to optimize exercise countermeasures during spaceflight and reconditioning in terrestrial and partial gravity environments. The possible applications of blood flow restriction exercise during spaceflight are discussed herein.Hughes L, Hackney KJ, Patterson SD. Optimization of exercise countermeasures to spaceflight using blood flow restriction. Aerosp Med Hum Perform. 2021; 93(1):32-45.
Collapse
|
38
|
Centner C, Jerger S, Lauber B, Seynnes O, Friedrich T, Lolli D, Gollhofer A, König D. Low-Load Blood Flow Restriction and High-Load Resistance Training Induce Comparable Changes in Patellar Tendon Properties. Med Sci Sports Exerc 2021; 54:582-589. [PMID: 34772900 DOI: 10.1249/mss.0000000000002824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Low-load resistance training with blood flow restriction (LL-BFR) has emerged as a viable alternative to conventional high-load (HL) resistance training regimens. Despite increasing evidence confirming comparable muscle adaptations between LL-BFR and HL resistance exercise, only very little is known about tendinous mechanical and morphological adaptations following LL-BFR. Therefore, the aim of the present study was to examine the effects of 14 weeks of LL-BFR and HL training on patellar tendon adaptations. METHODS N = 29 recreationally active male participants were randomly allocated into the following two groups: LL-BFR resistance training (20-35% one repetition maximum/1RM) or HL resistance training (70-85% 1RM). Both groups trained three times per week for 14 weeks. One week before and after the intervention, patellar tendon mechanical and morphological properties were assessed via ultrasound and magnetic resonance imaging (MRI). Additionally, changes in muscle cross-sectional area (CSA) were quantified by MRI and muscle strength via dynamic 1RM measurements. RESULTS The findings demonstrated that both LL-BFR and HL training resulted in comparable changes in patellar tendon stiffness (LL-BFR: + 25.2%, p = 0.003; HL: + 22.5%, p = 0.024) without significant differences between groups. Similar increases in tendon CSA were observed in HL and LL-BFR. Muscle mass and strength also significantly increased in both groups but were not statistically different between HL (+ 38%) and LL-BFR (+ 34%), except for knee extension 1RM where higher changes were seen in LL-BFR. CONCLUSION The present results support the notion that both HL and LL-BFR cause substantial changes in patellar tendon properties and the magnitude of changes are not significantly different between conditions. Further studies are needed which examine the physiological mechanisms underlying the altered tendon properties following LL-BFR training.
Collapse
Affiliation(s)
- Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Germany Praxisklinik Rennbahn, Muttenz, Switzerland Department of Neurosciences and Movement Sciences, Université de Fribourg, Switzerland Department of Physical Performance, Norwegian School of Sport Sciences, Norway Department of Sports Science, Institute for Nutrition, Sports and Health, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bielitzki R, Behrendt T, Behrens M, Schega L. Time to Save Time: Beneficial Effects of Blood Flow Restriction Training and the Need to Quantify the Time Potentially Saved by Its Application During Musculoskeletal Rehabilitation. Phys Ther 2021; 101:6315163. [PMID: 34228788 DOI: 10.1093/ptj/pzab172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/14/2021] [Accepted: 06/06/2021] [Indexed: 11/14/2022]
Abstract
The main goal of musculoskeletal rehabilitation is to achieve the pre-injury and/or pre-surgery physical function level with a low risk of re-injury. Blood flow restriction (BFR) training is a promising alternative to conventional therapy approaches during musculoskeletal rehabilitation because various studies support its beneficial effects on muscle mass, strength, aerobic capacity, and pain perception. In this perspective article, we used an evidence-based progressive model of a rehabilitative program that integrated BFR in 4 rehabilitation phases: (1) passive BFR, (2) BFR combined with aerobic training, (3) BFR combined with low-load resistance training, and (4) BFR combined with low-load resistance training and traditional high-load resistance training. Considering the current research, we propose that a BFR-assisted rehabilitation has the potential to shorten the time course of therapy to reach the stage where the patient is able to tolerate resistance training with high loads. The information and arguments presented are intended to stimulate future research, which compares the time to achieve rehabilitative milestones and their physiological bases in each stage of the musculoskeletal rehabilitation process. This requires the quantification of BFR training-induced adaptations (eg, muscle mass, strength, capillary-to-muscle-area ratio, hypoalgesia, molecular changes) and the associated changes in performance with a high measurement frequency (≤1 week) to test our hypothesis. This information will help to quantify the time saved by BFR-assisted musculoskeletal rehabilitation. This is of particular importance for patients, because the potentially accelerated recovery of physical functioning would allow them to return to their work and/or social life earlier. Furthermore, other stakeholders in the health care system (eg, physicians, nurses, physical therapists, insurance companies) might benefit from that with regard to work and financial burden.
Collapse
Affiliation(s)
- Robert Bielitzki
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tom Behrendt
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Department of Orthopedics, University Medicine Rostock, Rostock, Germany
| | - Lutz Schega
- Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
40
|
Davids CJ, Næss TC, Moen M, Cumming KT, Horwath O, Psilander N, Ekblom B, Coombes JS, Peake JM, Raastad T, Roberts LA. Acute cellular and molecular responses and chronic adaptations to low-load blood flow restriction and high-load resistance exercise in trained individuals. J Appl Physiol (1985) 2021; 131:1731-1749. [PMID: 34554017 DOI: 10.1152/japplphysiol.00464.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blood flow restriction (BFR) with low-load resistance exercise (RE) is often used as a surrogate to traditional high-load RE to stimulate muscular adaptations, such as hypertrophy and strength. However, it is not clear whether such adaptations are achieved through similar cellular and molecular processes. We compared changes in muscle function, morphology and signaling pathways between these differing training protocols. Twenty-one males and females (mean ± SD: 24.3 ± 3.1 years) experienced with resistance training (4.9 ± 2.6 years) performed nine weeks of resistance training (three times per week) with either high-loads (75-80% 1RM; HL-RT), or low-loads with BFR (30-40% 1RM; LL-BFR). Before and after the training intervention, resting muscle biopsies were collected, and quadricep cross-sectional area (CSA), muscular strength and power were measured. Approximately 5 days following the intervention, the same individuals performed an additional 'acute' exercise session under the same conditions, and serial muscle biopsies were collected to assess hypertrophic- and ribosomal-based signaling stimuli. Quadricep CSA increased with both LL-BFR (7.4±4.3%) and HL-RT (4.6±2.9%), with no significant differences between training groups (p=0.37). Muscular strength also increased in both training groups, but with superior gains in squat 1RM occurring with HL-RT (p<0.01). Acute phosphorylation of several key proteins involved in hypertrophy signaling pathways, and expression of ribosomal RNA transcription factors occurred to a similar degree with LL-BFR and HL-RT (all p>0.05 for between-group comparisons). Together, these findings validate low-load resistance training with continuous BFR as an effective alternative to traditional high-load resistance training for increasing muscle hypertrophy in trained individuals.
Collapse
Affiliation(s)
- Charlie J Davids
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia.,Queensland Academy of Sport, Nathan, Australia
| | - Tore C Næss
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Maria Moen
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | | | - Oscar Horwath
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Niklas Psilander
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Björn Ekblom
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Jonathan M Peake
- Queensland Academy of Sport, Nathan, Australia.,Queensland University of Technology, School of Biomedical Science, Brisbane, Australia
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Llion Arwyn Roberts
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia.,Queensland Academy of Sport, Nathan, Australia.,Griffith Sports Science, School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
| |
Collapse
|
41
|
Canfer RJ, Chaudry S, Miller SC. Thermographic assessment of the immediate and short term-effects of blood flow restriction exercise on Achilles tendon skin temperature. Phys Ther Sport 2021; 49:171-177. [PMID: 33740582 DOI: 10.1016/j.ptsp.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To determine the thermal patterning of the Achilles tendon following bodyweight resistance exercise with and without blood-flow restriction (BFR). DESIGN Cross-sectional. SETTING Research laboratory. PARTICIPANTS Twelve asymptomatic recreational runners (Age: 37 ± 10, Height: 169 ± 20, Mass: 73.8 ± 13.4). MAIN OUTCOME MEASURES Thermograms were taken pre and post exercise with and without a BFR cuff on separate legs. BFR cuff pressure was set at 80% maximal arterial occlusion pressure determined using doppler via the tibial artery. Linear mixed-effects models were used to assess the effect of BFR and time post-exercise on skin-temperature (Tskin). RESULTS A lower Tskin was seen following BFR exercise at the tendon insertion (P = 0.002), but not at the free tendon (P = 0.234), or the musculotendinous junction (P = 0.933). A significant effect of time upon changes in Tskin was observed in both BFR and non-BFR groups (P = 0.002). No interaction of time and BFR were observed on changes in Tskin (P = 0.726). CONCLUSION Region specific changes in Tskin were found, with greater and longer reductions observed at the insertion of the Achilles following BFR exercise before returning to baseline. These findings could have implications for the programming of BFR exercise on tendon health. Future research should observe for differences between symptomatic and healthy tendons.
Collapse
Affiliation(s)
- R J Canfer
- UK MOD, Regional Rehabilitation Unit, RAF Honington, Bury St Edmunds, UK; Sports and Exercise Medicine, Queen Mary University London, Mile End Hospital, London, UK
| | - S Chaudry
- Sports and Exercise Medicine, Queen Mary University London, Mile End Hospital, London, UK.
| | - S C Miller
- Sports and Exercise Medicine, Queen Mary University London, Mile End Hospital, London, UK.
| |
Collapse
|
42
|
Duchateau J, Stragier S, Baudry S, Carpentier A. Strength Training: In Search of Optimal Strategies to Maximize Neuromuscular Performance. Exerc Sport Sci Rev 2021; 49:2-14. [PMID: 33044332 DOI: 10.1249/jes.0000000000000234] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Training with low-load exercise performed under blood flow restriction can augment muscle hypertrophy and maximal strength to a similar extent as the classical high-load strength training method. However, the blood flow restriction method elicits only minor neural adaptations. In an attempt to maximize training-related gains, we propose using other protocols that combine high voluntary activation, mechanical tension, and metabolic stress.
Collapse
Affiliation(s)
| | | | | | - Alain Carpentier
- Laboratory for Biometry and Exercise Nutrition, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
43
|
IN-SEASON REHABILITATION PROGRAM USING BLOOD FLOW RESTRICTION THERAPY FOR TWO DECATHLETES WITH PATELLAR TENDINOPATHY: A CASE REPORT. Int J Sports Phys Ther 2020; 15:1184-1195. [PMID: 33344034 DOI: 10.26603/ijspt20201184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background and Purpose Patellar tendinopathy is an overuse injury experienced primarily by athletes; especially athletes who participate in sports that involve frequent jumping. Therapeutic exercise is the primary conservative treatment for patients with this condition. However, some patients with patellar tendinopathy may be unable to tolerate the loading that occurs during exercise. The use of blood flow restriction (BFR) therapy for patients with patellar tendinopathy may allow the athlete to exercise with a lower load while still experiencing the physiological benefits associated with training at a higher intensity. The purpose of this case report was to detail the outcomes from a rehabilitation program utilizing BFR for two collegiate decathletes with patellar tendinopathy. Study Design Case ReportCase Descriptions and Interventions: Two NCAA Division III freshmen collegiate decathletes with a history of left knee pain prior to college and who had been complaining of increasing pain during the initial month of track practices. Findings from the musculoskeletal examinations included left sided lower extremity weakness, pain during functional testing, pain when palpating the left patellar tendon, and VISA-P scores less than 80. Ultrasound imaging at baseline revealed thickened tendons on the left with hypoechoic regions. Both athletes participated in 20 therapy sessions consisting of therapeutic exercises performed with BFR. Outcomes Both athletes experienced improvements in pain scores, increases in lower extremity strength, improved functional test performance, higher VISA-P scores, and improvements in tendon size and appearance as measured by diagnostic ultrasound. Conclusion Both athletes experienced improvements with the BFR-based therapeutic exercise program and were able to compete throughout the track season. The use of BFR may allow patients who are unable to tolerate exercise due to pain an alternative approach during rehabilitation. Future research should compare therapeutic exercise programs for this condition with and without BFR. Level of Evidence Level V.
Collapse
|
44
|
Rolnick N, Schoenfeld BJ. Blood Flow Restriction Training and the Physique Athlete: A Practical Research-Based Guide to Maximizing Muscle Size. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Da Silva-Grigoletto ME, Neto EP, Behm DG, Loenneke JP, La Scala Teixeira CV. Functional Training and Blood Flow Restriction: A Perspective View on the Integration of Techniques. Front Physiol 2020; 11:817. [PMID: 32848818 PMCID: PMC7412632 DOI: 10.3389/fphys.2020.00817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marzo E. Da Silva-Grigoletto
- Functional Training Group, Federal University of Sergipe, Aracajú, Brazil
- *Correspondence: Marzo E. Da Silva-Grigoletto
| | | | - David George Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jeremy P. Loenneke
- Department of Health, Exercise Science, and Recreation Management, University of Mississippi, Oxford, MS, United States
| | | |
Collapse
|
46
|
Chulvi-Medrano I, Picón-Martínez M, Cortell-Tormo JM, Tortosa-Martínez J, Alonso-Aubin DA, Alakhdar Y. Different Time Course of Recovery in Achilles Tendon Thickness After Low-Load Resistance Training With and Without Blood Flow Restriction. J Sport Rehabil 2020; 30:300-305. [PMID: 32717720 DOI: 10.1123/jsr.2019-0403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/10/2019] [Accepted: 03/19/2020] [Indexed: 11/18/2022]
Abstract
CONTEXT Blood flow restriction research has focused on muscular strength and hypertrophy. Limited data have been reported about the blood flow restriction effect on the tendon. OBJECTIVE To analyze and compare the time course of recovery in Achilles tendon thickness after a single bout of low-intensity resistance training (LI-RT) and low-intensity blood flow restriction training (LI-BFRT). METHODS A total of 56 healthy participants (24.60 [4.0] y; 23.65 [3.4] body mass index) were included. The dominant leg was assigned for LI-BFRT using low load (30% 1-repetition maximum) and 30% of the total occlusion pressure (52.21 [17.89] mm Hg) in plantar-flexion exercise (1 × 30 + 3 × 15 repetitions). The nondominant leg was assumed as a control condition. MAIN OUTCOME MEASURE Sonography images were taken before the intervention, immediately posttraining, and 24 hours after exercise (post-24) for the Achilles tendon thickness. RESULTS Changes in Achilles tendon thickness for LI-BFRT group were significant post- (-14.5%; P < .05) and post-24 (-9.2%; P < .05). In contrast, LI-RT group showed a transient decrease after exercise (-9.67%; P < .05) followed by a recovery of thickness post-24 (-1.06%; P < .05). Thickness post-24 was different between LI-BFRT versus LI-RT (P < .01). Hedge effect size analysis showed a large effect (g = 0.90) in LI-BFRT pre-post condition and a medium effect (g = 0.57) in post- to post-24. The LI-RT obtained a medium effect (g = 0.53) in pre-post condition and a small effect (g = 0.49) in post- to post-24. CONCLUSIONS This study showed a different time course of the acute response in Achilles tendon thickness between LI-BFRT and LI-RT. This may be associated with intratendinous fluid movement in response to LI-BFRT.
Collapse
|
47
|
Low-intensity blood flow restriction calf muscle training leads to similar functional and structural adaptations than conventional low-load strength training: A randomized controlled trial. PLoS One 2020; 15:e0235377. [PMID: 32603351 PMCID: PMC7326162 DOI: 10.1371/journal.pone.0235377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to investigate whether a six-week, twice weekly resistance training (4 sets at 30% 1-RM until failure) with practical blood flow restriction (BFR) using 7cm wide cuffs with a twist lock placed below the patella is superior to training without BFR (NoBFR) concerning muscle mass and strength gains in calf muscles. A two-group (BFR n = 12, mean age 27.33 (7.0) years, training experience 7.3 (7.0) years; NoBFR n = 9, mean age 28.9 (7.4) years, training experience 7.1 (6.6) years) randomized matched pair design based on initial 1-RM was used to assess the effects on structural and functional adaptations in healthy males (Perometer calf volume [CV], gastrocnemius muscle thickness using ultrasound [MT], 7-maximal hopping test for leg stiffness [LS], 1-RM smith machine calf raise [1-RM], and visual analogue scale as a measure of pain intensity [VAS]). The mean number of repetitions completed per training session across the intervention period was higher in the NoBFR group compared to the BFR group (70 (16) vs. 52 (9), p = 0.002). VAS measured during the first session increased similarly in both groups from first to fourth set (p<0.001). No group effects or time×group interactions were found for CV, MT, LS, and 1-RM. However, there were significant time effects for MT (BFR +0.07 cm; NoBFR +0.04; p = 0.008), and 1-RM (BFR +40 kg; NoBFR +34 kg; p<0.001). LS and CV remained unchanged through training. VAS in both groups were similar, and BFR and NoBFR were equally effective for increasing 1-RM and MT in trained males. However, BFR was more time efficient, due to lesser repetition per training session.
Collapse
|
48
|
Grønfeldt BM, Lindberg Nielsen J, Mieritz RM, Lund H, Aagaard P. Effect of blood‐flow restricted vs heavy‐load strength training on muscle strength: Systematic review and meta‐analysis. Scand J Med Sci Sports 2020; 30:837-848. [DOI: 10.1111/sms.13632] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Birk Mygind Grønfeldt
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense Denmark
- Physical Medicine and Rehabilitation Research – Copenhagen (PMR‐C) Clinical Research Center Amager‐Hvidovre Hospital University of Copenhagen Copenhagen Denmark
| | - Jakob Lindberg Nielsen
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense Denmark
| | - Rune Mygind Mieritz
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense Denmark
- Department of Neurosurgery Odense University Hospital Odense Denmark
| | - Hans Lund
- Centre for Evidence‐Based Practice Western Norway University of Applied Sciences Bergen Norway
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense Denmark
| |
Collapse
|
49
|
Owens JG, Rauzi MR, Kittelson A, Graber J, Bade MJ, Johnson J, Nabhan D. How New Technology Is Improving Physical Therapy. Curr Rev Musculoskelet Med 2020; 13:200-211. [PMID: 32162144 PMCID: PMC7174486 DOI: 10.1007/s12178-020-09610-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW As rehabilitation patient volume across the age spectrum increases and reimbursement rates decrease, clinicians are forced to produce favorable outcomes with limited resources and time. The purpose of this review is to highlight new technologies being utilized to improve standardization and outcomes for patients rehabilitating orthopedic injuries ranging from sports medicine to trauma to joint arthroplasty. RECENT FINDINGS A proliferation of new technologies in rehabilitation has recently occurred with the hope of improved outcomes, better patient compliance and safety, and return to athletic performance. These include technologies applied directly to the patient such as exoskeletons and instrumented insoles to extrinsic applications such as biofeedback and personalized reference charts. Well-structured randomized trials are ongoing centered around the efficacy and safety of these new technologies to help guide clinical necessity and appropriate application. We present a range of new technologies that may assist a diverse population of orthopedic conditions. Many of these interventions are already supported by level 1 evidence and appear safe and feasible for most clinical settings.
Collapse
Affiliation(s)
| | - Michelle R Rauzi
- University of Colorado Anschutz Medical Campus, Department of Physical Medicine and Rehabilitation, Aurora, CO, USA
| | - Andrew Kittelson
- University of Colorado Anschutz Medical Campus, Department of Physical Medicine and Rehabilitation, Aurora, CO, USA
| | - Jeremy Graber
- University of Colorado Anschutz Medical Campus, Department of Physical Medicine and Rehabilitation, Aurora, CO, USA
| | - Michael J Bade
- University of Colorado Anschutz Medical Campus, Department of Physical Medicine and Rehabilitation, Aurora, CO, USA
- Veterans Affairs Geriatric Research, Education, and Clinical Center, VA Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Julia Johnson
- Sports Medicine Division, United States Olympic & Paralympic Committee, Colorado Springs, CO, USA
- US Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, USA
| | - Dustin Nabhan
- Sports Medicine Division, United States Olympic & Paralympic Committee, Colorado Springs, CO, USA
- US Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO, USA
| |
Collapse
|
50
|
Spitz RW, Wong V, Bell ZW, Viana RB, Chatakondi RN, Abe T, Loenneke JP. Blood Flow Restricted Exercise and Discomfort: A Review. J Strength Cond Res 2020; 36:871-879. [PMID: 32058360 DOI: 10.1519/jsc.0000000000003525] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spitz, RW, Wong, V, Bell, ZW, Viana, RB, Chatakondi, RN, Abe, T, and Loenneke, JP. Blood flow restricted exercise and discomfort: A Review. J Strength Cond Res XX(X): 000-000, 2020-Blood flow restriction exercise involves using a pneumatic cuff or elastic band to restrict arterial inflow into the muscle and block venous return out of the muscle during the exercise bout. The resultant ischemia in conjunction with low-load exercise has shown to be beneficial with increasing muscle size and strength. However, a limitation of using blood flow restriction (BFR) is the accompanying discomfort associated with this type of exercise. Factors that may influence discomfort are applied pressure, width of the cuff, cuff material, sex, and training to failure. The goal of this review was to evaluate the existing literature and elucidate how these factors can be manipulated to reduce discomfort during exercise as well as provide possible directions for future research. Thirty-eight different studies were located investigating BFR and discomfort. It was found that BFR training causes more discomfort than exercise without BFR. However, chronic use of BFR may increase tolerability, but discomfort may still be elevated over traditional non-blood flow restricted exercise. Discomfort can be attenuated by the application of lower applied pressures and stopping short of task failure. Finally, in the upper body, wider cuffs seem to increase ratings of discomfort compared with more narrow cuffs. In conclusion, applying the proper-sized cuff and making the applied pressure relative to both the individual and the cuff applied may attenuate discomfort. Reducing discomfort during exercise may help increase adherence to exercise and rehabilitation programs.
Collapse
Affiliation(s)
- Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Zachary W Bell
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Ricardo B Viana
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi.,Faculty of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil
| | - Raksha N Chatakondi
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Takashi Abe
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| |
Collapse
|