1
|
Garcia VP, Fandl HK, Hijmans JG, Berry AR, Cardenas HL, Stockelman KA, DeSouza NM, Treuth JW, Greiner JJ, Park AJ, Stauffer BL, DeSouza CA. Effects of circulating endothelial microvesicles isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide production. Am J Physiol Endocrinol Metab 2024; 326:E38-E49. [PMID: 37991453 PMCID: PMC11193534 DOI: 10.1152/ajpendo.00139.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Circulating endothelial cell-derived microvesicles (EMVs) have been shown to be elevated with obesity and associated with endothelial dysfunction; however, their direct effect on endothelial cells is unknown. The experimental aim of this study was to determine the effect of EMVs isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide (NO) production. EMVs (CD144+ microvesicles) were identified, enumerated, and isolated from plasma by flow cytometry from 24 sedentary adults: 12 normal-weight adults [8 M/4 F; age: 55 ± 6 yr; body mass index (BMI): 24.3 ± 0.7 kg/m2; EMV: 144 ± 53 EMVs/µL] and 12 adults with obesity (6 M/6 F; 59 ± 7 yr; BMI: 31.0 ± 1.1 kg/m2; EMV: 245 ± 89 EMVs/µL). Human umbilical vein endothelial cells were cultured and treated with EMVs from either normal-weight adults or adults with obesity. EMVs from obese adults induced significantly higher release of interleukin (IL)-6 (108.2 ± 7.7 vs. 90.9 ± 10.0 pg/mL) and IL-8 (75.4 ± 9.8 vs. 59.5 ± 11.5 pg/mL) from endothelial cells vs. EMVs from normal-weight adults, concordant with greater intracellular expression of phosphorylated NF-κB p65 (Ser536; active NF-κB) [145.0 ± 34.1 vs. 114.5 ± 30.4 arbitrary units (AU)]. Expression of phosphorylated p38-MAPK (15.4 ± 5.7 vs. 9.2 ± 2.5 AU) and active caspase-3 (168.2 ± 65.5 vs. 107.8 ± 40.5 AU), markers of cell apoptosis, was higher in cells treated with obesity-related EMVs. Phosphorylated endothelial nitric oxide synthase (eNOS) (Ser1177) expression (23.5 ± 7.2 vs. 34.7 ± 9.7 AU) and NO production (6.9 ± 1.4 vs. 8.7 ± 0.7 µmol/L) were significantly lower in the cells treated with EMVs from obese adults. These data indicate that circulating EMVs from adults with obesity promote a proinflammatory, proapoptotic, and NO-compromised endothelial phenotype. Circulating EMVs are a potential mediator of obesity-related endothelial dysfunction.NEW & NOTEWORTHY In the present study, we determined the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide (NO) production in vitro. Circulating EMVs harvested from adults with obesity promoted a proinflammatory, proapoptotic, and NO-compromised endothelial phenotype. Elevated circulating EMVs in adults with obesity, independent of other cardiometabolic risk factors, are a potential novel systemic mediator of obesity-related endothelial dysfunction and vascular risk.
Collapse
Affiliation(s)
- Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Jamie G Hijmans
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Auburn R Berry
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Hannah L Cardenas
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Kelly A Stockelman
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - J William Treuth
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Andrew J Park
- Rocky Mountain Regional Spinal Injury System, Craig Hospital, Englewood, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Center, Denver, Colorado, United States
| | - Brian L Stauffer
- Department of Medicine, University of Colorado Anschutz Medical Center, Denver, Colorado, United States
- Denver Health Medical Center, Denver, Colorado, United States
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Center, Denver, Colorado, United States
| |
Collapse
|
2
|
Woolf EK, Terwoord JD, Litwin NS, Vazquez AR, Lee SY, Ghanem N, Michell KA, Smith BT, Grabos LE, Ketelhut NB, Bachman NP, Smith ME, Le Sayec M, Rao S, Gentile CL, Weir TL, Rodriguez-Mateos A, Seals DR, Dinenno FA, Johnson SA. Daily blueberry consumption for 12 weeks improves endothelial function in postmenopausal women with above-normal blood pressure through reductions in oxidative stress: a randomized controlled trial. Food Funct 2023; 14:2621-2641. [PMID: 36847333 DOI: 10.1039/d3fo00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Estrogen-deficient postmenopausal women have oxidative stress-mediated suppression of endothelial function that is exacerbated by high blood pressure. Previous research suggests blueberries may improve endothelial function through reductions in oxidative stress, while also exerting other cardiovascular benefits. The objective of this study was to examine the efficacy of blueberries to improve endothelial function and blood pressure in postmenopausal women with above-normal blood pressure, and to identify potential mechanisms for improvements in endothelial function. A randomized, double-blind, placebo-controlled, parallel-arm clinical trial was performed, where postmenopausal women aged 45-65 years with elevated blood pressure or stage 1-hypertension (total n = 43, endothelial function n = 32) consumed 22 g day-1 of freeze-dried highbush blueberry powder or placebo powder for 12 weeks. Endothelial function was assessed at baseline and 12 weeks through ultrasound measurement of brachial artery flow-mediated dilation (FMD) normalized to shear rate area under the curve (FMD/SRAUC) before and after intravenous infusion of a supraphysiologic dose of ascorbic acid to evaluate whether FMD improvements were mediated by reduced oxidative stress. Hemodynamics, arterial stiffness, cardiometabolic blood biomarkers, and plasma (poly)phenol metabolites were assessed at baseline and 4, 8, and 12 weeks, and venous endothelial cell protein expression was assessed at baseline and 12 weeks. Absolute FMD/SRAUC was 96% higher following blueberry consumption compared to baseline (p < 0.05) but unchanged in the placebo group (p > 0.05), and changes from baseline to 12 weeks were greater in the blueberry group than placebo (+1.09 × 10-4 ± 4.12 × 10-5vs. +3.82 × 10-6 ± 1.59 × 10-5, p < 0.03, respectively). The FMD/SRAUC response to ascorbic acid infusion was lower (p < 0.05) at 12 weeks compared to baseline in the blueberry group with no change in the placebo group (p > 0.05). The sum of plasma (poly)phenol metabolites increased at 4, 8, and 12 weeks in the blueberry group compared to baseline, and were higher than the placebo group (all p < 0.05). Increases in several plasma flavonoid and microbial metabolites were also noted. No major differences were found for blood pressure, arterial stiffness, blood biomarkers, or endothelial cell protein expression following blueberry consumption. These findings suggest daily consumption of freeze-dried blueberry powder for 12 weeks improves endothelial function through reduced oxidative stress in postmenopausal women with above-normal blood pressure. The clinical trial registry number is NCT03370991 (https://clinicaltrials.gov).
Collapse
Affiliation(s)
- Emily K Woolf
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Janée D Terwoord
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Nicole S Litwin
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Allegra R Vazquez
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Sylvia Y Lee
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Nancy Ghanem
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Kiri A Michell
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Brayden T Smith
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Lauren E Grabos
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Nathaniel B Ketelhut
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Nate P Bachman
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Melanie Le Sayec
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, England, UK
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher L Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, England, UK
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Frank A Dinenno
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
3
|
Association between atherogenic risk-modulating proteins and endothelium-dependent flow-mediated dilation in coronary artery disease patients. Eur J Appl Physiol 2023; 123:367-380. [PMID: 36305972 PMCID: PMC9894982 DOI: 10.1007/s00421-022-05040-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/04/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Endothelial dysfunction is an early and integral event in the development of atherosclerosis and coronary artery disease (CAD). Reduced NO bioavailability, oxidative stress, vasoconstriction, inflammation and senescence are all implicated in endothelial dysfunction. However, there are limited data examining associations between these pathways and direct in vivo bioassay measures of endothelial function in CAD patients. This study aimed to examine the relationships between in vivo measures of vascular function and the expression of atherogenic risk-modulating proteins in endothelial cells (ECs) isolated from the radial artery of CAD patients. METHODS Fifty-six patients with established CAD underwent trans-radial catheterization. Prior to catheterization, radial artery vascular function was assessed using a) flow-mediated dilation (FMD), and b) exercise-induced dilation in response to handgrip (HE%). Freshly isolated ECs were obtained from the radial artery during catheterization and protein content of eNOS, NAD(P)H oxidase subunit NOX2, NFκB, ET-1 and the senescence markers p53, p21 and p16 were evaluated alongside nitrotyrosine abundance and eNOS Ser1177 phosphorylation. RESULTS FMD was positively associated with eNOS Ser1177 phosphorylation (r = 0.290, P = 0.037), and protein content of p21 (r = 0.307, P = 0.027) and p16 (r = 0.426, P = 0.002). No associations were found between FMD and markers of oxidative stress, vasoconstriction or inflammation. In contrast to FMD, HE% was not associated with any of the EC proteins. CONCLUSION These data revealed a difference in the regulation of endothelium-dependent vasodilation measured in vivo between patients with CAD compared to previously reported data in subjects without a clinical diagnosis, suggesting that eNOS Ser1177 phosphorylation may be the key to maintain vasodilation in CAD patients.
Collapse
|
4
|
Tryfonos A, Rasoul D, Sadler D, Shelley J, Mills J, Green DJ, Dawson EA, Cocks M. Elevated shear rate-induced by exercise increases eNOS ser 1177 but not PECAM-1 Tyr 713 phosphorylation in human conduit artery endothelial cells. Eur J Sport Sci 2022; 23:561-570. [PMID: 35195045 DOI: 10.1080/17461391.2022.2046175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although evidence demonstrates the fundamental role of shear stress in vascular health, predominantly through the release of nitric oxide (NO), the mechanisms by which endothelial cells (EC)s sense and transduce shear are poorly understood. In cultured ECs tyrosine phosphorylation of PECAM-1 has been shown to activate eNOS in response to shear stress. However, in the human skeletal muscle microcirculation PECAM-1 was not activated in response to exercise or passive leg movement. Given this contradiction, this study aimed to assess the effect of exercise on conduit artery PECAM-1 and eNOS activation in humans. Eleven males were randomised to two groups; 30 minutes of handgrip exercise (n = 6), or a time-control group (n = 5). Protein content of eNOS and PECAM-1, alongside eNOS Ser1177 and PECAM-1 Tyr713 phosphorylation were assessed in ECs obtained from the radial artery pre- and post-intervention. Handgrip exercise resulted in a 5-fold increase in mean shear rate in the exercise group, with no change in the control group (group*time, P < 0.001). There was a 54% increase in eNOS Ser1177 phosphorylation in the exercise group, when compared to control group (group*time, P = 0.016), but no change was reported in PECAM-1 Tyr713 phosphorylation in either group (group*time, P > 0.05). eNOS and PECAM-1 protein content were unchanged (group*time, P > 0.05). Our data show that exercise-induced elevations in conduit artery shear rate increase eNOS Ser1177 phosphorylation but not PECAM-1 Tyr713 phosphorylation. This suggests PECAM-1 phosphorylation may not be involved in the vascular response to acute but prolonged elevations in exercise-induced shear rate in conduit arteries of healthy, active men.
Collapse
Affiliation(s)
- Andrea Tryfonos
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Debar Rasoul
- Liverpool Heart and Chest Hospital, Liverpool L14 3PE, United Kingdom
| | - Daniel Sadler
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - James Shelley
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Joseph Mills
- Liverpool Heart and Chest Hospital, Liverpool L14 3PE, United Kingdom
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Ellen A Dawson
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Matthew Cocks
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
5
|
Gallogly S, Fujisawa T, Hung JD, Brittan M, Skinner EM, Mitchell AJ, Medine C, Luque N, Zodda E, Cascante M, Hadoke PW, Mills NL, Tura-Ceide O. Generation of a Novel In Vitro Model to Study Endothelial Dysfunction from Atherothrombotic Specimens. Cardiovasc Drugs Ther 2021; 35:1281-1290. [PMID: 33608862 PMCID: PMC8578063 DOI: 10.1007/s10557-021-07151-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 11/30/2022]
Abstract
Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes. Supplementary Information The online version contains supplementary material available at 10.1007/s10557-021-07151-9.
Collapse
Affiliation(s)
- Susan Gallogly
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- BHF Centre for Vascular Regeneration, University of Edinburgh, Edinburgh, UK
| | - Takeshi Fujisawa
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- BHF Centre for Vascular Regeneration, University of Edinburgh, Edinburgh, UK
| | - John D Hung
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mairi Brittan
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- BHF Centre for Vascular Regeneration, University of Edinburgh, Edinburgh, UK
| | - Elizabeth M Skinner
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- BHF Centre for Vascular Regeneration, University of Edinburgh, Edinburgh, UK
| | - Andrew J Mitchell
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Claire Medine
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- BHF Centre for Vascular Regeneration, University of Edinburgh, Edinburgh, UK
| | - Neus Luque
- Servei de Pneumologia, Hospital Universitari de Girona Dr. Josep Trueta, Girona Biomedical Research Institute-IDIBGI, Girona, Spain
| | - Erika Zodda
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine-IBUB, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine-IBUB, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Patrick W Hadoke
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- BHF Centre for Vascular Regeneration, University of Edinburgh, Edinburgh, UK
| | - Olga Tura-Ceide
- Servei de Pneumologia, Hospital Universitari de Girona Dr. Josep Trueta, Girona Biomedical Research Institute-IDIBGI, Girona, Spain.
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain.
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'InvestigacionsBiomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Chia PY, Teo A, Yeo TW. Overview of the Assessment of Endothelial Function in Humans. Front Med (Lausanne) 2020; 7:542567. [PMID: 33117828 PMCID: PMC7575777 DOI: 10.3389/fmed.2020.542567] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
The endothelium is recognized to play an important role in various physiological functions including vascular tone, permeability, anticoagulation, and angiogenesis. Endothelial dysfunction is increasingly recognized to contribute to pathophysiology of many disease states, and depending on the disease stimuli, mechanisms underlying the endothelial dysfunction may be markedly different. As such, numerous techniques to measure different aspects of endothelial dysfunction have been developed and refined as available technology improves. Current available reviews on quantifying endothelial dysfunction generally concentrate on a single aspect of endothelial function, although diseases may affect more than one aspect of endothelial function. Here, we aim to provide an overview on the techniques available for the assessment of the different aspects of endothelial function in humans, human tissues or cells, namely vascular tone modulation, permeability, anticoagulation and fibrinolysis, and the use of endothelial biomarkers as predictors of outcomes.
Collapse
Affiliation(s)
- Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine and Radiology and Doherty Institute, University of Melbourne, Victoria, VIC, Australia
| | - Tsin Wen Yeo
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
7
|
Impact of catheterization on shear-mediated arterial dilation in healthy young men. Eur J Appl Physiol 2020; 120:2525-2532. [PMID: 32857185 PMCID: PMC7557491 DOI: 10.1007/s00421-020-04473-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023]
Abstract
Purpose Animal studies have shown that endothelial denudation abolishes vasodilation in response to increased shear stress. Interestingly, shear-mediated dilation has been reported to be reduced, but not abolished, in coronary artery disease (CAD) patients following catheterization. However, it is not known whether this resulted from a priori endothelial dysfunction in this diseased population. In this study, we evaluated shear-mediated dilation following catheterization in healthy young men. Methods Twenty-six (age: 24.4 ± 3.8 years, BMI: 24.3 ± 2.8 kg m−2, VO2peak: 50.5 ± 8.8 ml/kg/min) healthy males underwent unilateral transradial catheterization. Shear-mediated dilation of both radial arteries was measured using flow-mediated dilation (FMD) pre-, and 7 days post-catheterization. Results FMD was reduced in the catheterized arm [9.3 ± 4.1% to 4.3 ± 4.1% (P < 0.001)] post-catheterization, whereas no change was observed in the control arm [8.4 ± 3.8% to 7.3 ± 3.8% (P = 0.168)]. FMD was completely abolished in the catheterized arm in five participants. Baseline diameter (P = 0.001) and peak diameter during FMD (P = 0.035) were increased in the catheterized arm 7 days post-catheterization (baseline: 2.3 ± 0.3 to 2.6 ± 0.2 mm, P < 0.001, peak: 2.5 ± 0.3 to 2.7 ± 0.3 mm, P = 0.001), with no change in the control arm (baseline: 2.3 ± 0.3 to 2.3 ± 0.3 mm, P = 0.288, peak: 2.5 ± 0.3 to 2.5 ± 0.3 mm, P = 0.608). Conclusion This is the first study in young healthy individuals with intact a priori endothelial function to provide evidence of impaired shear-mediated dilation following catheterization. When combined with earlier studies in CAD patients, our data suggest the catheterization impairs artery function in humans.
Collapse
|
8
|
Craighead DH, Freeberg KA, Seals DR. Vascular Endothelial Function in Midlife/Older Adults Classified According to 2017 American College of Cardiology/American Heart Association Blood Pressure Guidelines. J Am Heart Assoc 2020; 9:e016625. [PMID: 32815446 PMCID: PMC7660773 DOI: 10.1161/jaha.120.016625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Impaired endothelial function is thought to contribute to the increased cardiovascular risk associated with above‐normal blood pressure (BP). However, the association between endothelial function and BP classified by 2017 American College of Cardiology/American Heart Association guidelines is unknown. Our objective was to determine if endothelial function decreases in midlife/older adults across the 2017 American College of Cardiology/American Heart Association guidelines BP classifications and identify associated mechanisms of action. Methods and Results A retrospective analysis of endothelial function (brachial artery flow‐mediated dilation) from 988 midlife/older adults (aged 50+ years) stratified by BP status (normal BP; elevated BP; stage 1 hypertension; stage 2 hypertension) was performed. Endothelium‐independent dilation (sublingual nitroglycerin), reactive oxygen species–mediated suppression of endothelial function (∆brachial artery flow‐mediated dilation with vitamin C infusion), and endothelial cell and plasma markers of oxidative stress and inflammation were assessed in subgroups. Compared with normal BP (n=411), brachial artery flow‐mediated dilation was 12% (P=0.04), 15% (P<0.01) and 20% (P<0.01) lower with elevated BP (n=173), stage 1 hypertension (n=248) and stage 2 hypertension (n=156), respectively, whereas endothelium‐independent dilation did not differ (P=0.14). Vitamin C infusion increased brachial artery flow‐mediated dilation in those with above‐normal BP (P≤0.02) but not normal BP (P=0.11). Endothelial cell p47phox (P<0.01), a marker of superoxide/reactive oxygen species–generating nicotinamide adenine dinucleotide phosphate oxidase, and circulating interleukin‐6 concentrations (P=0.01) were higher in individuals with above‐normal BP. Conclusions Vascular endothelial function is progressively impaired with increasing BP in otherwise healthy adults classified by 2017 American College of Cardiology/American Heart Association guidelines. Impaired endothelial function with above‐normal BP is mediated by excessive reactive oxygen species signaling associated with increased endothelial expression of nicotinamide adenine dinucleotide phosphate oxidase and circulating interleukin‐6.
Collapse
Affiliation(s)
- Daniel H Craighead
- Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Kaitlin A Freeberg
- Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Douglas R Seals
- Department of Integrative Physiology University of Colorado Boulder Boulder CO
| |
Collapse
|
9
|
Brunt VE, Gioscia-Ryan RA, Casso AG, VanDongen NS, Ziemba BP, Sapinsley ZJ, Richey JJ, Zigler MC, Neilson AP, Davy KP, Seals DR. Trimethylamine-N-Oxide Promotes Age-Related Vascular Oxidative Stress and Endothelial Dysfunction in Mice and Healthy Humans. Hypertension 2020; 76:101-112. [PMID: 32520619 PMCID: PMC7295014 DOI: 10.1161/hypertensionaha.120.14759] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Age-related vascular endothelial dysfunction is a major antecedent to cardiovascular diseases. We investigated whether increased circulating levels of the gut microbiome-generated metabolite trimethylamine-N-oxide induces endothelial dysfunction with aging. In healthy humans, plasma trimethylamine-N-oxide was higher in middle-aged/older (64±7 years) versus young (22±2 years) adults (6.5±0.7 versus 1.6±0.2 µmol/L) and inversely related to brachial artery flow-mediated dilation (r2=0.29, P<0.00001). In young mice, 6 months of dietary supplementation with trimethylamine-N-oxide induced an aging-like impairment in carotid artery endothelium-dependent dilation to acetylcholine versus control feeding (peak dilation: 79±3% versus 95±3%, P<0.01). This impairment was accompanied by increased vascular nitrotyrosine, a marker of oxidative stress, and reversed by the superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. Trimethylamine-N-oxide supplementation also reduced activation of endothelial nitric oxide synthase and impaired nitric oxide-mediated dilation, as assessed with the nitric oxide synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester). Acute incubation of carotid arteries with trimethylamine-N-oxide recapitulated these events. Next, treatment with 3,3-dimethyl-1-butanol for 8 to 10 weeks to suppress trimethylamine-N-oxide selectively improved endothelium-dependent dilation in old mice to young levels (peak: 90±2%) by normalizing vascular superoxide production, restoring nitric oxide-mediated dilation, and ameliorating superoxide-related suppression of endothelium-dependent dilation. Lastly, among healthy middle-aged/older adults, higher plasma trimethylamine-N-oxide was associated with greater nitrotyrosine abundance in biopsied endothelial cells, and infusion of the antioxidant ascorbic acid restored flow-mediated dilation to young levels, indicating tonic oxidative stress-related suppression of endothelial function with higher circulating trimethylamine-N-oxide. Using multiple experimental approaches in mice and humans, we demonstrate a clear role of trimethylamine-N-oxide in promoting age-related endothelial dysfunction via oxidative stress, which may have implications for prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Vienna E. Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | | | - Abigail G. Casso
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | | | - Brian P. Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Zachary J. Sapinsley
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - James J. Richey
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Melanie C. Zigler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Andrew P. Neilson
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA
| | - Kevin P. Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
10
|
Kuczmarski AV, Shoemaker LN, Hobson JC, Edwards DG, Wenner MM. Altered endothelial ET B receptor expression in postmenopausal women. Am J Physiol Heart Circ Physiol 2020; 319:H242-H247. [PMID: 32559137 DOI: 10.1152/ajpheart.00342.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endothelin system plays an important role in mediating vascular function. The endothelin-B receptor (ETBR) on endothelial cells mediates vasodilation via nitric oxide production. The vasodilatory effect of the ETBR is lost following menopause and may contribute to impaired vascular endothelial function in postmenopausal women (PMW). However, it is unclear if these functional changes are due to changes in ETBR expression on the endothelium. Therefore, the purpose of this study was to test the hypothesis that endothelial cell ETBR expression is lower in PMW compared with young women (YW). Primary endothelial cells were harvested from the antecubital vein of healthy PMW (n = 15, 60 ± 6 yr) and YW (n = 15, 22 ± 2 yr). Cells were identified as endothelial cells by staining for vascular endothelial cadherin, and nuclear integrity was assessed using 4',6-diamidino-2-phenylindole (DAPI). Within those cells, ETBR was quantified using immunocytochemistry; fluorescence intensity was measured in 30 cells and averaged for each participant. Endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Endothelial cell ETBR expression was lower in PMW [0.46 ± 0.11 arbitrary units (AU)] compared with YW (0.58 ± 0.14 AU; P = 0.02). Furthermore, significant correlations between ETBR expression and FMD (r = 0.47, P < 0.01), total cholesterol (r = -0.38, P = 0.04), and LDL cholesterol (r = -0.39, P = 0.03) were observed. These data demonstrate that endothelial cell ETBR expression is attenuated in PMW. These novel findings provide additional insight into the mechanisms underlying vascular endothelial dysfunction in PMW.NEW & NOTEWORTHY Our study provides novel data demonstrating attenuated endothelial ETBR expression in postmenopausal women. Furthermore, our data extend current knowledge by demonstrating a positive relation between ETBR expression and brachial artery flow-mediated dilation. These findings provide additional mechanistic insight into vascular endothelial dysfunction in postmenopausal women.
Collapse
Affiliation(s)
- Andrew V Kuczmarski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Leena N Shoemaker
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Joshua C Hobson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
11
|
Fetterman JL, Keith RJ, Palmisano JN, McGlasson KL, Weisbrod RM, Majid S, Bastin R, Stathos MM, Stokes AC, Robertson RM, Bhatnagar A, Hamburg NM. Alterations in Vascular Function Associated With the Use of Combustible and Electronic Cigarettes. J Am Heart Assoc 2020; 9:e014570. [PMID: 32345096 PMCID: PMC7428567 DOI: 10.1161/jaha.119.014570] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Electronic cigarettes (e-cigarettes) have been proposed as a potential harm reduction tool for combustible cigarette smokers. The majority of adult e-cigarette users continue to smoke combustible cigarettes and are considered dual users. The vascular impact of e-cigarettes remains incompletely defined. Methods and Results We examined the association of e-cigarette use with measures of vascular function and tonometry, preclinical measures of cardiovascular injury. As part of the CITU (Cardiovascular Injury due to Tobacco Use) study, we performed noninvasive vascular function testing in individuals without known cardiovascular disease or cardiovascular disease risk factors who were nonsmokers (n=94), users of combustible cigarettes (n=285), users of e-cigarettes (n=36), or dual users (n=52). In unadjusted analyses, measures of arterial stiffness including carotid-femoral pulse wave velocity, augmentation index, carotid-radial pulse wave velocity, and central blood pressures differed across the use groups. In multivariable models adjusted for age, sex, race, and study site, combustible cigarette smokers had higher augmentation index compared with nonusers (129.8±1.5 versus 118.8±2.7, P=0.003). The augmentation index was similar between combustible cigarette smokers compared with sole e-cigarette users (129.8±1.5 versus 126.2±5.9, P=1.0) and dual users (129.8±1.5 versus 134.9±4.0, P=1.0). Endothelial cells from combustible cigarette smokers and sole e-cigarette users produced less nitric oxide in response to A23187 stimulation compared with nonsmokers, suggestive of impaired endothelial nitric oxide synthase signaling. Conclusions Our findings suggest that e-cigarette use is not associated with a more favorable vascular profile. Future longitudinal studies are needed to evaluate the long-term risks of sustained e-cigarette use.
Collapse
Affiliation(s)
- Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute Boston University School of Medicine Boston MA
| | - Rachel J Keith
- University of Louisville School of Medicine Louisville KY
| | - Joseph N Palmisano
- Evans Department of Medicine and Whitaker Cardiovascular Institute Boston University School of Medicine Boston MA
| | - Kathleen L McGlasson
- Evans Department of Medicine and Whitaker Cardiovascular Institute Boston University School of Medicine Boston MA
| | - Robert M Weisbrod
- Evans Department of Medicine and Whitaker Cardiovascular Institute Boston University School of Medicine Boston MA
| | - Sana Majid
- Evans Department of Medicine and Whitaker Cardiovascular Institute Boston University School of Medicine Boston MA
| | - Reena Bastin
- Evans Department of Medicine and Whitaker Cardiovascular Institute Boston University School of Medicine Boston MA
| | - Mary Margaret Stathos
- Evans Department of Medicine and Whitaker Cardiovascular Institute Boston University School of Medicine Boston MA
| | | | | | | | - Naomi M Hamburg
- Evans Department of Medicine and Whitaker Cardiovascular Institute Boston University School of Medicine Boston MA
| |
Collapse
|
12
|
Hijmans JG, Stockelman KA, Garcia V, Levy MV, Brewster LM, Bammert TD, Greiner JJ, Stauffer BL, Connick E, DeSouza CA. Circulating Microparticles Are Elevated in Treated HIV -1 Infection and Are Deleterious to Endothelial Cell Function. J Am Heart Assoc 2020; 8:e011134. [PMID: 30779672 PMCID: PMC6405669 DOI: 10.1161/jaha.118.011134] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Circulating microparticles have emerged as biomarkers and effectors of vascular disease. Elevated rates of cardiovascular disease are seen in HIV -1-seropositive individuals. The aims of this study were to determine: (1) if circulating microparticles are elevated in antiretroviral therapy-treated HIV -1-seropositive adults; and (2) the effects of microparticles isolated from antiretroviral therapy -treated HIV -1-seropositive adults on endothelial cell function, in vitro. Methods and Results Circulating levels of endothelial-, platelet-, monocyte-, and leukocyte-derived microparticles were determined by flow cytometry in plasma from 15 healthy and 15 antiretroviral therapy-treated, virologically suppressed HIV -1-seropositive men. Human umbilical vein endothelial cells were treated with microparticles from individual subjects for 24 hours; thereafter, endothelial cell inflammation, oxidative stress, senescence, and apoptosis were assessed. Circulating concentrations of endothelial-, platelet-, monocyte-, and leukocyte-derived microparticles were significantly higher (≈35%-225%) in the HIV -1-seropositive compared with healthy men. Microparticles from HIV -1-seropositive men induced significantly greater endothelial cell release of interleukin-6 and interleukin-8 (≈20% and ≈35%, respectively) and nuclear factor-κB expression while suppressing anti-inflammatory microRNAs (miR-146a and miR-181b). Intracellular reactive oxygen species production and expression of reactive oxygen species -related heat shock protein 70 were both higher in cells treated with microparticles from the HIV -1-seropositive men. In addition, the percentage of senescent cells was significantly higher and sirtuin 1 expression lower in cells treated with HIV -1-related microparticles. Finally, caspase-3 was significantly elevated by microparticles from HIV -1-seropositive men. Conclusions Circulating concentrations of endothelial-, platelet-, monocyte-, and leukocyte-derived microparticles were higher in antiretroviral therapy-treated HIV -1-seropositive men and adversely affect endothelial cells promoting cellular inflammation, oxidative stress, senescence, and apoptosis. Circulating microparticles may contribute to the vascular risk associated with HIV -1 infection.
Collapse
Affiliation(s)
- Jamie G Hijmans
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Kelly A Stockelman
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Vinicius Garcia
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Ma'ayan V Levy
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - L Madden Brewster
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Tyler D Bammert
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Jared J Greiner
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO
| | - Brian L Stauffer
- 2 Department of Medicine Anschutz Medical Center University of Colorado Denver Denver CO.,3 Denver Health Medical Center Denver CO
| | | | - Christopher A DeSouza
- 1 Integrative Vascular Biology Laboratory Department of Integrative Physiology University of Colorado Boulder Boulder CO.,2 Department of Medicine Anschutz Medical Center University of Colorado Denver Denver CO
| |
Collapse
|
13
|
Comparative Transcriptomics of Ex Vivo, Patient-Derived Endothelial Cells Reveals Novel Pathways Associated With Type 2 Diabetes Mellitus. JACC Basic Transl Sci 2019; 4:567-574. [PMID: 31768474 PMCID: PMC6872769 DOI: 10.1016/j.jacbts.2019.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
Abstract
Endothelial cells can be harvested directly from humans, rapidly sorted and subjected to RNA-sequencing to study global gene expression. In endothelial cells isolated from patients with type 2 diabetes mellitus, pathways involved in TGF-β and Cyclin-D1 signaling were positively enriched while androgen signaling and oxidative phosphorylation were negatively enriched compared to healthy individuals. Patient-derived endothelial cells can be used to discover and validate disease-associated pathways.
In this study low-input RNA-sequencing was used to annotate the molecular identity of endothelial cells isolated and immunopurified with CD144 microbeads. Using this technique, comparative gene expression profiling from healthy subjects and patients with type 2 diabetes mellitus identified both known and novel pathways linked with EC dysfunction. Modeling of diabetes by treating cultured ECs with high glucose identified shared changes in gene expression in diabetic cells. Overall, the data demonstrate how purified ECs from patients can be used to generate new hypotheses about mechanisms of human vascular disease.
Collapse
Key Words
- BSA, bovine serum albumin
- EC, endothelial cell
- EDTA, ethylenediamine tetra-acetic acid
- FACS, fluorescence activated cell sorting
- FDR, false discovery rate
- GSEA, gene set enrichment analysis
- HUVEC, human umbilical vein endothelial cell
- IV, intravenous
- PBS, phosphate buffered saline
- Seq, sequencing
- T2DM, type 2 diabetes mellitus
- TGFβ, transforming growth factor beta
- VEGF, vascular endothelial growth factor
- VUMC, Vanderbilt University Medical Center
- WBC, white blood cell
- ddCt, delta-delta cycle threshold
- diabetes mellitus
- endothelial cell dysfunction
- endothelial cells
- gene expression
- qPCR, quantitative polymerase chain reaction
Collapse
|
14
|
Bilimoria J, Singh H. The Angiopoietin ligands and Tie receptors: potential diagnostic biomarkers of vascular disease. J Recept Signal Transduct Res 2019; 39:187-193. [PMID: 31429357 DOI: 10.1080/10799893.2019.1652650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Angiopoietin-1 (Angpt1)/Tie2 signaling pathway is important in regulating vascular function. Angpt1-induced Tie2 activation promotes vascular endothelial cell survival and reduces vascular leakage. Angiopoietin-2 (Angpt2), a weak agonist/antagonist of Tie2, opposes and regulates Angpt1 action. The Tie family of receptor tyrosine kinases, Tie2 and Tie1, exist as either homo-or heterodimers. The molecular complex between the receptors is also crucial in controlling Angpt1 signaling; hence, the molecular balance between Angpt1:Angpt2 and Tie2:Tie1 is important in determining endothelial integrity and vascular stability. This review presents evidence of the change observed in the Angiopoietin/Tie molecules in various pathophysiological conditions and discusses the potential clinical applications of these molecules in vascular complications.
Collapse
Affiliation(s)
- Jay Bilimoria
- Faculty of Health and Life Sciences, Leicester School of Allied Health Sciences, De Montfort University , Leicester , UK
| | - Harprit Singh
- Faculty of Health and Life Sciences, Leicester School of Allied Health Sciences, De Montfort University , Leicester , UK
| |
Collapse
|
15
|
Williams IM, Wu JC. Generation of Endothelial Cells From Human Pluripotent Stem Cells. Arterioscler Thromb Vasc Biol 2019; 39:1317-1329. [PMID: 31242035 DOI: 10.1161/atvbaha.119.312265] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelial cells (ECs) are critical for several aspects of cardiovascular disease therapy, including vascular regeneration, personalized drug development, and tissue engineering. Human pluripotent stem cells (hPSCs) afford us with an unprecedented opportunity to produce virtually unlimited quantities of human ECs. In this review, we highlight key developments and outstanding challenges in our ability to derive ECs de novo from hPSCs. Furthermore, we consider strategies for recapitulating the vessel- and tissue-specific functional heterogeneity of ECs in vitro. Finally, we discuss ongoing attempts to utilize hPSC-derived ECs and their progenitors for various therapeutic applications. Continued progress in generating hPSC-derived ECs will profoundly enhance our ability to discover novel drug targets, revascularize ischemic tissues, and engineer clinically relevant tissue constructs. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Ian M Williams
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA
| |
Collapse
|
16
|
Bretón‐Romero R, Weisbrod RM, Feng B, Holbrook M, Ko D, Stathos MM, Zhang J, Fetterman JL, Hamburg NM. Liraglutide Treatment Reduces Endothelial Endoplasmic Reticulum Stress and Insulin Resistance in Patients With Diabetes Mellitus. J Am Heart Assoc 2018; 7:e009379. [PMID: 30371206 PMCID: PMC6222937 DOI: 10.1161/jaha.118.009379] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
Background Prior studies have shown that nutrient excess induces endoplasmic reticulum ( ER ) stress in nonvascular tissues from patients with diabetes mellitus ( DM ). ER stress and the subsequent unfolded protein response may be protective, but sustained activation may drive vascular injury. Whether ER stress contributes to endothelial dysfunction in patients with DM remains unknown. Methods and Results To characterize vascular ER stress, we isolated endothelial cells from 42 patients with DM and 37 subjects without DM. Endothelial cells from patients with DM displayed higher levels of ER stress markers compared with controls without DM. Both the early adaptive response, evidenced by higher phosphorylated protein kinase-like ER eukaryotic initiation factor-2a kinase and inositol-requiring ER-to-nucleus signaling protein 1 ( P=0.02, P=0.007, respectively), and the chronic ER stress response evidenced by higher C/ EBP α-homologous protein ( P=0.02), were activated in patients with DM . Higher inositol-requiring ER-to-nucleus signaling protein 1 activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction ( r=0.53, P=0.02). Acute treatment with liraglutide, a glucagon-like peptide 1 receptor agonist, reduced p-inositol-requiring ER-to-nucleus signaling protein 1 ( P=0.01), and the activation of its downstream target c-jun N-terminal kinase ( P=0.025) in endothelial cells from patients with DM . Furthermore, liraglutide restored insulin-stimulated endothelial nitric oxide synthase activation in patients with DM ( P=0.019). Conclusions In summary, our data suggest that ER stress contributes to vascular insulin resistance and endothelial dysfunction in patients with DM . Further, we have demonstrated that liraglutide ameliorates ER stress, decreases c-jun N-terminal kinase activation and restores insulin-mediated endothelial nitric oxide synthase activation in endothelial cells from patients with DM .
Collapse
Affiliation(s)
- Rosa Bretón‐Romero
- Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Robert M. Weisbrod
- Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Bihua Feng
- Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Monika Holbrook
- Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Darae Ko
- Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Mary M. Stathos
- Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Ji‐Yao Zhang
- Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | | | - Naomi M. Hamburg
- Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| |
Collapse
|
17
|
Maloney JP, Branchford BR, Brodsky GL, Cosmic MS, Calabrese DW, Aquilante CL, Maloney KW, Gonzalez JR, Zhang W, Moreau KL, Wiggins KL, Smith NL, Broeckel U, Di Paola J. The ENTPD1 promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk. FASEB J 2017; 31:2771-2784. [PMID: 28302652 PMCID: PMC6137499 DOI: 10.1096/fj.201600344r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/26/2017] [Indexed: 11/11/2022]
Abstract
Ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1) degrades the purines ATP and ADP that are key regulators of inflammation and clotting. We hypothesized that NTPDase1 polymorphisms exist and that they regulate this pathway. We sequenced the ENTPD1 gene (encoding NTPDase1) in 216 subjects then assessed genotypes in 2 cohorts comprising 2213 humans to identify ENTPD1 polymorphisms associated with venous thromboembolism (VTE). The G allele of the intron 1 polymorphism rs3176891 was more common in VTE vs. controls (odds ratio 1.26-1.9); it did not affect RNA splicing, but it was in strong linkage disequilibrium with the G allele of the promoter polymorphism rs3814159, which increased transcriptional activity by 8-fold. Oligonucleotides containing the G allele of this promoter region bound nuclear extracts more avidly. Carriers of rs3176891 G had endothelial cells with increased NTPDase1 activity and protein expression, and had platelets with enhanced aggregation. Thus, the G allele of rs3176891 marks a haplotype associated with increased clotting and platelet aggregation attributable to a promoter variant associated with increased transcription, expression, and activity of NTPDase1. We term this gain-of-function phenotype observed with rs3814159 G "CD39 Denver."-Maloney, J. P., Branchford, B. R., Brodsky, G. L., Cosmic, M. S., Calabrese, D. W., Aquilante, C. L., Maloney, K. W., Gonzalez, J. R., Zhang, W., Moreau, K. L., Wiggins, K. L., Smith, N. L., Broeckel, U., Di Paola, J. The ENTPD1 promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk.
Collapse
Affiliation(s)
- James P Maloney
- Division of Pulmonary and Critical Care Medicine, University of Colorado at Denver, Aurora, Colorado, USA;
- Denver Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Brian R Branchford
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| | - Gary L Brodsky
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| | - Maxwell S Cosmic
- Chest, Infectious Disease, and Critical Care Associates, Des Moines, Iowa, USA
| | - David W Calabrese
- Division of Pulmonary and Critical Care Medicine, University of Colorado at Denver, Aurora, Colorado, USA
- Denver Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Christina L Aquilante
- Pharmaceutical Sciences/School of Pharmacy, University of Colorado at Denver, Aurora, Colorado, USA
| | - Kelly W Maloney
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| | - Joseph R Gonzalez
- Otolaryngology-Head and Neck Surgery, University of Colorado at Denver, Aurora, Colorado, USA
| | - Weiming Zhang
- Biostatistics and Informatics/Colorado School of Public Health, University of Colorado at Denver, Aurora, Colorado, USA
| | - Kerrie L Moreau
- Division of Geriatric Medicine, University of Colorado at Denver, Aurora, Colorado, USA
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Seattle Epidemiologic Research and Information Center, Seattle, Washington, USA
- Veterans Affairs Office of Research and Development, Seattle, Washington, USA
- Group Health Research Institutes, Group Health Cooperative, Seattle, Washington, USA
| | - Ulrich Broeckel
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jorge Di Paola
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| |
Collapse
|
18
|
Tumor necrosis factor-α levels and non-surgical bleeding in continuous-flow left ventricular assist devices. J Heart Lung Transplant 2017; 37:107-115. [PMID: 28651907 DOI: 10.1016/j.healun.2017.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Non-surgical bleeding (NSB) due to angiodysplasia is common in left ventricular assist device (LVAD) patients. Thrombin-induced angiopoietin-2 (Ang-2) expression in LVAD patients leads to altered angiogenesis and is associated with lower angiopoietin-1 (Ang-1) and increased NSB. However, the mechanism for decreased Ang-1, made by pericytes, is unknown and the origin of thrombin in LVAD patients is unclear. We hypothesized that high tumor necrosis factor-α (TNF-α) levels in LVAD patients induce pericyte apoptosis, tissue factor (TF) expression and vascular instability. METHODS We incubated cultured pericytes with serum from patients with heart failure (HF), LVAD or orthotopic heart transplantation (OHT), with or without TNF-α blockade. We performed several measurements: Ang-1 expression was assessed by reverse transcript-polymerase chain reaction (RT-PCR) and pericyte death fluorescently; TF expression was assessed by RT-PCR in cultured endothelial cells incubated with patient plasma with or without TNF-α blockade; and TF expression was assessed in endothelial biopsy samples from these patients by immunofluorescence. We incubated cultured endothelial cells on Matrigel with patient serum with or without TNF-α blockade and determined tube formation by microscopy. RESULTS Serum from LVAD patients had higher levels of TNF-α, suppressed Ang-1 expression in pericytes, and induced pericyte death, and there was accelerated endothelial tube formation compared with serum from patients without LVADs. TF was higher in both plasma and endothelial cells from LVAD patients, and plasma from LVAD patients induced more endothelial TF expression. All of these effects were reversed or reduced with TNF-α blockade. High levels of TNF-α were associated with increased risk of NSB. CONCLUSIONS Elevated TNF-α in LVAD patients is a central regulator of altered angiogenesis, pericyte apoptosis and expression of TF and Ang-1.
Collapse
|
19
|
Tabit CE, Chen P, Kim GH, Fedson SE, Sayer G, Coplan MJ, Jeevanandam V, Uriel N, Liao JK. Elevated Angiopoietin-2 Level in Patients With Continuous-Flow Left Ventricular Assist Devices Leads to Altered Angiogenesis and Is Associated With Higher Nonsurgical Bleeding. Circulation 2016; 134:141-52. [PMID: 27354285 DOI: 10.1161/circulationaha.115.019692] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/18/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Nonsurgical bleeding is the most common adverse event in patients with continuous-flow left ventricular assist devices (LVADs) and is caused by arteriovenous malformations. We hypothesized that deregulation of an angiogenic factor, angiopoietin-2 (Ang-2), in patients with LVADs leads to increased angiogenesis and higher nonsurgical bleeding. METHODS Ang-2 and thrombin levels were measured by ELISA and Western blotting, respectively, in blood samples from 101 patients with heart failure, LVAD, or orthotopic heart transplantation. Ang-2 expression in endothelial biopsy was quantified by immunofluorescence. Angiogenesis was determined by in vitro tube formation from serum from each patient with or without Ang-2-blocking antibody. Ang-2 gene expression was measured by reverse transcription-polymerase chain reaction in endothelial cells incubated with plasma from each patient with or without the thrombin receptor blocker vorapaxar. RESULTS Compared with patients with heart failure or those with orthotopic heart transplantation, serum levels and endothelial expression of Ang-2 were higher in LVAD patients (P=0.001 and P<0.001, respectively). This corresponded to an increased angiogenic potential of serum from patients with LVADs (P<0.001), which was normalized with Ang-2 blockade. Furthermore, plasma from LVAD patients contained higher amounts of thrombin (P=0.003), which was associated with activation of the contact coagulation system. Plasma from LVAD patients induced more Ang-2 gene expression in endothelial cells (P<0.001), which was reduced with thrombin receptor blockade (P=0.013). LVAD patients with Ang-2 levels above the mean (12.32 ng/mL) had more nonsurgical bleeding events compared with patients with Ang-2 levels below the mean (P=0.003). CONCLUSIONS Our findings indicate that thrombin-induced Ang-2 expression in LVAD patients leads to increased angiogenesis in vitro and may be associated with higher nonsurgical bleeding events. Ang-2 therefore may contribute to arteriovenous malformation formation and subsequent bleeding in LVAD patients.
Collapse
Affiliation(s)
- Corey E Tabit
- From the Department of Medicine, Section of Cardiology (C.E.T., P.C., G.H.K., G.S., M.J.C., N.U., J.K.L.) and Department of Surgery, Section of Cardiac and Thoracic Surgery (V.T.), University of Chicago, IL; and Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (S.E.F.)
| | - Phetcharat Chen
- From the Department of Medicine, Section of Cardiology (C.E.T., P.C., G.H.K., G.S., M.J.C., N.U., J.K.L.) and Department of Surgery, Section of Cardiac and Thoracic Surgery (V.T.), University of Chicago, IL; and Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (S.E.F.)
| | - Gene H Kim
- From the Department of Medicine, Section of Cardiology (C.E.T., P.C., G.H.K., G.S., M.J.C., N.U., J.K.L.) and Department of Surgery, Section of Cardiac and Thoracic Surgery (V.T.), University of Chicago, IL; and Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (S.E.F.)
| | - Savitri E Fedson
- From the Department of Medicine, Section of Cardiology (C.E.T., P.C., G.H.K., G.S., M.J.C., N.U., J.K.L.) and Department of Surgery, Section of Cardiac and Thoracic Surgery (V.T.), University of Chicago, IL; and Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (S.E.F.)
| | - Gabriel Sayer
- From the Department of Medicine, Section of Cardiology (C.E.T., P.C., G.H.K., G.S., M.J.C., N.U., J.K.L.) and Department of Surgery, Section of Cardiac and Thoracic Surgery (V.T.), University of Chicago, IL; and Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (S.E.F.)
| | - Mitchell J Coplan
- From the Department of Medicine, Section of Cardiology (C.E.T., P.C., G.H.K., G.S., M.J.C., N.U., J.K.L.) and Department of Surgery, Section of Cardiac and Thoracic Surgery (V.T.), University of Chicago, IL; and Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (S.E.F.)
| | - Valluvan Jeevanandam
- From the Department of Medicine, Section of Cardiology (C.E.T., P.C., G.H.K., G.S., M.J.C., N.U., J.K.L.) and Department of Surgery, Section of Cardiac and Thoracic Surgery (V.T.), University of Chicago, IL; and Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (S.E.F.)
| | - Nir Uriel
- From the Department of Medicine, Section of Cardiology (C.E.T., P.C., G.H.K., G.S., M.J.C., N.U., J.K.L.) and Department of Surgery, Section of Cardiac and Thoracic Surgery (V.T.), University of Chicago, IL; and Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (S.E.F.)
| | - James K Liao
- From the Department of Medicine, Section of Cardiology (C.E.T., P.C., G.H.K., G.S., M.J.C., N.U., J.K.L.) and Department of Surgery, Section of Cardiac and Thoracic Surgery (V.T.), University of Chicago, IL; and Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (S.E.F.).
| |
Collapse
|
20
|
Velasco A, Solow E, Price A, Wang Z, Arbique D, Arbique G, Adams-Huet B, Schwedhelm E, Lindner JR, Vongpatanasin W. Differential effects of nebivolol vs. metoprolol on microvascular function in hypertensive humans. Am J Physiol Heart Circ Physiol 2016; 311:H118-24. [PMID: 27199121 PMCID: PMC4967201 DOI: 10.1152/ajpheart.00237.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
Abstract
Use of β-adrenergic receptor (AR) blocker is associated with increased risk of fatigue and exercise intolerance. Nebivolol is a newer generation β-blocker, which is thought to avoid this side effect via its vasodilating property. However, the effects of nebivolol on skeletal muscle perfusion during exercise have not been determined in hypertensive patients. Accordingly, we performed contrast-enhanced ultrasound perfusion imaging of the forearm muscles in 25 untreated stage I hypertensive patients at rest and during handgrip exercise at baseline or after 12 wk of treatment with nebivolol (5-20 mg/day) or metoprolol succinate (100-300 mg/day), with a subsequent double crossover for 12 wk. Metoprolol and nebivolol each induced a reduction in the resting blood pressure and heart rate (130.9 ± 2.6/81.7 ± 1.8 vs. 131.6 ± 2.7/80.8 ± 1.5 mmHg and 63 ± 2 vs. 64 ± 2 beats/min) compared with baseline (142.1 ± 2.0/88.7 ± 1.4 mmHg and 75 ± 2 beats/min, respectively, both P < 0.01). Metoprolol significantly attenuated the increase in microvascular blood volume (MBV) during handgrip at 12 and 20 repetitions/min by 50% compared with baseline (mixed-model P < 0.05), which was not observed with nebivolol. Neither metoprolol nor nebivolol affected microvascular flow velocity (MFV). Similarly, metoprolol and nebivolol had no effect on the increase in the conduit brachial artery flow as determined by duplex Doppler ultrasound. Thus our study demonstrated a first direct evidence for metoprolol-induced impairment in the recruitment of microvascular units during exercise in hypertensive humans, which was avoided by nebivolol. This selective reduction in MBV without alteration in MFV by metoprolol suggested impaired vasodilation at the precapillary arteriolar level.
Collapse
Affiliation(s)
- Alejandro Velasco
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Solow
- Rheumatology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Angela Price
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhongyun Wang
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Debbie Arbique
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gary Arbique
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Beverley Adams-Huet
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Edzard Schwedhelm
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Jonathan R Lindner
- Knight Cardiovascular Center, Oregon Health and Science University, Portland, Oregon
| | - Wanpen Vongpatanasin
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas; Rheumatology Division, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
21
|
Fetterman JL, Holbrook M, Flint N, Feng B, Bretón-Romero R, Linder EA, Berk BD, Duess MA, Farb MG, Gokce N, Shirihai OS, Hamburg NM, Vita JA. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling. Atherosclerosis 2016; 247:207-17. [PMID: 26926601 DOI: 10.1016/j.atherosclerosis.2016.01.043] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/14/2016] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. METHODS AND RESULTS We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. CONCLUSION Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease.
Collapse
Affiliation(s)
- Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Monica Holbrook
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Nir Flint
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Bihua Feng
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rosa Bretón-Romero
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Erika A Linder
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Brittany D Berk
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mai-Ann Duess
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Melissa G Farb
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Orian S Shirihai
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Naomi M Hamburg
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
| | - Joseph A Vita
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
22
|
Bretón-Romero R, Feng B, Holbrook M, Farb MG, Fetterman JL, Linder EA, Berk BD, Masaki N, Weisbrod RM, Inagaki E, Gokce N, Fuster JJ, Walsh K, Hamburg NM. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling. Arterioscler Thromb Vasc Biol 2016; 36:561-9. [PMID: 26800561 DOI: 10.1161/atvbaha.115.306578] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. APPROACH AND RESULTS We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. CONCLUSIONS Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Rosa Bretón-Romero
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Bihua Feng
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Monika Holbrook
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Melissa G Farb
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Jessica L Fetterman
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Erika A Linder
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Brittany D Berk
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Nobuyuki Masaki
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Robert M Weisbrod
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Elica Inagaki
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Noyan Gokce
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Jose J Fuster
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Kenneth Walsh
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA
| | - Naomi M Hamburg
- From the Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, MA.
| |
Collapse
|
23
|
Harrell JW, Johansson RE, Evans TD, Sebranek JJ, Walker BJ, Eldridge MW, Serlin RC, Schrage WG. Preserved Microvascular Endothelial Function in Young, Obese Adults with Functional Loss of Nitric Oxide Signaling. Front Physiol 2015; 6:387. [PMID: 26733880 PMCID: PMC4686588 DOI: 10.3389/fphys.2015.00387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/30/2015] [Indexed: 01/04/2023] Open
Abstract
Data indicate endothelium-dependent dilation (EDD) may be preserved in the skeletal muscle microcirculation of young, obese adults. Preserved EDD might be mediated by compensatory mechanisms, impeding insight into preclinical vascular dysfunction. We aimed to determine the functional roles of nitric oxide synthase (NOS) and cyclooxygenase (COX) toward EDD in younger obese adults. We first hypothesized EDD would be preserved in young, obese adults. Further, we hypothesized a reduced contribution of NOS in young, obese adults would be replaced by increased COX signaling. Microvascular EDD was assessed with Doppler ultrasound and brachial artery infusion of acetylcholine (ACh) in younger (27 ± 1 year) obese (n = 29) and lean (n = 46) humans. Individual and combined contributions of NOS and COX were examined with intra-arterial infusions of l-NMMA and ketorolac, respectively. Vasodilation was quantified as an increase in forearm vascular conductance (ΔFVC). Arterial endothelial cell biopsies were analyzed for protein expression of endothelial nitric oxide synthase (eNOS). ΔFVC to ACh was similar between groups. After l-NMMA, ΔFVC to ACh was greater in obese adults (p < 0.05). There were no group differences in ΔFVC to ACh with ketorolac. With combined NOS-COX inhibition, ΔFVC was greater in obese adults at the intermediate dose of ACh. Surprisingly, arterial endothelial cell eNOS and phosphorylated eNOS were similar between groups. Younger obese adults exhibit preserved EDD and eNOS expression despite functional dissociation of NOS-mediated vasodilation and similar COX signaling. Compensatory NOS- and COX-independent vasodilatory mechanisms conceal reduced NOS contributions in otherwise healthy obese adults early in life, which may contribute to vascular dysfunction.
Collapse
Affiliation(s)
- John W Harrell
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Rebecca E Johansson
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Trent D Evans
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Joshua J Sebranek
- Department of Anesthesiology, University of Wisconsin Hospital and Clinics, University of Wisconsin-Madison Madison, WI, USA
| | - Benjamin J Walker
- Department of Anesthesiology, University of Wisconsin Hospital and Clinics, University of Wisconsin-Madison Madison, WI, USA
| | - Marlowe W Eldridge
- The John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, USA; Department of Pediatrics, University of Wisconsin Hospital and Clinics, University of Wisconsin-MadisonMadison, WI, USA
| | - Ronald C Serlin
- Department of Educational Psychology, University of Wisconsin-Madison Madison, WI, USA
| | - William G Schrage
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
24
|
Hwang MH, Yoo JK, Luttrell M, Kim HK, Meade TH, English M, Talcott S, Jaffe IZ, Christou DD. Acute effect of mineralocorticoid receptor antagonism on vascular function in healthy older adults. Exp Gerontol 2015; 73:86-94. [PMID: 26639352 DOI: 10.1016/j.exger.2015.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/04/2015] [Accepted: 11/26/2015] [Indexed: 12/27/2022]
Abstract
Mineralocorticoid receptor (MR) activation by aldosterone may regulate vascular function in health or contribute to vascular dysfunction in cardiovascular disease. Whether the effects are beneficial or detrimental to vascular function appear to be dependent on the integrity of the vascular endothelium and whether the responses are short-term or chronic. Acute modulation of MR activation has resulted in conflicting outcomes on vascular function in young healthy adults. Little is known about the vascular role of aldosterone and MR activation in healthy human aging. The primary objective of this study was to examine whether acute inhibition of MR by the selective antagonist eplerenone, influences vascular function in healthy older adults. We performed a randomized, double-blind, placebo-controlled crossover study in 22 adults (61±1 years; mean±SE, 53-79 years) who were free from overt clinical cardiovascular disease. We measured brachial artery flow-mediated endothelium-dependent dilation and endothelium-independent dilation to sublingual nitroglycerin (0.4 mg) following eplerenone (100 mg/dose, 2 doses, 24h between doses) or placebo. In response to acute MR antagonism, flow-mediated dilation decreased by 19% (from 6.9±0.5 to 5.6±0.6%, P=0.02; placebo vs. eplerenone). Endothelial nitric oxide synthase (eNOS) activity also decreased following MR antagonism based on the ratio of phosphorylated eNOS(Ser1177) to total eNOS (1.53±0.08 vs. 1.29±0.06, P=0.02). Nitroglycerin-induced dilation and blood pressure were unaffected (nitroglycerin-induced dilation: 21.9±1.9 vs. 21.0±1.5%, P=0.5 and systolic/diastolic blood pressure: 135/77±4/2 vs. 134/77±4/2 mmHg, P≥0.6). In conclusion, acute MR antagonism impairs vascular endothelial function in healthy older adults without influencing vascular smooth muscle responsiveness to exogenous nitric oxide or blood pressure.
Collapse
Affiliation(s)
- Moon-Hyon Hwang
- Dept of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States; Division of Health and Exercise Science, Incheon National University, Incheon, Korea
| | - Jeung-Ki Yoo
- Dept of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States
| | - Meredith Luttrell
- Dept of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Han-Kyul Kim
- Dept of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States
| | - Thomas H Meade
- Dept of Cardiology, Baylor Scott & White Health, College Station, TX, United States; Texas A&M University Health Science Center, Bryan, TX, United States
| | - Mark English
- Dept of Family & Community Medicine, Baylor Scott & White Health, College Station, TX, United States
| | - Susanne Talcott
- Dept of Nutrition and Food Science and Dept of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Demetra D Christou
- Dept of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
25
|
Sun Z, Su H, Long B, Sinclair E, Hetts SW, Higashida RT, Dowd CF, Halbach VV, Cooke DL. Endothelial cell high-enrichment from endovascular biopsy sample by laser capture microdissection and fluorescence activated cell sorting. J Biotechnol 2015; 192 Pt A:34-9. [PMID: 25450638 DOI: 10.1016/j.jbiotec.2014.07.434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Endovascular sampling and characterization from patients can provide very useful information about the pathogenesis of different vascular diseases, but it has been limited by the lack of an effective method of endothelial cell (EC) enrichment. We optimized the EC yield and enrichment from conventional guide wires by laser capture microdissection (LCM) and fluorescence activated cell sorting (FACS) technique, and addressed the feasibility of using these enriched ECs for downstream gene expression detection. METHODS Iliac artery endovascular samples from 10 patients undergoing routine catheter angiography were collected using conventional 0.038 in. J-shape guide wires. Each of these samples was equally divided into two parts, which were respectively used for EC enrichment by immunocytochemistry-coupled LCM or multiple color FACS. After RNA extraction and reverse transcription, the amplified cDNA was used for quantitative polymerase chain reaction (qPCR). RESULTS Fixed ECs, with positive CD31 or vWF fluorescent signal and endothelial like nucleus, were successfully separated by LCM and live single ECs were sorted on FACS by a seven color staining panel. EC yields by LCM and FACS were 51 ± 22 and 149 ± 56 respectively (P < 0.001). The minimum number of fixed ECs from ICC-coupled LCM for acceptable qPCR results of endothelial marker genes was 30, while acceptable qPCR results as enriched by FACS were attainable from a single live EC. CONCLUSION Both LCM and FACS can be used to enrich ECs from conventional guide wires and the enriched ECs can be used for downstream gene expression detection. FACS generated a higher EC yield and the sorted live ECs may be used for single cell gene expression detection.
Collapse
|
26
|
Brittan M, Hunter A, Boulberdaa M, Fujisawa T, Skinner EM, Shah AS, Baker AH, Mills NL. Impaired vascular function and repair in patients with premature coronary artery disease. Eur J Prev Cardiol 2015; 22:1557-66. [PMID: 26276790 DOI: 10.1177/2047487315600169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Endothelial dysfunction is central to the pathogenesis of coronary artery disease, but the role of local and circulating endothelial progenitor cells in maintaining vascular health is poorly understood. We hypothesised that impaired local and circulating vascular repair mechanisms predispose to endothelial dysfunction and the premature onset of coronary artery disease. METHODS AND RESULTS Patients with premature coronary artery disease (n = 16) and healthy age- and sex-matched controls (n = 16) underwent venous occlusion plethysmography with intra-arterial infusion of acetylcholine and sodium nitroprusside. Numbers of circulating endothelial progenitor cells were directly quantified in whole blood by flow cytometry. Endothelial cells were isolated from the blood vessel wall and from peripheral blood mononuclear cells, and expanded in vitro for phenotypic and functional characterisation and analysis of microRNA expression levels. A dose-dependent increase in forearm blood flow (p < 0.001) was attenuated in response to the endothelial-dependent vasodilator acetylcholine in patients compared with controls (p = 0.03). No differences in the number of circulating endothelial progenitor cells or in the phenotype, function or microRNA expression levels of endothelial outgrowth cells isolated from blood were observed in patients and controls. Conversely, local vessel wall endothelial cells from patients had significant impairments in proliferation, adhesion and migration, and significantly reduced expression levels of microRNAs known to regulate endothelial function (miRs -10 a, -let7b, -126 and -181 b) (p < 0.05 for all). CONCLUSION Local vessel wall derived endothelial cells, rather than circulating endothelial progenitor cells and their progeny, are impaired in patients with vascular dysfunction and premature coronary artery disease.
Collapse
Affiliation(s)
- Mairi Brittan
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, UK Scottish Centre for Regenerative Medicine, University of Edinburgh, UK
| | - Amanda Hunter
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Mounia Boulberdaa
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, UK
| | - Takeshi Fujisawa
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, UK Scottish Centre for Regenerative Medicine, University of Edinburgh, UK
| | - Elizabeth M Skinner
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, UK Scottish Centre for Regenerative Medicine, University of Edinburgh, UK
| | - Anoop Sv Shah
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Andrew H Baker
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, UK
| | - Nicholas L Mills
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, UK
| |
Collapse
|
27
|
Sun Z, Lawson DA, Sinclair E, Wang CY, Lai MD, Hetts SW, Higashida RT, Dowd CF, Halbach VV, Werb Z, Su H, Cooke DL. Endovascular biopsy: Strategy for analyzing gene expression profiles of individual endothelial cells obtained from human vessels ✩. ACTA ACUST UNITED AC 2015; 7:157-165. [PMID: 26989654 PMCID: PMC4792280 DOI: 10.1016/j.btre.2015.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The combination of guide wire sampling, FACS and high throughput microfluidic single-cell quantitative RT-PCR, is an effective strategy for analyzing molecular changes of ECs in vascular lesions. Although heterogeneous, the ECs in normal iliac artery fall into two classes.
Purpose To develop a strategy of achieving targeted collection of endothelial cells (ECs) by endovascular methods and analyzing the gene expression profiles of collected single ECs. Methods and results 134 ECs and 37 leukocytes were collected from four patients' intra-iliac artery endovascular guide wires by fluorescence activated cell sorting (FACS) and analyzed by single-cell quantitative RT-PCR for expression profile of 48 genes. Compared to CD45+ leukocytes, the ECs expressed higher levels (p < 0.05) of EC surface markers used on FACS and other EC related genes. The gene expression profile showed that these isolated ECs fell into two clusters, A and B, that differentially expressed 19 genes related to angiogenesis, inflammation and extracellular matrix remodeling, with cluster B ECs have demonstrating similarities to senescent or aging ECs. Conclusion Combination of endovascular device sampling, FACS and single-cell quantitative RT-PCR is a feasible method for analyzing EC gene expression profile in vascular lesions.
Collapse
Affiliation(s)
- Zhengda Sun
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Devon A Lawson
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Elizabeth Sinclair
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Chih-Yang Wang
- Department of Anatomy, University of California, San Francisco, CA, USA; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Steven W Hetts
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Randall T Higashida
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Christopher F Dowd
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Van V Halbach
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Daniel L Cooke
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
28
|
A novel minimally-invasive method to sample human endothelial cells for molecular profiling. PLoS One 2015; 10:e0118081. [PMID: 25679506 PMCID: PMC4332500 DOI: 10.1371/journal.pone.0118081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/05/2015] [Indexed: 01/05/2023] Open
Abstract
Objective The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity. Methods Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS) was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34 / CD105 / CD146) with the concomitant absence of leukocyte and platelet specific markers (CD11b / CD45). Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR). Results A median of 4,212 (IQR: 2161 – 6583) endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001), nitric oxide synthase 3 (NOS3, P<0.001) and vascular cell adhesion molecule 1 (VCAM-1, P<0.003) in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001). Conclusion This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.
Collapse
|
29
|
Yoo JK, Hwang MH, Luttrell MJ, Kim HK, Meade TH, English M, Segal MS, Christou DD. Higher levels of adiponectin in vascular endothelial cells are associated with greater brachial artery flow-mediated dilation in older adults. Exp Gerontol 2015; 63:1-7. [PMID: 25572013 DOI: 10.1016/j.exger.2014.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/17/2014] [Accepted: 12/31/2014] [Indexed: 02/07/2023]
Abstract
Adiponectin, an adipocyte-derived protein, exerts anti-atherosclerotic effects on the vascular endothelium. Recently adiponectin protein has been reported in murine vascular endothelial cells, however, whether adiponectin is present in human vascular endothelial cells remains unexplored. We sought to examine 1) adiponectin protein in vascular endothelial cells collected from older adults free of overt cardiovascular disease; 2) the relation between endothelial cell adiponectin and in vivo vascular endothelial function; and 3) the relation between endothelial cell adiponectin, circulating (plasma) adiponectin and related factors. We measured vascular endothelial function (brachial artery flow-mediated dilation using ultrasonography), vascular endothelial cell adiponectin (biopsy coupled with quantitative immunofluorescence) and circulating adiponectin (Mercodia, ELISA) in older, sedentary, non-smoking, men and women (55-79 years). We found that higher endothelial cell adiponectin was related with greater flow-mediated dilation (r = 0.43, P < 0.05) and greater flow-mediated dilation normalized for shear stress (r = 0.56, P < 0.01), but was not related with vascular smooth muscle responsiveness to nitric oxide (r = 0.04, P = 0.9). Vascular endothelial cell adiponectin was not related with circulating adiponectin (r = -0.14, P = 0.6). Endothelial cell and circulating adiponectin were differentially associated with adiposity, metabolic and other factors, but both were inversely associated with renal function (r = 0.44 to 0.62, P ≤ 0.04). In conclusion, higher endothelial cell adiponectin levels are associated with higher vascular endothelial function, independent of circulating adiponectin levels in older adults.
Collapse
Affiliation(s)
- Jeung-Ki Yoo
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Moon-Hyon Hwang
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Meredith J Luttrell
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Han-Kyul Kim
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Thomas H Meade
- Department of Cardiology, Baylor Scott & White Health, Texas A&M University, College Station, TX, USA
| | - Mark English
- Department of Family & Community Medicine, Baylor Scott & White Health, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Mark S Segal
- Department of Medicine, University of Florida, Gainesville, FL, USA; North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA
| | - Demetra D Christou
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Hamrang Z, Arthanari Y, Clarke D, Pluen A. Quantitative assessment of p-glycoprotein expression and function using confocal image analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1329-1339. [PMID: 25158832 DOI: 10.1017/s1431927614013014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
P-glycoprotein is implicated in clinical drug resistance; thus, rapid quantitative analysis of its expression and activity is of paramout importance to the design and success of novel therapeutics. The scope for the application of quantitative imaging and image analysis tools in this field is reported here at "proof of concept" level. P-glycoprotein expression was utilized as a model for quantitative immunofluorescence and subsequent spatial intensity distribution analysis (SpIDA). Following expression studies, p-glycoprotein inhibition as a function of verapamil concentration was assessed in two cell lines using live cell imaging of intracellular Calcein retention and a routine monolayer fluorescence assay. Intercellular and sub-cellular distributions in the expression of the p-glycoprotein transporter between parent and MDR1-transfected Madin-Derby Canine Kidney cell lines were examined. We have demonstrated that quantitative imaging can provide dose-response parameters while permitting direct microscopic analysis of intracellular fluorophore distributions in live and fixed samples. Analysis with SpIDA offers the ability to detect heterogeniety in the distribution of labeled species, and in conjunction with live cell imaging and immunofluorescence staining may be applied to the determination of pharmacological parameters or analysis of biopsies providing a rapid prognostic tool.
Collapse
Affiliation(s)
- Zahra Hamrang
- 1Manchester Pharmacy School,University of Manchester,Stopford Building,Manchester,M13 9PT,UK
| | - Yamini Arthanari
- 2Faculty of Life Sciences,University of Manchester,Michael Smith Building,Manchester,M13 9PT,UK
| | - David Clarke
- 1Manchester Pharmacy School,University of Manchester,Stopford Building,Manchester,M13 9PT,UK
| | - Alain Pluen
- 1Manchester Pharmacy School,University of Manchester,Stopford Building,Manchester,M13 9PT,UK
| |
Collapse
|
31
|
Hwang MH, Kim S. Type 2 Diabetes: Endothelial dysfunction and Exercise. J Exerc Nutrition Biochem 2014; 18:239-47. [PMID: 25566460 PMCID: PMC4241901 DOI: 10.5717/jenb.2014.18.3.239] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/16/2014] [Accepted: 09/26/2014] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Vascular endothelial dysfunction is an early marker of atherosclerosis characterized by decreased nitric oxide bioavailability in the vascular endothelium and smooth muscle cells. Recently, some animal models and in vitro trials demonstrated that excessive superoxide production from mitochondria within vascular endothelial cells played a role in the pathogenesis of atherosclerosis in type 2 diabetes. This review provides a systematic assessment of the effectiveness of exercise to identify effective approaches to recognize diabetes risk and prevent progression to heart disease. METHODS A systematic literature search was conducted to retrieve articles from 1979 to 2013 using the following databases: the MEDLINE, PubMed. Articles had to describe an intervention that physical activity and exercise to identify effective approaches to heart and vascular endothelium. RESULTS Currently, physical activity and exercise guidelines aimed to improve cardiovascular health in patients with type 2 diabetes are nonspecific. Benefit of aerobic exercise training on vascular endothelial function in type 2 diabetic patients is still controversial. CONCLUSION it is necessary to demonstrate the mechanism of endothelial dysfunction from live human tissues so that we can provide more specific exercise training regimens to enhance cardiovascular health in type 2 diabetic patients.
Collapse
Affiliation(s)
- Moon-Hyon Hwang
- Division of Clinical and Translational Science, Georgia Regents University, Georgia, USA
| | - Sangho Kim
- School of Global Sport Studies, Korea University, Sejong, Korea
| |
Collapse
|
32
|
Jablonski KL, Decker E, Perrenoud L, Kendrick J, Chonchol M, Seals DR, Jalal D. Assessment of vascular function in patients with chronic kidney disease. J Vis Exp 2014. [PMID: 24962357 DOI: 10.3791/51478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Collapse
Affiliation(s)
| | - Emily Decker
- Division of Renal Diseases and Hypertension, University of Colorado, Denver
| | - Loni Perrenoud
- Division of Renal Diseases and Hypertension, University of Colorado, Denver
| | - Jessica Kendrick
- Division of Renal Diseases and Hypertension, University of Colorado, Denver
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado, Denver
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder
| | - Diana Jalal
- Division of Renal Diseases and Hypertension, University of Colorado, Denver;
| |
Collapse
|
33
|
Gurovich AN, Avery JC, Holtgrieve NB, Braith RW. Flow-mediated dilation is associated with endothelial oxidative stress in human venous endothelial cells. Vasc Med 2014; 19:251-256. [PMID: 24916471 DOI: 10.1177/1358863x14537546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Flow-mediated dilation (FMD) is recognized as a non-invasive endothelial function bioassay. However, FMD's relationship with endothelial cell oxidative stress in humans is yet to be determined. Here, we sought to determine if FMD was associated with endothelial nitric oxide synthase (eNOS) and endothelial oxidative stress in humans. Twenty-seven apparently healthy young men (26.5±5.9 years) underwent brachial artery FMD testing and endothelial cell biopsy from a forearm vein. Non-normalized FMD (%) and three different brachial artery FMD normalizations were performed: (1) peak shear rate (%/SR); (2) area under the SR curve until peak dilation (%/AUC); and (3) AUC 30 seconds before peak dilation (%/AUC30). Immunofluorescence quantification was used to assess eNOS expression and nitrotyrosine (NT), a criterion marker of endothelial oxidative stress. Values for eNOS and NT expression were reported as a ratio of endothelial cell to human umbilical vein endothelial cell average pixel intensity. NT expression was significantly correlated with FMD normalized by AUC30 (r = -0.402, p<0.05). Other FMD normalizations and non-normalized FMD were not significantly correlated with NT expression (r range = -0.364 to -0.142, all p>0.05). There were no significant correlations between eNOS expression and normalized and non-normalized FMD (r range = -0.168 to -0.066, all p>0.05). In conclusion, brachial artery FMD is associated with venous endothelial cell oxidative stress. However, this association is observed only when FMD is normalized by AUC30.
Collapse
Affiliation(s)
- Alvaro N Gurovich
- Indiana State University, Department of Applied Medicine and Rehabilitation, Terre Haute, IN, USA
| | - Joseph C Avery
- University of Florida, Department of Applied Physiology and Kinesiology, Center for Exercise Sciences, Gainesville, FL, USA
| | - Nicholas B Holtgrieve
- Indiana State University, Department of Applied Medicine and Rehabilitation, Terre Haute, IN, USA
| | - Randy W Braith
- University of Florida, Department of Applied Physiology and Kinesiology, Center for Exercise Sciences, Gainesville, FL, USA
| |
Collapse
|
34
|
Colombo PC, Onat D, Harxhi A, Demmer RT, Hayashi Y, Jelic S, LeJemtel TH, Bucciarelli L, Kebschull M, Papapanou P, Uriel N, Schmidt AM, Sabbah HN, Jorde UP. Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur Heart J 2014; 35:448-54. [PMID: 24265434 PMCID: PMC3924182 DOI: 10.1093/eurheartj/eht456] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIMS Volume overload and venous congestion are typically viewed as a consequence of advanced and of acute heart failure (HF) and renal failure (RF) although it is possible that hypervolaemia itself might be a critical intermediate in the pathophysiology of these diseases. This study aimed at elucidating whether peripheral venous congestion is sufficient to promote changes in inflammatory, neurohormonal, and endothelial phenotype similar to those observed in HF and RF. METHODS To experimentally model peripheral venous congestion, we developed a new method (so-called venous stress test) and applied the methodology on 24 healthy subjects (14 men, age 35 ± 2 years). Venous arm pressure was increased to ∼30 mmHg above the baseline level by inflating a tourniquet cuff around the dominant arm (test arm). Blood and endothelial cells (ECs) were sampled from test and control arm (lacking an inflated cuff) before and after 75 min of venous congestion, using angiocatheters and endovascular wires. Magnetic beads coated with EC-specific antibodies were used for EC separation; amplified mRNA was analysed by Affymetrix HG-U133 Plus 2.0 Microarray. RESULTS Plasma interleukin-6 (IL-6), endothelin-1 (ET-1), angiotensin II (AII), vascular cell adhesion molecule-1 (VCAM-1), and chemokine (C-X-C motif) ligand 2 (CXCL2) were significantly increased in the congested arm. A total of 3437 mRNA probe sets were differentially expressed (P < 0.05) in venous ECs before vs. after testing, including ET-1, VCAM-1, and CXCL2. CONCLUSION Peripheral venous congestion causes release of inflammatory mediators, neurohormones, and activation of ECs. Overall, venous congestion mimicked, notable aspects of the phenotype typical of advanced and of acute HF and RF.
Collapse
Affiliation(s)
- Paolo C. Colombo
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA,Corresponding author. Tel: +1 2123052638, Fax: +1 2123057439,
| | - Duygu Onat
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ante Harxhi
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ryan T. Demmer
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Yacki Hayashi
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Sanja Jelic
- Division of Pulmonary, Columbia University Medical Center, New York, NY, USA
| | - Thierry H. LeJemtel
- Section of Cardiology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Panos Papapanou
- Department of Periodontology, Columbia University Medical Center, New York, NY, USA
| | - Nir Uriel
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ann Marie Schmidt
- Division of Endocrinology, Department of Medicine, New York University, New York, NY, USA
| | - Hani N. Sabbah
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Ulrich P. Jorde
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
35
|
Cooke DL, Su H, Sun Z, Guo Y, Guo D, Saeed MM, Hetts SW, Higashida RT, Dowd CF, Young WL, Halbach VV. Endovascular biopsy: evaluating the feasibility of harvesting endothelial cells using detachable coils. Interv Neuroradiol 2013; 19:399-408. [PMID: 24355142 DOI: 10.1177/159101991301900401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/20/2013] [Indexed: 11/16/2022] Open
Abstract
The absence of safe and reliable methods to harvest vascular tissue in situ limits the discovery of the underlying genetic and pathophysiological mechanisms of many vascular disorders such as aneurysms. We investigated the feasibility and comparable efficacy of endothelial cell collection using a spectrum of endovascular coils. Nine detachable coils ranging in k coefficient (0.15-0.24), diameter (4.0 mm-16.0 mm), and length (8.0 cm-47.0 cm) were tested in pigs. All coils were deployed and retrieved within the iliac artery of pigs (three coils/pig). Collected coils were evaluated under light microscopy. The total and endothelial cells collected by each coil were quantified. The nucleated cells were identified by Wright-Giemsa and DAPI stains. Endothelial and smooth muscle cells were identified by CD31 and α-smooth muscle actin antibody staining. Coils were deployed and retrieved without technical difficulty. Light microscopy demonstrated sheets of cellular material concentrated within the coil winds. All coils collected cellular material while five of nine (55.6%) coils retrieved endothelial cells. Coils collected mean endothelial cell counts of 89.0±101.6. Regression analysis demonstrated a positive correlation between increasing coil diameter and endothelial cell counts (R(2)=0.52, p = 0.029). Conventional detachable coils can be used to harvest endothelial cells. The number of endothelial cells collected by a coil positively correlated with its diameter. Given the widespread use of coils and their well-described safety profile their potential as an endovascular biopsy device would expand the availability of tissue for cellular and molecular analysis.
Collapse
Affiliation(s)
- Daniel L Cooke
- Department of Radiology and Biomedical Imaging; University of California; San Francisco, CA, USA -
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mineralocorticoid receptors modulate vascular endothelial function in human obesity. Clin Sci (Lond) 2013; 125:513-20. [PMID: 23786536 DOI: 10.1042/cs20130200] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity increases linearly with age and is associated with impaired vascular endothelial function and increased risk of cardiovascular disease. MRs (mineralocorticoid receptors) contribute to impaired vascular endothelial function in cardiovascular disease; however, their role in uncomplicated human obesity is unknown. Because plasma aldosterone levels are elevated in obesity and adipocytes may be a source of aldosterone, we hypothesized that MRs modulate vascular endothelial function in older adults in an adiposity-dependent manner. To test this hypothesis, we administered MR blockade (eplerenone; 100 mg/day) for 1 month in a balanced randomized double-blind placebo-controlled cross-over study to 22 older adults (ten men, 55-79 years) varying widely in adiposity [BMI (body mass index): 20-45 kg/m²], but who were free from overt cardiovascular disease. We evaluated vascular endothelial function [brachial artery FMD (flow-mediated dilation)] via ultrasonography) and oxidative stress (plasma F2-isoprostanes and vascular endothelial cell protein expression of nitrotyrosine and NADPH oxidase p47phox) during placebo and MR blockade. In the whole group, oxidative stress (P>0.05) and FMD did not change with MR blockade (6.39 ± 0.67 compared with 6.23 ± 0.73%; P=0.7). However, individual improvements in FMD in response to eplerenone were associated with higher total body fat (BMI: r=0.45, P=0.02; and dual-energy X-ray absorptiometry-derived percentage body fat: r=0.50, P=0.009) and abdominal fat (total: r=0.61, P=0.005; visceral: r=0.67, P=0.002; and subcutaneous: r=0.48, P=0.03). In addition, greater improvements in FMD with eplerenone were related to higher baseline fasting glucose (r=0.53, P=0.01). MRs influence vascular endothelial function in an adiposity-dependent manner in healthy older adults.
Collapse
|
37
|
Kaplon RE, Chung E, Reese L, Cox-York K, Seals DR, Gentile CL. Activation of the unfolded protein response in vascular endothelial cells of nondiabetic obese adults. J Clin Endocrinol Metab 2013; 98:E1505-9. [PMID: 23913943 PMCID: PMC3763980 DOI: 10.1210/jc.2013-1841] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Activation of the unfolded protein response (UPR) is emerging as an important molecular signature of cardiometabolic diseases associated with obesity. However, despite the well-established role of the vascular endothelium in obesity-related cardiometabolic dysfunction, it is unclear whether the UPR is activated in endothelial cells of obese adults. OBJECTIVE The objective of the study was to determine whether markers of UPR activation are increased in endothelial cells (ECs) of nondiabetic obese adults with impaired endothelial function. DESIGN, SETTING, AND PARTICIPANTS Endothelial cells were obtained from antecubital veins of the nondiabetic obese adults [body mass index (BMI) ≥ 30 kg/m(2), n = 12] with impaired endothelial function and from their nonobese peers (BMI < 30 kg/m(2), n = 14). MAIN OUTCOME VARIABLES UPR activation via expression (quantitative immunofluorescence) of the proximal UPR sensors, inositol-requiring endoplasmic reticulum (ER)-to-nucleus signaling protein 1 (IRE1), RNA-dependent protein kinase-like ER eukaryotic initiation factor-2α kinase (PERK), and activating transcription factor 6 (ATF6), were the main outcome variables. RESULTS IRE1 expression was greater in obese vs nonobese individuals (0.84 ± 0.09 vs 0.47 ± 0.02 IRE1 intensity/human umbilical vein EC (HUVEC) intensity (n = 10/8, P < .01). Obese individuals also had greater EC activation of UPR stress sensors PERK and ATF6, indicated by increased expression of phosphorylated PERK [p-PERK; 0.49 ± 0.05 vs 0.36 ± 0.03, p-PERK (threonine 981) intensity/HUVEC intensity, n = 10 men, 13 women, P < .05] and nuclear localization of ATF6 (0.38 ± 0.05 vs 0.23 ± 0.02, nuclear ATF6 intensity/HUVEC intensity, n = 5 men, 9 women, P < .01), respectively. Stepwise linear regression analysis revealed that indices of body fat (BMI and waist circumference) were the strongest independent predictors of all 3 UPR mediators, explaining between 18% and 59% of the variance in endothelial cell expression of IRE1, p-PERK, and nuclear ATF6 localization. CONCLUSION These results provide novel evidence for UPR activation in the endothelial cells of nondiabetic obese adults with vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Rachelle E Kaplon
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
38
|
Cocks M, Shepherd SO, Shaw CS, Achten J, Costa ML, Wagenmakers AJM. Immunofluorescence microscopy to assess enzymes controlling nitric oxide availability and microvascular blood flow in muscle. Microcirculation 2013; 19:642-51. [PMID: 22642427 DOI: 10.1111/j.1549-8719.2012.00199.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The net production of NO by the muscle microvascular endothelium is a key regulator of muscle microvascular blood flow. Here, we describe the development of a method to quantify the protein content and phosphorylation of endothelial NO synthase (eNOS content and eNOS ser(1177) phosphorylation) and NAD(P)H oxidase expression. METHODS Human muscle cryosections were stained using antibodies targeting eNOS, p-eNOS ser(1177) and NOX2 in combination with markers of the endothelium and the sarcolemma. Quantitation was achieved by analyzing fluorescence intensity within the area stained positive for the microvascular endothelium. Analysis was performed in duplicate and repeated five times to investigate CV. In addition, eight healthy males (age 21 ± 1 year, BMI 24.4 ± 1.0 kg/m(2)) completed one hour of cycling exercise at ~65%VO(2max) . Muscle biopsies were taken from the m. vastus lateralis before and immediately after exercise and analyzed using the new methods. RESULTS The CV of all methods was between 6.5 and 9.5%. Acute exercise increased eNOS serine(1177) phosphorylation (fold change 1.29 ± 0.05, p < 0.05). CONCLUSIONS These novel methodologies will allow direct investigations of the molecular mechanisms underpinning the microvascular responses to insulin and exercise, the impairments that occur in sedentary, obese and elderly individuals and the effect of lifestyle interventions.
Collapse
Affiliation(s)
- Matthew Cocks
- Exercise Metabolism Research Group, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
39
|
Murakami I, Morimoto A, Oka T, Kuwamoto S, Kato M, Horie Y, Hayashi K, Gogusev J, Jaubert F, Imashuku S, Al-Kadar LA, Takata K, Yoshino T. IL-17A receptor expression differs between subclasses of Langerhans cell histiocytosis, which might settle the IL-17A controversy. Virchows Arch 2012; 462:219-28. [PMID: 23269323 DOI: 10.1007/s00428-012-1360-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/25/2012] [Accepted: 12/13/2012] [Indexed: 01/01/2023]
Abstract
Langerhans cell histiocytosis (LCH) is a lymphoproliferative disorder consisting of abnormal Langerhans cell-like cells and other lymphoid cells. LCH presents as either a multisystem LCH (LCH-MS) or a single-system LCH (LCH-SS). Currently, neither the pathogeneses nor the factors that define these disease subclasses have been elucidated. The interleukin (IL)-17A autocrine LCH model and IL-17A-targeted therapies have been proposed and have engendered much controversy. Those authors showed high serum IL-17A levels in LCH and argued that serum IL-17A-dependent fusion activities in vitro, rather than serum IL-17A levels, correlated with LCH severity (i.e. the IL-17A paradox). In contrast, others could not confirm the IL-17A autocrine model. So began the controversy on IL-17A, which still continues. We approached the IL-17A controversy and the IL-17A paradox from a new perspective in considering the expression levels of IL-17A receptor (IL-17RA). We detected higher levels of IL-17RA protein expression in LCH-MS (n = 10) as compared to LCH-SS (n = 9) (P = 0.041) by immunofluorescence. We reconfirmed these data by re-analyzing GSE16395 mRNA data. We found that serum levels of IL-17A were higher in LCH (n = 38) as compared to controls (n = 20) (P = 0.005) with no significant difference between LCH subclasses. We propose an IL-17A endocrine model and stress that changes in IL-17RA expression levels are important for defining LCH subclasses. We hypothesize that these IL-17RA data could clarify the IL-17A controversy and the IL-17A paradox. As a potential treatment of LCH-MS, we indicate the possibility of an IL-17RA-targeted therapy.
Collapse
Affiliation(s)
- Ichiro Murakami
- Division of Molecular Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tabit CE, Shenouda SM, Holbrook M, Fetterman JL, Kiani S, Frame AA, Kluge MA, Held A, Dohadwala MM, Gokce N, Farb MG, Rosenzweig J, Ruderman N, Vita JA, Hamburg NM. Protein kinase C-β contributes to impaired endothelial insulin signaling in humans with diabetes mellitus. Circulation 2012. [PMID: 23204109 DOI: 10.1161/circulationaha.112.127514] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Abnormal endothelial function promotes atherosclerotic vascular disease in diabetes. Experimental studies indicate that disruption of endothelial insulin signaling, through the activity of protein kinase C-β (PKCβ) and nuclear factor κB, reduces nitric oxide availability. We sought to establish whether similar mechanisms operate in the endothelium in human diabetes mellitus. METHODS AND RESULTS We measured protein expression and insulin response in freshly isolated endothelial cells from patients with type 2 diabetes mellitus (n=40) and nondiabetic controls (n=36). Unexpectedly, we observed 1.7-fold higher basal endothelial nitric oxide synthase (eNOS) phosphorylation at serine 1177 in patients with diabetes mellitus (P=0.007) without a difference in total eNOS expression. Insulin stimulation increased eNOS phosphorylation in nondiabetic subjects but not in diabetic patients (P=0.003), consistent with endothelial insulin resistance. Nitrotyrosine levels were higher in diabetic patients, indicating endothelial oxidative stress. PKCβ expression was higher in diabetic patients and was associated with lower flow-mediated dilation (r=-0.541, P=0.02). Inhibition of PKCβ with LY379196 reduced basal eNOS phosphorylation and improved insulin-mediated eNOS activation in patients with diabetes mellitus. Endothelial nuclear factor κB activation was higher in diabetes mellitus and was reduced with PKCβ inhibition. CONCLUSIONS We provide evidence for the presence of altered eNOS activation, reduced insulin action, and inflammatory activation in the endothelium of patients with diabetes mellitus. Our findings implicate PKCβ activity in endothelial insulin resistance.
Collapse
Affiliation(s)
- Corey E Tabit
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sullivan MN, Francis M, Pitts NL, Taylor MS, Earley S. Optical recording reveals novel properties of GSK1016790A-induced vanilloid transient receptor potential channel TRPV4 activity in primary human endothelial cells. Mol Pharmacol 2012; 82:464-72. [PMID: 22689561 DOI: 10.1124/mol.112.078584] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Critical functions of the vascular endothelium are regulated by changes in intracellular [Ca(2+)]. Endothelial dysfunction is tightly associated with cardiovascular disease, and improved understanding of Ca(2+) entry pathways in these cells will have a significant impact on human health. However, much about Ca(2+) influx channels in endothelial cells remains unknown because they are difficult to study using conventional patch-clamp electrophysiology. Here we describe a novel, highly efficient method for recording and analyzing Ca(2+)-permeable channel activity in primary human endothelial cells using a unique combination of total internal reflection fluorescence microscopy (TIRFM), custom software-based detection, and selective pharmacology. Our findings indicate that activity of the vanilloid (V) transient receptor potential (TRP) channel TRPV4 can be rapidly recorded and characterized at the single-channel level using this method, providing novel insight into channel function. Using this method, we show that although TRPV4 protein is evenly distributed throughout the plasma membrane, most channels are silent even during maximal stimulation with the potent TRPV4 agonist N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A). Furthermore, our findings indicate that GSK1016790A acts by recruiting previously inactive channels, rather than through increasing elevation of basal activity.
Collapse
Affiliation(s)
- Michelle N Sullivan
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1680, USA
| | | | | | | | | |
Collapse
|
42
|
Shenouda SM, Widlansky ME, Chen K, Xu G, Holbrook M, Tabit CE, Hamburg NM, Frame AA, Caiano TL, Kluge MA, Duess MA, Levit A, Kim B, Hartman ML, Joseph L, Shirihai OS, Vita JA. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 2011; 124:444-53. [PMID: 21747057 DOI: 10.1161/circulationaha.110.014506] [Citation(s) in RCA: 409] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Endothelial dysfunction contributes to the development of atherosclerosis in patients with diabetes mellitus, but the mechanisms of endothelial dysfunction in this setting are incompletely understood. Recent studies have shown altered mitochondrial dynamics in diabetes mellitus with increased mitochondrial fission and production of reactive oxygen species. We investigated the contribution of altered dynamics to endothelial dysfunction in diabetes mellitus. METHODS AND RESULTS We observed mitochondrial fragmentation (P=0.002) and increased expression of fission-1 protein (Fis1; P<0.0001) in venous endothelial cells freshly isolated from patients with diabetes mellitus (n=10) compared with healthy control subjects (n=9). In cultured human aortic endothelial cells exposed to 30 mmol/L glucose, we observed a similar loss of mitochondrial networks and increased expression of Fis1 and dynamin-related protein-1 (Drp1), proteins required for mitochondrial fission. Altered mitochondrial dynamics was associated with increased mitochondrial reactive oxygen species production and a marked impairment of agonist-stimulated activation of endothelial nitric oxide synthase and cGMP production. Silencing Fis1 or Drp1 expression with siRNA blunted high glucose-induced alterations in mitochondrial networks, reactive oxygen species production, endothelial nitric oxide synthase activation, and cGMP production. An intracellular reactive oxygen species scavenger provided no additional benefit, suggesting that increased mitochondrial fission may impair endothelial function via increased reactive oxygen species. CONCLUSION These findings implicate increased mitochondrial fission as a contributing mechanism for endothelial dysfunction in diabetic states.
Collapse
Affiliation(s)
- Sherene M Shenouda
- Boston University School of Medicine, 88 East Newton Street, Boston, MA 02118., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Donato AJ, Magerko KA, Lawson BR, Durrant JR, Lesniewski LA, Seals DR. SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J Physiol 2011; 589:4545-54. [PMID: 21746786 DOI: 10.1113/jphysiol.2011.211219] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We tested the hypothesis that reductions in the cellular deacetylase, sirtuin-1 (SIRT-1), contribute to vascular endothelial dysfunction with ageing via modulation of endothelial nitric oxide synthase (eNOS) acetylation/activation-associated nitric oxide (NO) production. In older (30 months, n = 14) vs. young (5-7 months, n = 16) B6D2F1 mice, aortic protein expression of SIRT-1 and eNOS phosphorylated at serine 1177 were lower (both P < 0.05), and acetylated eNOS was 6-fold higher (P < 0.05), whereas total eNOS did not differ (P = 0.65). Acetylcholine (ACh)-induced peak endothelium-dependent dilatation (EDD) was lower in isolated femoral arteries with ageing (P < 0.001). Incubation with sirtinol, a SIRT-1 inhibitor, reduced EDD in both young and older mice, abolishing age-related differences, whereas co-administration with l-NAME, an eNOS inhibitor, further reduced EDD similarly in both groups. Endothelium-independent dilatation to sodium nitroprusside (EID), was not altered by age or sirtinol treatment. In older (64 ± 1 years, n = 22) vs. young (25 ± 1 years, n = 16) healthy humans, ACh-induced forearm EDD was impaired (P = 0.01) and SIRT-1 protein expression was 37% lower in endothelial cells obtained from the brachial artery (P < 0.05), whereas EID did not differ. In the overall group, EDD was positively related to endothelial cell SIRT-1 protein expression (r = 0.44, P < 0.01). Reductions in SIRT-1 may play an important role in vascular endothelial dysfunction with ageing. SIRT-1 may be a key therapeutic target to treat arterial ageing.
Collapse
Affiliation(s)
- Anthony J Donato
- Department of Integrative Physiology, University of Colorado at Boulder, CO, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Onat D, Brillon D, Colombo PC, Schmidt AM. Human vascular endothelial cells: a model system for studying vascular inflammation in diabetes and atherosclerosis. Curr Diab Rep 2011; 11:193-202. [PMID: 21337131 PMCID: PMC3311155 DOI: 10.1007/s11892-011-0182-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The vascular endothelium is the inner lining of blood vessels serving as autocrine and paracrine organ that regulates vascular wall function. Endothelial dysfunction is recognized as initial step in the atherosclerotic process and is well advanced in diabetes, even before the manifestation of end-organ damage. Strategies capable of assessing changes in vascular endothelium at the preclinical stage hold potential to refine cardiovascular risk. In vitro cell culture is useful in understanding the interaction of endothelial cells with various mediators; however, it is often criticized due to the uncertain relevance of results to humans. Although circulating endothelial cells, endothelial microparticles, and progenitor cells opened the way for ex vivo studies, a recently described method for obtaining primary endothelial cells through endovascular biopsy allows direct characterization of endothelial phenotype in humans. In this article, we appraise the use of endothelial cell-based methodologies to study vascular inflammation in diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Duygu Onat
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons, Columbia University Medical Center, 630 West, 168th Street, PS-17-401, New York, NY 10032, USA
| | - David Brillon
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medical College of Cornell University, 525 East, 68th Street, F-2008, New York, NY 10065, USA,
| | - Paolo C. Colombo
- Department of Medicine, Division of Cardiology, College of Physicians and Surgeons, Columbia University Medical Center, 622 West, 168th Street, PH12-134, New York, NY 10032, USA,
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, Division of Endocrinology, NYU Langone Medical Center, 550 First Avenue, Smilow 9, New York, NY 10016, USA,
| |
Collapse
|
45
|
Akinnusi ME, Laporta R, El-Solh AA. Lectin-like oxidized low-density lipoprotein receptor-1 modulates endothelial apoptosis in obstructive sleep apnea. Chest 2011; 140:1503-1510. [PMID: 21565964 DOI: 10.1378/chest.11-0302] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) is the major receptor for oxidized low-density lipoprotein in endothelial cells, and its expression is enhanced in proatherogenic settings. The objective of this study was to investigate the association between LOX-1 in freshly harvested human venous endothelial cells and apoptotic circulating endothelial cells in patients with obstructive sleep apnea (OSA). METHODS We conducted a prospective, interventional study of 38 patients with newly diagnosed OSA free of disease and 12 healthy control subjects. Plasma LOX-1 (pLOX-1) levels were measured using a commercially available enzyme-linked immunosorbent assay. Protein expression of LOX-1 was quantified by immunofluorescence in freshly harvested venous endothelial cells before and after 8 weeks of continuous positive airway pressure (CPAP) therapy. Circulating apoptotic endothelial cells (CD146(+), CD45(-), and CD31(1)) were assessed concomitantly by flow cytometry. RESULTS pLOX-1 levels were higher in subjects with OSA than in control subjects (326.9 ± 267.1 pg/mL and 141.1 ± 138.6 g/mL, respectively; P = .004). Patients with OSA showed a threefold increase in baseline endothelial expression of LOX-1 relative to control subjects. CPAP therapy resulted in a significant decrease in endothelial LOX-1 expression only in CPAP-adherent patients. Circulating apoptotic endothelial cells correlated directly with baseline expression of LOX-1 (R(2) = 0.32, P = .01) after adjustment for age, BMI, and waist to hip ratio. CONCLUSIONS Increased expression of LOX-1 in vivo is associated with endothelial apoptosis. Adherence to CPAP therapy may reverse these derangements.
Collapse
Affiliation(s)
- Morohunfolu E Akinnusi
- Veterans Affairs Western New York Healthcare System, Western New York Respiratory Research Center; Division of Pulmonary, Critical Care, and Sleep Medicine, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Rachel Laporta
- Veterans Affairs Western New York Healthcare System, Western New York Respiratory Research Center
| | - Ali A El-Solh
- Veterans Affairs Western New York Healthcare System, Western New York Respiratory Research Center; Division of Pulmonary, Critical Care, and Sleep Medicine, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY; Department of Medicine, and the Department of Social and Preventive Medicine, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY.
| |
Collapse
|
46
|
Global array-based transcriptomics from minimal input RNA utilising an optimal RNA isolation process combined with SPIA cDNA probes. PLoS One 2011; 6:e17625. [PMID: 21445340 PMCID: PMC3062544 DOI: 10.1371/journal.pone.0017625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/03/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Technical advances in the collection of clinical material, such as laser capture microdissection and cell sorting, provide the advantage of yielding more refined and homogenous populations of cells. However, these attractive advantages are counter balanced by the significant difficulty in obtaining adequate nucleic acid yields to allow transcriptomic analyses. Established technologies are available to carry out global transcriptomics using nanograms of input RNA, however, many clinical samples of low cell content would be expected to yield RNA within the picogram range. To fully exploit these clinical samples the challenge of isolating adequate RNA yield directly and generating sufficient microarray probes for global transcriptional profiling from this low level RNA input has been addressed in the current report. We have established an optimised RNA isolation workflow specifically designed to yield maximal RNA from minimal cell numbers. This procedure obtained RNA yield sufficient for carrying out global transcriptional profiling from vascular endothelial cell biopsies, clinical material not previously amenable to global transcriptomic approaches. In addition, by assessing the performance of two linear isothermal probe generation methods at decreasing input levels of good quality RNA we demonstrated robust detection of a class of low abundance transcripts (GPCRs) at input levels within the picogram range, a lower level of RNA input (50 pg) than previously reported for global transcriptional profiling and report the ability to interrogate the transcriptome from only 10 pg of input RNA. By exploiting an optimal RNA isolation workflow specifically for samples of low cell content, and linear isothermal RNA amplification methods for low level RNA input we were able to perform global transcriptomics on valuable and potentially informative clinically derived vascular endothelial biopsies here for the first time. These workflows provide the ability to robustly exploit ever more common clinical samples yielding extremely low cell numbers and RNA yields for global transcriptomics.
Collapse
|
47
|
Wei X, Schneider JG, Shenouda SM, Lee A, Towler DA, Chakravarthy MV, Vita JA, Semenkovich CF. De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. J Biol Chem 2011; 286:2933-45. [PMID: 21098489 PMCID: PMC3024788 DOI: 10.1074/jbc.m110.193037] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 11/19/2010] [Indexed: 12/17/2022] Open
Abstract
Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease.
Collapse
Affiliation(s)
- Xiaochao Wei
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine
| | - Jochen G. Schneider
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine
| | - Sherene M. Shenouda
- the Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Ada Lee
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine
| | - Dwight A. Towler
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Manu V. Chakravarthy
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine
| | - Joseph A. Vita
- the Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Clay F. Semenkovich
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine
- Department of Cell Biology and Physiology, and
| |
Collapse
|
48
|
Ganda A, Onat D, Demmer RT, Wan E, Vittorio TJ, Sabbah HN, Colombo PC. Venous congestion and endothelial cell activation in acute decompensated heart failure. Curr Heart Fail Rep 2010; 7:66-74. [PMID: 20424989 PMCID: PMC3874714 DOI: 10.1007/s11897-010-0009-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Despite accumulating clinical evidence supporting a key role for venous congestion in the development of acute decompensated heart failure (ADHF), there remain several gaps in our knowledge of the pathophysiology of ADHF. Specifically, the biomechanically driven effects of venous congestion on the vascular endothelium (the largest endocrine/paracrine organ of the body), on neurohormonal activation, and on renal and cardiac dysfunction remain largely unexplored. We propose that venous congestion is a fundamental, hemodynamic stimulus for vascular inflammation, which plays a key role in the development and possibly the resolution of ADHF through vascular, humoral, renal, and cardiac mechanisms. A better understanding of the role of venous congestion and endothelial activation in the pathophysiology of ADHF may provide a strong rationale for near-future testing of treatment strategies that target biomechanically driven inflammation. Targeting vascular and systemic inflammation before symptoms arise may prevent progression to overt clinical decompensation in the ADHF syndrome.
Collapse
Affiliation(s)
- Anjali Ganda
- Division of Nephrology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Colombo PC, Jorde UP. The active role of venous congestion in the pathophysiology of acute decompensated heart failure. Rev Esp Cardiol 2010; 63:5-8. [PMID: 20089219 DOI: 10.1016/s1885-5857(10)70002-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Fadini GP, Avogaro A. Cell-based methods for ex vivo evaluation of human endothelial biology. Cardiovasc Res 2010; 87:12-21. [DOI: 10.1093/cvr/cvq119] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|