1
|
Gimblet CJ, Ernst JW, Bos KD, Stroud AK, Donato AJ, Jalal DI, Pierce GL. Effect of acute heparin administration on glycocalyx thickness and endothelial function in healthy younger adults. J Appl Physiol (1985) 2024; 136:330-336. [PMID: 38126088 PMCID: PMC11212829 DOI: 10.1152/japplphysiol.00767.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
The endothelial glycocalyx is a dynamic, gel-like layer that is critical to normal vascular endothelial function. Heparin impairs the endothelial glycocalyx and reduces vascular endothelial function in a murine model; however, this has yet to be tested in healthy humans. We hypothesized that a single bolus dose of heparin would increase circulating glycocalyx components and decrease endothelial glycocalyx thickness resulting in blunted brachial artery vasodilation in healthy younger adults. Healthy adults (n = 19, aged 18-39 yr, 53% female) underwent measurements of the endothelial glycocalyx and vascular endothelial function at baseline and after a single bolus 5,000 U dose of heparin. The glycocalyx components syndecan-1 and heparan sulfate were measured from plasma samples using enzyme-linked immunosorbent assays. Glycocalyx thickness was determined as perfused boundary region (PBR) in sublingual microvessels using the GlycoCheck. Endothelial function was measured via ultrasonography and quantified as brachial artery flow-mediated dilation (FMD). Following acute heparin administration, there was no increase in syndecan-1 or heparan sulfate (P = 0.90 and P = 0.49, respectively). In addition, there was no change in PBR 4-7 µm (P = 0.55), PBR 10-25 µm (P = 0.63), or 4-25 µm (P = 0.49) after heparin treatment. Furthermore, we did not observe a change in FMDmm (P = 0.23), FMD% (P = 0.35), or plasma nitrite concentrations (P = 0.10) in response to heparin. Finally, time to peak dilation and peak FMD normalized to shear stress were unchanged following heparin (P = 0.59 and P = 0.21, respectively). Our pilot study suggests that a single bolus intravenous dose of heparin does not result in endothelial glycocalyx degradation or vascular endothelial dysfunction in healthy younger adults.NEW & NOTEWORTHY The endothelial glycocalyx's role in modulating vascular endothelial dysfunction with aging and disease is becoming increasingly recognized. This study presents novel findings that acute heparin administration is not a feasible method to experimentally degrade the endothelial glycocalyx and measure concurrent changes in vascular endothelial function in healthy humans. Alternative approaches will be needed to translate findings from preclinical studies and test the effects of acute endothelial glycocalyx degradation on vascular endothelial function in humans.
Collapse
Affiliation(s)
- Colin J Gimblet
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Jackson W Ernst
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Kyle D Bos
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Amy K Stroud
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Diana I Jalal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Center for Access and Delivery Research and Evaluation, Iowa City VA Medical Center, Iowa City, Iowa, United States
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
2
|
Hanson BE, Feider AJ, Hanada S, Aldrich AW, Casey DP. Muscle blood flow and vasodilation are blunted at the onset of exercise following an acute bout of ischemia-reperfusion. J Appl Physiol (1985) 2023; 135:1053-1061. [PMID: 37767553 DOI: 10.1152/japplphysiol.00314.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury can attenuate endothelial function and impair nitric oxide bioavailability. We tested the hypothesis that I/R also blunts the rapid and steady-state hyperemic and vasodilatory responses to handgrip exercise. Ten subjects (8M/2F; 24 ± 4 yr) performed handgrip exercises before and after I/R (20 min of ischemia/20 min of reperfusion) and time control (40-min supine rest) trials. Forearm blood flow (FBF) and forearm vascular conductance (FVC) were assessed with Doppler ultrasound during single forearm contractions and 3 min of rhythmic handgrip exercise. Venous blood samples were drawn at rest and during exercise to assess plasma [nitrite]. Peak ΔFBF (from baseline) and ΔFVC following single contractions were attenuated following I/R (134 ± 48 vs. 103 ± 42 mL·min-1; 160 ± 55 vs. 118 ± 48 mL·min-1·100 mmHg-1, P < 0.05 for both), but not following time control (115 ± 63 vs. 124 ± 57 mL·min-1; 150 ± 80 vs. 148 ± 64 mL·min-1·100 mmHg-1, P = 0.16 and P = 0.95, respectively). Steady-state ΔFBF and ΔFVC during rhythmic exercise were unchanged in both I/R (192 ± 52 vs. 190 ± 53 mL·min-1; 208 ± 56 vs. 193 ± 60 mL·min-1·100 mmHg-1) and time control (188 ± 54 vs. 196 ± 48 mL·min-1; 206 ± 60 vs. 207 ± 49 mL·min-1·100 mmHg-1) trials (group × time interactions P = 0.34 and 0.21, respectively). Plasma [nitrite] under resting conditions and during steady-state rhythmic exercise was attenuated following I/R (P < 0.05 for both), but not following time control (P = 0.54 and 0.93). These data indicate that I/R blunts hyperemia and vasodilation at the onset of muscle contractions but does not attenuate these responses during steady-state exercise.NEW & NOTEWORTHY Ischemia-reperfusion can impair endothelial function; however, it remains unknown whether exercise hyperemia and vasodilation are also impaired. This study presents novel findings that ischemia-reperfusion blunts the hyperemic and vasodilatory responses at the onset of muscle contractions but not during steady-state exercise. Plasma [nitrite] was also blunted at baseline and during steady-state exercise following ischemia-reperfusion compared with time control. These attenuated responses at the onset of exercise may be associated with ischemia-reperfusion reductions in NO bioavailability.
Collapse
Affiliation(s)
- Brady E Hanson
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Andrew J Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Aric W Aldrich
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
3
|
Bock JM, Greenlund IM, Somers VK, Baker SE. Sex Differences in Neurovascular Control: Implications for Obstructive Sleep Apnea. Int J Mol Sci 2023; 24:13094. [PMID: 37685900 PMCID: PMC10487948 DOI: 10.3390/ijms241713094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Patients with obstructive sleep apnea (OSA) have a heightened risk of developing cardiovascular diseases, namely hypertension. While seminal evidence indicates a causal role for sympathetic nerve activity in the hypertensive phenotype commonly observed in patients with OSA, no studies have investigated potential sex differences in the sympathetic regulation of blood pressure in this population. Supporting this exploration are large-scale observational data, as well as controlled interventional studies in healthy adults, indicating that sleep disruption increases blood pressure to a greater extent in females relative to males. Furthermore, females with severe OSA demonstrate a more pronounced hypoxic burden (i.e., disease severity) during rapid eye movement sleep when sympathetic nerve activity is greatest. These findings would suggest that females are at greater risk for the hemodynamic consequences of OSA and related sleep disruption. Accordingly, the purpose of this review is three-fold: (1) to review the literature linking sympathetic nerve activity to hypertension in OSA, (2) to highlight recent experimental data supporting the hypothesis of sex differences in the regulation of sympathetic nerve activity in OSA, and (3) to discuss the potential sex differences in peripheral adrenergic signaling that may contribute to, or offset, cardiovascular risk in patients with OSA.
Collapse
Affiliation(s)
- Joshua M. Bock
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA; (J.M.B.)
| | - Ian M. Greenlund
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA; (J.M.B.)
| | - Virend K. Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA; (J.M.B.)
| | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55901, USA
| |
Collapse
|
4
|
Bock JM, Hanson BE, Miller KA, Seaberg NT, Ueda K, Feider AJ, Hanada S, Lira VA, Casey DP. Eight weeks of inorganic nitrate/nitrite supplementation improves aerobic exercise capacity and the gas exchange threshold in patients with type 2 diabetes. J Appl Physiol (1985) 2022; 133:1407-1414. [PMID: 36326473 PMCID: PMC9762960 DOI: 10.1152/japplphysiol.00478.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have reduced exercise capacity, indexed by lower maximal oxygen consumption (V̇o2max) and achievement of the gas exchange threshold (GET) at a lower % V̇o2max. The ubiquitous signaling molecule nitric oxide (NO) plays a multifaceted role during exercise and, as patients with T2DM have poor endogenous NO production, we investigated if inorganic nitrate/nitrite supplementation (an exogenous source of NO) improves exercise capacity in patients with T2DM. Thirty-six patients with T2DM (10F, 59 ± 9 yr, 32.0 ± 5.1 kg/m2, HbA1c = 7.4 ± 1.4%) consumed beetroot juice containing either inorganic nitrate/nitrite (4.03 mmol/0.29 mmol) or a placebo (0.8 mmol/0.00 mmol) for 8 wk. A maximal exercise test was completed before and after both interventions. V̇o2max was determined by averaging 15-s data, whereas the GET was identified using the V-slope method and breath-by-breath data. Inorganic nitrate/nitrite increased both absolute (1.96 ± 0.67 to 2.07 ± 0.75 L/min) and relative (20.7 ± 7.0 to 21.9 ± 7.4 mL/kg/min, P < 0.05 for both) V̇o2max, whereas no changes were observed following placebo (1.94 ± 0.40 to 1.90 ± 0.39 L/min, P = 0.33; 20.0 ± 4.2 to 19.7 ± 4.6 mL/kg/min, P = 0.39). Maximal workload was also increased following inorganic nitrate/nitrite supplementation (134 ± 47 to 140 ± 51 W, P < 0.05) but not placebo (138 ± 32 to 138 ± 32 W, P = 0.98). V̇o2 at the GET (1.11 ± 0.27 to 1.27 ± 0.38L/min) and the %V̇o2max in which GET occurred (56 ± 8 to 61 ± 7%, P < 0.05 for both) increased following inorganic nitrate/nitrite supplementation but not placebo (1.10 ± 0.23 to 1.08 ± 0.21 L/min, P = 0.60; 57 ± 9 to 57 ± 8%, P = 0.90) although the workload at GET did not achieve statistical significance (group-by-time P = 0.06). Combined inorganic nitrate/nitrite consumption improves exercise capacity, maximal workload, and promotes a rightward shift in the GET in patients with T2DM. This manuscript reports data from a registered Clinical Trial at ClinicalTrials.gov ID: NCT02804932.NEW & NOTEWORTHY We report that increasing nitric oxide bioavailability via 8 wk of inorganic nitrate/nitrite supplementation improves maximal aerobic exercise capacity in patients with type 2 diabetes mellitus. Similarly, we observed a rightward shift in the gas exchange threshold. Taken together, these data indicate inorganic nitrate/nitrite may serve as a means to improve fitness in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Brady E Hanson
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kayla A Miller
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Nathanael T Seaberg
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Andrew J Feider
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | - Vitor A Lira
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
5
|
Bock JM, Hughes WE, Ueda K, Feider AJ, Hanada S, Casey DP. Dietary Inorganic Nitrate/Nitrite Supplementation Reduces Central and Peripheral Blood Pressure in Patients With Type 2 Diabetes Mellitus. Am J Hypertens 2022; 35:803-809. [PMID: 35639721 PMCID: PMC9434218 DOI: 10.1093/ajh/hpac068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) have increased cardiovascular risk due to elevated blood pressure (BP). As low levels of nitric oxide (NO) may contribute to increased BP, we determined if increasing NO bioavailability via eight weeks of supplementation with beetroot juice containing inorganic nitrate/nitrite (4.03 mmol nitrate, 0.29 mmol nitrite) improves peripheral and central BP relative to nitrate/nitrite-depleted beetroot juice. METHODS Peripheral and central BP were assessed at heart-level in supine subjects using a brachial artery catheter and applanation tonometry, respectively. RESULTS Nitrate/nitrite supplementation reduced peripheral systolic BP (148 ± 16 to 142 ± 18 mm Hg, P < 0.05) but not placebo (150 ± 19 to 149 ± 17 mm Hg, P = 0.93); however, diastolic BP was unaffected (supplement-by-time P = 0.08). Central systolic BP (131 ± 16 to 127 ± 17 mm Hg) and augmented pressure (13.3 ± 6.6 to 11.6 ± 6.9 mm Hg, both P < 0.05) were reduced after nitrate/nitrite, but not placebo (134 ± 17 to 135 ± 16 mm Hg, P = 0.62; 14.1 ± 6.6 to 15.2 ± 7.4 mm Hg, P = 0.20); central diastolic BP was unchanged by the interventions (supplement-by-time P = 0.16). Inorganic nitrate/nitrite also reduced AIx (24.3 ± 9.9% to 21.0 ± 9.6%) whereas no changes were observed following placebo (24.6 ± 9.3% to 25.6 ± 9.9%, P = 0.46). CONCLUSIONS Inorganic nitrate/nitrite supplementation improves peripheral and central BP as well as AIx in T2DM. CLINICAL TRIALS REGISTRATION Trial Number NCT02804932.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - William E Hughes
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Andrew J Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Darren P Casey
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Thiruvengadam M, Chung IM, Samynathan R, Chandar SRH, Venkidasamy B, Sarkar T, Rebezov M, Gorelik O, Shariati MA, Simal-Gandara J. A comprehensive review of beetroot ( Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit Rev Food Sci Nutr 2022; 64:708-739. [PMID: 35972148 DOI: 10.1080/10408398.2022.2108367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Beetroot is rich in various bioactive phytochemicals, which are beneficial for human health and exert protective effects against several disease conditions like cancer, atherosclerosis, etc. Beetroot has various therapeutic applications, including antioxidant, antibacterial, antiviral, and analgesic functions. Besides the pharmacological effects, food industries are trying to preserve beetroots or their phytochemicals using various food preservation methods, including drying and freezing, to preserve their antioxidant capacity. Beetroot is a functional food due to valuable active components such as minerals, amino acids, phenolic acid, flavonoid, betaxanthin, and betacyanin. Due to its stability, nontoxic and non-carcinogenic and nonpoisonous capabilities, beetroot has been used as an additive or preservative in food processing. Beetroot and its bioactive compounds are well reported to possess antioxidant, anti-inflammatory, antiapoptotic, antimicrobial, antiviral, etc. In this review, we provided updated details on (i) food processing, preservation and colorant methods using beetroot and its phytochemicals, (ii) synthesis and development of several nanoparticles using beetroot and its bioactive compounds against various diseases, (iii) the role of beetroot and its phytochemicals under disease conditions with molecular mechanisms. We have also discussed the role of other phytochemicals in beetroot and their health benefits. Recent technologies in food processing are also updated. We also addressed on molecular docking-assisted biological activity and screening for bioactive chemicals. Additionally, the role of betalain from different sources and its therapeutic effects have been listed. To the best of our knowledge, little or no work has been carried out on the impact of beetroot and its nanoformulation strategies for phytocompounds on antimicrobial, antiviral effects, etc. Moreover, epigenetic alterations caused by phytocompounds of beetroot under several diseases were not reported much. Thus, extensive research must be carried out to understand the molecular effects of beetroot in the near future.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | | | | | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Olga Gorelik
- Faculty of Biotechnology and Food Engineering, Ural State Agrarian University, Yekaterinburg, Russian Federation
- Ural Federal Agrarian Research Center of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| |
Collapse
|
7
|
Bock JM, Ueda K, Feider AJ, Hanada S, Casey DP. Combined inorganic nitrate/nitrite supplementation blunts α-mediated vasoconstriction during exercise in patients with type 2 diabetes. Nitric Oxide 2021; 118:17-25. [PMID: 34718145 DOI: 10.1016/j.niox.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
AIMS Patients with type 2 diabetes mellitus (T2DM) have reduced vasodilatory responses during exercise partially attributable to low nitric oxide (NO) levels. Low NO contributes to greater α-adrenergic mediated vasoconstriction in contracting skeletal muscle. We hypothesized boosting NO bioavailability via 8wks of active beetroot juice (BRA, 4.03 mmol nitrate, 0.29 mmol nitrite, n = 19) improves hyperemia, via reduced α-mediated vasoconstriction, during handgrip exercise relative to nitrate/nitrite-depleted beetroot juice (BRP, n = 18) in patients with T2DM. METHODS Forearm blood flow (FBF) and vascular conductance (FVC) were calculated at rest and during handgrip exercise (20%max, 20contractions·min-1). Phenylephrine (α1-agonist) and dexmedetomidine (α2-agonist) were infused intra-arterially during independent trials to determine the influence of α-mediated vasoconstriction on exercise hyperemia. Vasoconstriction was quantified as the percent-reduction in FVC during α-agonist infusion, relative to pre-infusion, as well as the absolute change in %FVC during exercise relative to the respective rest trial (magnitude of sympatholysis). RESULTS ΔFBF (156 ± 69 to 175 ± 73 ml min-1) and ΔFVC (130 ± 54 to 156 ± 63 ml min-1·100 mmHg-1, both P < 0.05) during exercise were augmented following BRA, but not BRP (P = 0.96 and 0.51). Phenylephrine-induced vasoconstriction during exercise was blunted following BRA (-17.1 ± 5.9 to -12.6 ± 3.1%, P < 0.01), but not BRP (P = 0.58) supplementation; the magnitude of sympatholysis was unchanged by either (beverage-by-time P = 0.15). BRA supplementation reduced dexmedetomidine-induced vasoconstriction during exercise (-23.3 ± 6.7 to -19.7 ± 5.2%) and improved the corresponding magnitude of sympatholysis (25.3 ± 11.4 to 34.4 ± 15.5%, both P < 0.05). CONCLUSIONS BRA supplementation improves the hyperemic and vasodilatory responses to exercise in patients with T2DM which appears to be attributable to reduced α-adrenergic mediated vasoconstriction in contracting skeletal muscle.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, USA
| | - Andrew J Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, USA
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 200 Hawkins Dr, Iowa City, IA, USA
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa, 285 Newton Rd, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 169 Newton Rd, IA, USA.
| |
Collapse
|
8
|
Bock JM, Vungarala S, Karim S, Somers VK. Obstructive Sleep Apnea as a Cardiovascular Risk Factor-Beyond CPAP. Can J Cardiol 2021; 37:756-765. [PMID: 33610689 DOI: 10.1016/j.cjca.2021.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
Patients with obstructive sleep apnea (OSA) experience repetitive partial or complete airway collapse during sleep resulting in nocturnal hypoxia-normoxia cycling, and are at increased cardiovascular risk. The number of apneas and hypopneas indexed per hour of sleep (apnea-hypopnea index) along with the associated intermittent hypoxia predict the increased cardiovascular risk; thus, their attenuation or prevention are objectives of OSA therapy. Continuous positive airway pressure (CPAP) is the gold standard treatment for OSA and, when effective, mitigates the apnea-hypopnea index and hypoxemia. As such, it is reasonable to expect CPAP would decrease cardiovascular risk. However, 3 recent randomized clinical trials of CPAP vs usual care did not show any significant effects of CPAP in attenuating incident cardiovascular events in patients with OSA. In this review, we discuss these studies in addition to potential complementary therapeutic options to CPAP (eg, neurostimulation) and conclude with suggested therapeutic targets for future interventional studies (eg, the autonomic nervous system). Although these areas of research are exciting, they have yet to be tested to any similar degree of rigour as CPAP.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Soumya Vungarala
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahid Karim
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|