1
|
Telesca M, De Angelis A, Donniacuo M, Bellocchio G, Riemma MA, Mele E, Canonico F, Cianflone E, Torella D, D'Amario D, Patti G, Liantonio A, Imbrici P, De Luca A, Castaldo G, Rossi F, Cappetta D, Urbanek K, Berrino L. Effects of sacubitril-valsartan on aging-related cardiac dysfunction. Eur J Pharmacol 2024; 978:176794. [PMID: 38968980 DOI: 10.1016/j.ejphar.2024.176794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Heart failure (HF) remains a huge medical burden worldwide, with aging representing a major risk factor. Here, we report the effects of sacubitril/valsartan, an approved drug for HF with reduced EF, in an experimental model of aging-related HF with preserved ejection fraction (HFpEF). Eighteen-month-old female Fisher 344 rats were treated for 12 weeks with sacubitril/valsartan (60 mg/kg/day) or with valsartan (30 mg/kg/day). Three-month-old rats were used as control. No differential action of sacubitril/valsartan versus valsartan alone, either positive or negative, was observed. The positive effects of both sacubitril/valsartan and valsartan on cardiac hypertrophy was evidenced by a significant reduction of wall thickness and myocyte cross-sectional area. Contrarily, myocardial fibrosis in aging heart was not reduced by any treatment. Doppler echocardiography and left ventricular catheterization evidenced diastolic dysfunction in untreated and treated old rats. In aging rats, both classical and non-classical renin-angiotensin-aldosterone system (RAAS) were modulated. In particular, with respect to untreated animals, both sacubitril/valsartan and valsartan showed a partial restoration of cardioprotective non-classical RAAS. In conclusion, this study evidenced the favorable effects, by both treatments, on age-related cardiac hypertrophy. The attenuation of cardiomyocyte size and hypertrophic response may be linked to a shift towards cardioprotective RAAS signaling. However, diastolic dysfunction and cardiac fibrosis persisted despite of treatment and were accompanied by myocardial inflammation, endothelial activation, and oxidative stress.
Collapse
Affiliation(s)
- Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Francesco Canonico
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy.
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
2
|
Smart CD, Madhur MS. The immunology of heart failure with preserved ejection fraction. Clin Sci (Lond) 2023; 137:1225-1247. [PMID: 37606086 PMCID: PMC10959189 DOI: 10.1042/cs20230226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) now accounts for the majority of new heart failure diagnoses and continues to increase in prevalence in the United States. Importantly, HFpEF is a highly morbid, heterogeneous syndrome lacking effective therapies. Inflammation has emerged as a potential contributor to the pathogenesis of HFpEF. Many of the risk factors for HFpEF are also associated with chronic inflammation, such as obesity, hypertension, aging, and renal dysfunction. A large amount of preclinical evidence suggests that immune cells and their associated cytokines play important roles in mediating fibrosis, oxidative stress, metabolic derangements, and endothelial dysfunction, all potentially important processes in HFpEF. How inflammation contributes to HFpEF pathogenesis, however, remains poorly understood. Recently, a variety of preclinical models have emerged which may yield much needed insights into the causal relationships between risk factors and the development of HFpEF, including the role of specific immune cell subsets or inflammatory pathways. Here, we review evidence in animal models and humans implicating inflammation as a mediator of HFpEF and identify gaps in knowledge requiring further study. As the understanding between inflammation and HFpEF evolves, it is hoped that a better understanding of the mechanisms underlying immune cell activation in HFpEF can open up new therapeutic avenues.
Collapse
Affiliation(s)
- Charles Duncan Smart
- Department of Molecular Physiology and Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, U.S.A
| | - Meena S. Madhur
- Department of Molecular Physiology and Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, U.S.A
- Department of Medicine, Division of Cardiovascular
Medicine, Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Department of Medicine, Division of Clinical Pharmacology,
Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Vanderbilt Institute for Infection, Immunology, and
Inflammation, Nashville, TN, U.S.A
| |
Collapse
|
3
|
Liposome-Encapsulated Hemoglobin Vesicle Improves Persistent Anti-arrhythmogenesis through Improving Myocardial Electrical Remodeling and Modulating Cardiac Autonomic Activity in a Hemorrhagic Shock-Induced Rat Heart Model. Curr Med Sci 2023; 43:232-245. [PMID: 36890335 DOI: 10.1007/s11596-023-2706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/08/2022] [Indexed: 03/10/2023]
Abstract
OBJECTIVE Shock heart syndrome (SHS) is associated with lethal arrhythmias (ventricular tachycardia/ventricular fibrillation, VT/VF). We investigated whether liposome-encapsulated human hemoglobin vesicles (HbVs) has comparable persistent efficacy to washed red blood cells (wRBCs) for improving arrhythmogenesis in the subacute to chronic phase of SHS. METHODS Optical mapping analysis (OMP), electrophysiological study (EPS), and pathological examinations were performed on blood samples from Sprague-Dawley rats following induction of hemorrhagic shock. After hemorrhagic shock, the rats were immediately resuscitated by transfusing 5% albumin (ALB), HbV, or wRBCs. All rats survived for 1 week. OMP and EPS were performed on Langendorff-perfused hearts. Spontaneous arrhythmias and heart rate variability (HRV) were evaluated using awake 24-h telemetry, cardiac function by echocardiography, and pathological examination of Connexin43. RESULTS OMP showed significantly impaired action potential duration dispersion (APDd) in the left ventricle (LV) in the ALB group whereas APDd was substantially preserved in the HbV and wRBCs groups. Sustained VT/VF was easily provoked by EPS in the ALB group. No VT/VF was induced in the HbV and wRBCs groups. HRV, spontaneous arrhythmias, and cardiac function were preserved in the HbV and wRBCs groups. Pathology showed myocardial cell damage and Connexin43 degradation in the ALB group, all of which were attenuated in the HbV and wRBCs groups. CONCLUSION LV remodeling after hemorrhagic shock caused VT/VF in the presence of impaired APDd. Similar to wRBCs, HbV persistently prevented VT/VF by inhibiting persistent electrical remodeling, preserving myocardial structures, and ameliorating arrhythmogenic modifying factors in the subacute to chronic phase of hemorrhagic shock-induced SHS.
Collapse
|
4
|
Zhang Y, Xu J, Liu C, Long X, Zheng M, He J, Lin F, Yu J. Curative effect of zinc-selenium tea on rat's cardiotoxicity induced by long-term exposure to nonylphenol. ENVIRONMENTAL TOXICOLOGY 2023; 38:101-114. [PMID: 36239032 DOI: 10.1002/tox.23667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to explore whether zinc-selenium tea has an curative effect on the cardiotoxicity induced by nonylphenol (NP), and to compare the effect of zinc-selenium tea and green tea. After drinking of zinc-selenium tea or green tea, compared with the control group, the left ventricular anterior wall became thinner, and the left ventricular end-diastolic diameter increased, the anterior wall of the left ventricle became thin at the end of diastole in the NP group. The serum myocardial enzymes aspartate aminotransferase, creatine kinase, creatine kinase isoenzyme, lactate dehydrogenase, and α-hydroxybutyrate dehydrogenase in the NP group were significantly increased, and the serum myocardial enzymes were significantly decreased after the intervention of zinc-selenium tea. Proteins and mRNA expressions of Collagen I and Collagen III in the tea groups were lower than those in the NP group. In the green tea and zinc-selenium tea intervention groups, the disorder and degree of myocardial fiber were alleviated to varying degrees. The disturbance, breakage, and inflammatory cell infiltration of myocardial fibers in zinc-selenium tea and green tea groups were less than that of NP group. After tea intervention, collagen I and collagen III in the myocardium decreased. The intervention effect of zinc-selenium tea was better than that of green tea. Zinc-selenium tea and green tea could interfere with the cardiotoxicity indued by NP, which would alleviate the myocardial fibrosis by reducing expressions of collagen I and collagen III. Moreover, the curative effect of zinc-selenium tea was better than that of green tea.
Collapse
Affiliation(s)
- YuJie Zhang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Chao Liu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mucong Zheng
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jie He
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Fangmei Lin
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F. Heart Failure With Preserved Ejection Fraction: Heterogeneous Syndrome, Diverse Preclinical Models. Circ Res 2022; 130:1906-1925. [PMID: 35679364 PMCID: PMC10035274 DOI: 10.1161/circresaha.122.320257] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents one of the greatest challenges facing cardiovascular medicine today. Despite being the most common form of heart failure worldwide, there has been limited success in developing therapeutics for this syndrome. This is largely due to our incomplete understanding of the biology driving its systemic pathophysiology and the heterogeneity of clinical phenotypes, which are increasingly being recognized as distinct HFpEF phenogroups. Development of efficacious therapeutics fundamentally relies on robust preclinical models that not only faithfully recapitulate key features of the clinical syndrome but also enable rigorous investigation of putative mechanisms of disease in the context of clinically relevant phenotypes. In this review, we propose a preclinical research strategy that is conceptually grounded in model diversification and aims to better align with our evolving understanding of the heterogeneity of clinical HFpEF. Although heterogeneity is often viewed as a major obstacle in preclinical HFpEF research, we challenge this notion and argue that embracing it may be the key to demystifying its pathobiology. Here, we first provide an overarching guideline for developing HFpEF models through a stepwise approach of comprehensive cardiac and extra-cardiac phenotyping. We then present an overview of currently available models, focused on the 3 leading phenogroups, which are primarily based on aging, cardiometabolic stress, and chronic hypertension. We discuss how well these models reflect their clinically relevant phenogroup and highlight some of the more recent mechanistic insights they are providing into the complex pathophysiology underlying HFpEF.
Collapse
Affiliation(s)
- Jason Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology) (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Abhilasha Singh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| |
Collapse
|
6
|
Takase B, Higashimura Y, Asahina H, Ishihara M, Sakai H. Liposome-encapsulated hemoglobin (HbV) transfusion rescues rats undergoing progressive lethal 85% hemorrhage as a result of an anti-arrhythmogenic effect on the myocardium. Artif Organs 2021; 45:1391-1404. [PMID: 34219238 DOI: 10.1111/aor.14033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022]
Abstract
Liposome-encapsulated hemoglobin vesicles (HbV) can serve as a blood substitute with oxygen-carrying capacity comparable to that of human blood and lethal hemorrhage is associated with lethal arrhythmias. To investigate the resuscitation effect of HbV on lethal hemorrhage and anti-arrhythmogenesis, we performed optical mapping analysis (OMP) and electrophysiological study (EPS) in graded blood exchange (85% blood loss) in the rat model. We also measured cardiac autonomic activity, as assessed by heart rate variability (HRV), and changes in plasma norepinephrine and left ventricle ejection fraction (LVEF) by echocardiography. Pathological study on Connexin43 was performed. A 5% albumin (ALB group), washed rat erythrocytes (wRBC group), and HbV (HbV group) were used as a resuscitation fluid. The survival effects over 24 hours were examined. All rats died in the ALB group, whereas almost all survived for 24-hours period in wRBC and HbV groups. OMP showed impaired action potential duration dispersion (APDd) in the ALB group, whereas normal APDs in HbV and wRBC groups. Lethal arrhythmias were induced by EPS in the ALB group, but not in wRBC and HbV groups. HRV indices, LVEF, Connexin43 were preserved in HbV and wRBC groups. Lethal hemorrhage causes lethal arrhythmias in the presence of impaired APDd. HbV acutely rescues lethal hemorrhage by preventing lethal arrhythmias and preserving arrhythmogenic factors.
Collapse
Affiliation(s)
- Bonpei Takase
- Department of Intensive Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yuko Higashimura
- Department of Intensive Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Haruka Asahina
- Department of Critical Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Hiromi Sakai
- Department of Chemistry, School of Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
7
|
Francois A, Canella A, Marcho LM, Stratton MS. Protein acetylation in cardiac aging. J Mol Cell Cardiol 2021; 157:90-97. [PMID: 33915138 DOI: 10.1016/j.yjmcc.2021.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/14/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
Biological aging is attributed to progressive dysfunction in systems governing genetic and metabolic integrity. At the cellular level, aging is evident by accumulated DNA damage and mutation, reactive oxygen species, alternate lipid and protein modifications, alternate gene expression programs, and mitochondrial dysfunction. These effects sum to drive altered tissue morphology and organ dysfunction. Protein-acylation has emerged as a critical mediator of age-dependent changes in these processes. Despite decades of research focus from academia and industry, heart failure remains a leading cause of death in the United States while the 5 year mortality rate for heart failure remains over 40%. Over 90% of heart failure deaths occur in patients over the age of 65 and heart failure is the leading cause of hospitalization in Medicare beneficiaries. In 1931, Cole and Koch discovered age-dependent accumulation of phosphates in skeletal muscle. These and similar findings provided supporting evidence for, now well accepted, theories linking metabolism and aging. Nearly two decades later, age-associated alterations in biochemical molecules were described in the heart. From these small beginnings, the field has grown substantially in recent years. This growing research focus on cardiac aging has, in part, been driven by advances on multiple public health fronts that allow population level clinical presentation of aging related disorders. It is estimated that by 2030, 25% of the worldwide population will be over the age of 65. This review provides an overview of acetylation-dependent regulation of biological processes related to cardiac aging and introduces emerging non-acetyl, acyl-lysine modifications in cardiac function and aging.
Collapse
Affiliation(s)
- Ashley Francois
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alessandro Canella
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lynn M Marcho
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew S Stratton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Izzo C, Vitillo P, Di Pietro P, Visco V, Strianese A, Virtuoso N, Ciccarelli M, Galasso G, Carrizzo A, Vecchione C. The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life (Basel) 2021; 11:60. [PMID: 33467601 PMCID: PMC7829951 DOI: 10.3390/life11010060] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging can be seen as process characterized by accumulation of oxidative stress induced damage. Oxidative stress derives from different endogenous and exogenous processes, all of which ultimately lead to progressive loss in tissue and organ structure and functions. The oxidative stress theory of aging expresses itself in age-related diseases. Aging is in fact a primary risk factor for many diseases and in particular for cardiovascular diseases and its derived morbidity and mortality. Here we highlight the role of oxidative stress in age-related cardiovascular aging and diseases. We take into consideration the molecular mechanisms, the structural and functional alterations, and the diseases accompanied to the cardiovascular aging process.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paolo Vitillo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Andrea Strianese
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| |
Collapse
|
9
|
Garate-Carrillo A, Gonzalez J, Ceballos G, Ramirez-Sanchez I, Villarreal F. Sex related differences in the pathogenesis of organ fibrosis. Transl Res 2020; 222:41-55. [PMID: 32289256 PMCID: PMC7721117 DOI: 10.1016/j.trsl.2020.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
The development of organ fibrosis has garnered rising attention as multiple diseases of increasing and/or high prevalence appear to progress to the chronic stage. Such is the case for heart, kidney, liver, and lung where diseases such as diabetes, idiopathic/autoimmune disorders, and nonalcoholic liver disease appear to notably drive the development of fibrosis. Noteworthy is that the severity of these pathologies is characteristically compounded by aging. For these reasons, research groups and drug companies have identified fibrosis as a therapeutic target for which currently, there are essentially no effective options. Although a limited body of published studies are available, most literature indicates that in multiple organs, premenopausal women are protected from developing severe forms of fibrosis suggesting an important role for sex hormones in mitigating this process. Investigators have implemented relevant animal models of organ disease linked to fibrosis supporting in general, these observations. In vitro studies and transgenic animals models have also been used in an attempt to understand the role that sex hormones and related receptors play in the development of fibrosis. However, in the setting of chronic disease in some organs such as the heart older (postmenopausal) women within a few years can quickly approach men in disease severity and develop significant degrees of fibrosis. This review summarizes the current body of relevant literature and highlights the imperative need for a major focus to be placed on understanding the manner in which sex and the presence or absence of related hormones modulates cell phenotypes so as to allow for fibrosis to develop.
Collapse
Affiliation(s)
- Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, California; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Julisa Gonzalez
- Department of Medicine, School of Medicine, University of California, San Diego, California
| | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, California; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, California; VA San Diego Health Care, San Diego, California.
| |
Collapse
|
10
|
Loredo-Mendoza ML, Ramirez-Sanchez I, Bustamante-Pozo MM, Ayala M, Navarrete V, Garate-Carrillo A, Ito BR, Ceballos G, Omens J, Villarreal F. The role of inflammation in driving left ventricular remodeling in a pre-HFpEF model. Exp Biol Med (Maywood) 2020; 245:748-757. [PMID: 32183553 DOI: 10.1177/1535370220912699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT The incidence of HFpEF continues to increase and ∼2/3 of the patient population are post-menopausal women. Unfortunately, most studies focus on the use of male animal models of remodeling. In this study, however, using female rats to set a model of pre-HFpEF, we provide insights to possible mechanisms that contribute to HFpEF development in humans that will lead us to a better understanding of the underlying pathophysiology of HFpEF.
Collapse
Affiliation(s)
- Maria L Loredo-Mendoza
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
- Department of Histopathology, School of Medicine, Universidad Panamericana, Ciudad de Mexico 03920, Mexico
| | - Israel Ramirez-Sanchez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
| | - Moises Muratt Bustamante-Pozo
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
| | - Marcos Ayala
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
| | - Viridiana Navarrete
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
| | - Alejandra Garate-Carrillo
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
| | - Bruce R Ito
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
| | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
| | - Jeffrey Omens
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
- VA San Diego Healthcare, San Diego, CA 92161, USA
| |
Collapse
|
11
|
Yu L, Zhang X, Yang Y, Li D, Tang K, Zhao Z, He W, Wang C, Sahoo N, Converso-Baran K, Davis CS, Brooks SV, Bigot A, Calvo R, Martinez NJ, Southall N, Hu X, Marugan J, Ferrer M, Xu H. Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. SCIENCE ADVANCES 2020; 6:eaaz2736. [PMID: 32128386 PMCID: PMC7032923 DOI: 10.1126/sciadv.aaz2736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/22/2019] [Indexed: 05/12/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disease caused by mutations in dystrophin that compromise sarcolemma integrity. Currently, there is no treatment for DMD. Mutations in transient receptor potential mucolipin 1 (ML1), a lysosomal Ca2+ channel required for lysosomal exocytosis, produce a DMD-like phenotype. Here, we show that transgenic overexpression or pharmacological activation of ML1 in vivo facilitates sarcolemma repair and alleviates the dystrophic phenotypes in both skeletal and cardiac muscles of mdx mice (a mouse model of DMD). Hallmark dystrophic features of DMD, including myofiber necrosis, central nucleation, fibrosis, elevated serum creatine kinase levels, reduced muscle force, impaired motor ability, and dilated cardiomyopathies, were all ameliorated by increasing ML1 activity. ML1-dependent activation of transcription factor EB (TFEB) corrects lysosomal insufficiency to diminish muscle damage. Hence, targeting lysosomal Ca2+ channels may represent a promising approach to treat DMD and related muscle diseases.
Collapse
MESH Headings
- Animals
- Biomarkers
- Biopsy
- Disease Models, Animal
- Dystrophin/genetics
- Fluorescent Antibody Technique
- Gene Expression
- Lysosomes/drug effects
- Lysosomes/metabolism
- Mice
- Mice, Inbred mdx
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Transient Receptor Potential Channels/agonists
Collapse
Affiliation(s)
- Lu Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Yexin Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kaiyuan Tang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Zifan Zhao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Wanwan He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ce Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
| | - Nirakar Sahoo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W University Dr., Edinburg, TX 78539, USA
| | - Kimber Converso-Baran
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol S. Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan V. Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne Bigot
- Sorbonne Université, INSERM, AIM, Center for Research in Myology, UMRS974, GH Pitié-Salpétrière, 75651 Paris Cedex 13, France
| | - Raul Calvo
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | | | - Noel Southall
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Hu
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Juan Marugan
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Marc Ferrer
- NIH/NCATS/NCGC, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4114 Biological Sciences Building, 1105 North University, Ann Arbor, MI 48109, USA
- Corresponding author.
| |
Collapse
|
12
|
Chacar S, Hajal J, Saliba Y, Bois P, Louka N, Maroun RG, Faivre J, Fares N. Long-term intake of phenolic compounds attenuates age-related cardiac remodeling. Aging Cell 2019; 18:e12894. [PMID: 30680911 PMCID: PMC6413651 DOI: 10.1111/acel.12894] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/26/2018] [Accepted: 11/27/2018] [Indexed: 01/14/2023] Open
Abstract
With the onset of advanced age, cardiac-associated pathologies have increased in prevalence. The hallmarks of cardiac aging include cardiomyocyte senescence, fibroblast proliferation, inflammation, and hypertrophy. The imbalance between levels of reactive oxygen species (ROS) and antioxidant enzymes is greatly enhanced in aging cells, promoting cardiac remodeling. In this work, we studied the long-term impact of phenolic compounds (PC) on age-associated cardiac remodeling. Three-month-old Wistar rats were treated for 14 months till middle-age with either 2.5, 5, 10, or 20 mg kg-1 day-1 of PC. PC treatment showed a dose-dependent preservation of cardiac ejection fraction and fractional shortening as well as decreased hypertrophy reflected by left ventricular chamber diameter and posterior wall thickness as compared to untreated middle-aged control animals. Analyses of proteins from cardiac tissue showed that PC attenuated several hypertrophic pathways including calcineurin/nuclear factor of activated T cells (NFATc3), calcium/calmodulin-dependent kinase II (CAMKII), extracellular regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase 3ß (GSK 3ß). PC-treated groups exhibited reduced plasma inflammatory and fibrotic markers and revealed as well ameliorated extracellular matrix remodeling and interstitial inflammation by a downregulated p38 pathway. Myocardia from PC-treated middle-aged rats presented less fibrosis with suppression of profibrotic transforming growth factor-ß1 (TGF-ß1) Smad pathway. Additionally, reduction of apoptosis and oxidative damage in the PC-treated groups was reflected by elevated antioxidant enzymes and reduced RNA/DNA damage markers. Our findings pinpoint that a daily consumption of phenolic compounds could preserve the heart from the detrimental effects of aging storm.
Collapse
Affiliation(s)
- Stéphanie Chacar
- Faculté de Médecine, Laboratoire de Recherche en Physiologie et Physiopathologie, LRPP, Pôle Technologie SantéUniversité Saint JosephBeyrouthLiban
- Faculté des Sciences, Centre d’Analyses et de Recherche, UR GPF, Laboratoire CTAUniversité Saint‐JosephBeyrouthLiban
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM)Université de PoitiersPoitiersFrance
| | - Joelle Hajal
- Faculté de Médecine, Laboratoire de Recherche en Physiologie et Physiopathologie, LRPP, Pôle Technologie SantéUniversité Saint JosephBeyrouthLiban
| | - Youakim Saliba
- Faculté de Médecine, Laboratoire de Recherche en Physiologie et Physiopathologie, LRPP, Pôle Technologie SantéUniversité Saint JosephBeyrouthLiban
| | - Patrick Bois
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM)Université de PoitiersPoitiersFrance
| | - Nicolas Louka
- Faculté des Sciences, Centre d’Analyses et de Recherche, UR GPF, Laboratoire CTAUniversité Saint‐JosephBeyrouthLiban
| | - Richard G. Maroun
- Faculté des Sciences, Centre d’Analyses et de Recherche, UR GPF, Laboratoire CTAUniversité Saint‐JosephBeyrouthLiban
| | - Jean‐François Faivre
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM)Université de PoitiersPoitiersFrance
| | - Nassim Fares
- Faculté de Médecine, Laboratoire de Recherche en Physiologie et Physiopathologie, LRPP, Pôle Technologie SantéUniversité Saint JosephBeyrouthLiban
| |
Collapse
|
13
|
Bustamante M, Garate-Carrillo A, R Ito B, Garcia R, Carson N, Ceballos G, Ramirez-Sanchez I, Omens J, Villarreal F. Unmasking of oestrogen-dependent changes in left ventricular structure and function in aged female rats: a potential model for pre-heart failure with preserved ejection fraction. J Physiol 2019; 597:1805-1817. [PMID: 30681142 DOI: 10.1113/jp277479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Heart failure with preserved ejection fraction (HFpEF) is seen more frequently in older women; risk factors include age, hypertension and excess weight. No female animal models of early stage remodelling (pre-HFpEF) have examined the effects that the convergence of such factors have on cardiac structure and function. In this study, we demonstrate that ageing can lead to the development of mild chamber remodelling, diffuse fibrosis and loss of diastolic function. The loss of oestrogens further aggravates such changes by leading to a notable drop in cardiac output (while preserving normal ejection fraction) in the presence of diffuse fibrosis that is more predominant in endocardium and is accompanied by papillary fibrosis. Excess weight did not markedly aggravate such findings. This animal model recapitulates many of the features recognized in older, female HFpEF patients and thus, may serve to examine the effects of candidate therapeutic agents. ABSTRACT Two-thirds of patients with heart failure with preserved ejection fraction (HFpEF) are older women, and risk factors include hypertension and excess weight/obesity. Pathophysiological factors that drive early disease development (before heart failure ensues) remain obscure and female animal models are lacking. The study evaluated the intersecting roles of ageing, oestrogen depletion and excess weight on altering cardiac structure/function. Female, 18-month-old, Fischer F344 rats were divided into an aged group, aged + ovariectomy (OVX) and aged + ovariectomy + 10% fructose (OVF) in drinking water (n = 8-16/group) to induce weight gain. Left ventricular (LV) structure/function was monitored by echocardiography. At 22 months of age, animals were anaesthetized and catheter-based haemodynamics evaluated, followed by histological measures of chamber morphometry and collagen density. All aged animals developed hypertension. OVF animals increased body weight. Echocardiography only detected mild chamber remodelling with ageing while intraventricular pressure-volume loop analysis showed significant (P < 0.05) decreases vs. ageing in stroke volume (13% OVX and 15% for OVF), stroke work (34% and 52%) and cardiac output (29% and 27%), and increases in relaxation time (10% OVX) with preserved ejection fraction. Histology indicated papillary and interstitial fibrosis with ageing, which was higher in the endocardium of OVX and OVF groups. With ageing, ovariectomy leads to the loss of diastolic and global LV function while preserving ejection fraction. This model recapitulates many cardiovascular features present in HFpEF patients and may help understand the roles that ageing and oestrogen depletion play in early (pre-HFpEF) disease development.
Collapse
Affiliation(s)
- Moises Bustamante
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Bruce R Ito
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ricardo Garcia
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Bristol-Myers Squibb, New York, NY, USA
| | | | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Jeffrey Omens
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,VA San Diego Health Care, San Diego, CA, USA
| |
Collapse
|
14
|
Fattahi F, Frydrych LM, Bian G, Kalbitz M, Herron TJ, Malan EA, Delano MJ, Ward PA. Role of complement C5a and histones in septic cardiomyopathy. Mol Immunol 2018; 102:32-41. [PMID: 29914696 DOI: 10.1016/j.molimm.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022]
Abstract
Polymicrobial sepsis (after cecal ligation and puncture, CLP) causes robust complement activation with release of C5a. Many adverse events develop thereafter and will be discussed in this review article. Activation of complement system results in generation of C5a which interacts with its receptors (C5aR1, C5aR2). This leads to a series of harmful events, some of which are connected to the cardiomyopathy of sepsis, resulting in defective action potentials in cardiomyocytes (CMs), activation of the NLRP3 inflammasome in CMs and the appearance of extracellular histones, likely arising from activated neutrophils which form neutrophil extracellular traps (NETs). These events are associated with activation of mitogen-activated protein kinases (MAPKs) in CMs. The ensuing release of histones results in defective action potentials in CMs and reduced levels of [Ca2+]i-regulatory enzymes including sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) and Na+/Ca2+ exchanger (NCX) as well as Na+/K+-ATPase in CMs. There is also evidence that CLP causes release of IL-1β via activation of the NLRP3 inflammasome in CMs of septic hearts or in CMs incubated in vitro with C5a. Many of these events occur after in vivo or in vitro contact of CMs with histones. Together, these data emphasize the role of complement (C5a) and C5a receptors (C5aR1, C5aR2), as well as extracellular histones in events that lead to cardiac dysfunction of sepsis (septic cardiomyopathy).
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lynn M Frydrych
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Guowu Bian
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Miriam Kalbitz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Todd J Herron
- Division of Cardiovascular Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Elizabeth A Malan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthew J Delano
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
15
|
Malmo V, Kelly A, Garten KS, Stolen T, Rolim NPL, Wisloff U, Smith G, Loennechen JP. Aerobic Interval Training Prevents Age-Dependent Vulnerability to Atrial Fibrillation in Rodents. Front Physiol 2018; 9:206. [PMID: 29593565 PMCID: PMC5854689 DOI: 10.3389/fphys.2018.00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/23/2018] [Indexed: 12/05/2022] Open
Abstract
Aims: Increasing age is the most important risk factor for atrial fibrillation (AF). Very high doses of exercise training might increase AF risk, while moderate levels seem to be protective. This study aimed to examine the effects of age on vulnerability to AF and whether long-term aerobic interval training (AIT) could modify these effects. Methods: Nine months old, male Sprague-Dawley rats were randomized to AIT for 16 weeks (old-ex) or to a sedentary control group (old-sed), and compared to young sedentary males (young-sed). After the intervention, animals underwent echocardiography, testing of exercise capacity (VO2max), and electrophysiology with AF induction before ex vivo electrophysiology. Fibrosis quantification, immunohistochemistry and western blotting of atrial tissue were performed. Results: Sustained AF was induced in vivo in 4 of 11 old-sed animals, but none of the old-ex or young-sed rats (p = 0.006). VO2max was lower in old-sed, while old-ex had comparable results to young-sed. Fibrosis was increased in old-sed (p = 0.006), with similar results in old-ex. There was a significantly slower atrial conduction in old-sed (p = 0.038), with an increase in old-ex (p = 0.027). Action potential duration was unaltered in old-sed, but prolonged in old-ex (p = 0.036). There were no differences in amount of atrial connexin 43 between groups, but a lateralization in atrial cardiomyocytes of old-sed, with similar findings in old-ex. Conclusion: AF vulnerability was higher in old-sed animals, associated with increased atrial fibrosis, lateralization of connexin-43, and reduced atrial conduction velocity. AIT reduced the age-associated susceptibility to AF, possibly through increased conduction velocity and prolongation of action potentials.
Collapse
Affiliation(s)
- Vegard Malmo
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St. Olavs Hospital, Trondheim, Norway
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Karin S Garten
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tomas Stolen
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Natale P L Rolim
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisloff
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jan P Loennechen
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
16
|
Oliveira-Junior SA, Martinez PF, Fan WYC, Nakatani BT, Pagan LU, Padovani CR, Cicogna AC, Okoshi MP, Okoshi K. Association between echocardiographic structural parameters and body weight in Wistar rats. Oncotarget 2018; 8:26100-26105. [PMID: 28212534 PMCID: PMC5432241 DOI: 10.18632/oncotarget.15320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The association between echocardiographic structural parameters and body weight (BW) during rat development has been poorly addressed. We evaluated echocardiographic variables: left ventricular (LV) end-diastolic (LVDD) and end-systolic (LVSD) diameters, LV diastolic posterior wall thickness (PWT), left atrial diameter (LA), and aortic diameter (AO) in function of BW during development.Results/Materials and Methods: Male Wistar rats (n = 328, BW: 302-702 g) were retrospectively used to construct regression models and 95% confidence intervals relating to cardiac structural parameters and BW. Adjusted indexes were significant to all relationships; the regression model for predicting LVDD (R2 = 0.678; p < 0.001) and AO (R2 = 0.567; p < 0.001) had the highest prediction coefficients and LA function the lowest prediction coefficient (R2 = 0.274; p < 0.01). These relationships underwent validation by performing echocardiograms on additional rats (n = 43, BW: 300-600 g) and testing whether results were within confidence intervals of our regressions. Prediction models for AO and LA correctly allocated 38 (88.4%) and 39 rats (90.7%), respectively, within the 95% confidence intervals. Regression models for LVDD, LVSD, and PWT included 27 (62.7%), 30 (69.8%), and 19 (44.2%) animals, respectively, within the 95% confidence intervals. CONCLUSIONS Increase in cardiac structures is associated with BW gain during rat growth. LA and AO can be correctly predicted using regression models; prediction of PWT and LV diameters is not accurate.
Collapse
Affiliation(s)
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - William Y C Fan
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Bruno T Nakatani
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Carlos R Padovani
- Botucatu Biosciences Institute, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Antonio C Cicogna
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
17
|
Martín-Fernández B, Gredilla R. Mitochondrial oxidative stress and cardiac ageing. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 30:74-83. [PMID: 29398015 DOI: 10.1016/j.arteri.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones.
Collapse
Affiliation(s)
- Beatriz Martín-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España.
| | - Ricardo Gredilla
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
18
|
Martin B, Gabris-Weber BA, Reddy R, Romero G, Chattopadhyay A, Salama G. Relaxin reverses inflammatory and immune signals in aged hearts. PLoS One 2018; 13:e0190935. [PMID: 29346407 PMCID: PMC5773192 DOI: 10.1371/journal.pone.0190935] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
Background ‘Healthy’ aging drives structural and functional changes in the heart including maladaptive electrical remodeling, fibrosis and inflammation, which lower the threshold for cardiovascular diseases such as heart failure (HF) and atrial fibrillation (AF). Despite mixed results in recent clinical trials, Relaxin-therapy for 2-days could reduce mortality by 37% at 180-days post-treatment, in patients with acute decompensated HF. Relaxin’s short life-span (hours) but long-lasting protective actions led us to test the hypothesis that relaxin acts at a genomic level to reverse maladaptive remodeling in aging and HF. Methods and results Young (9-month) and aged (24-month), male and female F-344/Brown Norway rats were treated with relaxin (0.4 mg/kg/day) for 2-weeks delivered by subcutaneous osmotic mini-pumps or with sodium acetate (controls). The genomic effects of aging and relaxin were evaluated by extracting RNA from the left ventricles and analyzing genomic changes by RNA-sequencing, Ingenuity Pathway Analysis, MetaCore and tissue immunohistochemistry. We found that aging promotes a native inflammatory response with distinct sex-differences and relaxin suppresses transcription of multiple genes and signaling pathways associated with inflammation and HF in both genders. In addition, aging significantly increased: macrophage infiltration and atrial natriuretic peptide levels in female ventricles, and activation of the complement cascade, whereas relaxin reversed these age-related effects. Conclusion These data support the hypothesis that relaxin alters gene transcription and suppresses inflammatory pathways and genes associated with HF and aging. Relaxin’s suppression of inflammation and fibrosis supports its potential as a therapy for cardiovascular and inflammation-related diseases, such as HF, AF and diabetes.
Collapse
Affiliation(s)
- Brian Martin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- School of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Beth Ann Gabris-Weber
- School of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Rajiv Reddy
- School of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Guillermo Romero
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Guy Salama
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- School of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Valero-Muñoz M, Backman W, Sam F. Murine Models of Heart Failure with Preserved Ejection Fraction: a "Fishing Expedition". JACC Basic Transl Sci 2017; 2:770-789. [PMID: 29333506 PMCID: PMC5764178 DOI: 10.1016/j.jacbts.2017.07.013] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of HF in the presence of a normal left ventricular (LV) ejection fraction (EF). Despite accounting for up to 50% of all clinical presentations of HF, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension and renal dysfunction are highly associated with HFpEF. Yet, the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models, used to study the HFpEF phenotype.
Collapse
Affiliation(s)
- Maria Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Warren Backman
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
20
|
Fattahi F, Ward PA. Complement and sepsis-induced heart dysfunction. Mol Immunol 2016; 84:57-64. [PMID: 27931779 DOI: 10.1016/j.molimm.2016.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/18/2016] [Indexed: 01/09/2023]
Abstract
It is well known that cardiac dysfunction develops during sepsis in both humans and in rodents (rats, mice). These defects appear to be reversible, since after "recovery" from sepsis, cardiac dysfunction disappears and the heart returns to its function that was present before the onset of sepsis. Our studies, using in vivo and in vitro models, have demonstrated that C5a and its receptors (C5aR1 and C5aR2) play key roles in cardiac dysfunction developing during sepsis. Use of a neutralizing antibody to C5a largely attenuates cardiac dysfunction and other adverse events developing during sepsis. The molecular basis for cardiac dysfunctions is linked to generation of C5a and its interaction with C5a receptors present on surfaces of cardiomyocytes (CMs). It is established that C5a interactions with C5a receptors leads to significant reductions involving faulty contractility and relaxation in CMs. In addition, C5a interactions with C5a receptors on CMs results in reductions in Na+/K+-ATPase in CMs. This ATPase is essential for intact action potentials in CMs. The enzymatic activity and protein for this ATPase were strikingly reduced in CMs during sepsis by unknown mechanisms. In addition, C5a interactions with C5aRs also caused reductions in CM homeostatic proteins that regulate cytosolic [Ca2+]i in CMs: sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and Na+/Ca2+ exchanger (NCX). In the absence of C5a receptors, defects in SERCA2 and NCX in CMs after sepsis are strikingly attenuated. These observations suggest new strategies to protect the heart from dysfunction developing during sepsis.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
21
|
Kalbitz M, Fattahi F, Grailer JJ, Jajou L, Malan EA, Zetoune FS, Huber-Lang M, Russell MW, Ward PA. Complement-induced activation of the cardiac NLRP3 inflammasome in sepsis. FASEB J 2016; 30:3997-4006. [PMID: 27543123 DOI: 10.1096/fj.201600728r] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/08/2016] [Indexed: 01/02/2023]
Abstract
Cardiac dysfunction develops during sepsis in humans and rodents. In the model of polymicrobial sepsis induced by cecal ligation and puncture (CLP), we investigated the role of the NLRP3 inflammasome in the heart. Mouse heart homogenates from sham-procedure mice contained high mRNA levels of NLRP3 and IL-1β. Using the inflammasome protocol, exposure of cardiomyocytes (CMs) to LPS followed by ATP or nigericin caused release of mature IL-1β. Immunostaining of left ventricular frozen sections before and 8 h after CLP revealed the presence of NLRP3 and IL-1β proteins in CMs. CLP caused substantial increases in mRNAs for IL-1β and NLRP3 in CMs which are reduced in the absence of either C5aR1 or C5aR2. After CLP, NLRP3-/- mice showed reduced plasma levels of IL-1β and IL-6. In vitro exposure of wild-type CMs to recombinant C5a (rC5a) caused elevations in both cytosolic and nuclear/mitochondrial reactive oxygen species (ROS), which were C5a-receptor dependent. Use of a selective NOX2 inhibitor prevented increased cytosolic and nuclear/mitochondrial ROS levels and release of IL-1β. Finally, NLRP3-/- mice had reduced defects in echo/Doppler parameters in heart after CLP. These studies establish that the NLRP3 inflammasome contributes to the cardiomyopathy of polymicrobial sepsis.-Kalbitz, M., Fattahi, F., Grailer, J. J., Jajou, L., Malan, E. A., Zetoune, F. S., Huber-Lang, M., Russell, M. W., Ward, P. A. Complement-induced activation of the cardiac NLRP3 inflammasome in sepsis.
Collapse
Affiliation(s)
- Miriam Kalbitz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Orthopaedic Trauma, Hand, Plastic, and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; and
| | - Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jamison J Grailer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lawrence Jajou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elizabeth A Malan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Firas S Zetoune
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Markus Huber-Lang
- Department of Orthopaedic Trauma, Hand, Plastic, and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; and
| | - Mark W Russell
- Department of Pediatric Cardiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA;
| |
Collapse
|
22
|
Kalbitz M, Fattahi F, Herron TJ, Grailer JJ, Jajou L, Lu H, Huber-Lang M, Zetoune FS, Sarma JV, Day SM, Russell MW, Jalife J, Ward PA. Complement Destabilizes Cardiomyocyte Function In Vivo after Polymicrobial Sepsis and In Vitro. THE JOURNAL OF IMMUNOLOGY 2016; 197:2353-61. [PMID: 27521340 DOI: 10.4049/jimmunol.1600091] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/06/2016] [Indexed: 01/12/2023]
Abstract
There is accumulating evidence during sepsis that cardiomyocyte (CM) homeostasis is compromised, resulting in cardiac dysfunction. An important role for complement in these outcomes is now demonstrated. Addition of C5a to electrically paced CMs caused prolonged elevations of intracellular Ca(2+) concentrations during diastole, together with the appearance of spontaneous Ca(2+) transients. In polymicrobial sepsis in mice, we found that three key homeostasis-regulating proteins in CMs were reduced: Na(+)/K(+)-ATPase, which is vital for effective action potentials in CMs, and two intracellular Ca(2+) concentration regulatory proteins, that is, sarcoplasmic/endoplasmic reticulum calcium ATPase 2 and the Na(+)/Ca(2+) exchanger. Sepsis caused reduced mRNA levels and reductions in protein concentrations in CMs for all three proteins. The absence of either C5a receptor mitigated sepsis-induced reductions in the three regulatory proteins. Absence of either C5a receptor (C5aR1 or C5aR2) diminished development of defective systolic and diastolic echocardiographic/Doppler parameters developing in the heart (cardiac output, left ventricular stroke volume, isovolumic relaxation, E' septal annulus, E/E' septal annulus, left ventricular diastolic volume). We also found in CMs from septic mice the presence of defective current densities for Ik1, l-type calcium channel, and Na(+)/Ca(2+) exchanger. These defects were accentuated in the copresence of C5a. These data suggest complement-related mechanisms responsible for development of cardiac dysfunction during sepsis.
Collapse
Affiliation(s)
- Miriam Kalbitz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, 89081 Ulm, Germany
| | - Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Todd J Herron
- Division of Cardiovascular Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jamison J Grailer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lawrence Jajou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Hope Lu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, 89081 Ulm, Germany
| | - Firas S Zetoune
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - J Vidya Sarma
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Sharlene M Day
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mark W Russell
- Department of Pediatric Cardiology, University of Michigan Medical School, Ann Arbor, MI 48109; and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - José Jalife
- Division of Cardiovascular Research, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109;
| |
Collapse
|
23
|
Martín-Fernández B, Gredilla R. Mitochondria and oxidative stress in heart aging. AGE (DORDRECHT, NETHERLANDS) 2016; 38:225-238. [PMID: 27449187 PMCID: PMC5061683 DOI: 10.1007/s11357-016-9933-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/12/2016] [Indexed: 05/06/2023]
Abstract
As average lifespan of humans increases in western countries, cardiac diseases become the first cause of death. Aging is among the most important risk factors that increase susceptibility for developing cardiovascular diseases. The heart has very aerobic metabolism, and is highly dependent on mitochondrial function, since mitochondria generate more than 90 % of the intracellular ATP consumed by cardiomyocytes. In the last few decades, several investigations have supported the relevance of mitochondria and oxidative stress both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy, and diabetic cardiomyopathy. In the current review, we compile different studies corroborating this role. Increased mitochondria DNA instability, impaired bioenergetic efficiency, enhanced apoptosis, and inflammation processes are some of the events related to mitochondria that occur in aging heart, leading to reduced cellular survival and cardiac dysfunction. Knowing the mitochondrial mechanisms involved in the aging process will provide a better understanding of them and allow finding approaches to more efficiently improve this process.
Collapse
Affiliation(s)
- Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Complutense University, Plaza Ramon y Cajal s/n, 28040, Madrid, Spain.
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Plaza Ramon y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
24
|
Dedkov EI, Bogatyryov Y, Pavliak K, Santos AT, Chen YF, Zhang Y, Pingitore A. Sex-related differences in intrinsic myocardial properties influence cardiac function in middle-aged rats during infarction-induced left ventricular remodeling. Physiol Rep 2016; 4:4/11/e12822. [PMID: 27288060 PMCID: PMC4908497 DOI: 10.14814/phy2.12822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/15/2016] [Indexed: 11/24/2022] Open
Abstract
We previously determined that residual left ventricular (LV) myocardium of middle-aged rats had sex-related differences in regional tissue properties 4 weeks after a large myocardial infarction (MI). However, the impact of such differences on cardiac performance remained unclear. Therefore, our current study aimed to elucidate whether sex-related changes in MI-induced myocardial remodeling can influence cardiac function. A similar-sized MI was induced in 12-month-old male (M-MI) and female (F-MI) Sprague-Dawley rats by ligation of the left coronary artery. The cardiac function was monitored for 2 months after MI and then various LV parameters were compared between sexes. We found that although two sex groups had a similar pattern of MI-induced decline in LV function, F-MI rats had greater cardiac performance compared to M-MI rats, considering the higher values of EF (39.9 ± 3.4% vs. 26.7 ± 7.7%, P < 0.05), SW index (40.4 ± 2.1 mmHg • mL/kg vs. 20.2 ± 3.3 mmHg • mL/kg, P < 0.001), and CI (139.2 ± 7.9 mL/min/kg vs. 74.9 ± 14.7 mL/min/kg, P < 0.01). The poorer pumping capacity in M-MI hearts was associated with markedly reduced LV compliance and prolonged relaxation. On the tissue level, F-MI rats revealed a higher, than in M-MI rats, density of cardiac myocytes in the LV free wall (2383.8 ± 242.6 cells/mm(2) vs. 1785.7 ± 55.9 cells/mm(2), P < 0.05). The latter finding correlated with a lower density of apoptotic cardiac myocytes in residual LV myocardium of F-MI rats (0.18 ± 0.08 cells/mm(2) vs. 0.91 ± 0.30 cells/mm(2) in males, P < 0.01). Thus, our data suggested that F-MI rats had markedly attenuated decline in cardiac performance compared to males due to ability of female rats to better retain functionally favorable intrinsic myocardial properties.
Collapse
Affiliation(s)
- Eduard I Dedkov
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | - Yevgen Bogatyryov
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | - Kristina Pavliak
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | - Adora T Santos
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | - Yue-Feng Chen
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology (NYIT) College of Osteopathic Medicine, Old Westbury, New York
| | | |
Collapse
|
25
|
Henry BL, Gabris B, Li Q, Martin B, Giannini M, Parikh A, Patel D, Haney J, Schwartzman DS, Shroff SG, Salama G. Relaxin suppresses atrial fibrillation in aged rats by reversing fibrosis and upregulating Na+ channels. Heart Rhythm 2016; 13:983-91. [PMID: 26711798 PMCID: PMC4801709 DOI: 10.1016/j.hrthm.2015.12.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) contributes significantly to morbidity and mortality in elderly patients and has been correlated with enhanced age-dependent atrial fibrosis. Reversal of atrial fibrosis has been proposed as therapeutic strategy to suppress AF. OBJECTIVE To test the ability of relaxin to reverse age-dependent atrial fibrosis and suppress AF. METHODS Aged F-344 rats (24 months old) were treated with subcutaneous infusion of vehicle or relaxin (0.4 mg/kg/day) for 2 weeks. Rat hearts were excised, perfused on a Langendorff apparatus, and stained with voltage and Ca(2+) indicator dyes. Optical mapping and programmed electrical stimulation was used to test arrhythmia vulnerability and changes in electrophysiological characteristics. Changes in protein expression and Na(+) current density (INa) were measured by tissue immunofluorescence and whole-cell patch clamp technique. RESULTS In aged rats, sustained AF was readily induced with a premature pulse (n = 7/8) and relaxin treatment suppressed sustained AF by a premature impulse or burst pacing (n = 1/6) (P < .01). Relaxin significantly increased atrial action potential conduction velocity and decreased atrial fibrosis. Relaxin treatment increased Nav1.5 expression (n = 6; 36% ± 10%) and decreased total collagen and collagen I (n = 5-6; 55%-66% ± 15%) in aged atria (P < .05) and decreased collagen I and III and TGF-β1 mRNA (P < .05). Voltage-clamp experiments demonstrated that relaxin treatment (100 nM for 2 days) increased atrial INa by 46% ± 4% (n = 12-13/group, P < .02). CONCLUSION Relaxin suppresses AF through an increase in atrial conduction velocity by decreasing atrial fibrosis and increasing INa. These data provide compelling evidence that relaxin may serve as an effective therapy to manage AF in geriatric patients by reversing fibrosis and modulating cardiac ionic currents.
Collapse
Affiliation(s)
- Brian L Henry
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Beth Gabris
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Qiao Li
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Brian Martin
- University of Pittsburgh Department of Bioengineering, and the McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Marianna Giannini
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Ashish Parikh
- University of Pittsburgh Department of Bioengineering, and the McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Divyang Patel
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Jamie Haney
- University of Pittsburgh Department of Bioengineering, and the McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - David S Schwartzman
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania
| | - Sanjeev G Shroff
- University of Pittsburgh Department of Bioengineering, and the McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Guy Salama
- University of Pittsburgh School of Medicine, Heart and Vascular Institute, Pittsburgh, Pennsylvania,; University of Pittsburgh Department of Bioengineering, and the McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
26
|
Quarles EK, Dai DF, Tocchi A, Basisty N, Gitari L, Rabinovitch PS. Quality control systems in cardiac aging. Ageing Res Rev 2015; 23:101-15. [PMID: 25702865 PMCID: PMC4686341 DOI: 10.1016/j.arr.2015.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/02/2015] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
Cardiac aging is an intrinsic process that results in impaired cardiac function, along with cellular and molecular changes. These degenerative changes are intimately associated with quality control mechanisms. This review provides a general overview of the clinical and cellular changes which manifest in cardiac aging, and the quality control mechanisms involved in maintaining homeostasis and retarding aging. These mechanisms include autophagy, ubiquitin-mediated turnover, apoptosis, mitochondrial quality control and cardiac matrix homeostasis. Finally, we discuss aging interventions that have been observed to impact cardiac health outcomes. These include caloric restriction, rapamycin, resveratrol, GDF11, mitochondrial antioxidants and cardiolipin-targeted therapeutics. A greater understanding of the quality control mechanisms that promote cardiac homeostasis will help to understand the benefits of these interventions, and hopefully lead to further improved therapeutic modalities.
Collapse
Affiliation(s)
- Ellen K Quarles
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Dao-Fu Dai
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Autumn Tocchi
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Nathan Basisty
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Lemuel Gitari
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| | - Peter S Rabinovitch
- University of Washington School of Medicine, Department of Pathology, Box 357470, Seattle, WA 98195-7470, United States.
| |
Collapse
|
27
|
Kaushik G, Spenlehauer A, Sessions AO, Trujillo AS, Fuhrmann A, Fu Z, Venkatraman V, Pohl D, Tuler J, Wang M, Lakatta EG, Ocorr K, Bodmer R, Bernstein SI, Van Eyk JE, Cammarato A, Engler AJ. Vinculin network-mediated cytoskeletal remodeling regulates contractile function in the aging heart. Sci Transl Med 2015; 7:292ra99. [PMID: 26084806 PMCID: PMC4507505 DOI: 10.1126/scitranslmed.aaa5843] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human heart is capable of functioning for decades despite minimal cell turnover or regeneration, suggesting that molecular alterations help sustain heart function with age. However, identification of compensatory remodeling events in the aging heart remains elusive. We present the cardiac proteomes of young and old rhesus monkeys and rats, from which we show that certain age-associated remodeling events within the cardiomyocyte cytoskeleton are highly conserved and beneficial rather than deleterious. Targeted transcriptomic analysis in Drosophila confirmed conservation and implicated vinculin as a unique molecular regulator of cardiac function during aging. Cardiac-restricted vinculin overexpression reinforced the cortical cytoskeleton and enhanced myofilament organization, leading to improved contractility and hemodynamic stress tolerance in healthy and myosin-deficient fly hearts. Moreover, cardiac-specific vinculin overexpression increased median life span by more than 150% in flies. A broad array of potential therapeutic targets and regulators of age-associated modifications, specifically for vinculin, are presented. These findings suggest that the heart has molecular mechanisms to sustain performance and promote longevity, which may be assisted by therapeutic intervention to ameliorate the decline of function in aging patient hearts.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alice Spenlehauer
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ayla O Sessions
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adriana S Trujillo
- Department of Biology, Heart Institute, and Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | - Alexander Fuhrmann
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zongming Fu
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Danielle Pohl
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeremy Tuler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Karen Ocorr
- Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Rolf Bodmer
- Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Sanford I Bernstein
- Department of Biology, Heart Institute, and Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | - Jennifer E Van Eyk
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA. Advanced Clinical Biosystems Research Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA. Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA. Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Kalbitz M, Grailer JJ, Fattahi F, Jajou L, Herron TJ, Campbell KF, Zetoune FS, Bosmann M, Sarma JV, Huber-Lang M, Gebhard F, Loaiza R, Valdivia HH, Jalife J, Russell MW, Ward PA. Role of extracellular histones in the cardiomyopathy of sepsis. FASEB J 2015; 29:2185-93. [PMID: 25681459 DOI: 10.1096/fj.14-268730] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/14/2015] [Indexed: 12/27/2022]
Abstract
The purpose of this study was to define the relationship in polymicrobial sepsis (in adult male C57BL/6 mice) between heart dysfunction and the appearance in plasma of extracellular histones. Procedures included induction of sepsis by cecal ligation and puncture and measurement of heart function using echocardiogram/Doppler parameters. We assessed the ability of histones to cause disequilibrium in the redox status and intracellular [Ca(2+)]i levels in cardiomyocytes (CMs) (from mice and rats). We also studied the ability of histones to disturb both functional and electrical responses of hearts perfused with histones. Main findings revealed that extracellular histones appearing in septic plasma required C5a receptors, polymorphonuclear leukocytes (PMNs), and the Nacht-, LRR-, and PYD-domains-containing protein 3 (NLRP3) inflammasome. In vitro exposure of CMs to histones caused loss of homeostasis of the redox system and in [Ca(2+)]i, as well as defects in mitochondrial function. Perfusion of hearts with histones caused electrical and functional dysfunction. Finally, in vivo neutralization of histones in septic mice markedly reduced the parameters of heart dysfunction. Histones caused dysfunction in hearts during polymicrobial sepsis. These events could be attenuated by histone neutralization, suggesting that histones may be targets in the setting of sepsis to reduce cardiac dysfunction.
Collapse
Affiliation(s)
- Miriam Kalbitz
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Jamison J Grailer
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Fatemeh Fattahi
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Lawrence Jajou
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Todd J Herron
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Katherine F Campbell
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Firas S Zetoune
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Markus Bosmann
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - J Vidya Sarma
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Markus Huber-Lang
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Florian Gebhard
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Randall Loaiza
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Hector H Valdivia
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - José Jalife
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Mark W Russell
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Peter A Ward
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| |
Collapse
|
29
|
Efficacy of female rat models in translational cardiovascular aging research. J Aging Res 2014; 2014:153127. [PMID: 25610649 PMCID: PMC4294461 DOI: 10.1155/2014/153127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging.
Collapse
|
30
|
Horgan S, Watson C, Glezeva N, Baugh J. Murine models of diastolic dysfunction and heart failure with preserved ejection fraction. J Card Fail 2014; 20:984-95. [PMID: 25225111 DOI: 10.1016/j.cardfail.2014.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
Left ventricular diastolic dysfunction leads to heart failure with preserved ejection fraction, an increasingly prevalent condition largely driven by modern day lifestyle risk factors. As heart failure with preserved ejection fraction accounts for almost one-half of all patients with heart failure, appropriate nonhuman animal models are required to improve our understanding of the pathophysiology of this syndrome and to provide a platform for preclinical investigation of potential therapies. Hypertension, obesity, and diabetes are major risk factors for diastolic dysfunction and heart failure with preserved ejection fraction. This review focuses on murine models reflecting this disease continuum driven by the aforementioned common risk factors. We describe various models of diastolic dysfunction and highlight models of heart failure with preserved ejection fraction reported in the literature. Strengths and weaknesses of the different models are discussed to provide an aid to translational scientists when selecting an appropriate model. We also bring attention to the fact that heart failure with preserved ejection fraction is difficult to diagnose in animal models and that, therefore, there is a paucity of well described animal models of this increasingly important condition.
Collapse
Affiliation(s)
- S Horgan
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland; Noninvasive Cardiovascular Imaging, Brigham and Women's Hospital, Boston, Massachusetts.
| | - C Watson
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - N Glezeva
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - J Baugh
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
31
|
Fannin J, Rice KM, Thulluri S, Dornon L, Arvapalli RK, Wehner P, Blough ER. Age-associated alterations of cardiac structure and function in the female F344xBN rat heart. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9684. [PMID: 25062714 PMCID: PMC4150897 DOI: 10.1007/s11357-014-9684-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
The Fischer 344/NNiaHSD × Brown Norway/BiNia F1 (F344xBN) rat model exhibits an increased life span and fewer age-associated pathologies compared to commonly used Fischer 344 (F344). How aging may affect cardiac structure and function in these animals, has to our knowledge, not been investigated. Echocardiography was performed on female F344xBN rats at 6, 26, and 30 months of age using a Phillips 5500 Echocardiography system. Before sacrifice, electrocardiograms were measured in the female F344xBN in order to determine heart rhythm interval changes. Aging was associated with an increase in heart to body weight ratio, cardiomyocyte cross-sectional area, posterior wall thickening, and left ventricle chamber dilatation. Aging was associated with slight evidence of diastolic dysfunction. Alterations in heart rhythm intervals were associated with alterations in the spatial distribution of connexin 43. The incidence of arrhythmias was not different with age; however, valvular dysfunction was increased. These data suggest that aging in the female F344xBN rat heart is associated with changes in cardiac structure as well as function. Further investigation regarding other parameters of cardiac biochemistry and function is needed to better understand the normal compensated cardiovascular aging process in the female F344xBN.
Collapse
Affiliation(s)
- Jacqueline Fannin
- />Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
| | - Kevin M. Rice
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
- />Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
| | - Srininvas Thulluri
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
| | - Lucy Dornon
- />Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
| | - Ravi Kumar Arvapalli
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
| | - Paulette Wehner
- />Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
| | - Eric R. Blough
- />Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
- />Department of Pharmaceutical Science Research, School of Pharmacy, Marshall University, Huntington, WV USA
| |
Collapse
|
32
|
Lang CH, Korzick DH. Chronic alcohol consumption disrupts myocardial protein balance and function in aged, but not adult, female F344 rats. Am J Physiol Regul Integr Comp Physiol 2013; 306:R23-33. [PMID: 24226028 DOI: 10.1152/ajpregu.00414.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to assess whether the deleterious effect of chronic alcohol consumption differs in adult and aged female rats. To address this aim, adult (4 mo) and aged (18 mo) F344 rats were fed a nutritionally complete liquid diet containing alcohol (36% total calories) or an isocaloric isonitrogenous control diet for 20 wk. Cardiac structure and function, assessed by echocardiography, as well as myocardial protein synthesis and proteolysis did not differ in either alcohol- versus control-fed adult rats or in adult versus aged control-fed rats. In contrast, cardiac function was impaired in alcohol-fed aged rats compared with age-matched control rats. Additionally, alcohol feeding decreased cardiac protein synthesis that was associated with decreased phosphorylation of 4E-BP1 and S6K1. This reduction in mammalian target of rapamycin (mTOR) kinase activity was associated with reduced eIF3f and binding of both Raptor and eIF4G to eIF3. Proteasome activity was increased in alcohol-fed aged rats with a coordinate elevation in the E3 ligases atrogin-1 and muscle RING-finger protein-1 (MuRF1). These changes were associated with increased regulated in development and DNA damage response 1 (REDD1) and phosphorylation of AMP-activated protein kinase (AMPK) but no increase in AKT or forkhead transcription factor (FOXO)3 phosphorylation. Finally, markers of autophagy (e.g., LC3B, Atg7, Atg12) and TNF-α were increased to a greater extent in alcohol-fed aged rats. These data demonstrate that aged female rats exhibit an enhanced sensitivity to alcohol compared with adult animals. Our data are consistent with a model whereby alcohol increases proteolysis via FOXO-independent increase in atrogin-1, which degrades eIF3f and therefore impairs formation of a functional preinitiation complex and protein synthesis.
Collapse
|
33
|
Campbell SG, Haynes P, Kelsey Snapp W, Nava KE, Campbell KS. Altered ventricular torsion and transmural patterns of myocyte relaxation precede heart failure in aging F344 rats. Am J Physiol Heart Circ Physiol 2013; 305:H676-86. [PMID: 23792678 DOI: 10.1152/ajpheart.00797.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to identify and explain changes in ventricular and cellular function that contribute to aging-associated cardiovascular disease in aging F344 rats. Three groups of female F344 rats, aged 6, 18, and 22 mo, were studied. Echocardiographic measurements in isoflurane-anesthetized animals showed an increase in peak left ventricular torsion between the 6- and the 18-mo-old groups that was partially reversed in the 22-mo-old animals (P < 0.05). Epicardial, midmyocardial, and endocardial myocytes were subsequently isolated from the left ventricles of each group of rats. Unloaded sarcomere shortening and Ca(2+) transients were then measured in these cells (n = >75 cells for each of the nine age-region groups). The decay time of the Ca(2+) transient and the time required for 50% length relaxation both increased with age but not uniformly across the three regions (P < 0.02). Further analysis revealed a significant shift in the transmural distribution of these properties between 18 and 22 mo of age, with the largest changes occurring in epicardial myocytes. Computational modeling suggested that these changes were due in part to slower Ca(2+) dissociation from troponin in aging epicardial myocytes. Subsequent biochemical assays revealed a >50% reduction in troponin I phosphoprotein content in 22-mo-old epicardium relative to the other regions. These data suggest that between 18 and 22 mo of age (before the onset of heart failure), F344 rats display epicardial-specific myofilament-level modifications that 1) break from the progression observed between 6 and 18 mo and 2) coincide with aberrant patterns of cardiac torsion.
Collapse
Affiliation(s)
- Stuart G Campbell
- Department of Physiology and the Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | | | | | | | | |
Collapse
|
34
|
Liposome-Encapsulated Hemoglobin Attenuates Cardiac Dysfunction and Sympathetic Activity During Hypohemoglobinemic Shock. Shock 2012; 38:159-64. [DOI: 10.1097/shk.0b013e31825ad7af] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Wei CC, Chen Y, Powell LC, Zheng J, Shi K, Bradley WE, Powell PC, Ahmad S, Ferrario CM, Dell'Italia LJ. Cardiac kallikrein-kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss. PLoS One 2012; 7:e40110. [PMID: 22768235 PMCID: PMC3387019 DOI: 10.1371/journal.pone.0040110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022] Open
Abstract
Background The clinical problem of a “pure volume overload” as in isolated mitral or aortic regurgitation currently has no documented medical therapy that attenuates collagen loss and the resultant left ventricular (LV) dilatation and failure. Here, we identify a potential mechanism related to upregulation of the kallikrein-kinin system in the volume overload of aortocaval fistula (ACF) in the rat. Methodology/Principal Findings LV interstitial fluid (ISF) collection, hemodynamics, and echocardiography were performed in age-matched shams and 4 and 15 wk ACF rats. ACF rats had LV dilatation and a 2-fold increase in LV end-diastolic pressure, along with increases in LV ISF bradykinin, myocardial kallikrein and bradykinin type-2 receptor (BK2R) mRNA expression. Mast cell numbers were increased and interstitial collagen was decreased at 4 and 15 wk ACF, despite increases in LV ACE and chymase activities. Treatment with the kallikrein inhibitor aprotinin preserved interstitial collagen, prevented the increase in mast cells, and improved LV systolic function at 4 wk ACF. To establish a cause and effect between ISF bradykinin and mast cell-mediated collagen loss, direct LV interstitial bradykinin infusion in vivo for 24 hrs produced a 2-fold increase in mast cell numbers and a 30% decrease in interstitial collagen, which were prevented by BK2R antagonist. To further connect myocardial stretch with cellular kallikrein-kinin system upregulation, 24 hrs cyclic stretch of adult cardiomyocytes and fibroblasts produced increased kallikrein, BK2R mRNA expressions, bradykinin protein and gelatinase activity, which were all decreased by the kallikrein inhibitor-aprotinin. Conclusions/Significance A pure volume overload is associated with upregulation of the kallikrein-kinin system and ISF bradykinin, which mediates mast cell infiltration, extracellular matrix loss, and LV dysfunction–all of which are improved by kallikrein inhibition. The current investigation provides important new insights into future potential medical therapies for the volume overload of aortic and mitral regurgitation.
Collapse
Affiliation(s)
- Chih-Chang Wei
- Birmingham Veteran Affairs Medical Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 16:1492-526. [PMID: 22229339 PMCID: PMC3329953 DOI: 10.1089/ars.2011.4179] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the major causes of death in the western world. The incidence of cardiovascular disease as well as the rate of cardiovascular mortality and morbidity increase exponentially in the elderly population, suggesting that age per se is a major risk factor of CVDs. The physiologic changes of human cardiac aging mainly include left ventricular hypertrophy, diastolic dysfunction, valvular degeneration, increased cardiac fibrosis, increased prevalence of atrial fibrillation, and decreased maximal exercise capacity. Many of these changes are closely recapitulated in animal models commonly used in an aging study, including rodents, flies, and monkeys. The application of genetically modified aged mice has provided direct evidence of several critical molecular mechanisms involved in cardiac aging, such as mitochondrial oxidative stress, insulin/insulin-like growth factor/PI3K pathway, adrenergic and renin angiotensin II signaling, and nutrient signaling pathways. This article also reviews the central role of mitochondrial oxidative stress in CVDs and the plausible mechanisms underlying the progression toward heart failure in the susceptible aging hearts. Finally, the understanding of the molecular mechanisms of cardiac aging may support the potential clinical application of several "anti-aging" strategies that treat CVDs and improve healthy cardiac aging.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
37
|
Steppan J, Tran H, Benjo AM, Pellakuru L, Barodka V, Ryoo S, Nyhan SM, Lussman C, Gupta G, White AR, Daher JP, Shoukas AA, Levine BD, Berkowitz DE. Alagebrium in combination with exercise ameliorates age-associated ventricular and vascular stiffness. Exp Gerontol 2012; 47:565-72. [PMID: 22569357 DOI: 10.1016/j.exger.2012.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 01/06/2023]
Abstract
Advanced glycation end-products (AGEs) initiate cellular inflammation and contribute to cardiovascular disease in the elderly. AGE can be inhibited by Alagebrium (ALT), an AGE cross-link breaker. Moreover, the beneficial effects of exercise on aging are well recognized. Thus, we investigated the effects of ALT and exercise (Ex) on cardiovascular function in a rat aging model. Compared to young (Y) rats, in sedentary old (O) rats, end-systolic elastance (Ees) decreased (0.9±0.2 vs 1.7±0.4mmHg/μL, P<0.05), dP/dt(max) was attenuated (6054±685 vs 9540±939mmHg/s, P<0.05), ventricular compliance (end-diastolic pressure-volume relationship (EDPVR)) was impaired (1.4±0.2 vs 0.5±0.4mmHg/μL, P<0.05) and diastolic relaxation time (tau) was prolonged (21±3 vs 14±2ms, P<0.05). In old rats, combined ALT+Ex (4weeks) increased dP/dt(max) and Ees (8945±665 vs 6054±685mmHg/s, and 1.5±0.2 vs 0.9±0.2 respectively, O with ALT+Ex vs O, P<0.05 for both). Diastolic function (exponential power of EDPVR and tau) was also substantially improved by treatment with Alt+Ex in old rats (0.4±0.1 vs 0.9±0.2 and 16±2 vs 21±3ms, respectively, O with ALT+EX vs O, P<0.05 for both). Pulse wave velocity (PWV) was increased in old rats (7.0±0.7 vs 3.8±0.3ms, O vs Y, P<0.01). Both ALT and Ex alone decreased PWV in old rats but the combination decreased PWV to levels observed in young (4.6±0.5 vs 3.8±0.3ms, O with ALT+Ex vs Y, NS). These results suggest that prevention of the formation of new AGEs (with exercise) and breakdown of already formed AGEs (with ALT) may represent a therapeutic strategy for age-related ventricular and vascular stiffness.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chung E, Diffee GM. Effect of aging on power output properties in rat skinned cardiac myocytes. J Gerontol A Biol Sci Med Sci 2011; 66:1267-73. [PMID: 21896503 PMCID: PMC3210961 DOI: 10.1093/gerona/glr150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/26/2011] [Indexed: 11/12/2022] Open
Abstract
Aging is generally associated with a decline in several indices of cardiac function. The cellular mechanisms for this decline are not completely understood. The ability of the myocardium to perform external work (power output) is a critical aspect of ventricular function. The purpose of this study was to determine the effect of aging on loaded shortening and power output properties. We measured force-velocity properties in permeabilized (skinned) myocytes from the hearts of 9-, 24-, and 33-month-old male Fisher 344 × Brown Norway F1 hybrid rats (F344BN) during loaded contractions using a force-clamp technique. Power output was calculated by multiplying force and shortening velocity values. We found that peak power output normalized to maximal force was significantly decreased by 18% and 31% in myocytes from 24- and 33-month-old group, respectively, compared with 9-month group (p < .05). These results suggest that aging is associated with a significant decrease in the ability of the myocardium to do work.
Collapse
Affiliation(s)
- Eunhee Chung
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin—Madison
- Present address: Molecular, Cellular, and Developmental Biology, University of Colorado—Boulder, Boulder, Colorado
| | - Gary M. Diffee
- Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin—Madison
| |
Collapse
|
39
|
Nemchenko A, Chiong M, Turer A, Lavandero S, Hill JA. Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol 2011; 51:584-93. [PMID: 21723289 DOI: 10.1016/j.yjmcc.2011.06.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/25/2011] [Accepted: 06/15/2011] [Indexed: 12/27/2022]
Abstract
The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels - or perhaps distinct forms of autophagic flux - contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.''
Collapse
Affiliation(s)
- Andriy Nemchenko
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
40
|
Liles JT, Ida KK, Joly KM, Chapo J, Plato CF. Age exacerbates chronic catecholamine-induced impairments in contractile reserve in the rat. Am J Physiol Regul Integr Comp Physiol 2011; 301:R491-9. [PMID: 21593430 DOI: 10.1152/ajpregu.00756.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Contractile reserve decreases with advancing age and chronic isoproterenol (ISO) administration is a well-characterized model of cardiac hypertrophy known to impair cardiovascular function. This study evaluated whether nonsenescent, mature adult rats are more susceptible to detrimental effects of chronic ISO administration than younger adult rats. Rats received daily injections of ISO (0.1 mg/kg sc) or vehicle for 3 wk. ISO induced a greater impairment in contractile reserve [maximum of left ventricular pressure development (Δ+dP/dt(max))] in mature adult ISO-treated (MA-ISO) than in young adult ISO-treated rats (YA-ISO) in response to infusions of mechanistically distinct inotropes (digoxin, milrinone; 20-200 μl·kg(-1)·min(-1)), while basal and agonist-induced changes in heart rate and systolic arterial pressure (SAP) were not different across groups. ISO decreased expression of the calcium handling protein, sarco(endo)plasmic reticulum Ca(2+)-ATPase-2a, in MA-ISO compared with YA, YA-ISO, and MA rats. Chronic ISO also induced greater increases in cardiac hypertrophy [left ventricular (LV) index: 33 ± 3 vs. 22 ± 5%] and caspase-3 activity (34 vs. 5%) in MA-ISO relative to YA-ISO rats. Moreover, β-myosin heavy chain (β-MHC) and atrial natriuretic factor (ANF) mRNA expression was significantly elevated in MA-ISO. These results demonstrate that adult rats develop greater impairments in systolic performance than younger rats when exposed to chronic catecholamine excess. Reduced contractile reserve may result from calcium dysregulation, increased caspase-3 activity, or increased β-MHC and ANF expression. Although several studies report age-related declines in systolic performance in older and senescent animals, the present study demonstrates that catecholamine excess induces reductions in systolic performance significantly earlier in life.
Collapse
Affiliation(s)
- John T Liles
- Gilead Sciences, Inc., 1651 Page Mill Road, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
41
|
Shinmura K. Cardiovascular protection afforded by caloric restriction: essential role of nitric oxide synthase. Geriatr Gerontol Int 2011; 11:143-56. [PMID: 21199236 DOI: 10.1111/j.1447-0594.2010.00675.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Caloric restriction is an established intervention, of which anti-aging effects are scientifically proven. It has pleiotropic effects on the cardiovascular system: vascular protection, improvement of myocardial ischemic tolerance and retardation of cardiac senescence. First, increasing evidence from both experimental and clinical studies supports the concept that "a man is as old as his arteries". Caloric restriction could prevent the progression of atherosclerosis and vascular aging through direct and indirect mechanisms. Second, the hearts of senescent animals are more susceptible to ischemia than those of young animals. We demonstrated that short-term and prolonged caloric restriction confers cardioprotection against ischemia/reperfusion injury in young and aged rodents. Furthermore, we showed that the increase in circulating adiponectin levels and subsequent activation of adenosine monophosphate-activated protein kinase are necessary for the cardioprotection afforded by short-term caloric restriction. In contrast, the mechanisms by which prolonged caloric restriction confers cardioprotection seem more complicated. Adiponectin, nitric oxide synthase and sirtuin may form a network of cardiovascular protection during caloric restriction. Recently, by using genetically engineered mice, we found that, in addition to endothelial nitric oxide synthase, neuronal nitric oxide synthase plays an essential role in the development of cardioprotection afforded by prolonged caloric restriction. Third, long-term caloric restriction has cardiac-specific effects that attenuate the age-associated impairment seen in left ventricular diastolic function. It is possible that long-term caloric restriction partially retards cardiac senescence by attenuating oxidative damage in the aged heart. Overall, we strongly believe that caloric restriction could reduce morbidity and mortality of cardiovascular events in humans.
Collapse
Affiliation(s)
- Ken Shinmura
- Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
42
|
Nichols R, Demers LA, Larsen BM, Robinson D, Converso K, Russell MW, Westfall MV. Human RFamide-related peptide-1 diminishes cellular and integrated cardiac contractile performance. Peptides 2010; 31:2067-74. [PMID: 20797420 PMCID: PMC3449299 DOI: 10.1016/j.peptides.2010.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 11/22/2022]
Abstract
Peptides influence cardiac dysfunction; however, peptidergic modulation of contractile performance remains relatively uncharacterized. We identified a novel human peptide that modulates mammalian contractile performance. Members of the FMRFamide-related peptide (FaRP) family contain a C-terminal RFamide but structurally variant N-terminal extension. We report human RFamide-related peptide-1 (hRFRP-1) and rat RFRP-1 rapidly and reversibly decreased shortening and relaxation in isolated mammalian cardiac myocytes in a dose dependent manner. The mammalian FaRP, 26RFa, structurally related to RFRP-1 by only an RFamide did not influence myocyte contractile function. The protein kinase C (PKC) inhibitor bisindolylmaleimide-1 blocked hRFRP-1 activity. Pretreatment with pertussis toxin (PTX) did not diminish hRFRP-1 influence on contractile function. In addition, intravenous injection of hRFRP-1 in mice decreased heart rate, stroke volume, ejection fraction, and cardiac output. Collectively these findings are consistent with the conclusion RFRP-1 is an endogenous signaling molecule that activates PKC and acts through a PTX-insensitive pathway to modulate cardiac contractile function. Taken together these negative chronotropic, inotropic, and lusitropic effects of hRFRP-1 are significant; they suggest direct acute cellular and organ-level responses in mammalian heart. This is the first known study to identify a mammalian FaRP with cardio-depressant effects, opening a new area of research on peptidergic modulation of contractile performance. The high degree of RFRP structure conservation from amphibians to mammals, and similarity to invertebrate cardioinhibitory peptides suggests RFRP-1 is involved in important physiological functions. Elucidation of mechanisms involved in hRFRP-1 synthesis, release, and signaling may aid the development of strategies to prevent or attenuate cardiac dysfunction.
Collapse
Affiliation(s)
- R Nichols
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Shinmura K, Tamaki K, Sano M, Murata M, Yamakawa H, Ishida H, Fukuda K. Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J Mol Cell Cardiol 2010; 50:117-27. [PMID: 20977912 DOI: 10.1016/j.yjmcc.2010.10.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/05/2010] [Accepted: 10/17/2010] [Indexed: 12/20/2022]
Abstract
Approximately half of older patients with congestive heart failure have normal left ventricular (LV) systolic but abnormal LV diastolic function. In mammalian hearts, aging is associated with LV diastolic dysfunction. Caloric restriction (CR) is expected to retard cellular senescence and to attenuate the physiological decline in organ function. Therefore, the aim of the present study was to investigate the impact of long-term CR on cardiac senescence, in particular the effect of CR on LV diastolic dysfunction associated with aging. Male 8-month-old Fischer344 rats were divided into ad libitum fed and CR (40% energy reduction) groups. LV function was evaluated by echocardiography and cardiac senescence was compared between the two groups at the age of 30-month-old. (1) Echocardiography showed similar LV systolic function, but better LV diastolic function in the CR group. (2) Histological analysis revealed that CR attenuated the accumulation of senescence-associated β-galactosidase and lipofuscin and reduced myocyte apoptosis. (3) In measurements of [Ca(2+)](i) transients, the time to 50% relaxation was significantly smaller in the CR group, whereas F/F(0) was similar. (4) CR attenuated the decrease in sarcoplasmic reticulum calcium ATPase 2 protein with aging. (5) CR suppressed the mammalian target of rapamycin (mTOR) pathway and increased the ratio of conjugated to cytosolic light chain 3, suggesting that autophagy is enhanced in the CR hearts. In conclusion, CR improves diastolic function in the senescent myocardium by amelioration of the age-associated deterioration in intracellular Ca(2+) handling. Enhanced autophagy via the suppression of mTOR during CR may retard cardiac senescence.
Collapse
Affiliation(s)
- Ken Shinmura
- Division of Geriatric Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Wehling-Henricks M, Jordan MC, Gotoh T, Grody WW, Roos KP, Tidball JG. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS One 2010; 5:e10763. [PMID: 20505827 PMCID: PMC2874011 DOI: 10.1371/journal.pone.0010763] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/30/2010] [Indexed: 11/19/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is the most common, lethal disease of childhood. One of 3500 new-born males suffers from this universally-lethal disease. Other than the use of corticosteroids, little is available to affect the relentless progress of the disease, leading many families to use dietary supplements in hopes of reducing the progression or severity of muscle wasting. Arginine is commonly used as a dietary supplement and its use has been reported to have beneficial effects following short-term administration to mdx mice, a genetic model of DMD. However, the long-term effects of arginine supplementation are unknown. This lack of knowledge about the long-term effects of increased arginine metabolism is important because elevated arginine metabolism can increase tissue fibrosis, and increased fibrosis of skeletal muscles and the heart is an important and potentially life-threatening feature of DMD. Methodology We use both genetic and nutritional manipulations to test whether changes in arginase metabolism promote fibrosis and increase pathology in mdx mice. Our findings show that fibrotic lesions in mdx muscle are enriched with arginase-2-expressing macrophages and that muscle macrophages stimulated with cytokines that activate the M2 phenotype show elevated arginase activity and expression. We generated a line of arginase-2-null mutant mdx mice and found that the mutation reduced fibrosis in muscles of 18-month-old mdx mice, and reduced kyphosis that is attributable to muscle fibrosis. We also observed that dietary supplementation with arginine for 17-months increased mdx muscle fibrosis. In contrast, arginine-2 mutation did not reduce cardiac fibrosis or affect cardiac function assessed by echocardiography, although 17-months of dietary supplementation with arginine increased cardiac fibrosis. Long-term arginine treatments did not decrease matrix metalloproteinase-2 or -9 or increase the expression of utrophin, which have been reported as beneficial effects of short-term treatments. Conclusions/Significance Our findings demonstrate that arginine metabolism by arginase promotes fibrosis of muscle in muscular dystrophy and contributes to kyphosis. Our findings also show that long-term, dietary supplementation with arginine exacerbates fibrosis of dystrophic heart and muscles. Thus, commonly-practiced dietary supplementation with arginine by DMD patients has potential risk for increasing pathology when performed for long periods, despite reports of benefits acquired with short-term supplementation.
Collapse
Affiliation(s)
- Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Maria C. Jordan
- Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tomomi Gotoh
- Department of Molecular Genetics, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Wayne W. Grody
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kenneth P. Roos
- Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - James G. Tidball
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular, Cellular and Integrative Physiology Program, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Nogami Y, Kinoshita M, Takase B, Inatsu A, Ishihara M, Seki S, Maehara T. Cardiac dysfunction induced by experimental myocardial infarction impairs the host defense response to bacterial infection in mice because of reduced phagocytosis of Kupffer cells. J Thorac Cardiovasc Surg 2010; 140:624-32, 632.e1-3. [PMID: 20138636 DOI: 10.1016/j.jtcvs.2009.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 10/05/2009] [Accepted: 11/02/2009] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study was undertaken to investigate the effects of cardiac dysfunction induced by experimental myocardial infarction on the host defense response to bacterial infection and the role of Kupffer cells in mediating this response. METHODS Myocardial infarction was induced in C57BL/6 mice by ligation of the left anterior descending coronary artery. Mice were challenged with Escherichia coli intravenously 1, 5, and 14 days after myocardial infarction or sham operation. Thereafter, the cytokine production and the function of their Kupffer cells were assessed. RESULTS Mice with myocardial infarction showed remarkable cardiac dysfunction and had a significantly lower survival than sham mice after bacterial challenge at 5 days after surgery; bacterial challenge at 1 or 14 days after surgery resulted in no difference in survival between myocardial infarction and sham mice. The phagocytic activity of Kupffer cells, assessed by fluorescein isothiocyanate microspheres, remarkably decreased in mice with myocardial infarction 5 days after surgery. Serum peaks of tumor necrosis factor and interferon-gamma after bacterial challenge were also suppressed in mice with myocardial infarction at 5 days. Production of these cytokines and immunoglobulin-M from liver mononuclear cells was also impaired in mice with myocardial infarction. Enhancement of the phagocytic activity of Kupffer cells by C-reactive protein significantly improved survival after infection in mice with myocardial infarction, although neither interleukin-18 nor immunoglobulin-M treatment improved survival. CONCLUSIONS Cardiac dysfunction induced by myocardial infarction renders mice susceptible to bacterial infection and increases mortality because of a reduced ability of Kupffer cells to clear infectious bacteria. C-reactive protein-enhanced phagocytic activity of Kupffer cells may improve the poor prognosis after bacterial infection in mice with myocardial infarction.
Collapse
Affiliation(s)
- Yashiro Nogami
- Department of Surgery, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Hwang HS, Boluyt MO, Converso K, Russell MW, Bleske BE. Effects of Hawthorn on the Progression of Heart Failure in a Rat Model of Aortic Constriction. Pharmacotherapy 2009; 29:639-48. [DOI: 10.1592/phco.29.6.639] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Droogmans S, Roosens B, Cosyns B, Hernot S, Weytjens C, Degaillier C, Garbar C, Caveliers V, Pipeleers-Marichal M, Franken PR, Bossuyt A, Lahoutte T, Schoors D, Van Camp G. Echocardiographic and histological assessment of age-related valvular changes in normal rats. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:558-565. [PMID: 19111968 DOI: 10.1016/j.ultrasmedbio.2008.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 09/24/2008] [Accepted: 10/08/2008] [Indexed: 05/27/2023]
Abstract
Aging is associated with morphologic and functional alterations of the rat's left ventricle. However, the time-course of valvular function and morphology in normal aging rats has not yet been studied. For this purpose, 30 male Wistar rats (318 +/- 5g, 10 weeks old) underwent serial echocardiograms for 58 weeks under sodium pentobarbital 50 mg/kg IP anesthetization followed by necropsy. Histopathology was also performed in two additional groups of 10 rats at 10 and 30 weeks of age. Regurgitations were considered as any retrograde flow on 2-D or M-mode color Doppler echocardiography. Tricuspid regurgitation was already found at 10 weeks of age and became more frequent with age. Pulmonary, mitral and aortic regurgitation was seldom observed at 10 weeks but became more frequent after 30 weeks. For the mitral and aortic valve, this was also associated with an increase in valvular thickness because of nodular or segmental myxoid leaflet changes. The severity of valvular regurgitations did not increase with age. In conclusion, aging leads to morphologic and functional valvular changes in normal rats. This is important when investigating models of valvular heart disease in small animals.
Collapse
Affiliation(s)
- Steven Droogmans
- Department of Cardiology, UZ Brussel, Laarbeeklaan 101, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Radovits T, Gerö D, Lin LN, Loganathan S, Hoppe-Tichy T, Szabó C, Karck M, Sakurai H, Szabó G. Improvement of aging-associated cardiovascular dysfunction by the orally administered copper(II)-aspirinate complex. Rejuvenation Res 2009; 11:945-56. [PMID: 18922047 DOI: 10.1089/rej.2008.0762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Aging-associated nitro-oxidative stress causes tissue injury and activates proinflammatory pathways that play an important role in the pathogenesis of aging-associated cardiovascular dysfunction. It has been recently reported, that the copper(II)-aspirinate complex (CuAsp) exerts not only the well-known anti-inflammatory and platelet antiaggregating effects of aspirin, but, due to its superoxide dismutase mimetic activity, it acts as a potent antioxidant as well. In this study we investigated the effects of CuAsp on aging-associated myocardial and endothelial dysfunction. METHODS AND RESULTS Aging and young rats were treated for 3 weeks with vehicle, or with CuAsp (200 mg/kg per day per os). Left ventricular pressure-volume relations were measured by using a microtip pressure-volume conductance catheter, and indexes of contractility (e.g., slope of end-systolic pressure-volume relationships [ESPVR] [E(es)], and dP/dt(max) - end-diastolic volume [EDV]) were calculated. In organ bath experiments for isometric tension with isolated aortic rings, endothelium-dependent and -independent vasorelaxation were investigated by using acetylcholine and sodium nitroprusside. When compared to the young controls, aging rats showed impaired left ventricular contractility (E(es), 0.51 +/- 0.04 vs. 2.16 +/- 0.28 mmHg/microL; dP/dt(max) - EDV, 10.71 +/- 2.02 vs. 37.23 +/- 4.18 mmHg/sec per microL; p < 0.05) and a marked endothelial dysfunction (maximal relaxation to acetylcholine: 66.66 +/- 1.30 vs. 87.09 +/- 1.35%; p < 0.05). Treatment with CuAsp resulted in reduced nitro-oxidative stress, improved cardiac function (E(es), 1.21 +/- 0.17 vs. 0.51 +/- 0.04 mmHg/microL; dP/dt(max) - EDV, 23.40 +/- 3.34 vs. 10.71 +/- 2.02 mmHg/sec per microL; p < 0.05) and higher vasorelaxation to acetylcholine in aging animals (94.83 +/- 0.73 vs. 66.66 +/- 1.30%; p < 0.05). The treatment did not influence the cardiovascular functions of young rats. CONCLUSIONS Our results demonstrate that oxidative stress and inflammatory pathways contribute to the pathogenesis of cardiovascular dysfunction in the aging organism, which can be reversed by CuAsp.
Collapse
Affiliation(s)
- Tamás Radovits
- Experimental Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Seymour EM, Singer AAM, Bennink MR, Parikh RV, Kirakosyan A, Kaufman PB, Bolling SF. Chronic intake of a phytochemical-enriched diet reduces cardiac fibrosis and diastolic dysfunction caused by prolonged salt-sensitive hypertension. J Gerontol A Biol Sci Med Sci 2008; 63:1034-42. [PMID: 18948553 DOI: 10.1093/gerona/63.10.1034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salt-sensitive hypertension is common in the aged population. Increased fruit and vegetable intake reduces hypertension, but its effect on eventual diastolic dysfunction is unknown. This relationship is tested in the Dahl Salt-Sensitive (Dahl-SS) rat model of salt-sensitive hypertension and diastolic dysfunction. Table grape powder contains phytochemicals that are relevant to human diets. For 18 weeks, male Dahl-SS rats were fed one of five diets: low salt (LS), a low salt + grape powder (LSG), high salt (HS), a high salt + grape powder (HSG), or high salt + vasodilator hydralazine (HSH). Compared to the HS diet, the HSG diet lowered blood pressure and improved cardiac function; reduced systemic inflammation; reduced cardiac hypertrophy, fibrosis, and oxidative damage; and increased cardiac glutathione. The HSH diet similarly reduced blood pressure but did not reduce cardiac pathogenesis. The LSG diet reduced cardiac oxidative damage and increased cardiac glutathione. In conclusion, physiologically relevant phytochemical intake reduced salt-sensitive hypertension and diastolic dysfunction.
Collapse
Affiliation(s)
- E M Seymour
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhang GQ, Wang H, Liu WT, Dong H, Fong WF, Tang LM, Xiong YH, Yu ZL, Ko KM. Long-Term Treatment with a Chinese Herbal Formula, Sheng-Mai-San, Improves Cardiac Contractile Function in Aged Rats: The Role of Ca2+Homeostasis. Rejuvenation Res 2008; 11:991-1000. [DOI: 10.1089/rej.2008.0771] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guang-Qin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wen-Tao Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Hang Dong
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wang-Fun Fong
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Li-Min Tang
- Laboratory for Quality Control, Jiangxi Jurentang Pharmaceutical Co. Ltd., Nanchang, China
| | - Yun-Hua Xiong
- Laboratory for Quality Control, Jiangxi Jurentang Pharmaceutical Co. Ltd., Nanchang, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kam-Ming Ko
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|