1
|
Activation of GPR75 Signaling Pathway Contributes to the Effect of a 20-HETE Mimetic, 5,14-HEDGE, to Prevent Hypotensive and Tachycardic Responses to Lipopolysaccharide in a Rat Model of Septic Shock. J Cardiovasc Pharmacol 2022; 80:276-293. [PMID: 35323151 DOI: 10.1097/fjc.0000000000001265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Abstract
ABSTRACT The orphan receptor, G protein-coupled receptor (GPR) 75, which has been shown to mediate various effects of 20-hydroxyeicosatetraenoic acid (20-HETE), is considered as a therapeutic target in the treatment of cardiovascular diseases in which changes in the production of 20-HETE play a key role in their pathogenesis. Our previous studies showed that 20-HETE mimetic, N -(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), protects against vascular hyporeactivity, hypotension, tachycardia, and arterial inflammation induced by lipopolysaccharide (LPS) in rats. This study tested the hypothesis that the GPR75 signaling pathway mediates these effects of 5,14-HEDGE in response to systemic exposure to LPS. Mean arterial pressure reduced by 33 mm Hg, and heart rate increased by 102 beats/min at 4 hours following LPS injection. Coimmunoprecipitation studies demonstrated that (1) the dissociation of GPR75/Gα q/11 and GPR kinase interactor 1 (GIT1)/protein kinase C (PKC) α, the association of GPR75/GIT1, large conductance voltage and calcium-activated potassium subunit β (MaxiKβ)/PKCα, MaxiKβ/proto-oncogene tyrosine-protein kinase (c-Src), and epidermal growth factor receptor (EGFR)/c-Src, MaxiKβ, and EGFR tyrosine phosphorylation were decreased, and (2) the association of GIT1/c-Src was increased in the arterial tissues of rats treated with LPS. The LPS-induced changes were prevented by 5,14-HEDGE. N -[20-Hydroxyeicosa-6( Z ),15( Z )-dienoyl]glycine, a 20-HETE antagonist, reversed the effects of 5,14-HEDGE in the arterial tissues of LPS-treated rats. Thus, similar to 20-HETE, by binding to GPR75 and activating the Gα q/11 /PKCα/MaxiKβ, GIT1/PKCα/MaxiKβ, GIT1/c-Src/MaxiKβ, and GIT1/c-Src/EGFR signaling pathways, 5,14-HEDGE may exert its protective effects against LPS-induced hypotension and tachycardia associated with vascular hyporeactivity and arterial inflammation.
Collapse
|
2
|
Froogh G, Garcia V, Laniado Schwartzman M. The CYP/20-HETE/GPR75 axis in hypertension. ADVANCES IN PHARMACOLOGY 2022; 94:1-25. [PMID: 35659370 PMCID: PMC10123763 DOI: 10.1016/bs.apha.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a bioactive lipid generated from the ω-hydroxylation of arachidonic acid (AA) by enzymes of the cytochrome P450 (CYP) family, primarily the CYP4A and CYP4F subfamilies. 20-HETE is most notably identified as a modulator of vascular tone, regulator of renal function, and a contributor to the onset and development of hypertension and cardiovascular disease. 20-HETE-mediated signaling promotes hypertension by sensitizing the vasculature to constrictor stimuli, inducing endothelial dysfunction, and potentiating vascular inflammation. These bioactions are driven by the activation of the G-protein coupled receptor 75 (GPR75), a 20-HETE receptor (20HR). Given the capacity of 20-HETE signaling to drive pro-hypertensive mechanisms, the CYP/20-HETE/GPR75 axis has the potential to be a significant therapeutic target for the treatment of hypertension and cardiovascular diseases associated with increases in blood pressure. In this chapter, we review 20-HETE-mediated cellular mechanisms that promote hypertension, highlight important data in humans such as genetic variants in the CYP genes that potentiate 20-HETE production and describe recent findings in humans with 20HR/GPR75 mutations. Special emphasis is given to the 20HR and respective receptor blockers that have the potential to pave a path to translational and clinical studies for the treatment of 20-HETE-driven hypertension, and obesity/metabolic syndrome.
Collapse
|
3
|
Effects of Probenecid on Hepatic and Renal Disposition of Hexadecanedioate, an Endogenous Substrate of Organic Anion Transporting Polypeptide 1B in Rats. J Pharm Sci 2021; 110:2274-2284. [PMID: 33607188 DOI: 10.1016/j.xphs.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to investigate changes in plasma concentrations and tissue distribution of endogenous substrates of organic anion transporting polypeptide (OATP) 1B, hexadecanedioate (HDA), octadecanedioate (ODA), tetradecanedioate (TDA), and coproporphyrin-III, induced by its weak inhibitor, probenecid (PBD), in rats. PBD increased the plasma concentrations of these four compounds regardless of bile duct cannulation, whereas liver-to-plasma (Kp,liver) and kidney-to-plasma concentration ratios of HDA and TDA were reduced. Similar effects of PBD on plasma concentrations and Kp,liver of HDA, ODA, and TDA were observed in kidney-ligated rats, suggesting a minor contribution of renal disposition to the overall distribution of these three compounds. Tissue uptake clearance of deuterium-labeled HDA (d-HDA) in liver was 16-fold higher than that in kidney, and was reduced by 80% by PBD. This was compatible with inhibition by PBD of d-HDA uptake in isolated rat hepatocytes. Such inhibitory effects of PBD were also observed in the human OATP1B1-mediated uptake of d-HDA. Overall, the disposition of HDA is mainly determined by hepatic OATP-mediated uptake, which is inhibited by PBD. HDA might, thus, be a biomarker for OATPs minimally affected by urinary and biliary elimination in rats.
Collapse
|
4
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
5
|
Chen L, Tang S, Zhang FF, Garcia V, Falck JR, Schwartzman ML, Arbab AS, Guo AM. CYP4A/20-HETE regulates ischemia-induced neovascularization via its actions on endothelial progenitor and preexisting endothelial cells. Am J Physiol Heart Circ Physiol 2019; 316:H1468-H1479. [PMID: 30951365 PMCID: PMC6620690 DOI: 10.1152/ajpheart.00690.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) was recently identified as a novel contributor of ischemia-induced neovascularization based on the key observation that pharmacological interferences of CYP4A/20-HETE decrease ischemic neovascularization. The objective of the present study is to examine whether the underlying cellular mechanisms involve endothelial progenitor cells (EPCs) and preexisting endothelial cells (ECs). We found that ischemia leads to a time-dependent increase of cyp4a12 expression and 20-HETE production, which are endothelial in origin, using immunofluorescent microscopy, Western blot analysis, and LC-MS/MS. This is accompanied by increases in the tissue stromal cell-derived factor-1α (SDF-1α) expressions as well as SDF-1α plasma levels, EPC mobilization from bone marrow, and subsequent homing to ischemic tissues. Pharmacological interferences of CYP4A/20-HETE with a 20-HETE synthesis inhibitor, dibromo-dodecenyl-methylsulfimide (DDMS), or a 20-HETE antagonist, N-(20-hydroxyeicosa-6(Z), 15(Z)-dienoyl) glycine (6, 15-20-HEDGE), significantly attenuated these increases. Importantly, we also determined that 20-HETE plays a novel role in maintaining EPC functions and increasing the expression of Oct4, Sox2, and Nanog, which are indicative of increased progenitor cell stemness. Flow cytometric analysis revealed that pharmacological interferences of CYP4A/20-HETE decrease the EPC population in culture, whereas 20-HETE increases the cultured EPC population. Furthermore, ischemia also markedly increased the proliferation, oxidative stress, and ICAM-1 expression in the preexisting EC in the hindlimb gracilis muscles. We found that these increases were markedly negated by DDMS and 6, 15-20-HEDGE. Taken together, CYP4A/20-HETE regulates ischemia-induced compensatory neovascularization via its combined actions on promoting EPC and local preexisting EC responses that are associated with increased neovascularization. NEW & NOTEWORTHY CYP4A/20-hydroxyeicosatetraenoic acid (20-HETE) was recently discovered as a novel contributor of ischemia-induced neovascularization. However, the underlying molecular and cellular mechanisms are completely unknown. Here, we show that CYP4A/20-HETE regulates the ischemic neovascularization process via its combined actions on both endothelial progenitor cells (EPCs) and preexisting endothelial cells. Moreover, this is the first study, to the best of our knowledge, that associates CYP4A/20-HETE with EPC differentiation and stemness.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center , Guangzhou , People's Republic of China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Samantha Tang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Frank F Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - John R Falck
- University of Texas Southwestern Medical Center , Dallas, Texas
| | | | - Ali S Arbab
- Cancer Center, Augusta University , Augusta, Georgia
| | - Austin M Guo
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
6
|
Abstract
20-HETE, the ω-hydroxylation product of arachidonic acid catalyzed by enzymes of the cytochrome P450 (CYP) 4A and 4F gene families, is a bioactive lipid mediator with potent effects on the vasculature including stimulation of smooth muscle cell contractility, migration and proliferation as well as activation of endothelial cell dysfunction and inflammation. Clinical studies have shown elevated levels of plasma and urinary 20-HETE in human diseases and conditions such as hypertension, obesity and metabolic syndrome, myocardial infarction, stroke, and chronic kidney diseases. Studies of polymorphic associations also suggest an important role for 20-HETE in hypertension, stroke and myocardial infarction. Animal models of increased 20-HETE production are hypertensive and are more susceptible to cardiovascular injury. The current review summarizes recent findings that focus on the role of 20-HETE in the regulation of vascular and cardiac function and its contribution to the pathology of vascular and cardiac diseases.
Collapse
Affiliation(s)
- Petra Rocic
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, United States
| | | |
Collapse
|
7
|
Elshenawy OH, Shoieb SM, Mohamed A, El-Kadi AOS. Clinical Implications of 20-Hydroxyeicosatetraenoic Acid in the Kidney, Liver, Lung and Brain: An Emerging Therapeutic Target. Pharmaceutics 2017; 9:pharmaceutics9010009. [PMID: 28230738 PMCID: PMC5374375 DOI: 10.3390/pharmaceutics9010009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P450-mediated metabolism of arachidonic acid (AA) is an important pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in various tissues. In the current review, we discussed the role of 20-HETE in the kidney, liver, lung, and brain during physiological and pathophysiological states. Moreover, we discussed the role of 20-HETE in tumor formation, metabolic syndrome and diabetes. In the kidney, 20-HETE is involved in modulation of preglomerular vascular tone and tubular ion transport. Furthermore, 20-HETE is involved in renal ischemia/reperfusion (I/R) injury and polycystic kidney diseases. The role of 20-HETE in the liver is not clearly understood although it represents 50%-75% of liver CYP-dependent AA metabolism, and it is associated with liver cirrhotic ascites. In the respiratory system, 20-HETE plays a role in pulmonary cell survival, pulmonary vascular tone and tone of the airways. As for the brain, 20-HETE is involved in cerebral I/R injury. Moreover, 20-HETE has angiogenic and mitogenic properties and thus helps in tumor promotion. Several inhibitors and inducers of the synthesis of 20-HETE as well as 20-HETE analogues and antagonists are recently available and could be promising therapeutic options for the treatment of many disease states in the future.
Collapse
Affiliation(s)
- Osama H Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Anwar Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|
8
|
The role of 20-HETE in cardiovascular diseases and its risk factors. Prostaglandins Other Lipid Mediat 2016; 125:108-17. [PMID: 27287720 DOI: 10.1016/j.prostaglandins.2016.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/20/2016] [Accepted: 05/31/2016] [Indexed: 01/03/2023]
Abstract
Arachidonic acid (AA) is metabolized in mammals by enzymes of the CYP4A and 4F families to 20-hydroxyeicosatetraeonic acid (20-HETE) which plays an important role in the regulation of renal function, vascular tone and arterial pressure. In the vasculature, 20-HETE is a potent vasoconstrictor, the up-regulation of which contributes to inflammation, oxidative stress, endothelial dysfunction and an increase in peripheral vascular resistance in models of obesity, diabetes, ischemia/reperfusion, and vascular oxidative stress. Recent studies have established a role for 20-HETE in normal and pathological angiogenic conditions. We discuss in this review the synthesis of 20-HETE and how it and various autacoids, especially the renin-angiotensin system, interact to promote hypertension, vasoconstriction, and vascular dysfunction. In addition, we examine the molecular mechanisms through which 20-HETE induces these actions and the clinical implication of inhibiting 20-HETE production and activity.
Collapse
|
9
|
Fan F, Ge Y, Lv W, Elliott MR, Muroya Y, Hirata T, Booz GW, Roman RJ. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Front Biosci (Landmark Ed) 2016; 21:1427-63. [PMID: 27100515 DOI: 10.2741/4465] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome P450s enzymes catalyze the metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid and hydroxyeicosatetraeonic acid (HETEs). 20-HETE is a vasoconstrictor that depolarizes vascular smooth muscle cells by blocking K+ channels. EETs serve as endothelial derived hyperpolarizing factors. Inhibition of the formation of 20-HETE impairs the myogenic response and autoregulation of renal and cerebral blood flow. Changes in the formation of EETs and 20-HETE have been reported in hypertension and drugs that target these pathways alter blood pressure in animal models. Sequence variants in CYP4A11 and CYP4F2 that produce 20-HETE, UDP-glucuronosyl transferase involved in the biotransformation of 20-HETE and soluble epoxide hydrolase that inactivates EETs are associated with hypertension in human studies. 20-HETE contributes to the regulation of vascular hypertrophy, restenosis, angiogenesis and inflammation. It also promotes endothelial dysfunction and contributes to cerebral vasospasm and ischemia-reperfusion injury in the brain, kidney and heart. This review will focus on the role of 20-HETE in vascular dysfunction, inflammation, ischemic and hemorrhagic stroke and cardiac and renal ischemia reperfusion injury.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Matthew R Elliott
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Yoshikazu Muroya
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University School of Medicine, Sendai, Japan
| | - Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216,
| |
Collapse
|
10
|
20-HETE contributes to ischemia-induced angiogenesis. Vascul Pharmacol 2016; 83:57-65. [PMID: 27084395 DOI: 10.1016/j.vph.2016.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 01/26/2023]
Abstract
Angiogenesis is an important adaptation for recovery from peripheral ischemia. Here, we determined whether 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemia-induced angiogenesis and assessed its underlying molecular and cellular mechanisms using a mouse hindlimb-ischemia angiogenesis model. Hindlimb blood flow was measured by Laser Doppler Perfusion Imaging and microvessel density was determined by CD31 and tomato lectin staining. We found that systemic and local administration of a 20-HETE synthesis inhibitor, DDMS, or a 20-HETE antagonist, 6,15-20-HEDGE significantly reduced blood flow recovery and microvessel formation in response to ischemia. 20-HETE production, measured by LC/MS/MS, was markedly increased in ischemic muscles (91±11 vs. 8±2pg/mg in controls), which was associated with prominent upregulation of the 20-HETE synthase, CYP4A12. Immunofluorescence co-localized increased CYP4A12 expression in response to ischemia to CD31-positive EC in the ischemic hindlimb microvessels. We further showed that ischemia increased HIF-1α, VEGF, and VEGFR2 expression in gracilis muscles and that these increases were negated by DDMS and 6,15-20-HEDGE. Lastly, we showed that ERK1/2 of MAPK is a component of 20-HETE regulated ischemic angiogenesis. Taken together, these data indicate that 20-HETE is a critical contributor of ischemia-induced angiogenesis in vivo.
Collapse
|
11
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Donnelly MK, Crago EA, Conley YP, Balzer JR, Ren D, Ducruet AF, Kochanek PM, Sherwood PR, Poloyac SM. 20-HETE is associated with unfavorable outcomes in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 2015; 35:1515-22. [PMID: 25920956 PMCID: PMC4640341 DOI: 10.1038/jcbfm.2015.75] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/06/2015] [Accepted: 03/23/2015] [Indexed: 12/25/2022]
Abstract
Emerging evidence has suggested that patients experiencing aneurysmal subarachnoid hemorrhage (aSAH) develop vascular dysregulation as a potential contributor to poor outcomes. Preclinical studies have implicated the novel microvascular constrictor, 20-hydroxyeicosatetraenoic acid (20-HETE) in aSAH pathogenesis, yet the translational relevance of 20-HETE in patients with aSAH is largely unknown. The goal of this research was to determine the relationship between 20-HETE cerebrospinal fluid (CSF) levels, gene variants in 20-HETE synthesis, and acute/long-term aSAH outcomes. In all, 363 adult patients (age 18 to 75) with aSAH were prospectively recruited from the University of Pittsburgh Medical Center neurovascular Intensive Care Unit. Patients were genotyped for polymorphic variants and cytochrome P450 (CYP)-eicosanoid CSF levels were measured over 14 days. Outcomes included delayed cerebral ischemia (DCI), clinical neurologic deterioration (CND), and modified Rankin Scores (MRS) at 3 and 12 months. Patients with CND and unfavorable 3-month MRS had 2.2- and 2.7-fold higher mean 20-HETE CSF levels, respectively. Patients in high/moderate 20-HETE trajectory groups (35.7%) were 2.5-, 2.1-, 3.1-, 3.3-, and 2.1-fold more likely to have unfavorable MRS at 3 months, unfavorable MRS at 12 months, mortality at 3 months, mortality at 12 months, and CND, respectively. These results showed that 20-HETE is associated with acute and long-term outcomes and suggest that 20-HETE may be a novel target in aSAH.
Collapse
Affiliation(s)
- Mark K Donnelly
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth A Crago
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yvette P Conley
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeffery R Balzer
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dianxu Ren
- Department of Health and Community Systems, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew F Ducruet
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paula R Sherwood
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Abstract
20-Hydroxy-5, 8, 11, 14-eicosatetraenoic acid (20-HETE) is a cytochrome P450 (CYP)-derived omega-hydroxylation metabolite of arachidonic acid. 20-HETE has been shown to play a complex role in blood pressure regulation. In the kidney tubules, 20-HETE inhibits sodium reabsorption and promotes natriuresis, thus, contributing to antihypertensive mechanisms. In contrast, in the microvasculature, 20-HETE has been shown to play a pressor role by sensitizing smooth muscle cells to constrictor stimuli and increasing myogenic tone, and by acting on the endothelium to further promote endothelial dysfunction and endothelial activation. In addition, 20-HETE induces endothelial angiotensin-converting enzyme, thus, setting forth a potential feed forward prohypertensive mechanism by stimulating the renin-angiotensin-aldosterone system. With the advancement of gene sequencing technology, numerous polymorphisms in the regulatory coding and noncoding regions of 20-HETE-producing enzymes, CYP4A11 and CYP4F2, have been associated with hypertension. This in-depth review article discusses the biosynthesis and function of 20-HETE in the cardiovascular system, the pharmacological agents that affect 20-HETE action, and polymorphisms of CYP enzymes that produce 20-HETE and are associated with systemic hypertension in humans.
Collapse
|
14
|
Peng G, Wen X, Shi Y, Jiang Y, Hu G, Zhou Y, Ran P. Development of a New Method for the Isolation and Culture of Pulmonary Arterial Endothelial Cells from Rat Pulmonary Arteries. J Vasc Res 2013; 50:468-477. [DOI: 10.1159/000355271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/19/2013] [Indexed: 01/04/2023] Open
|
15
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
16
|
Cytochrome P450-derived epoxyeicosatrienoic acids and pulmonary hypertension: central role of transient receptor potential C6 channels. J Cardiovasc Pharmacol 2012; 57:140-7. [PMID: 20588188 DOI: 10.1097/fjc.0b013e3181ed088d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia induces the constriction of pulmonary resistance arteries, which results in the redistribution of blood from poor to better ventilated areas, thus optimizing its oxygenation. Many different oxygen-sensing mechanisms have been proposed to regulate this process, including cytochrome P450 enzymes. These enzymes, which convert substrates such as arachidonic acid into bioactive epoxides (the epoxyeicosatrienoic acids [EETs]), are highly expressed in the lung as is the soluble epoxide hydrolase which metabolizes the epoxides to their less active diols. The EETs play a well-documented role as endothelium-derived vasodilators in the systemic vasculature, but in the pulmonary circulation, they are generated in vascular smooth muscle cells and potentiate vasoconstriction. Preventing the breakdown of 11,12-EET by the inhibition or genetic deletion of the soluble epoxide hydrolase strongly augments the response to hypoxia. Mechanistically, 11,12-EET potentiates the contractile response by recruiting transient receptor potential C6 channels to caveolae. Indeed, neither 11,12-EET nor hypoxia is able to elicit pulmonary vasoconstriction in TRPC6 knockout mice. The cytochrome and soluble epoxide hydrolase enzymes are also implicated in the vascular remodeling associated with chronic hypoxia and pulmonary hypertension. Thus, targeting this pathway may be in an attractive new therapeutic approach to treat this incapacitating disease.
Collapse
|
17
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
18
|
Chen L, Ackerman R, Guo AM. 20-HETE in neovascularization. Prostaglandins Other Lipid Mediat 2011; 98:63-8. [PMID: 22227460 DOI: 10.1016/j.prostaglandins.2011.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/09/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 4A/F (CYP4A/F) converts arachidonic acid (AA) to 20-HETE by ω-hydroxylation. The contribution of 20-HETE to the regulation of myogenic response, blood pressure, and mitogenic actions has been well summarized. This review focuses on the emerging role of 20-HETE in physiological and pathological vascularization. 20-HETE has been shown to regulate vascular smooth muscle cells (VSMC) and endothelial cells (EC) by affecting their proliferation, migration, survival, and tube formation. Furthermore, the proliferation, migration, secretion of proangiogenic molecules (such as HIF-1α, VEGF, SDF-1α), and tube formation of endothelial progenitor cells (EPC) are stimulated by 20-HETE. These effects are mediated through c-Src- and EGFR-mediated downstream signaling pathways, including MAPK and PI3K/Akt pathways, eNOS uncoupling, and NOX/ROS system activation. Therefore, the CYP4A/F-20-HETE system may be a therapeutic target for the treatment of abnormal angiogenic diseases.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
19
|
Ali I, Gruenloh S, Gao Y, Clough A, Falck JR, Medhora M, Jacobs ER. Protection by 20-5,14-HEDGE against surgically induced ischemia reperfusion lung injury in rats. Ann Thorac Surg 2011; 93:282-8. [PMID: 22115333 DOI: 10.1016/j.athoracsur.2011.08.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND We previously reported that the cytochrome P450 product 20-hydroxyeicosatetraenoic acid has prosurvival effects in pulmonary artery endothelial cells and ex vivo pulmonary arteries. We tested the potential of a 20-hydroxyeicosatetraenoic acid analog N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (20-5,14-HEDGE) to protect against lung ischemic reperfusion injury in rats. Furthermore, we examined activation of innate immune system components, high mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4), in this model as well as the effect of 20-5,14-HEDGE on this signaling pathway. METHODS Sprague-Dawley rats treated with 20-5,14-HEDGE or vehicle were subjected to surgically induced, unilateral lung ischemia for 60 minutes followed by reperfusion for 2 hours in vivo. Injury was assessed histologically by hematoxylin and eosin, and with identification of myeloperoxidase immunohistochemically. The HMGB1 and TLR4 proteins were identified by Western blot. Caspase 3 activity or 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole, incorporation were used to measure apoptosis and cell survival. RESULTS The ischemia reperfusion injury evoked atelectasis and hemorrhage, an influx of polymorphonuclear cells, and increased TLR4 and HMGB1 expression. Caspase 3 activity was increased, and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide incorporation was decreased. The 20-5,14-HEDGE protected against each of these endpoints, including infiltration of polymorphonuclear cells, with no changes in caspase 3 activity in other organs. CONCLUSIONS Lung ischemia reperfusion produces apoptosis and activation of the innate immune system including HMGB1 and TLR4 within 2 hours of reperfusion. Treatment with 20-5,14-HEDGE decreases activation of this response system, and salvages lung tissue.
Collapse
Affiliation(s)
- Irshad Ali
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wu CC, Schwartzman ML. The role of 20-HETE in androgen-mediated hypertension. Prostaglandins Other Lipid Mediat 2011; 96:45-53. [PMID: 21722750 PMCID: PMC3248593 DOI: 10.1016/j.prostaglandins.2011.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/25/2022]
Abstract
Androgen plays an important role in blood pressure regulation. Epidemiological studies have shown that men have a higher prevalence for developing hypertension than aged-matched, premenopausal women. Interestingly, postmenopausal women and women with polycystic ovary syndrome, both of which have increased endogenous androgen production, have elevated risks for hypertension suggesting that androgen may contribute to its development. Studies from our laboratory and others have provided substantial evidence that 20-hydroxyeicosatetraenoic acid (20-HETE) mediates the hypertension seen in rodents treated with androgen. 20-HETE is the cytochrome P450 (CYP)-derived ω-hydroxylated metabolite of arachidonic acid. 20-HETE plays a complex role in blood pressure regulation. In the kidney tubules, 20-HETE decreases blood pressure by promoting natriuresis, while in the microvasculature it has a pressor effect. In the microcirculation, 20-HETE participates in the regulation of vascular tone by sensitizing the smooth muscle cells to constrictor stimuli and contributes to myogenic, mitogenic and angiogenic responses. In addition, 20-HETE acts on the endothelium to promote endothelial dysfunction and endothelial activation. Recently, we have demonstrated that 20-HETE induces endothelial ACE thus setting forth a potential feed forward mechanism through activation of the renin-angiotensin-aldosterone system. In this review, we will discuss the pro-hypertensive effects of 20-HETE and its role in androgen-induced vascular dysfunction and hypertension.
Collapse
Affiliation(s)
- Cheng-Chia Wu
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA. chengchia
| | | |
Collapse
|
21
|
|
22
|
Guo AM, Janic B, Sheng J, Falck JR, Roman RJ, Edwards PA, Arbab AS, Scicli AG. The cytochrome P450 4A/F-20-hydroxyeicosatetraenoic acid system: a regulator of endothelial precursor cells derived from human umbilical cord blood. J Pharmacol Exp Ther 2011; 338:421-9. [PMID: 21527533 DOI: 10.1124/jpet.111.179036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endothelial progenitor cells (EPCs) contribute to physiological and pathological neovascularization. Previous data have suggested that the cytochrome P450 4A/F (CYP4A/F)-20-hydroxyeicosatetraenoic acid (20-HETE) system regulates neovascularization. Therefore, we studied whether the angiogenic effects of the CYP4A/F-20-HETE system involve regulation of EPC function. We extracted human umbilical cord blood and isolated EPCs, which express AC133(+)CD34(+) and kinase insert domain receptor (KDR) surface markers and contain mRNA and protein for CYP4A11 and CYP4A22 enzymes, as opposed to mesenchymal stem cells, which only express negligible amounts of CYP4A11/22. When EPCs were incubated with arachidonic acid, they produced 20-HETE, which stimulated the cells to proliferate and migrate, as did vascular endothelial growth factor. Incubation with 1 μM N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET0016), a selective inhibitor of 20-HETE synthesis, reduced the proliferative and migratory effects of vascular endothelial growth factor and also significantly abolished EPC migration mediated by stroma-derived factor-1α, as did (6,15) 20-hydroxyeicosadienoic acid. Coculturing EPCs and endothelial cells on a Matrigel matrix led to tube formation, which in turn was inhibited by both HET0016 and 20-hydroxyeicosadienoic acid. We concluded that the CYP4A/F-20-HETE system is expressed in EPCs and can act as both an autocrine and a paracrine regulatory factor.
Collapse
Affiliation(s)
- Austin M Guo
- Department of Pharmacology, New York Medical College, 15 Dana Rd., BSB 546A, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cooper PR, Mesaros AC, Zhang J, Christmas P, Stark CM, Douaidy K, Mittelman MA, Soberman RJ, Blair IA, Panettieri RA. 20-HETE mediates ozone-induced, neutrophil-independent airway hyper-responsiveness in mice. PLoS One 2010; 5:e10235. [PMID: 20422032 PMCID: PMC2857875 DOI: 10.1371/journal.pone.0010235] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/26/2010] [Indexed: 11/19/2022] Open
Abstract
Background Ozone, a pollutant known to induce airway hyper-responsiveness (AHR), increases morbidity and mortality in patients with obstructive airway diseases and asthma. We postulate oxidized lipids mediate in vivo ozone-induced AHR in murine airways. Methodology/Principal Findings Male BALB/c mice were exposed to ozone (3 or 6 ppm) or filtered air (controls) for 2 h. Precision cut lung slices (PCLS; 250 µm thickness) containing an intrapulmonary airway (∼0.01 mm2 lumen area) were prepared immediately after exposure or 16 h later. After 24 h, airways were contracted to carbachol (CCh). Log EC50 and Emax values were then calculated by measuring the airway lumen area with respect to baseline. In parallel studies, dexamethasone (2.5 mg/kg), or 1-aminobenzotriazol (ABT) (50 mg/kg) were given intraperitoneal injection to naïve mice 18 h prior to ozone exposure. Indomethacin (10 mg/kg) was administered 2 h prior. Cell counts, cytokine levels and liquid chromatography-mass spectrometry (LC-MS) for lipid analysis were assessed in bronchoalveolar lavage (BAL) fluid from ozone exposed and control mice. Ozone acutely induced AHR to CCh. Dexamethasone or indomethacin had little effect on the ozone-induced AHR; while, ABT, a cytochrome P450 inhibitor, markedly attenuated airway sensitivity. BAL fluid from ozone exposed animals, which did not contain an increase in neutrophils or interleukin (IL)-6 levels, increased airway sensitivity following in vitro incubation with a naïve PCLS. In parallel, significant increases in oxidized lipids were also identified using LC-MS with increases of 20-HETE that were decreased following ABT treatment. Conclusions/Significance These data show that ozone acutely induces AHR to CCh independent of inflammation and is insensitive to steroid treatment or cyclooxygenase (COX) inhibition. BAL fluid from ozone exposed mice mimicked the effects of in vivo ozone exposure that were associated with marked increases in oxidized lipids. 20-HETE plays a pivotal role in mediating acute ozone-induced AHR.
Collapse
Affiliation(s)
- Philip R. Cooper
- Department of Medicine and the Airways Biology Initiative, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - A. Clementina Mesaros
- Center of Excellence in Environmental Toxicology, Center for Cancer Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Zhang
- Department of Medicine and the Airways Biology Initiative, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Peter Christmas
- Biology Department, Radford University, Radford, Virginia, United States of America
- Harvard Medical School, Massachusetts General Hospital East, Charlestown, Massachusetts, United States of America
| | - Christopher M. Stark
- Harvard Medical School, Massachusetts General Hospital East, Charlestown, Massachusetts, United States of America
| | - Karim Douaidy
- Harvard Medical School, Massachusetts General Hospital East, Charlestown, Massachusetts, United States of America
| | - Michael A. Mittelman
- Department of Medicine and the Airways Biology Initiative, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Roy J. Soberman
- Harvard Medical School, Massachusetts General Hospital East, Charlestown, Massachusetts, United States of America
| | - Ian A. Blair
- Center of Excellence in Environmental Toxicology, Center for Cancer Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Reynold A. Panettieri
- Department of Medicine and the Airways Biology Initiative, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center of Excellence in Environmental Toxicology, Center for Cancer Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Bodiga S, Gruenloh SK, Gao Y, Manthati VL, Dubasi N, Falck JR, Medhora M, Jacobs ER. 20-HETE-induced nitric oxide production in pulmonary artery endothelial cells is mediated by NADPH oxidase, H2O2, and PI3-kinase/Akt. Am J Physiol Lung Cell Mol Physiol 2010; 298:L564-74. [PMID: 20061439 DOI: 10.1152/ajplung.00298.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown that 20-hydroxyeicosatetraenoic acid (20-HETE) increases both superoxide and nitric oxide (NO) production in bovine pulmonary artery endothelial cells (BPAECs). The current study was designed to determine mechanisms underlying 20-HETE-stimulated NO release, and particularly the role of NADPH oxidase, reactive oxygen species, and PI3-kinase in stimulated NO release. Intracellular hydrogen peroxide (H(2)O(2)) and NO production were detected by dichlorofluorescein or dihydrorhodamine and diaminofluorescein fluorescence, respectively. Activation of endothelial nitric oxide synthase (eNOS) (Ser1179) and Akt (Ser473) was assessed by comparing the ratio of phosphorylated to total protein expression by Western blotting. Addition of 20-HETE to BPAECs caused an increase in superoxide and hydrogen peroxide, but not peroxynitrite. 20-HETE-evoked activation of Akt and eNOS, as well as enhanced NO release, are dependent on H(2)O(2) as opposed to superoxide in that these endpoints are blocked by PEG-catalase and not PEG-superoxide dismutase. Similarly, 20-HETE-stimulated NO production in BPAECs is blocked by NADPH oxidase inhibitors apocynin or gp91 blocking peptide, and by PI3-kinase/Akt blockers wortmannin, LY-294002, or Akt inhibitor, implicating NADPH oxidase, PI3-kinase, and Akt signaling pathways, respectively, in this process. Together, these data suggest the following scheme: 20-HETE stimulates NADPH oxidase-dependent formation of superoxide. Superoxide is rapidly dismutated to hydrogen peroxide, which then mediates activation of PI3-kinase/Akt, phosphorylation of eNOS, and enhanced release of NO from eNOS in response to 20-HETE in BPAECs.
Collapse
Affiliation(s)
- Sreedhar Bodiga
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cheng J, Wu CC, Gotlinger KH, Zhang F, Falck JR, Narsimhaswamy D, Schwartzman ML. 20-hydroxy-5,8,11,14-eicosatetraenoic acid mediates endothelial dysfunction via IkappaB kinase-dependent endothelial nitric-oxide synthase uncoupling. J Pharmacol Exp Ther 2009; 332:57-65. [PMID: 19841472 DOI: 10.1124/jpet.109.159863] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction and activation occur in the vasculature and are believed to contribute to the pathogenesis of cardiovascular diseases. We have shown that 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a cytochrome P450 4A-derived eicosanoid that promotes vasoconstriction in the microcirculation, uncouples endothelial nitric-oxide synthase (eNOS) and reduces nitric oxide (NO) levels via the dissociation of the 90-kDa heat shock protein (HSP90) from eNOS. It also causes endothelial activation by stimulating nuclear factor-kappaB (NF-kappaB) and increasing levels of pro-inflammatory cytokines. In this study, we examined signaling mechanisms that may link 20-HETE-induced endothelial dysfunction and activation. Under conditions in which 20-HETE inhibited NO production, it also stimulated inhibitor of NF-kappaB (IkappaB) phosphorylation. Both effects were prevented by inhibition of tyrosine kinases and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). It is noteworthy that inhibitor of IkappaB kinase (IKK) activity negated the 20-HETE-mediated inhibition of NO production. Immunoprecipitation experiments revealed that treatment of ionophore-stimulated cells with 20-HETE brings about a decrease in HSP90-eNOS association and an increase in HSP90-IKKbeta association, suggesting that the activation by 20-HETE of NF-kappaB is linked to its action on eNOS. Furthermore, addition of inhibitors of tyrosine kinase MAPK and IKK restored the 20-HETE-mediated impairment of acetylcholine-induced relaxation in rat renal interlobar arteries. The results indicate that 20-HETE mediates eNOS uncoupling and endothelial dysfunction via the activation of tyrosine kinase, MAPK, and IKK, and these effects are linked to 20-HETE-mediated endothelial activation.
Collapse
Affiliation(s)
- Jennifer Cheng
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Inoue K, Sodhi K, Puri N, Gotlinger KH, Cao J, Rezzani R, Falck JR, Abraham NG, Laniado-Schwartzman M. Endothelial-specific CYP4A2 overexpression leads to renal injury and hypertension via increased production of 20-HETE. Am J Physiol Renal Physiol 2009; 297:F875-84. [PMID: 19675180 DOI: 10.1152/ajprenal.00364.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that adenoviral-mediated delivery of cytochrome P-450 (CYP) 4A2, which catalyzes the synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE), results in endothelial dysfunction and hypertension in Sprague-Dawley (SD) rats (Wang JS, Singh H, Zhang F, Ishizuka T, Deng H, Kemp R, Wolin MS, Hintze TH, Abraham NG, Nasjletti A, Laniado-Schwartzman M. Circ Res 98: 962-969, 2006). In this study, we targeted the vascular endothelium by using a lentivirus construct expressing CYP4A2 under the control of the endothelium-specific promoter VE-cadherin (VECAD-4A2) and examined the effect of long-term CYP4A2 overexpression on blood pressure and kidney function in SD rats. A bolus injection of VECAD-4A2 increased blood pressure (P < 0.001) by 26, 36, and 30 mmHg 10, 20, and 30 days postinjection, respectively. Arteries from VECAD-4A2-transduced rats produced increased levels of 20-HETE (P < 0.01), expressed lower levels of endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (p-eNOS) (P < 0.05), generated higher levels of superoxide anion, and displayed decreased relaxing responsiveness to acetylcholine (P < 0.05). Proteinuria increased by twofold in VECAD-4A2-transduced rats compared with controls. Treatment of VECAD-4A2-transduced rats with HET0016, an inhibitor of 20-HETE biosynthesis, not only attenuated the increase in blood pressure (P < 0.05) but also improved vascular function (acetylcholine-induced relaxations) and reduced plasma creatinine and proteinuria. HET0016 treatment decreased oxidative stress and increased the phosphorylated state of key proteins that regulate endothelial function, including eNOS, AKT, and AMPK. Collectively, these findings demonstrate that augmentation of vascular endothelial 20-HETE levels results in hypertension, endothelial dysfunction, and renal injury, which is offset by HET0016 through a reduction in vascular 20-HETE coupled with a lessening of oxidative stress and the amplification of pAKT, pAMPK, and p-eNOS levels leading to normalization of endothelial responses.
Collapse
Affiliation(s)
- Kazuyoshi Inoue
- Dept. of Pharmacology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dhanasekaran A, Bodiga S, Gruenloh S, Gao Y, Dunn L, Falck JR, Buonaccorsi JN, Medhora M, Jacobs ER. 20-HETE increases survival and decreases apoptosis in pulmonary arteries and pulmonary artery endothelial cells. Am J Physiol Heart Circ Physiol 2009; 296:H777-86. [PMID: 19136601 DOI: 10.1152/ajpheart.01087.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is an endogenous cytochrome P-450 product present in vascular smooth muscle and uniquely located in the vascular endothelium of pulmonary arteries (PAs). 20-HETE enhances reactive oxygen species (ROS) production of bovine PA endothelial cells (BPAECs) in an NADPH oxidase-dependent manner and is postulated to promote angiogenesis via activation of this pathway in systemic vascular beds. We tested the capacity of 20-HETE or a stable analog of this compound, 20-hydroxy-eicosa-5(Z),14(Z)-dienoic acid, to enhance survival and protect against apoptosis in BPAECs stressed with serum starvation. 20-HETE produced a concentration-dependent increase in numbers of starved BPAECs and increased 5-bromo-2'-deoxyuridine incorporation. Caspase-3 activity, nuclear fragmentation studies, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays supported protection from apoptosis and enhanced survival of starved BPAECs treated with a single application of 20-HETE. Protection from apoptosis depended on intact NADPH oxidase, phosphatidylinositol 3 (PI3)-kinase, and ROS production. 20-HETE-stimulated ROS generation by BPAECs was blocked by inhibition of PI3-kinase or Akt activity. These data suggest 20-HETE-associated protection from apoptosis in BPAECs required activation of PI3-kinase and Akt and generation of ROS. 20-HETE also protected against apoptosis in BPAECs stressed by lipopolysaccharide, and in mouse PAs exposed to hypoxia reoxygenation ex vivo. In summary, 20-HETE may afford a survival advantage to BPAECs through activation of prosurvival PI3-kinase and Akt pathways, NADPH oxidase activation, and NADPH oxidase-derived superoxide.
Collapse
Affiliation(s)
- Anuradha Dhanasekaran
- Dept. of Medicine, Medical College of Wisconsin, 9200 W. Wisconsin Ave., Milwaukee WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Medhora M, Chen Y, Gruenloh S, Harland D, Bodiga S, Zielonka J, Gebremedhin D, Gao Y, Falck JR, Anjaiah S, Jacobs ER. 20-HETE increases superoxide production and activates NAPDH oxidase in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 294:L902-11. [PMID: 18296498 PMCID: PMC2586843 DOI: 10.1152/ajplung.00278.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) signal vital physiological processes including cell growth, angiogenesis, contraction, and relaxation of vascular smooth muscle. Because cytochrome P-450 family 4 (CYP4)/20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to enhance angiogenesis, pulmonary vascular tone, and endothelial nitric oxide synthase function, we explored the potential of this system to stimulate bovine pulmonary artery endothelial cell (BPAEC) ROS production. Our data are the first to demonstrate that 20-HETE increases ROS in BPAECs in a time- and concentration-dependent manner as detected by enhanced fluorescence of oxidation products of dihydroethidium (DHE) and dichlorofluorescein diacetate. An analog of 20-HETE elicits no increase in ROS and blocks 20-HETE-evoked increments in DHE fluorescence, supporting its function as an antagonist. Endothelial cells derived from bovine aortas exhibit enhanced ROS production to 20-HETE quantitatively similar to that of BPAECs. 20-HETE-induced ROS production in BPAECs is blunted by pretreatment with polyethylene-glycolated SOD, apocynin, inhibition of Rac1, and a peptide-based inhibitor of NADPH oxidase subunit p47(phox) association with gp91. These data support 20-HETE-stimulated, NADPH oxidase-derived, and Rac1/2-dependent ROS production in BPAECs. 20-HETE promotes translocation of p47(phox) and tyrosine phosphorylation of p47(phox) in a time-dependent manner as well as increased activated Rac1/2, providing at least three mechanisms through which 20-HETE activates NADPH oxidase. These observations suggest that 20-HETE stimulates ROS production in BPAECs at least in part through activation of NADPH oxidase within minutes of application of the lipid.
Collapse
Affiliation(s)
- Meetha Medhora
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Yuenmu Chen
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Stephanie Gruenloh
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Daniel Harland
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Sreedhar Bodiga
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Debebe Gebremedhin
- Department of Physiology and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Ying Gao
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas, TX 75390
| | - Siddam Anjaiah
- Department of Biochemistry, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas, TX 75390
| | - Elizabeth R. Jacobs
- Pulmonary and Critical Care Medicine and Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
29
|
Wang Z, Tang X, Li Y, Leu C, Guo L, Zheng X, Zhu D. 20-Hydroxyeicosatetraenoic acid inhibits the apoptotic responses in pulmonary artery smooth muscle cells. Eur J Pharmacol 2008; 588:9-17. [PMID: 18455723 DOI: 10.1016/j.ejphar.2008.03.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 03/09/2008] [Accepted: 03/19/2008] [Indexed: 12/19/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE), a omega-hydroxylation product of arachidonic acid catalyzed by cytochrome P450 4A (CYP4A), plays a role in vascular smooth muscle remodeling. Although its effects on angiogenic responses are known, it remains unclear whether 20-HETE acts on apoptosis of pulmonary arterial smooth muscle cells (PASMC), an important step in PASMC remodeling, and what pathways are involved in the process. Here we show evidence for the missing information. The effect of 20-HETE on PASMC apoptosis and the apoptosis-associated signaling pathways were determined with cell viability assay, Annexin V and propidium idodide binding, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), mitochondrial potentials assay, caspase activity assay and Western blots. We found that exogenous 20-HETE suppressed the serum deprivation-induced loss of bovine PASMCs and prevented Annexin V binding, DNA nick end labeling and chromatin condensation. The effect was worsened by 17-octadecynoic acid (17-ODYA), which inhibited the production of endogenous 20-HETE. Furthermore, 20-HETE induced the expression of bcl-2, maintained the stability of mitochondria membrane, and relieved the activation of caspase-9 and caspase-3. Such effects were reversed in the presence of 17-ODYA. Thus, these findings indicate that 20-HETE protects PASMCs against apoptosis by acting on, at least in part, the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Ishizuka T, Cheng J, Singh H, Vitto MD, Manthati VL, Falck JR, Laniado-Schwartzman M. 20-Hydroxyeicosatetraenoic acid stimulates nuclear factor-kappaB activation and the production of inflammatory cytokines in human endothelial cells. J Pharmacol Exp Ther 2007; 324:103-10. [PMID: 17947496 DOI: 10.1124/jpet.107.130336] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction is associated with endothelial cell activation, i.e., up-regulation of surface cell adhesion molecules and the release of proinflammatory cytokines. 20-Hydroxyeicosatetraenoic acid (HETE), a major vasoactive eicosanoid in the microcirculation, has been implicated in the regulation of endothelial cell function through its angiogenic and pro-oxidative properties. We examined the effects of 20-HETE on endothelial cell activation in vitro. Cells transduced with adenovirus containing either CYP4A1 or CYP4A2 produced higher levels of 20-HETE, and they demonstrated increased expression levels of the adhesion molecule intercellular adhesion molecule (ICAM) (4-7-fold) and the oxidative stress marker 3-nitrotyrosine (2-3-fold) compared with cells transduced with control adenovirus. Treatment of cells with 20-HETE markedly increased levels of prostaglandin (PG) E(2) and 8-epi-isoprostane PGF(2alpha), commonly used markers of activation and oxidative stress, and most prominently, interleukin-8, a potent neutrophil chemotactic factor whose overproduction by the endothelium is a key feature of vascular injury. 20-HETE at nanomolar concentrations increased inhibitor of nuclear factor-kappaB phosphorylation by 2 to 5-fold within 5 min, which was followed with increased nuclear translocation of nuclear factor-kappaB (NF-kappaB). Likewise, 20-HETE activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway by stimulating phosphorylation of ERK1/2. Inhibition of NF-kappaB activation and inhibition of ERK1/2 phosphorylation inhibited 20-HETE-induced ICAM expression. It seems that 20-HETE triggers NF-kappaB and MAPK/ERK activation and that both signaling pathways participate in the cellular mechanisms by which 20-HETE activates vascular endothelial cells.
Collapse
Affiliation(s)
- Tsuneo Ishizuka
- Department of Pharmacology, New York Medical College, 15 Dana Rd., Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sunder‐Plassmann R. Cytochrome P450: Another Player in the Myocardial Infarction Game? Adv Clin Chem 2007. [DOI: 10.1016/s0065-2423(06)43008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Medhora M, Dhanasekaran A, Gruenloh SK, Dunn LK, Gabrilovich M, Falck JR, Harder DR, Jacobs ER, Pratt PF. Emerging mechanisms for growth and protection of the vasculature by cytochrome P450-derived products of arachidonic acid and other eicosanoids. Prostaglandins Other Lipid Mediat 2007; 82:19-29. [PMID: 17164129 DOI: 10.1016/j.prostaglandins.2006.05.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 05/25/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
Arachidonic acid (AA) is an essential fatty acid that is metabolized by cyclooxygenase (COX), lipoxygenase (LOX) or cytochrome P450 (CYP) enzymes to generate eicosanoids which in turn mediate a number of biological activities including regulation of angiogenesis. While much information on the effects of COX and LOX products is known, the physiological relevance of the CYP-derived products of AA are less well understood. CYP enzymes are highly expressed in the liver and kidney, but have also been detected at lower levels in the brain, heart and vasculature. A number of these enzymes, including members of the CYP 4 family, predominantly catalyze conversion of AA to 20-hydroxyeicosatetraenoic acid (20-HETE) while the CYP epoxygenases generate mainly epoxyeicosatrienoic acids (EETs). This review will focus on the emerging roles of inhibitors of eicosanoid production with emphasis on the CYP pathways, in the regulation of angiogenesis and tumor growth. We also discuss current observations describing the protective effects of EETs for survival of the endothelium.
Collapse
Affiliation(s)
- Meetha Medhora
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Harmon SD, Fang X, Kaduce TL, Hu S, Raj Gopal V, Falck JR, Spector AA. Oxygenation of omega-3 fatty acids by human cytochrome P450 4F3B: effect on 20-hydroxyeicosatetraenoic acid production. Prostaglandins Leukot Essent Fatty Acids 2006; 75:169-77. [PMID: 16820285 DOI: 10.1016/j.plefa.2006.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 (CYP) omega-oxidases convert arachidonic acid (AA) to 20-hydroxyeicosatetraenoic acid (20-HETE), a lipid mediator that modulates vascular tone. We observed that a microsomal preparation containing recombinant human CYP4F3B, which converts AA to 20-HETE, converted eicosapentaenoic acid (EPA) to 20-OH-EPA. Likewise, docosahexaenoic acid (DHA) was converted to 22-OH-DHA, indicating that human CYP4F3B also can oxidize 22-carbon omega-3 fatty acids. Consistent with these findings, addition of 0.5-5 microM EPA, DHA or omega-3 docosapentaenoic acid (DPA) to incubations containing 0.5 microM [3H]AA inhibited [3H]20-HETE production by 15-65%. [3H]20-OH-EPA was rapidly taken up by COS-7 cells, and almost all of the incorporated radioactivity remained as unmodified 20-OH-EPA. The 20-OH-EPA stimulated luciferase activity in COS-7 cells that express peroxisome proliferator-activated receptor alpha, indicating that this EPA metabolite may function as a lipid mediator. These findings suggest that some functional effects of omega-3 fatty acid supplementation may be due to inhibition of 20-HETE formation or the conversion of EPA to the corresponding omega-oxidized product.
Collapse
Affiliation(s)
- Shawn D Harmon
- Department of Biochemistry, Carver College of Medicine, 4-403 BSB, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Chen Y, Medhora M, Falck JR, Pritchard KA, Jacobs ER. Mechanisms of activation of eNOS by 20-HETE and VEGF in bovine pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L378-85. [PMID: 16679377 DOI: 10.1152/ajplung.00424.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have demonstrated that VEGF-induced dilation of bovine pulmonary arteries is associated with activation of cytochrome P-450 family 4 (CYP4) enzymes and eNOS. We hypothesized that VEGF and the CYP4 product 20-HETE would trigger common downstream pathways of intracellular signaling to activate eNOS. We treated bovine pulmonary artery endothelial cells (BPAECs) with 20-HETE (1 microM) or VEGF (8.3 nM) and examined three molecular events known to activate eNOS: 1) phosphorylation at serine 1179, 2) phosphorylation of protein kinase B (Akt), which subsequently phosphorylates eNOS, and 3) association of eNOS with 90-kDa heat shock protein (Hsp90). Both 20-HETE and VEGF increase the phosphorylation of eNOS at serine 1179 and Akt at serine 473. The CYP4 inhibitor dibromododecynyl methyl sulfonamide (DDMS) blocks VEGF-induced phosphorylation of eNOS. VEGF had no effect on the binding of Hsp90 with eNOS, whereas 20-HETE decreased the association of the protein partners. Inhibition of Akt-phosphatidylinositol 3-kinase with wortmannin blocks both 20-HETE and VEGF-induced relaxation of pulmonary arteries, supporting the functional contribution of Akt phosphorylation to the vasoactive actions of both agents. Treatment with radicicol had no effect on 20-HETE-induced relaxation of pulmonary arteries, consistent with an absence of effect on association of Hsp90 to eNOS, whereas radicicol partially blocked VEGF-evoked relaxations, possibly secondary to effects on endpoints other than Hsp90 association with eNOS. In conclusion, VEGF and 20-HETE share eNOS activation pathways, including phosphorylation of serine 1179 and phosphorylation of Akt. Unlike aortic endothelial cells, eNOS activation in BPAECs by either VEGF or 20-HETE does not appear to require increased association of Hsp90.
Collapse
Affiliation(s)
- Yuenmu Chen
- Pulmonary and Critical Care Division, Department of Medicine, Division of Pediatric Surgery and Childrens' Research Institute, Cardiovascular Center Medical College of Wisconsin, 53226, USA
| | | | | | | | | |
Collapse
|
35
|
Jacobs ER, Zhu D, Gruenloh S, Lopez B, Medhora M. VEGF-induced relaxation of pulmonary arteries is mediated by endothelial cytochrome P-450 hydroxylase. Am J Physiol Lung Cell Mol Physiol 2006; 291:L369-77. [PMID: 16679379 DOI: 10.1152/ajplung.00265.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cytochrome P-450 metabolite 20-HETE induces calcium-, endothelial-, and nitric oxide (NO)-dependent relaxation of bovine pulmonary arteries (PA). VEGF is an NO-dependent dilator of systemic arteries and plays a key role in maintaining the integrity of the pulmonary vasculature. We tested the effect of VEGF on PA diameter and tone and the contribution of cytochrome P-450 family 4 (CYP4) to vasoactive effects of VEGF. Bovine PA rings (1 mm in diameter) relaxed with VEGF (0.1-10 nM) in an endothelial- and eNOS-dependent manner. This response was blunted by pretreatment with the CYP4 inhibitor dibromododecynyl methyl sulfonamide (DDMS) as well as a mechanistically different CYP4 inhibitor N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine. PAs also increased in diameter by 6-12% in the presence of VEGF (10 nM), and this increase was attenuated by DDMS. In contrast to that shown in PAs, 20-HETE constricted bovine renal arteries and did not increase intracellular Ca(2+) in renal artery endothelial cells as observed in bovine pulmonary artery endothelial cells (BPAECs). VEGF-evoked increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) in BPAECs were blunted by treatment with DDMS. Both VEGF (10 nM) and 20-HETE (1-5 microM) stimulated NO release from cultured BPAECs, and once again VEGF-induced increases were attenuated by pretreating the cells with DDMS. We conclude that CYP4/20-HETE contributes to VEGF-stimulated NO release and vasodilation in bovine PAs. Given the unique expression of 20-HETE-forming CYP4 in BPAECs vs. systemic arterial endothelial cells, CYP4 may be an important mediator of endothelial-dependent vasoreactivity in PAs.
Collapse
Affiliation(s)
- Elizabeth R Jacobs
- Cardiovascular Center, Pulmonary and Critical Care Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | | | | | | | | |
Collapse
|
36
|
Dhanasekaran A, Al-Saghir R, Lopez B, Zhu D, Gutterman DD, Jacobs ER, Medhora M. Protective effects of epoxyeicosatrienoic acids on human endothelial cells from the pulmonary and coronary vasculature. Am J Physiol Heart Circ Physiol 2006; 291:H517-31. [PMID: 16617127 DOI: 10.1152/ajpheart.00953.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are cytochrome P-450 (CYP) metabolites synthesized from the essential fatty acid arachidonic acid to generate four regioisomers, 14,15-, 11,12-, 8,9-, and 5,6-EET. Cultured human coronary artery endothelial cells (HCAECs) contain endogenous EETs that are increased by stimulation with physiological agonists such as bradykinin. Because EETs are known to modulate a number of vascular functions, including angiogenesis, we tested each of the four regioisomers to characterize their effects on survival and apoptosis of HCAECs and cultured human lung microvascular endothelial cells (HLMVECs). A single application of physiologically relevant concentration of 14,15-, 11,12-, and 8,9-EET but not 5,6-EET (0.75-300 nM) promoted concentration-dependent increase in cell survival of HLMVECs and HCAECs after removal of serum. The lipids also protected the same cells from death via the intrinsic, as well as extrinsic, pathways of apoptosis. EETs did not increase intracellular calcium concentration ([Ca2+]i) or phosphorylate mitogen-activated protein kinase p44/42 when applied to these cells, and their protective action was attenuated by the phosphotidylinositol-3 kinase inhibitor wortmannin (10 microM) but not the cyclooxygenase inhibitor indomethacin (20 microM). Our results demonstrate for the first time the capacity of EETs to enhance human endothelial cell survival by inhibiting both the intrinsic, as well as extrinsic, pathways of apoptosis, an important underlying mechanism that may promote angiogenesis and endothelial survival during atherosclerosis and related cardiovascular ailments.
Collapse
Affiliation(s)
- Anuradha Dhanasekaran
- Division of Pulmonary and Critical Care, Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Wang JS, Singh H, Zhang F, Ishizuka T, Deng H, Kemp R, Wolin MS, Hintze TH, Abraham NG, Nasjletti A, Laniado-Schwartzman M. Endothelial Dysfunction and Hypertension in Rats Transduced With CYP4A2 Adenovirus. Circ Res 2006; 98:962-9. [PMID: 16543501 DOI: 10.1161/01.res.0000217283.98806.a6] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular cytochrome P450 (CYP) 4A enzymes catalyze the synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE), an eicosanoid which participates in the regulation of vascular tone by sensitizing the smooth muscle cells to constrictor and myogenic stimuli. This study was undertaken to investigate the consequences of CYP4A overexpression on blood pressure and endothelial function in rats treated with adenoviral vectors carrying the CYP4A2 construct. Intravenous injection of Adv-CYP4A2 increased blood pressure (from 114+/-1 to 133+/-1 mm Hg, P<0.001), and interlobar renal arteries from these rats displayed decreased relaxing responsiveness to acetylcholine, which was offset by treatment with an inhibitor of CYP4A. Relative to data in control rats, arteries from Adv-CYP4A2-transduced rats produced more 20-HETE (129+/-10 versus 97+/-7 pmol/mg protein, P<0.01) and less nitric oxide (NO; 4.2+/-1.6 versus 8.4+/-1 nmol nitrite+nitrate/mg; P<0.05). They also displayed higher levels of oxidative stress as measured by increased generation of superoxide anion and increased expression of nitrotyrosine and gp91phox. Collectively, these findings demonstrate that augmentation in vascular 20-HETE promotes the development of hypertension and causes endothelial dysfunction, a condition characterized by decreased NO synthesis and/or bioavailability, imbalance in the relative contribution of endothelium-derived relaxing and contracting factors, and enhanced endothelial activation.
Collapse
Affiliation(s)
- Ji-Shi Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Parmentier JH, Lavrentyev EN, Falck JR, Capdevila JH, Malik KU. Evaluation of cytochrome P450 4 family as mediator of phospholipase D activation in aortic vascular smooth muscle cells. Life Sci 2005; 77:1015-29. [PMID: 15964316 DOI: 10.1016/j.lfs.2005.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 03/03/2005] [Indexed: 11/16/2022]
Abstract
Norepinephrine (NE) stimulates phospholipase D (PLD) activity via phospholipase A2-dependent arachidonic acid release in rabbit aortic vascular smooth muscle cells (VSMC). We have previously shown that exogenous 20-hydroxyeicosatetraenoic acid (20-HETE), an eicosanoid generated through the cytochrome P450 (CYP) 4A pathway in vivo, stimulates PLD activity. Whether endogenous CYP4-derived arachidonic acid metabolites act as intracellular mediators of NE-induced PLD activation in VSMC is not known. In rabbit aortic VSMC, prototypical hepatic/renal CYP4A inducers such as fenofibrate and Wy 14643 inhibited both basal and NE-induced PLD activity after 48 h of exposure. The level of CYP4F, and to a lesser extent CYP4A, was also decreased by these agents. The expression levels of rabbit aortic VSMC CYP4A and CYP4F isoforms were reduced by antisense oligonucleotides treatment for 48 hours as measured by RTQ-PCR or Western blotting. This reduction in CYP4A or CYP4F levels did not change NE-induced PLD activation. The corresponding CYP4A scrambled and CYP4F sense oligonucleotides did not alter CYP levels. PLD activity was increased by ~70% after 15 min of stimulation with NE, whereas lauric acid omega-hydroxylase activity, a measure of fatty acid omega-hydroxylation, was unchanged. Inhibition of omega-hydroxylation with DDMS and HET0016, selective omega-hydroxylase inhibitors, and 20-HEDE, an antagonist of 20-HETE, increased PLD activity in a concentration-dependent manner and did not alter NE-induced PLD activation. These data suggest that PLD activation by NE is independent of the CYP4A/4F enzymes in rabbit aortic VSMC.
Collapse
Affiliation(s)
- Jean-Hugues Parmentier
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
39
|
Bogatcheva NV, Sergeeva MG, Dudek SM, Verin AD. Arachidonic acid cascade in endothelial pathobiology. Microvasc Res 2005; 69:107-27. [PMID: 15896353 DOI: 10.1016/j.mvr.2005.01.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/21/2005] [Accepted: 01/26/2005] [Indexed: 01/26/2023]
Abstract
Arachidonic acid (AA) and its metabolites (eicosanoids) represent powerful mediators, used by organisms to induce and suppress inflammation as a part of the innate response to disturbances. Several cell types participate in the synthesis and release of AA metabolites, while many cell types represent the targets for eicosanoid action. Endothelial cells (EC), forming a semi-permeable barrier between the interior space of blood vessels and underlying tissues, are of particular importance for the development of inflammation, since endothelium controls such diverse processes as vascular tone, homeostasis, adhesion of platelets and leukocytes to the vascular wall, and permeability of the vascular wall for cells and fluids. Proliferation and migration of endothelial cells contribute significantly to new vessel development (angiogenesis). This review discusses endothelial-specific synthesis and action of arachidonic acid derivatives with a particular focus on the mechanisms of signal transduction and associated intracellular protein targets.
Collapse
Affiliation(s)
- Natalia V Bogatcheva
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
40
|
Kroetz DL, Xu F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu Rev Pharmacol Toxicol 2005; 45:413-38. [PMID: 15822183 DOI: 10.1146/annurev.pharmtox.45.120403.100045] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytochrome P450-catalyzed metabolism of arachidonic acid is an important pathway for the formation of paracrine and autocrine mediators of numerous biological effects. The omega-hydroxylation of arachidonic acid generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in numerous tissues, particularly the vasculature and kidney tubules. Members of the cytochrome P450 4A and 4F families are the major omega-hydroxylases, and the substrate selectivity and regulation of these enzymes has been the subject of numerous studies. Altered expression and function of arachidonic acid omega-hydroxylases in models of hypertension, diabetes, inflammation, and pregnancy suggest that 20-HETE may be involved in the pathogenesis of these diseases. Our understanding of the biological significance of 20-HETE has been greatly aided by the development and characterization of selective and potent inhibitors of the arachidonic acid omega-hydroxylases. This review discusses the substrate selectivity and expression of arachidonic acid omega-hydroxylases, regulation of these enzymes during disease, and the application of enzyme inhibitors to study 20-HETE function.
Collapse
Affiliation(s)
- Deanna L Kroetz
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-2911, USA.
| | | |
Collapse
|
41
|
Ljubimov AV, Grant MB. P450 in the angiogenesis affair: the unusual suspect. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:341-4. [PMID: 15681818 PMCID: PMC1602313 DOI: 10.1016/s0002-9440(10)62257-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alexander V Ljubimov
- Ophthalmology Research Laboratories, Burns and Allen Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, D-2025, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
42
|
Le Bouquin R, Lugnier A, Frossard N, Pons F. Expression of cytochrome P450 4A mRNA in mouse lung: effect of clofibrate and interleukin-1beta. Fundam Clin Pharmacol 2004; 18:181-6. [PMID: 15066132 DOI: 10.1111/j.1472-8206.2004.00228.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochromes P450 4A (CYP4A) metabolize arachidonic acid into hydroxyeicosatetraenoic acids (HETEs) that exhibit potent actions on airway smooth muscle tone. In the lung, modifications in CYP4A expression and HETEs production could thus contribute to alterations in airway reactivity. We characterized expression of CYP4A in the lung of BALB/c mice, and studied its regulation by the CYP4A inducer, clofibrate and by the pro-inflammatory and asthma-associated cytokine, interleukin-1beta (IL-1beta). Messenger RNA (mRNA) expression of Cyp4a10, 4a12 and 4a14 was assessed in lung from control and clofibrate or IL-1beta-treated mice using polymerase chain reaction after reverse transcription of total lung RNA. Cyp4a12 mRNA was the only Cyp4a mRNA detected in lung tissue from control mice, as well as mice treated with clofibrate or IL-1beta. In contrast, mRNA of all isoforms were found at significant levels in liver from control mice and at increased levels in liver from clofibrate-treated animals. Lung levels of Cyp4a12 mRNA were enhanced by ninefold in mice treated with clofibrate and by fourfold in animals injected with IL-1beta. In conclusion, Cyp4a12, but not Cyp4a10 or Cyp4a14, is expressed in the lung of BALB/c mice, and may be upregulated by clofibrate or IL-1beta. Since IL-1beta has been largely associated with asthma, our data suggest that CYP4A expression could be altered in asthmatic conditions and may thus contribute to changes in airway reactivity.
Collapse
Affiliation(s)
- Renaud Le Bouquin
- EA Inflammation et environnement dans l'asthme, Faculté de Pharmacie, Université Louis Pasteur Strasbourg-I, BP 60024, 67401 Illkirch, France
| | | | | | | |
Collapse
|
43
|
Jiang M, Mezentsev A, Kemp R, Byun K, Falck JR, Miano JM, Nasjletti A, Abraham NG, Laniado-Schwartzman M. Smooth muscle--specific expression of CYP4A1 induces endothelial sprouting in renal arterial microvessels. Circ Res 2003; 94:167-74. [PMID: 14670847 DOI: 10.1161/01.res.0000111523.12842.fc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome P450 (CYP) 4A1 has been characterized as the most efficient arachidonic acid omega-hydroxylase catalyzing the formation of 20-hydroxyeicosatetraenoic acid (20-HETE), a potent constrictor of the renal and cerebral microcirculation and a mitogen for smooth muscle cells. We constructed adenoviruses expressing the CYP4A1 cDNA or LacZ under the control of the smooth muscle cell-specific promoter SM22alpha (Ad-SM22-4A1 and Ad-SM22-nLacZ, respectively). Beta-galactosidase expression was detected in Ad-SM22-nLacZ-transduced vascular smooth muscle A7r5 and PAC1 cells, but not in Ad-SM22-nLacZ-transduced 3T3 fibroblasts or vascular endothelial cells. Likewise, CYP4A1 mRNA and protein were detected in Ad-SM22-4A1-transduced A7r5 and PAC1 cells. Ad-SM22-4A1-transduced A7r5 cells metabolized lauric acid to 12-hydroxy-lauric acid at a rate 5 times greater than that of cells transduced with Ad-SM22-nLacZ (4.79+/-1.77 versus 0.97+/-0.57 nmol 12-hydroxy lauric acid/10(6) cells per h). Smooth muscle-specific LacZ expression was also detected in microdissected renal interlobar arteries transduced with Ad-SM22-nLacZ. Arteries transduced with Ad-SM22-4A1 produced higher levels of 20-HETE (4.04+/-0.29 and 13.43+/-2.84 ng/mg protein in Ad-SM22-nLacZ-transduced and Ad-SM22-4A1-transduced arteries, respectively) and demonstrated a marked angiogenic activity measured as the total length of sprouting neovessels (12.63+/-3.66 mm in Ad-SM22-4A1-transduced vessels versus 1.79+/-0.89 mm in Ad-SM22-nLacZ-transduced vessels). This angiogenic activity represented endothelial cell sprouting and was fully blocked by treatment with HET0016, a selective inhibitor of CYP4A-catalyzed reactions. The inhibitory effect of HET0016 was reversed by addition of a 20-HETE agonist. We conclude that Ad-SM22-4A1 drives a smooth muscle-specific functional expression of CYP4A1 and demonstrates increased angiogenesis, presumably via increased production of 20-HETE.
Collapse
Affiliation(s)
- Miao Jiang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yaghi A, Bradbury JA, Zeldin DC, Mehta S, Bend JR, McCormack DG. Pulmonary cytochrome P-450 2J4 is reduced in a rat model of acute Pseudomonas pneumonia. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1099-105. [PMID: 12882760 DOI: 10.1152/ajplung.00039.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that the levels of epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) are depressed in microsomes prepared from lungs of rats with acute Pseudomonas pneumonia. We also showed a potential role for cytochrome P-450 (CYP) metabolites of arachidonic acid (AA) in contractile responses of both normal pulmonary arteries and pulmonary arteries from rats with pneumonia. The CYP2J subfamily enzymes (endogenous source of EETs and HETEs) are constitutively expressed in human and rat lungs where they are localized in vascular smooth muscle and endothelium. The purpose of this study was to determine if CYP2J proteins are modified in pneumonia. Pseudomonas organisms were injected via a tracheostomy in the lungs of rats. Later (44 h), lungs were frozen, and microsomes were prepared from pneumonia and control rat lung homogenates. Lung microsomal proteins were then immunoblotted with anti-CYP2B1/2B2, anti-CYP4A, anti-CYP2J9pep2 (which reacts with rat CYP2J3), anti-CYP2J6pep1 (which reacts with rat CYP2J4), anti-CYP2J2pep4, or anti-CYP2J2pep3 (both of which react with all known CYP2J isozymes). Western blotting revealed a prominent 55-kDa band with anti-CYP2J2pep3, anti-CYP2J2pep4, and anti-CYP2J6pep1 (but not anti-CYP2J9pep2) that was reduced in pneumonia compared with control lung microsomes. The CYP2B bands (51-52 kDa) were less prominent and not different between pneumonia and control lungs. CYP4A proteins (20-HETE sources) were not detected in rat lung microsomes. Therefore, rat lung contains a protein with immunological characteristics similar to CYP2J4, and this CYP is reduced after pneumonia. We speculate that CYP2J (but not CYP2B) enzymes and their AA metabolic products (EETs) are involved in the modulation of pulmonary vascular tone in pneumonia in rats.
Collapse
Affiliation(s)
- Asma Yaghi
- AC Burton Vascular Biology Laboratory, Lawson Health Research Institute, Respirology, London Health Sciences Centre, Victoria Campus, London, Ontario N6A 4G5, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Zhu D, Medhora M, Campbell WB, Spitzbarth N, Baker JE, Jacobs ER. Chronic hypoxia activates lung 15-lipoxygenase, which catalyzes production of 15-HETE and enhances constriction in neonatal rabbit pulmonary arteries. Circ Res 2003; 92:992-1000. [PMID: 12690037 DOI: 10.1161/01.res.0000070881.65194.8f] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia causes localized pulmonary arterial (PA) constriction to divert blood flow to optimally ventilated regions of the lung. The biochemical mechanisms for this have remained elusive, especially during prolonged exposures to reduced PO2. We have evidence that subacute hypoxia activates 15-lipoxygenase (15-LO) in small PAs of neonatal rabbits maintained for 9 days in hypoxic environments (FiO2=0.12) compared with siblings raised under normoxia. PA microsomal products of 15-LO, 15-hydroxyeicosatetraenoic acid (HETE), 11,14,15-trihydroxyeicosatrienoic acid (THETA), and 11,12,15-THETA were identified by gas chromatography/mass spectrometry. Increased amounts of these products are synthesized in vivo and in vitro by the lungs of animal raised in hypoxic versus normoxic environments. 15-HETE formation is attenuated by lipoxygenase, but not cytochrome P450 or cyclooxygenase inhibitors. Activation of 15-LO is associated with translocation of the enzyme from the cytosol to membrane as seen by Western immunoblotting. Immunohistochemical analysis demonstrates that 15-LO expression is clearly localized in vascular cells in lungs from normoxic and hypoxic kits. 15-HETE causes concentration-dependent constriction of PA rings from animals exposed to hypoxic but not normoxic environments. In addition, lipoxygenase inhibitors reduce phenylephrine-induced constriction of PA rings. Therefore, subacute hypoxia increases expression of and activates 15-LO, and enhances sensitivity of pulmonary arteries to its product, 15-HETE. Because 15-HETE is a constrictor in this vascular bed, it may play an important role in hypoxia-induced pulmonary vasoconstriction in rabbit kits. Although a clear causal relationship remains to be demonstrated, these data suggest a previously unrecognized role for 15-LO in hypoxic vasoconstriction in neonatal mammals.
Collapse
Affiliation(s)
- Daling Zhu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis 53226, USA
| | | | | | | | | | | |
Collapse
|
46
|
Yu M, McAndrew RP, Al-Saghir R, Maier KG, Medhora M, Roman RJ, Jacobs ER. Nitric oxide contributes to 20-HETE-induced relaxation of pulmonary arteries. J Appl Physiol (1985) 2002; 93:1391-9. [PMID: 12235040 DOI: 10.1152/japplphysiol.00247.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In contrast to its constrictor effects on peripheral arteries, 20-hydroxyeicosatetraenoic acid (20-HETE) is an endothelial-dependent dilator of pulmonary arteries (PAs). The present study examined the hypothesis that the vasodilator effects of 20-HETE in PAs are due to an elevation of intracellular calcium concentration ([Ca(2+)](i)) and the release of nitric oxide (NO) from bovine PA endothelial cells (BPAECs). BPAECs express cytochrome P-450 4A (CYP4A) protein and produce 20-HETE. 20-HETE dilated PAs preconstricted with U-46619 or norepinephrine and treated with the cytochrome P-450 inhibitor 17-octadecynoic acid and the cyclooxygenase inhibitor indomethacin. The dilator effect of 20-HETE was blocked by the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) or by removal of endothelium. 20-HETE significantly increased [Ca(2+)](i) and NO production in BPAECs. 20-HETE-induced NO release was blunted by removal of extracellular calcium, as well as NO synthase inhibitors (L-NAME). These results suggest that 20-HETE dilates PAs at least in part by increasing [Ca(2+)](i) and NO release in BPAECs.
Collapse
Affiliation(s)
- Ming Yu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|