1
|
Moya EA, Yu JJ, Brown S, Gu W, Lawrence ES, Carlson R, Brandes A, Wegeng W, Amann K, McIntosh SE, Powell FL, Simonson TS. Tibetans exhibit lower hemoglobin concentration and decreased heart response to hypoxia during poikilocapnia at intermediate altitude relative to Han Chinese. Front Physiol 2024; 15:1334874. [PMID: 38784113 PMCID: PMC11112024 DOI: 10.3389/fphys.2024.1334874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Background High-altitude populations exhibit distinct cellular, respiratory, and cardiovascular phenotypes, some of which provide adaptive advantages to hypoxic conditions compared to populations with sea-level ancestry. Studies performed in populations with a history of high-altitude residence, such as Tibetans, support the idea that many of these phenotypes may be shaped by genomic features that have been positively selected for throughout generations. We hypothesize that such traits observed in Tibetans at high altitude also occur in Tibetans living at intermediate altitude, even in the absence of severe sustained hypoxia. Methodology We studied individuals of high-altitude ancestry (Tibetans, n = 17 females; n = 12 males) and sea-level ancestry (Han Chinese, n = 6 females; n = 10 males), both who had been living at ∼1300 m (∼4327 ft) for at least 18 months. We measured hemoglobin concentration ([Hb]), hypoxic ventilatory response (HVR), and hypoxic heart rate response (HHRR) with end-tidal CO2 (PetCO2) held constant (isocapnia) or allowed to decrease with hypoxic hyperventilation (poikilocapnia). We also quantified the contribution of CO2 on ventilation and heart rate by calculating the differences of isocapnic versus poikilocapnic hypoxic conditions (Δ V ˙ I /ΔPetCO2 and ΔHR/ΔPetCO2, respectively). Results Male Tibetans had lower [Hb] compared to Han Chinese males (p < 0.05), consistent with reports for individuals from these populations living at high altitude and sea level. Measurements of ventilation (resting ventilation, HVR, and PetCO2) were similar for both groups. Heart rate responses to hypoxia were similar in both groups during isocapnia; however, HHRR in poikilocapnia was reduced in the Tibetan group (p < 0.03), and the heart rate response to CO2 in hypoxia was lower in Tibetans relative to Han Chinese (p < 0.01). Conclusion These results suggest that Tibetans living at intermediate altitude have blunted cardiac responses in the context of hypoxia. Hence, only some of the phenotypes observed in Tibetans living at high altitude are observed in Tibetans living at intermediate altitude. Whereas blunted cardiac responses to hypoxia is revealed at intermediate altitudes, manifestation of other physiological adaptations to high altitude may require exposure to more severe levels of hypoxia.
Collapse
Affiliation(s)
- E. A. Moya
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - J. J. Yu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - S. Brown
- Department of Anesthesiology, Loyola University Medical Center, Maywood, IL, United States
| | - W. Gu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - E. S. Lawrence
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - R. Carlson
- School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - A. Brandes
- School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - W. Wegeng
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - K. Amann
- Department of Emergency Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - S. E. McIntosh
- Department of Emergency Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - F. L. Powell
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - T. S. Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Raberin A, Burtscher J, Burtscher M, Millet GP. Hypoxia and the Aging Cardiovascular System. Aging Dis 2023; 14:2051-2070. [PMID: 37199587 PMCID: PMC10676797 DOI: 10.14336/ad.2023.0424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Older individuals represent a growing population, in industrialized countries, particularly those with cardiovascular diseases, which remain the leading cause of death in western societies. Aging constitutes one of the largest risks for cardiovascular diseases. On the other hand, oxygen consumption is the foundation of cardiorespiratory fitness, which in turn is linearly related to mortality, quality of life and numerous morbidities. Therefore, hypoxia is a stressor that induces beneficial or harmful adaptations, depending on the dose. While severe hypoxia can exert detrimental effects, such as high-altitude illnesses, moderate and controlled oxygen exposure can potentially be used therapeutically. It can improve numerous pathological conditions, including vascular abnormalities, and potentially slows down the progression of various age-related disorders. Hypoxia can exert beneficial effects on inflammation, oxidative stress, mitochondrial functions, and cell survival, which are all increased with age and have been discussed as main promotors of aging. This narrative review discusses specificities of the aging cardiovascular system in hypoxia. It draws upon an extensive literature search on the effects of hypoxia/altitude interventions (acute, prolonged, or intermittent exposure) on the cardiovascular system in older individuals (over 50 years old). Special attention is directed toward the use of hypoxia exposure to improve cardiovascular health in older individuals.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, A-6020, Austria.
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
McKeown DJ, Stewart GM, Kavanagh JJ. The severity of acute hypoxaemia determines distinct changes in intracortical and spinal neural circuits. Exp Physiol 2023; 108:1203-1214. [PMID: 37548581 PMCID: PMC10988465 DOI: 10.1113/ep091224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The purpose of this study was to examine how two common methods of continuous hypoxaemia impact the activity of intracortical circuits responsible for inhibition and facilitation of motor output, and spinal excitability. Ten participants were exposed to 2 h of hypoxaemia at 0.13 fraction of inspired oxygen (F I O 2 ${F_{{\mathrm{I}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol) and 80% of peripheral capillary oxygen saturation (S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol) using a simulating altitude device on two visits separated by a week. Using transcranial magnetic and peripheral nerve stimulation, unconditioned motor evoked potential (MEP) area, short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), and F-wave persistence and area were assessed in the first dorsal interosseous (FDI) muscle before titration, after 1 and 2 h of hypoxic exposure, and at reoxygenation. The clamping protocols resulted in differing reductions inS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ by 2 h (S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol: 81.9 ± 1.3%,F I O 2 ${F_{{\mathrm{I}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol: 90.6 ± 2.5%). Although unconditioned MEP peak to peak amplitude and area did not differ between the protocols, SICI duringF I O 2 ${F_{{\mathrm{I}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping was significantly lower at 2 h compared toS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping (P = 0.011) and baseline (P < 0.001), whereas ICF was higher throughout theF I O 2 ${F_{{\mathrm{I}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping compared toS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping (P = 0.005). Furthermore, a negative correlation between SICI andS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (rrm = -0.56, P = 0.002) and a positive correlation between ICF andS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (rrm = 0.69, P = 0.001) were determined, where greater reductions inS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ correlated with less inhibition and less facilitation of MEP responses. Although F-wave area progressively increased similarly throughout the protocols (P = 0.037), persistence of responses was reduced at 2 h and reoxygenation (P < 0.01) during theS p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol compared to theF I O 2 ${F_{{\mathrm{I}}{{\mathrm{O}}_{\mathrm{2}}}}}$ clamping protocol. After 2 h of hypoxic exposure, there is a reduction in the activity of intracortical circuits responsible for inhibiting motor output, as well as excitability of spinal motoneurones. However, these effects can be influenced by other physiological responses to hypoxia (i.e., hyperventilation and hypocapnia). NEW FINDINGS: What is the central question of this study? How do two common methods of acute hypoxic exposure influence the excitability of intracortical networks and spinal circuits responsible for motor output? What is the main finding and its importance? The excitability of spinal circuits and intracortical networks responsible for inhibition of motor output was reduced during severe acute exposure to hypoxia at 2 h, but this was not seen during less severe exposure. This provides insight into the potential cause of variance seen in motor evoked potential responses to transcranial magnetic stimulation (corticospinal excitability measures) when exposed to hypoxia.
Collapse
Affiliation(s)
- Daniel J. McKeown
- Neural Control of Movement LaboratoryMenzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
- Department of PsychologyFaculty of Society and DesignBond UniversityGold CoastQueenslandAustralia
| | - Glenn M. Stewart
- Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
- Allied Health Research CollaborativeThe Prince Charles HospitalBrisbaneQueenslandAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - Justin J. Kavanagh
- Neural Control of Movement LaboratoryMenzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
4
|
Bloomfield PM, Green H, Fisher JP, Gant N. Carbon dioxide protects simulated driving performance during severe hypoxia. Eur J Appl Physiol 2023; 123:1583-1593. [PMID: 36952086 PMCID: PMC10276124 DOI: 10.1007/s00421-023-05151-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE We sought to determine the effect of acute severe hypoxia, with and without concurrent manipulation of carbon dioxide (CO2), on complex real-world psychomotor task performance. METHODS Twenty-one participants completed a 10-min simulated driving task while breathing room air (normoxia) or hypoxic air (PETO2 = 45 mmHg) under poikilocapnic, isocapnic, and hypercapnic conditions (PETCO2 = not manipulated, clamped at baseline, and clamped at baseline + 10 mmHg, respectively). Driving performance was assessed using a fixed-base motor vehicle simulator. Oxygenation in the frontal cortex was measured using functional near-infrared spectroscopy. RESULTS Speed limit exceedances were greater during the poikilocapnic than normoxic, hypercapnic, and isocapnic conditions (mean exceedances: 8, 4, 5, and 7, respectively; all p ≤ 0.05 vs poikilocapnic hypoxia). Vehicle speed was greater in the poikilocapnic than normoxic and hypercapnic conditions (mean difference: 0.35 km h-1 and 0.67 km h-1, respectively). All hypoxic conditions similarly decreased cerebral oxyhaemoglobin and increased deoxyhaemoglobin, compared to normoxic baseline, while total hemoglobin remained unchanged. CONCLUSIONS These findings demonstrate that supplemental CO2 can confer a neuroprotective effect by offsetting impairments in complex psychomotor task performance evoked by severe poikilocapnic hypoxia; however, differences in performance are unlikely to be linked to measurable differences in cerebral oxygenation.
Collapse
Affiliation(s)
- Peter Michael Bloomfield
- Exercise Neurometabolism Laboratory, University of Auckland, Building 907, 368 Khyber Pass Road, Newmarket, Auckland, 1023, New Zealand
| | - Hayden Green
- Exercise Neurometabolism Laboratory, University of Auckland, Building 907, 368 Khyber Pass Road, Newmarket, Auckland, 1023, New Zealand
| | - James P Fisher
- Department of Physiology, Faculty of Medical and Health Sciences, Manaaki Mānawa-The Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Nicholas Gant
- Exercise Neurometabolism Laboratory, University of Auckland, Building 907, 368 Khyber Pass Road, Newmarket, Auckland, 1023, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Sharma P, Mohanty S, Ahmad Y. A study of survival strategies for improving acclimatization of lowlanders at high-altitude. Heliyon 2023; 9:e14929. [PMID: 37025911 PMCID: PMC10070159 DOI: 10.1016/j.heliyon.2023.e14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Human Acclimatization and therapeutic approaches are the core components for conquering the physiological variations at high altitude (≥2500 m) exposure. The declined atmospheric pressure and reduced partial pressure of oxygen at high altitudes tend to decrease the temperature by several folds. Hypobaric hypoxia is a major threat to humanity at high altitudes, and its potential effects include altitude mountain sickness. On severity, it may lead to the development of conditions like high-altitude cerebral edema (HACE) or high-altitude pulmonary edema (HAPE) and cause unexpected physiological changes in the healthy population of travelers, athletes, soldiers, and low landers while sojourning at high altitude. Previous investigations have been done on long-drawn-out acclimatization strategies such as the staging method to prevent the damage caused by high-altitude hypobaric Hypoxia. Inherent Limitations of this strategy hamper the daily lifestyle and time consuming for people. It is not suitable for the rapid mobilization of people at high altitudes. There is a need to recalibrate acclimatization strategies for improving health protection and adapting to the environmental variations at high altitudes. This narrative review details the geographical changes and physiological changes at high altitudes and presents a framework of acclimatization, pre-acclimatization, and pharmacological aspects of high-altitude survival to enhance the government efficacy and capacity for the strategic planning of acclimatization, use of therapeutics, and safe de-induction from high altitude for minimizing the life loss. It's simply too ambitious for the importance of the present review to reduce life loss, and it can be proved as the most essential aspect of the preparatory phase of high-altitude acclimatization in plateau regions without hampering the daily lifestyle. The application of pre-acclimatization techniques can be a boon for people serving at high altitudes, and it can be a short bridge for the rapid translocation of people at high altitudes by minimizing the acclimatization time.
Collapse
Affiliation(s)
- Poornima Sharma
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Swaraj Mohanty
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| |
Collapse
|
6
|
Schmidt MT, Studer M, Kunz A, Studer S, Bonvini JM, Bueter M, Kook L, Haile SR, Pregernig A, Beck-Schimmer B, Schläpfer M. There is no evidence that carbon dioxide-enriched oxygen before apnea affects the time to arterial desaturation, but it might improve cerebral oxygenation in anesthetized obese patients: a single-blinded randomized crossover trial. BMC Anesthesiol 2023; 23:41. [PMID: 36747148 PMCID: PMC9900199 DOI: 10.1186/s12871-023-01982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Carbon dioxide (CO2) increases cerebral perfusion. The effect of CO2 on apnea tolerance, such as after anesthesia induction, is unknown. This study aimed to assess if cerebral apnea tolerance can be improved in obese patients under general anesthesia when comparing O2/Air (95%O2) to O2/CO2 (95%O2/5%CO2). METHODS In this single-center, single-blinded, randomized crossover trial, 30 patients 18-65 years, with body mass index > 35 kg/m2, requiring general anesthesia for bariatric surgery, underwent two apneas that were preceded by ventilation with either O2/Air or O2/CO2 in random order. After anesthesia induction, intubation, and ventilation with O2/Air or O2/CO2 for 10 min, apnea was performed until the cerebral tissue oxygenation index (TOI) dropped by a relative 20% from baseline (primary endpoint) or oxygen saturation (SpO2) reached 80% (safety abortion criterion). The intervention was then repeated with the second substance. RESULTS The safety criterion was reached in all patients before cerebral TOI decreased by 20%. The time until SpO2 dropped to 80% was similar in the two groups (+ 6 s with O2/CO2, 95%CI -7 to 19 s, p = 0.37). Cerebral TOI and PaO2 were higher after O2/CO2 (+ 1.5%; 95%CI: from 0.3 to 2.6; p = 0.02 and + 0.6 kPa; 95%CI: 0.1 to 1.1; p = 0.02). CONCLUSION O2/CO2 improves cerebral TOI and PaO2 in anesthetized bariatric patients. Better apnea tolerance could not be confirmed.
Collapse
Affiliation(s)
- Marc T. Schmidt
- grid.412004.30000 0004 0478 9977Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Sandro Studer
- grid.412004.30000 0004 0478 9977Clinical Trials Center, University Hospital Zurich, Zurich, Switzerland
| | - John M. Bonvini
- grid.412004.30000 0004 0478 9977Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Marco Bueter
- grid.412004.30000 0004 0478 9977Department of Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Lucas Kook
- grid.7400.30000 0004 1937 0650Epidemiology, Biostatistics and Prevention Institute, University Zurich, Zurich, Switzerland
| | - Sarah R. Haile
- grid.7400.30000 0004 1937 0650Epidemiology, Biostatistics and Prevention Institute, University Zurich, Zurich, Switzerland
| | - Andreas Pregernig
- grid.412004.30000 0004 0478 9977Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland
| | - Beatrice Beck-Schimmer
- grid.412004.30000 0004 0478 9977Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland ,grid.185648.60000 0001 2175 0319Department of Anesthesiology, University of Illinois at Chicago, Chicago, USA ,grid.7400.30000 0004 1937 0650Institute of Physiology, Zurich Center for Integrative Human Physiology, University Zurich Irchel, Zurich, Switzerland
| | - Martin Schläpfer
- Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland. .,Institute of Physiology, Zurich Center for Integrative Human Physiology, University Zurich Irchel, Zurich, Switzerland.
| |
Collapse
|
7
|
Haddon A, Kanhai J, Nako O, Smith TG, Hodkinson PD, Pollock RD. Cardiorespiratory Responses to Voluntary Hyperventilation During Normobaric Hypoxia. Aerosp Med Hum Perform 2023; 94:59-65. [PMID: 36755012 DOI: 10.3357/amhp.6163.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND: Unexplained physiological events (PE), possibly related to hypoxia and hyperventilation, are a concern for some air forces. Physiological monitoring could aid research into PEs, with measurement of arterial oxygen saturation (Spo₂) often suggested despite potential limitations in its use. Given similar physiological responses to hypoxia and hyperventilation, the present study characterized the cardiovascular and respiratory responses to each.METHODS: Ten healthy subjects were exposed to 55 mins of normobaric hypoxia simulating altitudes of 0, 8000, and 12,000 ft (0, 2438, and 3658 m) while breathing normally and voluntarily hyperventilating (doubling minute ventilation). Respiratory gas analysis and spirometry measured end-tidal gases (PETo₂ and PETco₂) and minute ventilation. Spo₂ was assessed using finger pulse oximetry. Mean arterial, systolic, and diastolic blood pressure were measured noninvasively. Cognitive impairment was assessed using the Stroop test.RESULTS: Voluntary hyperventilation resulted in a doubling of minute ventilation and lowered PETco₂, while altitude had no effect on these. PETo₂ and Spo₂ declined with increasing altitude. However, despite a significant drop in PETo₂ of 15.2 mmHg from 8000 to 12,000 ft, Spo₂ was similar when hyperventilating (94.7 ± 2.3% vs. 93.4 ± 4.3%, respectively). The only cardiovascular response was an increase in heart rate while hyperventilating. Altitude had no effect on cognitive impairment, but hyperventilation did.DISCUSSION: For many cardiovascular and respiratory variables, there is minimal difference in responses to hypoxia and hyperventilation, making these challenging to differentiate. Spo₂ is not a reliable marker of environmental hypoxia in the presence of hyperventilation and should not be used as such without additional monitoring of minute ventilation and end-tidal gases.Haddon A, Kanhai J, Nako O, Smith TG, Hodkinson PD, Pollock RD. Cardiorespiratory responses to voluntary hyperventilation during normobaric hypoxia. Aerosp Med Hum Perform. 2023; 94(2):59-65.
Collapse
|
8
|
Garcia SM, Matheson B, Morales-Loredo JH, Jernigan NL, Kanagy NL, Resta TC, Clark RM, Shekarriz R, Gonzalez Bosc LV. Hydrogen sulfide and miR21 are suitable biomarkers of hypoxic exposure. Am J Physiol Regul Integr Comp Physiol 2022; 323:R900-R909. [PMID: 36250874 PMCID: PMC9678419 DOI: 10.1152/ajpregu.00199.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022]
Abstract
Hypoxia is the reduction of alveolar partial pressure of oxygen ([Formula: see text]). Military members and people who practice recreational activities from moderate to high altitudes are at risk for hypoxic exposure. Hypoxemia's signs and symptoms vary from asymptomatic to severe responses, such as excessive hypoxic ventilatory responses and residual neurobehavioral impairment. Therefore, it is essential to identify hypoxia-induced biomarkers to indicate people with exposure to hypoxia. Advances have been made in understanding physiological responses to hypoxia, including elevations in circulating levels of endothelin 1 (ET-1) and microRNA 21 (miR-21) and reduction in circulating levels of hydrogen sulfide (H2S). Although the levels of these factors change upon exposure to hypoxia, it is unclear if these changes are sustained on return to normoxia. We hypothesize that hypoxia-induced ET-1 and miR-21 remain elevated, whereas hypoxia-reduction in H2S sustains after returning to normoxic conditions. To test this hypothesis, we exposed male rats to 6 h of 12% O2 and measured circulating levels of ET-1 and miR-21, pre, during, and posthypoxia. We found that ET-1 plasma levels increased in response to hypoxia but returned to normal levels within 30 min after the restoration of normoxia. miR-21 plasma levels and transdermal H2S emissions decreased in response to hypoxia, remaining decreased on return to normoxia, thus following the biomarker criteria. Therefore, this study supports a unique role for plasma miR21 and transdermal H2S as hypoxia biomarkers that could be used to identify individuals after exposure to hypoxia.
Collapse
Affiliation(s)
- Selina M Garcia
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjamin Matheson
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Juan H Morales-Loredo
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nancy L Kanagy
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ross M Clark
- Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
9
|
Gibbons TD, Dempsey JA, Thomas KN, Ainslie PN, Wilson LC, Stothers TAM, Campbell HA, Cotter JD. Carotid body hyperexcitability underlies heat-induced hyperventilation in exercising humans. J Appl Physiol (1985) 2022; 133:1394-1406. [PMID: 36302157 DOI: 10.1152/japplphysiol.00435.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Physical activity is the most common source of heat strain for humans. The thermal strain of physical activity causes overbreathing (hyperventilation) and this has adverse physiological repercussions. The mechanisms underlying heat-induced hyperventilation during exercise are unknown, but recent evidence supports a primary role of carotid body hyperexcitability (increased tonic activity and sensitivity) underpinning hyperventilation in passively heated humans. In a repeated-measures crossover design, 12 healthy participants (6 female) completed two low-intensity cycling exercise conditions (25% maximal aerobic power) in randomized order, one with core temperature (TC) kept relatively stable near thermoneutrality, and the other with progressive heat strain to +2°C TC. To provide a complete examination of carotid body function under graded heat strain, carotid body tonic activity was assessed indirectly by transient hyperoxia, and its sensitivity estimated by responses to both isocapnic and poikilocapnic hypoxia. Carotid body tonic activity was increased by 220 ± 110% during cycling alone, and by 400 ± 290% with supplemental thermal strain to +1°C TC, and 600 ± 290% at +2°C TC (interaction, P = 0.0031). During exercise with heat stress at both +1°C and +2°C TC, carotid body suppression by hyperoxia decreased ventilation below the rates observed during exercise without heat stress (P < 0.0147). Carotid body sensitivity was increased by up to 230 ± 190% with exercise alone, and by 290 ± 250% with supplemental heating to +1°C TC and 510 ± 470% at +2°C TC (interaction, P = 0.0012). These data indicate that the carotid body is further activated and sensitized by heat strain during exercise and this largely explains the added drive to breathe.NEW & NOTEWORTHY Physical activity is the most common way humans increase their core temperature, and excess breathing in the heat can limit heat tolerance and performance, and may increase the risk of heat-related injury. Dose-dependent increases in carotid body tonic activity and sensitivity with core heating provide compelling evidence that carotid body hyperexcitability is the primary cause of heat-induced hyperventilation during exercise.
Collapse
Affiliation(s)
- Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, School of Health and Exercise Science, Kelowna, British Columbia, Canada
| | - Jerome A Dempsey
- John Rankin Laboratory for Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kate N Thomas
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, School of Health and Exercise Science, Kelowna, British Columbia, Canada
| | - Luke C Wilson
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Tiarna A M Stothers
- School of Physical Education, Sport & Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Holly A Campbell
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - James D Cotter
- School of Physical Education, Sport & Exercise Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Gibbons TD, Dempsey JA, Thomas KN, Campbell HA, Stothers TAM, Wilson LC, Ainslie PN, Cotter JD. Contribution of the carotid body to thermally mediated hyperventilation in humans. J Physiol 2022; 600:3603-3624. [PMID: 35731687 DOI: 10.1113/jp282918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/15/2022] [Indexed: 01/05/2023] Open
Abstract
Humans hyperventilate under heat and cold strain. This hyperventilatory response has detrimental consequences including acid-base dysregulation, dyspnoea, decreased cerebral blood flow and accelerated brain heating. The ventilatory response to hypoxia is exaggerated under whole-body heating and cooling, indicating that altered carotid body function might contribute to thermally mediated hyperventilation. To address whether the carotid body might contribute to heat- and cold-induced hyperventilation, we indirectly measured carotid body tonic activity via hyperoxia, and carotid body sensitivity via hypoxia, under graded heat and cold strain in 13 healthy participants in a repeated-measures design. We hypothesised that carotid body tonic activity and sensitivity would be elevated in a dose-dependent manner under graded heat and cold strain, thereby supporting its role in driving thermally mediated hyperventilation. Carotid body tonic activity was increased in a dose-dependent manner with heating, reaching 175% above baseline (P < 0.0005), and carotid body suppression with hyperoxia removed all of the heat-induced increase in ventilation (P = 0.9297). Core cooling increased carotid body activity by up to 250% (P < 0.0001), but maximal values were reached with mild cooling and thereafter plateaued. Carotid body sensitivity to hypoxia was profoundly increased by up to 180% with heat stress (P = 0.0097), whereas cooling had no detectable effect on hypoxic sensitivity. In summary, cold stress increased carotid body tonic activity and this effect was saturated with mild cooling, whereas heating had clear dose-dependent effects on carotid body tonic activity and sensitivity. These dose-dependent effects with heat strain indicate that the carotid body probably plays a primary role in driving heat-induced hyperventilation. KEY POINTS: Humans over-breathe (hyperventilate) when under heat and cold stress, and though this has detrimental physiological repercussions, the mechanisms underlying this response are unknown. The carotid body, a small organ that is responsible for driving hyperventilation in hypoxia, was assessed under incremental heat and cold strain. The carotid body drive to breathe, as indirectly assessed by transient hyperoxia, increased in a dose-dependent manner with heating, reaching 175% above baseline; cold stress similarly increased the carotid body drive to breathe, but did not show dose-dependency. Carotid body sensitivity, as indirectly assessed by hypoxic ventilatory responses, was profoundly increased by 70-180% with mild and severe heat strain, whereas cooling had no detectable effect. Carotid body hyperactivity and hypersensitivity are two interrelated mechanisms that probably underlie the increased drive to breathe with heat strain, whereas carotid body hyperactivity during mild cooling may play a subsidiary role in cold-induced hyperventilation.
Collapse
Affiliation(s)
- Travis D Gibbons
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, Otago, New Zealand.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Jerome A Dempsey
- John Rankin Laboratory for Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kate N Thomas
- Department of Surgical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Holly A Campbell
- Department of Surgical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Tiarna A M Stothers
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, Otago, New Zealand
| | - Luke C Wilson
- Department of Medicine, University of Otago, Dunedin, Otago, New Zealand
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - James D Cotter
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
11
|
Rastogi R, Morgan BJ, Badr MS, Chowdhuri S. Hypercapnia-induced vasodilation in the cerebral circulation is reduced in older adults with sleep-disordered breathing. J Appl Physiol (1985) 2022; 132:14-23. [PMID: 34709067 PMCID: PMC8721948 DOI: 10.1152/japplphysiol.00347.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The prevalence of sleep-disordered breathing (SDB) is higher in older adults compared with younger individuals. The increased propensity for ventilatory control instability in older adults may contribute to the increased prevalence of central apneas. Reductions in the cerebral vascular response to CO2 may exacerbate ventilatory overshoots and undershoots during sleep. Thus, we hypothesized that hypercapnia-induced cerebral vasodilation (HCVD) will be reduced in older compared with younger adults. In 11 older and 10 younger adults with SDB, blood flow velocity in the middle cerebral artery (MCAV) was measured using Doppler transcranial ultrasonography during multiple steady-state hyperoxic hypercapnic breathing trials while awake, interspersed with room air breathing. Changes in ventilation, MCAV, and mean arterial pressure (MAP) via finger plethysmography during the trials were compared with baseline eupneic values. For each hyperoxic hypercapnic trial, the change (Δ) in MCAV for a corresponding change in end-tidal CO2 and the HCVD or the change in cerebral vascular conductance (MCAV divided by MAP) for a corresponding change in end-tidal CO2 was determined. The hypercapnic ventilatory response was similar between the age groups, as was ΔMCAV/Δ[Formula: see text]. However, compared with young, older adults had a significantly smaller HCVD (1.3 ± 0.7 vs. 2.1 ± 0.6 units/mmHg, P = 0.004). Multivariable analyses demonstrated that age and nadir oxygen saturation during nocturnal polysomnography were significant predictors of HCVD. Thus, our data indicate that older age and SDB-related hypoxia are associated with diminished HCVD. We hypothesize that this impairment in vascular function may contribute to breathing instability during sleep in these individuals.NEW & NOTEWORTHY This study demonstrates, for the first time, in individuals with sleep-disordered breathing (SDB) that aging is associated with decreased hypercapnia-induced cerebral vasodilation (HCVD). In addition to advanced age, the magnitude of nocturnal oxygen desaturation due to SDB is an equal independent predictor of HCVD.
Collapse
Affiliation(s)
- R. Rastogi
- 1Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan,2Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - B. J. Morgan
- 3Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - M. S. Badr
- 1Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan,2Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - S. Chowdhuri
- 1Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan,2Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
12
|
Ade CJ, Turpin VRG, Parr SK, Hammond ST, White Z, Weber RE, Schulze KM, Colburn TD, Poole DC. Does wearing a facemask decrease arterial blood oxygenation and impair exercise tolerance? Respir Physiol Neurobiol 2021; 294:103765. [PMID: 34352384 PMCID: PMC9715989 DOI: 10.1016/j.resp.2021.103765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Concerns have been raised that COVID-19 face coverings compromise lung function and pulmonary gas exchange to the extent that they produce arterial hypoxemia and hypercapnia during high intensity exercise resulting in exercise intolerance in recreational exercisers. This study therefore aimed to investigate the effects of a surgical, flannel or vertical-fold N95 masks on cardiorespiratory responses to incremental exercise. METHODS This investigation studied 11 adult males and females at rest and while performing progressive cycle exercise to exhaustion. We tested the hypotheses that wearing a surgical (S), flannel (F) or horizontal-fold N95 mask compared to no mask (control) would not promote arterial deoxygenation or exercise intolerance nor alter primary cardiovascular variables during submaximal or maximal exercise. RESULTS Despite the masks significantly increasing end-expired peri-oral %CO2 and reducing %O2, each ∼0.8-2% during exercise (P < 0.05), our results supported the hypotheses. Specifically, none of these masks reduced sub-maximal or maximal exercise arterial O2 saturation (P = 0.744), but ratings of dyspnea were significantly increased (P = 0.007). Moreover, maximal exercise capacity was not compromised nor were there any significant alterations of primary cardiovascular responses (mean arterial pressure, stroke volume, cardiac output) found during sub-maximal exercise. CONCLUSION Whereas these results are for young healthy recreational male and female exercisers and cannot be applied directly to elite athletes, older or patient populations, they do support that arterial hypoxemia and exercise intolerance are not the obligatory consequences of COVID-19-indicated mask-wearing at least for cycling exercise.
Collapse
Affiliation(s)
- Carl J Ade
- Departments of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA.
| | | | - Shannon K Parr
- Departments of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Stephen T Hammond
- Departments of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Zachary White
- Departments of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ramona E Weber
- Departments of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA; Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kiana M Schulze
- Departments of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA; Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Trenton D Colburn
- Departments of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA; Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David C Poole
- Departments of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA; Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
13
|
Bullock T, Giesbrecht B, Beaudin AE, Goodyear BG, Poulin MJ. Effects of changes in end-tidal PO 2 and PCO 2 on neural responses during rest and sustained attention. Physiol Rep 2021; 9:e15106. [PMID: 34755481 PMCID: PMC8578925 DOI: 10.14814/phy2.15106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 01/23/2023] Open
Abstract
Impairments of cognitive function during alterations in arterial blood gases (e.g., high-altitude hypoxia) may result from the disruption of neurovascular coupling; however, the link between changes in arterial blood gases, cognition, and cerebral blood flow (CBF) is poorly understood. To interrogate this link, we developed a multimodal empirical strategy capable of monitoring neural correlates of cognition and CBF simultaneously. Human participants performed a sustained attention task during hypoxia, hypercapnia, hypocapnia, and normoxia while electroencephalographic (EEG) activity and CBF (middle and posterior cerebral arteries; transcranial Doppler ultrasound) were simultaneously measured. The protocol alternated between rest and engaging in a visual target detection task that required participants to monitor a sequence of brief-duration colored circles and detect infrequent, longer duration circles (targets). The target detection task was overlaid on a large, circular checkerboard that provided robust visual stimulation. Spectral decomposition and event-related potential (ERP) analyses were applied to the EEG data to investigate spontaneous and task-specific fluctuations in neural activity. There were three main sets of findings: (1) spontaneous alpha oscillatory activity was modulated as a function of arterial CO2 (hypocapnia and hypercapnia), (2) task-related neurovascular coupling was disrupted by all arterial blood gas manipulations, and (3) changes in task-related alpha and theta band activity and attenuation of the P3 ERP component amplitude were observed during hypocapnia. Since alpha and theta are linked with suppression of visual processing and executive control and P3 amplitude with task difficulty, these data suggest that transient arterial blood gas changes can modulate multiple stages of cognitive information processing.
Collapse
Affiliation(s)
- Tom Bullock
- Department of Psychological and Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Barry Giesbrecht
- Department of Psychological and Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Interdepartmental Graduate Program in Dynamical NeuroscienceUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Andrew E. Beaudin
- Department of Physiology & PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Bradley G. Goodyear
- Hotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Marc J. Poulin
- Department of Physiology & PharmacologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- O’Brien Institute for Public HealthUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
14
|
Pun M, Beaudin AE, Raneri JK, Anderson TJ, Hanly PJ, Poulin MJ. Impact of nocturnal oxygen and CPAP on the ventilatory response to hypoxia in OSA patients free of overt cardiovascular disease. Exp Neurol 2021; 346:113852. [PMID: 34461058 DOI: 10.1016/j.expneurol.2021.113852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022]
Abstract
A primary characteristic of obstructive sleep apnea (OSA) is chronic exposure to intermittent hypoxia (IH) due to repeated upper airway obstruction. Chronic IH exposure is believed to increase OSA severity over time by enhancing the acute ventilatory response to hypoxia (AHVR), thus promoting ventilatory overshoot when apnea ends and perpetuation of apnea during sleep. Continuous positive airway pressure (CPAP), the gold-standard treatment of OSA, reduces the AHVR, believed to result from correction of IH. However, CPAP also corrects ancillary features of OSA such as intermittent hypercapnia, negative intrathoracic pressure and surges in sympathetic activity, which may also contribute to the reduction in AHVR. Therefore, the objective of this study was to investigate the impact of nocturnal oxygen therapy (to remove IH only) and CPAP (to correct IH and ancillary features of OSA) on AHVR in newly diagnosed OSA patients. Fifty-two OSA patients and twenty-two controls were recruited. The AHVR was assessed using a 5 min iscopanic-hypoxic challenge before, and after, treatment of OSA by nocturnal oxygen therapy and CPAP. Following baseline measurements, OSA patients were randomly assigned to nocturnal oxygen therapy (Oxygen, n = 26) or no treatment (Air; n = 26). The AHVR was re-assessed following two weeks of oxygen therapy or no treatment, after which all patients were treated with CPAP. The AHVR was quantified following ~4 weeks of adherent CPAP therapy (n = 40). Both nocturnal oxygen and CPAP treatments improved hypoxemia (p < 0.05), and, as expected, nocturnal oxygen therapy did not completely abolish respiratory events (i.e., apneas/hypopneas). Averaged across all OSA patients, nocturnal oxygen therapy did not change AHVR from baseline to post-oxygen therapy. Similarly, the AHVR was not altered pre- and post-CPAP (p > 0.05). However, there was a significant decrease in AHVR with both nocturnal oxygen therapy and CPAP in patients in the highest OSA severity quartile (p < 0.05). Nocturnal oxygen therapy and CPAP both reduce the AHVR in patients with the most severe OSA. Therefore, IH appears to be the primary mechanism producing ventilatory instability in patients with severe OSA via enhancement of the AHVR.
Collapse
Affiliation(s)
- Matiram Pun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew E Beaudin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jill K Raneri
- Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Todd J Anderson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Cardiac Science, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick J Hanly
- Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Marc J Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
15
|
Keough JRG, Cates VC, Tymko MM, Boulet LM, Jamieson AN, Foster GE, Day TA. Regional differences in cerebrovascular reactivity in response to acute isocapnic hypoxia in healthy humans: Methodological considerations. Respir Physiol Neurobiol 2021; 294:103770. [PMID: 34343693 DOI: 10.1016/j.resp.2021.103770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
The cerebrovasculature responds to blood gas challenges. Regional differences (anterior vs. posterior) in cerebrovascular responses to increases in CO2 have been extensively studied. However, regional cerebrovascular reactivity (CVR) responses to low O2 (hypoxia) are equivocal, likely due to differences in analysis. We assessed the effects of acute isocapnic hypoxia on regional CVR comparing absolute and relative (%-change) responses in the middle cerebral artery (MCA) and posterior cerebral artery (PCA). We instrumented 14 healthy participants with a transcranial Doppler ultrasound (cerebral blood velocity), finometer (beat-by-beat blood pressure), dual gas analyzer (end-tidal CO2 and O2), and utilized a dynamic end-tidal forcing system to elicit a single 5-min bout of isocapnic hypoxia (∼45 Torr PETO2, ∼80 % SpO2). During exposure to acute hypoxia, absolute responses were larger in the anterior compared to posterior cerebral circulation (P < 0.001), but were not different when comparing relative responses (P = 0.45). Consistent reporting of CVR to hypoxia will aid understanding normative responses, particularly in assessing populations with impaired cerebrovascular function.
Collapse
Affiliation(s)
- Joanna R G Keough
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Valerie C Cates
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Michael M Tymko
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada; Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada; Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Lindsey M Boulet
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada; Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alenna N Jamieson
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Glen E Foster
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Massaro AR. Neurological complications of heart failure. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:77-89. [PMID: 33632459 DOI: 10.1016/b978-0-12-819814-8.00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heart failure (HF) is a major global cause of death with increasing absolute worldwide numbers of HF patients. HF results from the interaction between cardiovascular aging with specific risk factors, comorbidities, and disease modifiers. The failing heart and neuronal injury have a bidirectional interaction requiring specific management strategies. Decreased cardiac output has been associated with lower brain volumes. Cerebral blood flow (CBF) may normalize following heart transplantation among severe HF patients. Stroke and cognitive impairment remain the main neurologic conditions associated with HF. However, HF patients may also suffer from chronic cerebral hypoperfusion. It seems likely that HF-related ischemic strokes are primarily the result of cardiac embolism. Atrial fibrillation (AF) is present in half of stroke patient with HF. The increased risk of hemorrhagic strokes is less well characterized and likely multifactorial, but may in part reflect a higher use of long-term antithrombotic therapy. The steady improvement of neuroimaging techniques has demonstrated an increased prevalence of silent ischemic lesions among HF patients. The populations most likely to benefit from long-term anticoagulant therapy are HF patients with AF. Cognitive impairment in HF can have a variety of clinical manifestations from mild memory problems to dementia.
Collapse
|
17
|
Liu J, Li S, Qian L, Xu X, Zhang Y, Cheng J, Zhang W. Effects of acute mild hypoxia on cerebral blood flow in pilots. Neurol Sci 2020; 42:673-680. [PMID: 32654008 DOI: 10.1007/s10072-020-04567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pilots often face and need to overcome a diverse range of unfavorable conditions, of which hypoxic exposure is the most common. Studies have reported that hypoxia can induce a decrease in cerebral blood flow (CBF) in the brains of both humans and animals. Hypoxia and the associated cerebral hemodynamic changes can contribute to cognitive performance deficits that may endanger flight safety and increase the risk of accidents. AIM In this study, we aimed to identify region-specific alterations in CBF in male pilots after exposure to hypoxia. MATERIAL AND METHODS We used 3D pseudo-continuous arterial spin labeling sequences in 35 healthy male pilots (mean age: 30.6 ± 4.82 years) under simulated hypoxic conditions with a 3.0-T magnetic resonance imaging scanner. The generated CBF maps were measured and averaged in several regions of interest. RESULTS Hypoxia decreased CBF in various brain regions, including the right temporal and bilateral occipital lobes, the anterior and posterior lobes of the cerebellum, the culmen and declive, and the inferior semilunar lobule of the cerebellum. CONCLUSION These changes may impact the functional activity of the brains of pilots experiencing hypoxia in flight, but the related mechanisms require further investigation.
Collapse
Affiliation(s)
- Jie Liu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Erqi District, Zhengzhou, Henan Province, China
| | - Shujian Li
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Erqi District, Zhengzhou, Henan Province, China
| | - Long Qian
- GE Healthcare China, Floor 1, Yongchang North Road, Beijing Economic and Technological Development Zone, Beijing, China
| | - Xianrong Xu
- Department of Air Duty, The Air Force General Hospital in Beijing, No. 30 Fucheng Road, Haidian District, Beijing, West Diaoyutai, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Erqi District, Zhengzhou, Henan Province, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Erqi District, Zhengzhou, Henan Province, China.
| | - Wanshi Zhang
- Department of Radiology, The Air Force General Hospital in Beijing, No. 30 Fucheng Road, Haidian District, Beijing, West Diaoyutai, China
| |
Collapse
|
18
|
Haselden WD, Kedarasetti RT, Drew PJ. Spatial and temporal patterns of nitric oxide diffusion and degradation drive emergent cerebrovascular dynamics. PLoS Comput Biol 2020; 16:e1008069. [PMID: 32716940 PMCID: PMC7410342 DOI: 10.1371/journal.pcbi.1008069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/06/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a gaseous signaling molecule that plays an important role in neurovascular coupling. NO produced by neurons diffuses into the smooth muscle surrounding cerebral arterioles, driving vasodilation. However, the rate of NO degradation in hemoglobin is orders of magnitude higher than in brain tissue, though how this might impact NO signaling dynamics is not completely understood. We used simulations to investigate how the spatial and temporal patterns of NO generation and degradation impacted dilation of a penetrating arteriole in cortex. We found that the spatial location of NO production and the size of the vessel both played an important role in determining its responsiveness to NO. The much higher rate of NO degradation and scavenging of NO in the blood relative to the tissue drove emergent vascular dynamics. Large vasodilation events could be followed by post-stimulus constrictions driven by the increased degradation of NO by the blood, and vasomotion-like 0.1-0.3 Hz oscillations could also be generated. We found that these dynamics could be enhanced by elevation of free hemoglobin in the plasma, which occurs in diseases such as malaria and sickle cell anemia, or following blood transfusions. Finally, we show that changes in blood flow during hypoxia or hyperoxia could be explained by altered NO degradation in the parenchyma. Our simulations suggest that many common vascular dynamics may be emergent phenomena generated by NO degradation by the blood or parenchyma.
Collapse
Affiliation(s)
- William Davis Haselden
- Neuroscience Graduate Program, MD/PhD Medical Scientist Training Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ravi Teja Kedarasetti
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Patrick J. Drew
- Neuroscience Graduate Program, MD/PhD Medical Scientist Training Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Departments of Biomedical Engineering and Neurosurgery, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
19
|
Guadagni V, Drogos LL, Tyndall AV, Davenport MH, Anderson TJ, Eskes GA, Longman RS, Hill MD, Hogan DB, Poulin MJ. Aerobic exercise improves cognition and cerebrovascular regulation in older adults. Neurology 2020; 94:e2245-e2257. [PMID: 32404355 PMCID: PMC7357295 DOI: 10.1212/wnl.0000000000009478] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To test the hypothesis that aerobic exercise is associated with improvements in cognition and cerebrovascular regulation, we enrolled 206 healthy low-active middle-aged and older adults (mean ± SD age 65.9 ± 6.4 years) in a supervised 6-month aerobic exercise intervention and assessed them before and after the intervention. METHODS The study is a quasi-experimental single group pre/postintervention study. Neuropsychological tests were used to assess cognition before and after the intervention. Transcranial Doppler ultrasound was used to measure cerebral blood flow velocity. Cerebrovascular regulation was assessed at rest, during euoxic hypercapnia, and in response to submaximal exercise. Multiple linear regression was used to examine the association between changes in cognition and changes in cerebrovascular function. RESULTS The intervention was associated with improvements in some cognitive domains, cardiorespiratory fitness, and cerebrovascular regulation. Changes in executive functions were negatively associated with changes in cerebrovascular resistance index (CVRi) during submaximal exercise (β = -0.205, p = 0.013), while fluency improvements were positively associated with changes in CVRi during hypercapnia (β = 0.106, p = 0.03). CONCLUSION The 6-month aerobic exercise intervention was associated with improvements in some cognitive domains and cerebrovascular regulation. Secondary analyses showed a novel association between changes in cognition and changes in cerebrovascular regulation during euoxic hypercapnia and in response to submaximal exercise.
Collapse
Affiliation(s)
- Veronica Guadagni
- From the Department of Physiology and Pharmacology (V.G., L.L.D., A.V.T., G.A.E., M.J.P.), Hotchkiss Brain Institute (V.G., L.L.D., A.V.T., R.S.L., M.D.H., D.B.H., M.J.P.), Division of Geriatric Medicine (D.B.H.), Department of Medicine, Department of Clinical Neurosciences (V.G., L.L.D., A.V.T., M.D.H., D.B.H., M.J.P.), Libin Cardiovascular Institute of Alberta (T.J.A., M.J.P.), O'Brien Institute for Public Health (V.G., D.B.H., M.J.P.), Department of Cardiac Sciences (T.J.A.), Libin Cardiovascular Institute of Alberta, and Department of Community Health Sciences (M.D.H.), Cumming School of Medicine, Faculty of Kinesiology (M.J.P.), and Department of Psychology (R.S.L.), University of Calgary; Psychology Service (R.S.L.), Alberta Health Service, Foothills Medical Centre, Calgary; Department of Psychiatry (G.A.E.), Faculty of Medicine, and Department of Psychology and Neuroscience (G.A.E.), Faculty of Science, Dalhousie University, Halifax, Nova Scotia; and Program for Pregnancy and Postpartum Health, Physical Activity and Diabetes Laboratory (M.H.D.), Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Lauren L Drogos
- From the Department of Physiology and Pharmacology (V.G., L.L.D., A.V.T., G.A.E., M.J.P.), Hotchkiss Brain Institute (V.G., L.L.D., A.V.T., R.S.L., M.D.H., D.B.H., M.J.P.), Division of Geriatric Medicine (D.B.H.), Department of Medicine, Department of Clinical Neurosciences (V.G., L.L.D., A.V.T., M.D.H., D.B.H., M.J.P.), Libin Cardiovascular Institute of Alberta (T.J.A., M.J.P.), O'Brien Institute for Public Health (V.G., D.B.H., M.J.P.), Department of Cardiac Sciences (T.J.A.), Libin Cardiovascular Institute of Alberta, and Department of Community Health Sciences (M.D.H.), Cumming School of Medicine, Faculty of Kinesiology (M.J.P.), and Department of Psychology (R.S.L.), University of Calgary; Psychology Service (R.S.L.), Alberta Health Service, Foothills Medical Centre, Calgary; Department of Psychiatry (G.A.E.), Faculty of Medicine, and Department of Psychology and Neuroscience (G.A.E.), Faculty of Science, Dalhousie University, Halifax, Nova Scotia; and Program for Pregnancy and Postpartum Health, Physical Activity and Diabetes Laboratory (M.H.D.), Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Amanda V Tyndall
- From the Department of Physiology and Pharmacology (V.G., L.L.D., A.V.T., G.A.E., M.J.P.), Hotchkiss Brain Institute (V.G., L.L.D., A.V.T., R.S.L., M.D.H., D.B.H., M.J.P.), Division of Geriatric Medicine (D.B.H.), Department of Medicine, Department of Clinical Neurosciences (V.G., L.L.D., A.V.T., M.D.H., D.B.H., M.J.P.), Libin Cardiovascular Institute of Alberta (T.J.A., M.J.P.), O'Brien Institute for Public Health (V.G., D.B.H., M.J.P.), Department of Cardiac Sciences (T.J.A.), Libin Cardiovascular Institute of Alberta, and Department of Community Health Sciences (M.D.H.), Cumming School of Medicine, Faculty of Kinesiology (M.J.P.), and Department of Psychology (R.S.L.), University of Calgary; Psychology Service (R.S.L.), Alberta Health Service, Foothills Medical Centre, Calgary; Department of Psychiatry (G.A.E.), Faculty of Medicine, and Department of Psychology and Neuroscience (G.A.E.), Faculty of Science, Dalhousie University, Halifax, Nova Scotia; and Program for Pregnancy and Postpartum Health, Physical Activity and Diabetes Laboratory (M.H.D.), Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Margie H Davenport
- From the Department of Physiology and Pharmacology (V.G., L.L.D., A.V.T., G.A.E., M.J.P.), Hotchkiss Brain Institute (V.G., L.L.D., A.V.T., R.S.L., M.D.H., D.B.H., M.J.P.), Division of Geriatric Medicine (D.B.H.), Department of Medicine, Department of Clinical Neurosciences (V.G., L.L.D., A.V.T., M.D.H., D.B.H., M.J.P.), Libin Cardiovascular Institute of Alberta (T.J.A., M.J.P.), O'Brien Institute for Public Health (V.G., D.B.H., M.J.P.), Department of Cardiac Sciences (T.J.A.), Libin Cardiovascular Institute of Alberta, and Department of Community Health Sciences (M.D.H.), Cumming School of Medicine, Faculty of Kinesiology (M.J.P.), and Department of Psychology (R.S.L.), University of Calgary; Psychology Service (R.S.L.), Alberta Health Service, Foothills Medical Centre, Calgary; Department of Psychiatry (G.A.E.), Faculty of Medicine, and Department of Psychology and Neuroscience (G.A.E.), Faculty of Science, Dalhousie University, Halifax, Nova Scotia; and Program for Pregnancy and Postpartum Health, Physical Activity and Diabetes Laboratory (M.H.D.), Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Todd J Anderson
- From the Department of Physiology and Pharmacology (V.G., L.L.D., A.V.T., G.A.E., M.J.P.), Hotchkiss Brain Institute (V.G., L.L.D., A.V.T., R.S.L., M.D.H., D.B.H., M.J.P.), Division of Geriatric Medicine (D.B.H.), Department of Medicine, Department of Clinical Neurosciences (V.G., L.L.D., A.V.T., M.D.H., D.B.H., M.J.P.), Libin Cardiovascular Institute of Alberta (T.J.A., M.J.P.), O'Brien Institute for Public Health (V.G., D.B.H., M.J.P.), Department of Cardiac Sciences (T.J.A.), Libin Cardiovascular Institute of Alberta, and Department of Community Health Sciences (M.D.H.), Cumming School of Medicine, Faculty of Kinesiology (M.J.P.), and Department of Psychology (R.S.L.), University of Calgary; Psychology Service (R.S.L.), Alberta Health Service, Foothills Medical Centre, Calgary; Department of Psychiatry (G.A.E.), Faculty of Medicine, and Department of Psychology and Neuroscience (G.A.E.), Faculty of Science, Dalhousie University, Halifax, Nova Scotia; and Program for Pregnancy and Postpartum Health, Physical Activity and Diabetes Laboratory (M.H.D.), Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Gail A Eskes
- From the Department of Physiology and Pharmacology (V.G., L.L.D., A.V.T., G.A.E., M.J.P.), Hotchkiss Brain Institute (V.G., L.L.D., A.V.T., R.S.L., M.D.H., D.B.H., M.J.P.), Division of Geriatric Medicine (D.B.H.), Department of Medicine, Department of Clinical Neurosciences (V.G., L.L.D., A.V.T., M.D.H., D.B.H., M.J.P.), Libin Cardiovascular Institute of Alberta (T.J.A., M.J.P.), O'Brien Institute for Public Health (V.G., D.B.H., M.J.P.), Department of Cardiac Sciences (T.J.A.), Libin Cardiovascular Institute of Alberta, and Department of Community Health Sciences (M.D.H.), Cumming School of Medicine, Faculty of Kinesiology (M.J.P.), and Department of Psychology (R.S.L.), University of Calgary; Psychology Service (R.S.L.), Alberta Health Service, Foothills Medical Centre, Calgary; Department of Psychiatry (G.A.E.), Faculty of Medicine, and Department of Psychology and Neuroscience (G.A.E.), Faculty of Science, Dalhousie University, Halifax, Nova Scotia; and Program for Pregnancy and Postpartum Health, Physical Activity and Diabetes Laboratory (M.H.D.), Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - R Stewart Longman
- From the Department of Physiology and Pharmacology (V.G., L.L.D., A.V.T., G.A.E., M.J.P.), Hotchkiss Brain Institute (V.G., L.L.D., A.V.T., R.S.L., M.D.H., D.B.H., M.J.P.), Division of Geriatric Medicine (D.B.H.), Department of Medicine, Department of Clinical Neurosciences (V.G., L.L.D., A.V.T., M.D.H., D.B.H., M.J.P.), Libin Cardiovascular Institute of Alberta (T.J.A., M.J.P.), O'Brien Institute for Public Health (V.G., D.B.H., M.J.P.), Department of Cardiac Sciences (T.J.A.), Libin Cardiovascular Institute of Alberta, and Department of Community Health Sciences (M.D.H.), Cumming School of Medicine, Faculty of Kinesiology (M.J.P.), and Department of Psychology (R.S.L.), University of Calgary; Psychology Service (R.S.L.), Alberta Health Service, Foothills Medical Centre, Calgary; Department of Psychiatry (G.A.E.), Faculty of Medicine, and Department of Psychology and Neuroscience (G.A.E.), Faculty of Science, Dalhousie University, Halifax, Nova Scotia; and Program for Pregnancy and Postpartum Health, Physical Activity and Diabetes Laboratory (M.H.D.), Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Michael D Hill
- From the Department of Physiology and Pharmacology (V.G., L.L.D., A.V.T., G.A.E., M.J.P.), Hotchkiss Brain Institute (V.G., L.L.D., A.V.T., R.S.L., M.D.H., D.B.H., M.J.P.), Division of Geriatric Medicine (D.B.H.), Department of Medicine, Department of Clinical Neurosciences (V.G., L.L.D., A.V.T., M.D.H., D.B.H., M.J.P.), Libin Cardiovascular Institute of Alberta (T.J.A., M.J.P.), O'Brien Institute for Public Health (V.G., D.B.H., M.J.P.), Department of Cardiac Sciences (T.J.A.), Libin Cardiovascular Institute of Alberta, and Department of Community Health Sciences (M.D.H.), Cumming School of Medicine, Faculty of Kinesiology (M.J.P.), and Department of Psychology (R.S.L.), University of Calgary; Psychology Service (R.S.L.), Alberta Health Service, Foothills Medical Centre, Calgary; Department of Psychiatry (G.A.E.), Faculty of Medicine, and Department of Psychology and Neuroscience (G.A.E.), Faculty of Science, Dalhousie University, Halifax, Nova Scotia; and Program for Pregnancy and Postpartum Health, Physical Activity and Diabetes Laboratory (M.H.D.), Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - David B Hogan
- From the Department of Physiology and Pharmacology (V.G., L.L.D., A.V.T., G.A.E., M.J.P.), Hotchkiss Brain Institute (V.G., L.L.D., A.V.T., R.S.L., M.D.H., D.B.H., M.J.P.), Division of Geriatric Medicine (D.B.H.), Department of Medicine, Department of Clinical Neurosciences (V.G., L.L.D., A.V.T., M.D.H., D.B.H., M.J.P.), Libin Cardiovascular Institute of Alberta (T.J.A., M.J.P.), O'Brien Institute for Public Health (V.G., D.B.H., M.J.P.), Department of Cardiac Sciences (T.J.A.), Libin Cardiovascular Institute of Alberta, and Department of Community Health Sciences (M.D.H.), Cumming School of Medicine, Faculty of Kinesiology (M.J.P.), and Department of Psychology (R.S.L.), University of Calgary; Psychology Service (R.S.L.), Alberta Health Service, Foothills Medical Centre, Calgary; Department of Psychiatry (G.A.E.), Faculty of Medicine, and Department of Psychology and Neuroscience (G.A.E.), Faculty of Science, Dalhousie University, Halifax, Nova Scotia; and Program for Pregnancy and Postpartum Health, Physical Activity and Diabetes Laboratory (M.H.D.), Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Marc J Poulin
- From the Department of Physiology and Pharmacology (V.G., L.L.D., A.V.T., G.A.E., M.J.P.), Hotchkiss Brain Institute (V.G., L.L.D., A.V.T., R.S.L., M.D.H., D.B.H., M.J.P.), Division of Geriatric Medicine (D.B.H.), Department of Medicine, Department of Clinical Neurosciences (V.G., L.L.D., A.V.T., M.D.H., D.B.H., M.J.P.), Libin Cardiovascular Institute of Alberta (T.J.A., M.J.P.), O'Brien Institute for Public Health (V.G., D.B.H., M.J.P.), Department of Cardiac Sciences (T.J.A.), Libin Cardiovascular Institute of Alberta, and Department of Community Health Sciences (M.D.H.), Cumming School of Medicine, Faculty of Kinesiology (M.J.P.), and Department of Psychology (R.S.L.), University of Calgary; Psychology Service (R.S.L.), Alberta Health Service, Foothills Medical Centre, Calgary; Department of Psychiatry (G.A.E.), Faculty of Medicine, and Department of Psychology and Neuroscience (G.A.E.), Faculty of Science, Dalhousie University, Halifax, Nova Scotia; and Program for Pregnancy and Postpartum Health, Physical Activity and Diabetes Laboratory (M.H.D.), Faculty of Kinesiology, Sport, and Recreation, Women and Children's Health Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
20
|
Gibbons TD, Tymko MM, Thomas KN, Wilson LC, Stembridge M, Caldwell HG, Howe CA, Hoiland RL, Akerman AP, Dawkins TG, Patrician A, Coombs GB, Gasho C, Stacey BS, Ainslie PN, Cotter JD. Global REACH 2018: The influence of acute and chronic hypoxia on cerebral haemodynamics and related functional outcomes during cold and heat stress. J Physiol 2020; 598:265-284. [PMID: 31696936 DOI: 10.1113/jp278917] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Thermal and hypoxic stress commonly coexist in environmental, occupational and clinical settings, yet how the brain tolerates these multi-stressor environments is unknown Core cooling by 1.0°C reduced cerebral blood flow (CBF) by 20-30% and cerebral oxygen delivery (CDO2 ) by 12-19% at sea level and high altitude, whereas core heating by 1.5°C did not reliably reduce CBF or CDO2 Oxygen content in arterial blood was fully restored with acclimatisation to 4330 m, but concurrent cold stress reduced CBF and CDO2 Gross indices of cognition were not impaired by any combination of thermal and hypoxic stress despite large reductions in CDO2 Chronic hypoxia renders the brain susceptible to large reductions in oxygen delivery with concurrent cold stress, which might make monitoring core temperature more important in this context ABSTRACT: Real-world settings are composed of multiple environmental stressors, yet the majority of research in environmental physiology investigates these stressors in isolation. The brain is central in both behavioural and physiological responses to threatening stimuli and, given its tight metabolic and haemodynamic requirements, is particularly susceptible to environmental stress. We measured cerebral blood flow (CBF, duplex ultrasound), cerebral oxygen delivery (CDO2 ), oesophageal temperature, and arterial blood gases during exposure to three commonly experienced environmental stressors - heat, cold and hypoxia - in isolation, and in combination. Twelve healthy male subjects (27 ± 11 years) underwent core cooling by 1.0°C and core heating by 1.5°C in randomised order at sea level; acute hypoxia ( P ET , O 2 = 50 mm Hg) was imposed at baseline and at each thermal extreme. Core cooling and heating protocols were repeated after 16 ± 4 days residing at 4330 m to investigate any interactions with high altitude acclimatisation. Cold stress decreased CBF by 20-30% and CDO2 by 12-19% (both P < 0.01) irrespective of altitude, whereas heating did not reliably change either CBF or CDO2 (both P > 0.08). The increases in CBF with acute hypoxia during thermal stress were appropriate to maintain CDO2 at normothermic, normoxic values. Reaction time was faster and slower by 6-9% with heating and cooling, respectively (both P < 0.01), but central (brain) processes were not impaired by any combination of environmental stressors. These findings highlight the powerful influence of core cooling in reducing CDO2 . Despite these large reductions in CDO2 with cold stress, gross indices of cognition remained stable.
Collapse
Affiliation(s)
- T D Gibbons
- School of Physical Education, Sport & Exercise Science, University of Otago, 55/47 Union St W, Dunedin, 9016, New Zealand
| | - M M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - K N Thomas
- Department of Surgical Sciences, University of Otago, 201 Great King St, Dunedin, 9016, New Zealand
| | - L C Wilson
- Department of Medicine, University of Otago, 201 Great King St, Dunedin, 9016, New Zealand
| | - M Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK
| | - H G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - C A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - R L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - A P Akerman
- Faculty of Health Sciences, University of Ottawa, 125 University St, Ottawa, Ontario, Canada, K1N 6N5
| | - T G Dawkins
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK
| | - A Patrician
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - G B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - C Gasho
- Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - B S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - P N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - J D Cotter
- School of Physical Education, Sport & Exercise Science, University of Otago, 55/47 Union St W, Dunedin, 9016, New Zealand
| |
Collapse
|
21
|
Liu X, Chen X, Kline G, Ross SE, Hall JR, Ding Y, Mallet RT, Shi X. Reduced cerebrovascular and cardioventilatory responses to intermittent hypoxia in elderly. Respir Physiol Neurobiol 2020; 271:103306. [DOI: 10.1016/j.resp.2019.103306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/08/2019] [Accepted: 09/22/2019] [Indexed: 11/26/2022]
|
22
|
Steady-state cerebral blood flow regulation at altitude: interaction between oxygen and carbon dioxide. Eur J Appl Physiol 2019; 119:2529-2544. [DOI: 10.1007/s00421-019-04206-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
|
23
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Beaudin AE, Hanly PJ, Raneri JK, Sajobi TT, Anderson TJ, Poulin MJ. Vascular responses to hypoxia are not impaired in obstructive sleep apnoea patients free of overt cardiovascular disease. Exp Physiol 2019; 104:580-600. [DOI: 10.1113/ep086845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 01/24/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Andrew E. Beaudin
- Department of Physiology & Pharmacology Cumming School of Medicine University of Calgary Calgary AB Canada
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
| | - Patrick J. Hanly
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
- Department of Medicine Cumming School of Medicine University of Calgary Calgary AB Canada
- Sleep Centre Foothills Medical Centre Calgary AB Canada
| | | | - Tolulope T. Sajobi
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
- Department of Community Health Cumming School of Medicine University of Calgary Calgary AB Canada
- Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary AB Canada
| | - Todd J. Anderson
- Department of Cardiac Science Cumming School of Medicine University of Calgary Calgary AB Canada
- Libin Cardiovascular Institute of Alberta University of Calgary Calgary AB Canada
| | - Marc J. Poulin
- Department of Physiology & Pharmacology Cumming School of Medicine University of Calgary Calgary AB Canada
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
- Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary AB Canada
- Libin Cardiovascular Institute of Alberta University of Calgary Calgary AB Canada
- O'Brien Institute for Public Health Cumming School of Medicine University of Calgary Calgary AB Canada
| |
Collapse
|
25
|
Holanda MA, Alves-de-Almeida M, Lima JW, Taunay TC, Gondim FA, P.R.Cavalcanti R, Mont’Alverne FJ, Sousa NDS, Oliveira MF, Pereira ED. Short-term effects of non-invasive ventilation on cerebral blood flow and cognitive function in COPD. Respir Physiol Neurobiol 2018; 258:53-59. [DOI: 10.1016/j.resp.2018.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022]
|
26
|
Abstract
PURPOSE Continuous peripheral pulse oximetry for monitoring adequacy of oxygenation is probably the most important technological advance for patients' monitoring and safety in the last decades. Pulse oximetry has the disadvantage of measuring the peripheral circulation, and the only mean to measure oxygen content of the central circulation is by invasive technology. Determination of blood oxyhaemoglobin saturation in the retinal vessels of the eye can be achieved noninvasively through spectrophotometric retinal oximetry which provides access to the central nervous system circulation. The aim of the thesis was to determine whether retinal oximetry technique can be applied for estimation of the central nervous system circulation which until now has only been possible invasively. This was achieved by measuring oxyhaemoglobin saturation in three adult subject study groups: in people with central retinal vein occlusion (CRVO) to observe local tissue hypoxia, in patients with severe chronic obstructive pulmonary disease (COPD) on long-term oxygen therapy to observe systemic hypoxaemia and in healthy subjects during hyperoxic breathing to observe systemic hyperoxemia. In addition, the fourth study that is mentioned was performed to test whether retinal oximetry is feasible for neonates. METHODS Retinal oximetry in central retinal vein occlusion: Sixteen subjects with central retinal vein occlusion participated in the study. The oxyhaemoglobin saturation of the central retinal vein occlusion affected eye was compared with the fellow unaffected eye. Retinal oximetry in healthy people under hyperoxia: Thirty healthy subjects participated in the study, and the oxyhaemoglobin saturation of retinal arterioles and venules was compared between normoxic and hyperoxic breathing. Retinal oximetry in severe chronic obstructive pulmonary disease: Eleven patients with severe chronic obstructive pulmonary disease participated in the study. Retinal oximetry measurements were made with and without their daily supplemental oxygen therapy. Retinal arteriolar oxyhaemoglobin saturation when inspiring ambient air was compared with blood samples from the radial artery and finger pulse oximetry and healthy controls. The healthy control group was assembled from our database for comparison of oxyhaemoglobin saturation of retinal arterioles and venules during the ambient air breathing. The retinal oximeter is based on a conventional fundus camera and a specialized software. A beam splitter coupled with two high-resolution digital cameras allows for simultaneous acquisition of retinal images at separative wavelengths for calculation of oxyhaemoglobin saturation. In addition, retinal images of 28 full-term healthy neonates were obtained with scanning laser ophthalmoscope combined with modified Oxymap analysis software for calculation of the optical density ratio and vessel diameter RESULTS: Retinal oximetry in central retinal vein occlusion: Mean retinal venous oxyhaemoglobin saturation was 31 ± 12% in CRVO eyes and 52 ± 11% in unaffected fellow eyes (mean ± SD, n = 14, p < 0.0001). The arteriovenous oxygen difference (AV-difference) was 63 ± 11% in CRVO eyes and 43 ± 7% in fellow eyes (p < 0.0001). The variability of retinal venous oxyhaemoglobin saturation was considerable within and between eyes affected by CRVO. There was no difference in oxyhaemoglobin saturation of retinal arterioles between the CRVO eyes and the unaffected eyes (p = 0.49). Retinal oximetry in healthy people under hyperoxia: During hyperoxic breathing, the oxyhaemoglobin saturation in retinal arterioles increased to 94.5 ± 3.8% as compared with 92.0 ± 3.7% at baseline (n = 30, p < 0.0001). In venules, the mean oxyhaemoglobin saturation increased to 76.2 ± 8.0% from 51.3 ± 5.6% (p < 0.0001) at baseline. The AV-difference was markedly lower during hyperoxic breathing as compared with the normoxic breathing (18.3 ± 9.0% versus 40.7 ± 5.7%, p < 0.0001). Retinal oximetry in severe chronic obstructive pulmonary disease: During ambient air breathing, chronic obstructive pulmonary disease subjects had significantly lower oxyhaemoglobin saturation than healthy controls in both retinal arterioles (87.2 ± 4.9% versus 93.4 ± 4.3%, p = 0.02, n = 11) and venules (45.0 ± 10.3% versus 55.2 ± 5.5%, p = 0.01) but the AV-difference was not markedly different (p = 0.17). Administration of their prescribed oxygen therapy significantly increased the oxyhaemoglobin saturation in retinal arterioles (87.2 ± 4.9% to 89.5 ± 6.0%, p = 0.02) but not in venules (45.0 ± 10.3% to 46.7 ± 12.8%, p = 0.3). Retinal oximetry values were slightly lower than finger pulse oximetry (mean percentage points difference = -3.1 ± 5.5) and radial artery blood values (-5.0 ± 5.4). Retinal oximetry study in neonates: The modified version of the retinal oximetry instrument estimated the optical density ratio in retinal arterioles to be 0.256 ± 0.041 that was significantly different from the 0.421 ± 0.089 in venules (n = 28, p < 0.001, paired t-test). The vascular diameter of retinal arterioles was markedly narrower than of venules (14.1 ± 2.7 and 19.7 ± 3.7 pixels, p < 0.001). CONCLUSION The results of this thesis indicate that spectrophotometric retinal oximetry is sensitive to both local and systemic changes in oxyhaemoglobin saturation. Retinal oxyhaemoglobin saturation values are slightly lower than radial artery blood sample and finger pulse oximetry values. The discrepancies between the different modalities are expected to derive from countercurrent exchange between central retinal artery and vein within the optic nerve but calibration issues cannot be excluded as contributing to this difference. Despite these differences, the findings indicate the potential of retinal oximetry for noninvasive real-time measurements of oxyhaemoglobin saturation in central nervous system vessels. Following calibration upgrade and technological improvement, verification retinal oximetry may potentially be applied to critically ill and anaesthesia care patients. The study on combined scanning laser ophthalmoscope and retinal oximetry supports the feasibility of the technique for oximetry analysis in newly born babies.
Collapse
|
27
|
Mansur AP, Alvarenga GS, Kopel L, Gutierrez MA, Consolim-Colombo FM, Abrahão LH, Lage SG. Cerebral blood flow changes during intermittent acute hypoxia in patients with heart failure. J Int Med Res 2018; 46:4214-4225. [PMID: 30130981 PMCID: PMC6166355 DOI: 10.1177/0300060518791691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective Heart failure (HF) is associated with intermittent hypoxia, and the effects of this hypoxia on the cardiovascular system are not well understood. This study was performed to compare the effects of acute hypoxia (10% oxygen) between patients with and without HF. Methods Fourteen patients with chronic HF and 17 matched control subjects were enrolled. Carotid artery changes were examined during the first period of hypoxia, and brachial artery changes were examined during the second period of hypoxia. Data were collected at baseline and after 2 and 4 minutes of hypoxia. Norepinephrine, epinephrine, dopamine, and renin were measured at baseline and after 4 minutes hypoxia. Results The carotid blood flow, carotid systolic diameter, and carotid diastolic diameter increased and the carotid resistance decreased in patients with HF. Hypoxia did not change the carotid compliance, distensibility, brachial artery blood flow and diameter, or concentrations of sympathomimetic amines in patients with HF, but hypoxia increased the norepinephrine level in the control group. Hypoxia increased minute ventilation and decreased the oxygen saturation and end-tidal carbon dioxide concentration in both groups. Conclusion Hypoxia-induced changes in the carotid artery suggest an intensification of compensatory mechanisms for preservation of cerebral blood flow in patients with HF.
Collapse
Affiliation(s)
- Antonio P Mansur
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Glaura Souza Alvarenga
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Liliane Kopel
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Marco Antonio Gutierrez
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | | | - Ludhmila Hajjar Abrahão
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| | - Silvia Gelas Lage
- Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| |
Collapse
|
28
|
|
29
|
Caldwell HG, Coombs GB, Tymko MM, Nowak-Flück D, Ainslie PN. Severity-dependent influence of isocapnic hypoxia on reaction time is independent of neurovascular coupling. Physiol Behav 2018; 188:262-269. [PMID: 29458114 DOI: 10.1016/j.physbeh.2018.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/23/2022]
Abstract
With exposure to acute normobaric hypoxia, global cerebral oxygen delivery is maintained via increases in cerebral blood flow (CBF); therefore, regional and localized changes in oxygen tension may explain neurocognitive impairment. Neurovascular coupling (NVC) is the close temporal and regional relationship of CBF to changes in neural activity and may aid in explaining the localized CBF response with cognitive activation. High-altitude related cognitive impairment is likely affected by hypocapnic cerebral vasoconstriction that may influence regional CBF regulation independent of hypoxia. We assessed neurocognition and NVC following 30 min of acute exposure to isocapnic hypoxia (decreased partial pressure of end-tidal oxygen; PETO2) during moderate hypoxia (MOD HX; 55 mm Hg PETO2), and severe hypoxia (SEV HX; 45 mm Hg PETO2) in 10 healthy individuals (25.5 ± 3.3 yrs). Transcranial Doppler ultrasound was used to assess mean posterior and middle cerebral blood velocity (PCAv and MCAv, respectively) and neurocognitive performance was assessed via validated computerized tests. The main finding was that reaction time (i.e., kinesthetic and visual-motor ability via Stroop test) was selectively impaired in SEV HX (-4.6 ± 5.2%, P = 0.04), but not MOD HX, while complex cognitive performance (e.g., psychomotor speed, cognitive flexibility, processing speed, executive function, and motor speed) was unaffected with hypoxia (P > 0.05). Additionally, severity of hypoxia had no effect on NVC (PCAv CON vs. SEV HX relative peak response 13.7 ± 6.4% vs. 16.2 ± 11.5%, P = 0.71, respectively). In summary, severe isocapnic hypoxia impaired reaction time, but not complex cognitive performance or NVC. These findings have implications for recreational and military personnel who may experience acute hypoxia.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada.
| | - Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Daniela Nowak-Flück
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| |
Collapse
|
30
|
Botek M, Krejčí J, McKune A. Sex Differences in Autonomic Cardiac Control and Oxygen Saturation Response to Short-Term Normobaric Hypoxia and Following Recovery: Effect of Aerobic Fitness. Front Endocrinol (Lausanne) 2018; 9:697. [PMID: 30532736 PMCID: PMC6265316 DOI: 10.3389/fendo.2018.00697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
Introduction: The main aims of this study were to investigate autonomic nervous system (ANS) and arterial oxygen saturation (SpO2) responses to simulated altitude in males and females, and to determine the association between maximal oxygen uptake (VO2max) and these responses. Materials and Methods: Heart rate variability (HRV) and SpO2 were monitored in a resting supine position during Preliminary (6 min normoxia), Hypoxia (10 min, fraction of inspired oxygen (FiO2) of 9.6%, simulated altitude ~6,200 m) and Recovery (6 min normoxia) phases in 28 males (age 23.7 ± 1.7 years, normoxic VO2max 59.0 ± 7.8 ml.kg-1.min-1, body mass index (BMI) 24.2 ± 2.1 kg.m-2) and 30 females (age 23.8 ± 1.8 years, VO2max 45.1 ± 8.7 ml.kg-1.min-1, BMI 21.8 ± 3.0 kg.m-2). Spectral analysis of HRV quantified the ANS activity by means of low frequency (LF, 0.05-0.15 Hz) and high frequency (HF, 0.15-0.50 Hz) power, transformed by natural logarithm (Ln). Time domain analysis incorporated the square root of the mean of the squares of the successive differences (rMSSD). Results: There were no significant differences in SpO2 level during hypoxia between the males (71.9 ± 7.5%) and females (70.8 ± 7.1%). Vagally-related HRV variables (Ln HF and Ln rMSSD) exhibited no significant differences between sexes across each phase. However, while the sexes demonstrated similar Ln LF/HF values during the Preliminary phase, the males (0.5 ± 1.3) had a relatively higher (p = 0.001) sympathetic activity compared to females (-0.6 ± 1.4) during the Hypoxia phase. Oxygen desaturation during resting hypoxia was significantly correlated with VO2max in males (r = -0.45, p = 0.017) but not in females (r = 0.01, p = 0.952) and difference between regression lines were significant (p = 0.024). Conclusions: Despite similar oxygen desaturation levels, males exhibited a relatively higher sympathetic responses to hypoxia exposure compared with females. In addition, the SpO2 response to resting hypoxia exposure was related to maximal aerobic capacity in males but not females.
Collapse
Affiliation(s)
- Michal Botek
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| | - Jakub Krejčí
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: Jakub Krejčí
| | - Andrew McKune
- Discipline of Sport and Exercise Science, School of Rehabilitation and Exercise Sciences, Research Institute for Sport and Exercise Science, University of Canberra, Canberra, ACT, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
31
|
Liu X, Xu D, Hall JR, Ross S, Chen S, Liu H, Mallet RT, Shi X. Enhanced cerebral perfusion during brief exposures to cyclic intermittent hypoxemia. J Appl Physiol (1985) 2017; 123:1689-1697. [DOI: 10.1152/japplphysiol.00647.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral vasodilation and increased cerebral oxygen extraction help maintain cerebral oxygen uptake in the face of hypoxemia. This study examined cerebrovascular responses to intermittent hypoxemia in eight healthy men breathing 10% O2 for 5 cycles, each 6 min, interspersed with 4 min of room air breathing. Hypoxia exposures raised heart rate ( P < 0.01) without altering arterial pressure, and increased ventilation ( P < 0.01) by expanding tidal volume. Arterial oxygen saturation ([Formula: see text]) and cerebral tissue oxygenation ([Formula: see text]) fell ( P < 0.01) less appreciably in the first bout (from 97.0 ± 0.3% and 72.8 ± 1.6% to 75.5 ± 0.9% and 54.5 ± 0.9%, respectively) than the fifth bout (from 94.9 ± 0.4% and 70.8 ± 1.0% to 66.7 ± 2.3% and 49.2 ± 1.5%, respectively). Flow velocity in the middle cerebral artery ( VMCA) and cerebrovascular conductance increased in a sigmoid fashion with decreases in [Formula: see text] and [Formula: see text]. These stimulus-response curves shifted leftward and upward from the first to the fifth hypoxia bouts; thus, the centering points fell from 79.2 ± 1.4 to 74.6 ± 1.1% ( P = 0.01) and from 59.8 ± 1.0 to 56.6 ± 0.3% ( P = 0.002), and the minimum VMCA increased from 54.0 ± 0.5 to 57.2 ± 0.5 cm/s ( P = 0.0001) and from 53.9 ± 0.5 to 57.1 ± 0.3 cm/s ( P = 0.0001) for the [Formula: see text]- VMCA and [Formula: see text]- VMCA curves, respectively. Cerebral oxygen extraction increased from prehypoxia 0.22 ± 0.01 to 0.25 ± 0.02 in minute 6 of the first hypoxia bout, and remained elevated between 0.25 ± 0.01 and 0.27 ± 0.01 throughout the fifth hypoxia bout. These results demonstrate that cerebral vasodilation combined with enhanced cerebral oxygen extraction fully compensated for decreased oxygen content during acute, cyclic hypoxemia. NEW & NOTEWORTHY Five bouts of 6-min intermittent hypoxia (IH) exposures to 10% O2 progressively reduce arterial oxygen saturation ([Formula: see text]) to 67% without causing discomfort or distress. Cerebrovascular responses to hypoxemia are dynamically reset over the course of a single IH session, such that threshold and saturation for cerebral vasodilations occurred at lower [Formula: see text] and cerebral tissue oxygenation ([Formula: see text]) during the fifth vs. first hypoxia bouts. Cerebral oxygen extraction is augmented during acute hypoxemia, which compensates for decreased arterial O2 content.
Collapse
Affiliation(s)
- Xiaoli Liu
- Institute of Cardiovascular & Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
- Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Diqun Xu
- Institute of Cardiovascular & Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - James R. Hall
- Hubei University for Nationalities, Enshi, Hubei, China
| | - Sarah Ross
- Hubei University for Nationalities, Enshi, Hubei, China
| | - Shande Chen
- Hubei University for Nationalities, Enshi, Hubei, China
- Institute of Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas
| | - Howe Liu
- Department of Biostatistics, University of North Texas Health Science Center, Fort Worth, Texas
| | - Robert T. Mallet
- Institute of Cardiovascular & Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - Xiangrong Shi
- Institute of Cardiovascular & Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
- Institute of Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
32
|
Beaudin AE, Hartmann SE, Pun M, Poulin MJ. Human cerebral blood flow control during hypoxia: focus on chronic pulmonary obstructive disease and obstructive sleep apnea. J Appl Physiol (1985) 2017; 123:1350-1361. [DOI: 10.1152/japplphysiol.00352.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023] Open
Abstract
The brain is a vital organ that relies on a constant and adequate blood flow to match oxygen and glucose delivery with the local metabolic demands of active neurons. Thus exquisite regulation of cerebral blood flow (CBF) is particularly important under hypoxic conditions to prevent a detrimental decrease in the partial pressure of oxygen within the brain tissues. Cerebrovascular sensitivity to hypoxia, assessed as the change in CBF during a hypoxic challenge, represents the capacity of cerebral vessels to respond to, and compensate for, a reduced oxygen supply, and has been shown to be impaired or blunted in a number of conditions. For instance, this is observed with aging, and in clinical conditions such as untreated obstructive sleep apnea (OSA) and in healthy humans exposed to intermittent hypoxia. This review will 1) provide a brief overview of cerebral blood flow regulation and results of pharmacological intervention studies which we have performed to better elucidate the basic mechanisms of cerebrovascular regulation in humans; and 2) present data from studies in clinical and healthy populations, using a translational physiology approach, to investigate human CBF control during hypoxia. Results from studies in patients with chronic obstructive pulmonary disease and OSA will be presented to identify the effects of the disease processes on cerebrovascular sensitivity to hypoxia. Data emerging from experimental human models of intermittent hypoxia during wakefulness will also be reviewed to highlight the effects of intermittent hypoxia on the brain.
Collapse
Affiliation(s)
- Andrew E. Beaudin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sara E. Hartmann
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matiram Pun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marc J. Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Effects of Changes in Arterial Carbon Dioxide and Oxygen Partial Pressures on Cerebral Oximeter Performance. Anesthesiology 2017; 128:97-108. [PMID: 29084012 DOI: 10.1097/aln.0000000000001898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cerebral oximetry (cerebral oxygen saturation; ScO2) is used to noninvasively monitor cerebral oxygenation. ScO2 readings are based on the fraction of reduced and oxidized hemoglobin as an indirect estimate of brain tissue oxygenation and assume a static ratio of arterial to venous intracranial blood. Conditions that alter cerebral blood flow, such as acute changes in PaCO2, may decrease accuracy. We assessed the performance of two commercial cerebral oximeters across a range of oxygen concentrations during normocapnia and hypocapnia. METHODS Casmed FORE-SIGHT Elite (CAS Medical Systems, Inc., USA) and Covidien INVOS 5100C (Covidien, USA) oximeter sensors were placed on 12 healthy volunteers. The fractional inspired oxygen tension was varied to achieve seven steady-state levels including hypoxic and hyperoxic PaO2 values. ScO2 and simultaneous arterial and jugular venous blood gas measurements were obtained with both normocapnia and hypocapnia. Oximeter bias was calculated as the difference between the ScO2 and reference saturation using manufacturer-specified weighting ratios from the arterial and venous samples. RESULTS FORE-SIGHT Elite bias was greater during hypocapnia as compared with normocapnia (4 ± 9% vs. 0 ± 6%; P < 0.001). The INVOS 5100C bias was also lower during normocapnia (5 ± 15% vs. 3 ± 12%; P = 0.01). Hypocapnia resulted in a significant decrease in mixed venous oxygen saturation and mixed venous oxygen tension, as well as increased oxygen extraction across fractional inspired oxygen tension levels (P < 0.0001). Bias increased significantly with increasing oxygen extraction (P < 0.0001). CONCLUSIONS Changes in PaCO2 affect cerebral oximeter accuracy, and increased bias occurs with hypocapnia. Decreased accuracy may represent an incorrect assumption of a static arterial-venous blood fraction. Understanding cerebral oximetry limitations is especially important in patients at risk for hypoxia-induced brain injury, where PaCO2 may be purposefully altered.
Collapse
|
34
|
Chowdhuri S, Pranathiageswaran S, Loomis-King H, Salloum A, Badr MS. Aging is associated with increased propensity for central apnea during NREM sleep. J Appl Physiol (1985) 2017; 124:83-90. [PMID: 29025898 DOI: 10.1152/japplphysiol.00125.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The reason for increased sleep-disordered breathing with predominance of central apneas in the elderly is unknown. We hypothesized that the propensity to central apneas is increased in older adults, manifested by a reduced carbon-dioxide (CO2) reserve in older compared with young adults during non-rapid eye movement sleep. Ten elderly and 15 young healthy adults underwent multiple brief trials of nasal noninvasive positive pressure ventilation during stable NREM sleep. Cessation of mechanical ventilation (MV) resulted in hypocapnic central apnea or hypopnea. The CO2 reserve was defined as the difference in end-tidal CO2 ([Formula: see text]) between eupnea and the apneic threshold, where the apneic threshold was [Formula: see text] that demarcated the central apnea closest to the eupneic [Formula: see text]. For each MV trial, the hypocapnic ventilatory response (controller gain) was measured as the change in minute ventilation (V̇e) during the MV trial for a corresponding change in [Formula: see text]. The eupneic [Formula: see text] was significantly lower in elderly vs. young adults. Compared with young adults, the elderly had a significantly reduced CO2 reserve (-2.6 ± 0.4 vs. -4.1 ± 0.4 mmHg, P = 0.01) and a higher controller gain (2.3 ± 0.2 vs. 1.4 ± 0.2 l·min-1·mmHg-1, P = 0.007), indicating increased chemoresponsiveness in the elderly. Thus elderly adults are more prone to hypocapnic central apneas owing to increased hypocapnic chemoresponsiveness during NREM sleep. NEW & NOTEWORTHY The study describes an original finding where healthy older adults compared with healthy young adults demonstrated increased breathing instability during non-rapid eye movement sleep, as suggested by a smaller carbon dioxide reserve and a higher controller gain. The findings may explain the increased propensity for central apneas in elderly adults during sleep and potentially guide the development of pathophysiology-defined personalized therapies for sleep apnea in the elderly.
Collapse
Affiliation(s)
- Susmita Chowdhuri
- Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center , Detroit, Michigan.,Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Sukanya Pranathiageswaran
- Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Hillary Loomis-King
- Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Anan Salloum
- Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center , Detroit, Michigan.,Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - M Safwan Badr
- Medical Service, Sleep Medicine Section, John D. Dingell Veterans Affairs Medical Center , Detroit, Michigan.,Division of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
35
|
Mikhail Kellawan J, Harrell JW, Roldan-Alzate A, Wieben O, Schrage WG. Regional hypoxic cerebral vasodilation facilitated by diameter changes primarily in anterior versus posterior circulation. J Cereb Blood Flow Metab 2017; 37:2025-2034. [PMID: 27406213 PMCID: PMC5464698 DOI: 10.1177/0271678x16659497] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inability to quantify cerebral blood flow and changes in macrocirculation cross-sectional area in all brain regions impedes robust insight into hypoxic cerebral blood flow control. We applied four-dimensional flow magnetic resonance imaging to quantify cerebral blood flow (ml • min-1) and cross-sectional area (mm2) simultaneously in 11 arteries. In healthy adults, blood pressure, O2 Saturation (SpO2), and end-tidal CO2 were measured at baseline and steady-state hypoxia (FiO2 = 0.11). We investigated left and right: internal carotid, vertebral, middle, anterior, posterior cerebral arteries, and basilar artery. Hypoxia (SpO2 = 80±2%) increased total cerebral blood flow from 621±38 to 742±50 ml • min-1 ( p < 0.05). Hypoxia increased cerebral blood flow, except in the right posterior cerebral arteries. Hypoxia increased cross-sectional area in the anterior arteries (left and right internal carotid arteries, left and right middle, p < 0.05; left and right anterior p = 0.08) but only the right vertebral artery of the posterior circulation. Nonetheless, relative cerebral blood flow distribution and vascular reactivity (Δ%cerebral blood flow • ΔSpO2-1) were not different between arteries. Collectively, moderate hypoxia: (1) increased cerebral blood flow, but relative distribution remains similar to normoxia, (2) evokes similar vascular reactivity between 11 arteries, and (3) increased cross-sectional area primarily in the anterior arteries. This study provides the first wide-ranging, quantitative, functional and structural data regarding intracranial arteries during hypoxia in humans, highlighting cerebral blood flow regulation of microcirculation and macrocirculation differs between anterior and posterior circulation.
Collapse
Affiliation(s)
- J Mikhail Kellawan
- 1 Departments of Kinesiology, University of Wisconsin - Madison, WI, USA
| | - John W Harrell
- 1 Departments of Kinesiology, University of Wisconsin - Madison, WI, USA
| | - Alejandro Roldan-Alzate
- 2 Departments of Medical Physics, University of Wisconsin - Madison, WI, USA.,3 Departments of Radiology, University of Wisconsin - Madison, WI, USA
| | - Oliver Wieben
- 2 Departments of Medical Physics, University of Wisconsin - Madison, WI, USA.,3 Departments of Radiology, University of Wisconsin - Madison, WI, USA
| | - William G Schrage
- 1 Departments of Kinesiology, University of Wisconsin - Madison, WI, USA
| |
Collapse
|
36
|
Chowdhuri S, Badr MS. Control of Ventilation in Health and Disease. Chest 2016; 151:917-929. [PMID: 28007622 DOI: 10.1016/j.chest.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
Control of ventilation occurs at different levels of the respiratory system through a negative feedback system that allows precise regulation of levels of arterial carbon dioxide and oxygen. Mechanisms for ventilatory instability leading to sleep-disordered breathing include changes in the genesis of respiratory rhythm and chemoresponsiveness to hypoxia and hypercapnia, cerebrovascular reactivity, abnormal chest wall and airway reflexes, and sleep state oscillations. One can potentially stabilize breathing during sleep and treat sleep-disordered breathing by identifying one or more of these pathophysiological mechanisms. This review describes the current concepts in ventilatory control that pertain to breathing instability during wakefulness and sleep, delineates potential avenues for alternative therapies to stabilize breathing during sleep, and proposes recommendations for future research.
Collapse
Affiliation(s)
- Susmita Chowdhuri
- John D. Dingell VA Medical Center, Wayne State University, Detroit MI; Department of Medicine, Wayne State University, Detroit MI.
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Wayne State University, Detroit MI; Department of Medicine, Wayne State University, Detroit MI
| |
Collapse
|
37
|
Vestergaard MB, Lindberg U, Aachmann-Andersen NJ, Lisbjerg K, Christensen SJ, Law I, Rasmussen P, Olsen NV, Larsson HBW. Acute hypoxia increases the cerebral metabolic rate - a magnetic resonance imaging study. J Cereb Blood Flow Metab 2016; 36:1046-58. [PMID: 26661163 PMCID: PMC4904346 DOI: 10.1177/0271678x15606460] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/10/2015] [Indexed: 11/15/2022]
Abstract
The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.
Collapse
Affiliation(s)
- Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Niels Jacob Aachmann-Andersen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Lisbjerg
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Just Christensen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Peter Rasmussen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels V Olsen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark Department of Neuroanaesthesia, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Cheng L, Albanese A, Ursino M, Chbat NW. An integrated mathematical model of the human cardiopulmonary system: model validation under hypercapnia and hypoxia. Am J Physiol Heart Circ Physiol 2016; 310:H922-37. [DOI: 10.1152/ajpheart.00923.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/04/2016] [Indexed: 11/22/2022]
Abstract
A novel integrated physiological model of the interactions between the cardiovascular and respiratory systems has been in development for the past few years. The model has hundreds of parameters and variables representing the physical and physiological properties of the human cardiopulmonary system. It can simulate many dynamic states and scenarios. The description of the model and the results in normal resting conditions were presented in a companion paper (Albanese A, Cheng L, Ursino M, Chbat NW. Am J Physiol Heart Circ Physiol 310: 2016; doi:10.1152/ajpheart.00230.2014), where model predictions were compared against average population data from literature. However, it is also essential to test the model in abnormal or pathological conditions to prove its consistency. Hence, in this paper, we concentrate on testing the cardiopulmonary model under hypercapnic and hypoxic conditions, by comparing model's outputs to population-averaged cardiorespiratory data reported in the literature. The utility of this comprehensive model is demonstrated by testing the internal consistency of the simulated responses of a significant number of cardiovascular variables (heart rate, arterial pressure, and cardiac output) and respiratory variables (tidal volume, respiratory rate, minute ventilation, alveolar O2 and CO2 partial pressures) over a wide range of perturbations and conditions; namely, hypercapnia at 3–7% CO2 levels and hypoxia at 7–9% O2 levels with controlled CO2 (isocapnic hypoxia) and without controlled CO2 (hypocapnic hypoxia). Finally, a sensitivity analysis is performed to analyze the role of the main cardiorespiratory control mechanisms triggered by hypercapnia and hypoxia.
Collapse
Affiliation(s)
- Limei Cheng
- Philips Research North America, Briarcliff Manor, New York
| | | | - Mauro Ursino
- Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy; and
| | - Nicolas W. Chbat
- Philips Research North America, Briarcliff Manor, New York
- Departments of Biomedical Engineering and Mechanical Engineering, Columbia University, New York, New York
| |
Collapse
|
39
|
MacKay CM, Skow RJ, Tymko MM, Boulet LM, Davenport MH, Steinback CD, Ainslie PN, Lemieux CCM, Day TA. Central respiratory chemosensitivity and cerebrovascular CO2 reactivity: a rebreathing demonstration illustrating integrative human physiology. ADVANCES IN PHYSIOLOGY EDUCATION 2016; 40:79-92. [PMID: 26873894 DOI: 10.1152/advan.00048.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
One of the most effective ways of engaging students of physiology and medicine is through laboratory demonstrations and case studies that combine 1) the use of equipment, 2) problem solving, 3) visual representations, and 4) manipulation and interpretation of data. Depending on the measurements made and the type of test, laboratory demonstrations have the added benefit of being able to show multiple organ system integration. Many research techniques can also serve as effective demonstrations of integrative human physiology. The "Duffin" hyperoxic rebreathing test is often used in research settings as a test of central respiratory chemosensitivity and cerebrovascular reactivity to CO2. We aimed to demonstrate the utility of the hyperoxic rebreathing test for both respiratory and cerebrovascular responses to increases in CO2 and illustrate the integration of the respiratory and cerebrovascular systems. In the present article, methods such as spirometry, respiratory gas analysis, and transcranial Doppler ultrasound are described, and raw data traces can be adopted for discussion in a tutorial setting. If educators have these instruments available, instructions on how to carry out the test are provided so students can collect their own data. In either case, data analysis and quantification are discussed, including principles of linear regression, calculation of slope, the coefficient of determination (R(2)), and differences between plotting absolute versus normalized data. Using the hyperoxic rebreathing test as a demonstration of the complex interaction and integration between the respiratory and cerebrovascular systems provides senior undergraduate, graduate, and medical students with an advanced understanding of the integrative nature of human physiology.
Collapse
Affiliation(s)
- Christina M MacKay
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada; Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
| | - Rachel J Skow
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada; Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
| | - Michael M Tymko
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada; School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Lindsey M Boulet
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada; School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Margie H Davenport
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
| | - Craig D Steinback
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
| | - Philip N Ainslie
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Chantelle C M Lemieux
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada;
| |
Collapse
|
40
|
Steinback CD, Poulin MJ. Influence of Hypoxia on Cerebral Blood Flow Regulation in Humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:131-44. [PMID: 27343093 DOI: 10.1007/978-1-4899-7678-9_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The brain is a vital organ that relies on a constant and adequate supply of blood to match oxygen and glucose delivery with the local metabolic demands of active neurones. It is well established that cerebral blood flow is altered in response to both neural activity and humoral stimuli. Thus, augmented neural activation (e.g. visual stimulation) leads to locally increased cerebral blood flow via functional hyperaemia, whereas humoral stimuli (i.e. alterations in arterial PO2 and PCO2) produce global increases in cerebral blood flow. Perhaps not surprisingly, cerebrovascular responses to neural activity and humoral stimuli may not be highly correlated because they reflect different physiological mechanisms for vasodilation. Exquisite regulation of cerebral blood flow is particularly important under hypoxic conditions when cerebral PO2 can be reduced substantially. Indeed, cerebrovascular reactivity to hypoxia determines the capacity of cerebral vessels to respond and compensate for a reduced oxygen supply. This reactivity is dynamic, changing with prolonged exposure to hypoxic environments, and in patients and healthy individuals exposed to chronic intermittent periods of hypoxia. More recently, a number of animal studies have provided evidence that glial cells (i.e. astrocytes) play an important role in regulating cerebral blood flow under normoxic and hypoxic conditions. This review aims to summarize our current understanding of cerebral blood flow control during hypoxia in humans and put into context the underlying neurovascular mechanisms that may contribute to this regulation.
Collapse
Affiliation(s)
- Craig D Steinback
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Marc J Poulin
- Departments of Physiology and Pharmacology and Clinical Neurosciences, Faculty of Medicine, Hotchkiss Brain Institute, The Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada.
| |
Collapse
|
41
|
Albanese A, Cheng L, Ursino M, Chbat NW. An integrated mathematical model of the human cardiopulmonary system: model development. Am J Physiol Heart Circ Physiol 2015; 310:H899-921. [PMID: 26683899 DOI: 10.1152/ajpheart.00230.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 12/03/2015] [Indexed: 11/22/2022]
Abstract
Several cardiovascular and pulmonary models have been proposed in the last few decades. However, very few have addressed the interactions between these two systems. Our group has developed an integrated cardiopulmonary model (CP Model) that mathematically describes the interactions between the cardiovascular and respiratory systems, along with their main short-term control mechanisms. The model has been compared with human and animal data taken from published literature. Due to the volume of the work, the paper is divided in two parts. The present paper is on model development and normophysiology, whereas the second is on the model's validation on hypoxic and hypercapnic conditions. The CP Model incorporates cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control mechanisms acting on both the cardiovascular and the respiratory functions. The model is able to simulate physiological variables typically observed in adult humans under normal and pathological conditions and to explain the underlying mechanisms and dynamics.
Collapse
Affiliation(s)
| | - Limei Cheng
- Philips Research North America, Briarcliff Manor, New York
| | - Mauro Ursino
- Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy; and
| | - Nicolas W Chbat
- Philips Research North America, Briarcliff Manor, New York; Departments of Biomedical Engineering and Mechanical Engineering, Columbia University, New York, New York
| |
Collapse
|
42
|
Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 2015; 310:R398-413. [PMID: 26676248 DOI: 10.1152/ajpregu.00270.2015] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/30/2015] [Indexed: 01/13/2023]
Abstract
This review highlights the influence of oxygen (O2) availability on cerebral blood flow (CBF). Evidence for reductions in O2 content (CaO2 ) rather than arterial O2 tension (PaO2 ) as the chief regulator of cerebral vasodilation, with deoxyhemoglobin as the primary O2 sensor and upstream response effector, is discussed. We review in vitro and in vivo data to summarize the molecular mechanisms underpinning CBF responses during changes in CaO2 . We surmise that 1) during hypoxemic hypoxia in healthy humans (e.g., conditions of acute and chronic exposure to normobaric and hypobaric hypoxia), elevations in CBF compensate for reductions in CaO2 and thus maintain cerebral O2 delivery; 2) evidence from studies implementing iso- and hypervolumic hemodilution, anemia, and polycythemia indicate that CaO2 has an independent influence on CBF; however, the increase in CBF does not fully compensate for the lower CaO2 during hemodilution, and delivery is reduced; and 3) the mechanisms underpinning CBF regulation during changes in O2 content are multifactorial, involving deoxyhemoglobin-mediated release of nitric oxide metabolites and ATP, deoxyhemoglobin nitrite reductase activity, and the downstream interplay of several vasoactive factors including adenosine and epoxyeicosatrienoic acids. The emerging picture supports the role of deoxyhemoglobin (associated with changes in CaO2 ) as the primary biological regulator of CBF. The mechanisms for vasodilation therefore appear more robust during hypoxemic hypoxia than during changes in CaO2 via hemodilution. Clinical implications (e.g., disorders associated with anemia and polycythemia) and future study directions are considered.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Anthony R Bain
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Mathew G Rieger
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Damian M Bailey
- Neurovascular Research Laboratory, Research Institute of Science and Health, University of South Wales, Glamorgan, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada; and Neurovascular Research Laboratory, Research Institute of Science and Health, University of South Wales, Glamorgan, United Kingdom
| |
Collapse
|
43
|
Hartmann SE, Waltz X, Kissel CK, Szabo L, Walker BL, Leigh R, Anderson TJ, Poulin MJ. Cerebrovascular and ventilatory responses to acute isocapnic hypoxia in healthy aging and lung disease: effect of vitamin C. J Appl Physiol (1985) 2015; 119:363-73. [DOI: 10.1152/japplphysiol.00389.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/16/2015] [Indexed: 01/21/2023] Open
Abstract
Acute hypoxia increases cerebral blood flow (CBF) and ventilation (V̇e). It is unknown if these responses are impacted with normal aging, or in patients with enhanced oxidative stress, such as (COPD). The purpose of the study was to 1) investigate the effects of aging and COPD on the cerebrovascular and ventilatory responses to acute hypoxia, and 2) to assess the effect of vitamin C on these responses during hypoxia. In 12 Younger, 14 Older, and 12 COPD, we measured peak cerebral blood flow velocity (V̄p; index of CBF), and V̇e during two 5-min periods of acute isocapnic hypoxia, under conditions of 1) saline-sham; and 2) intravenous vitamin C. Antioxidants [vitamin C, superoxide dismutase (SOD), glutathione peroxidase, and catalase], oxidative stress [malondialdehyde (MDA) and advanced protein oxidation product], and nitric oxide metabolism end products (NOx) were measured in plasma. Following the administration of vitamin C, vitamin C, SOD, catalase, and MDA increased, while NOx decreased. V̄p and V̇e sensitivity to hypoxia was reduced in Older by ∼60% ( P < 0.02). COPD patients exhibited similar V̄p and V̇e responses to Older ( P > 0.05). Vitamin C did not have an effect on the hypoxic V̇e response but selectively decreased the V̄p sensitivity in Younger only. These findings suggest a reduced integrative reflex (i.e., cerebrovascular and ventilatory) during acute hypoxemia in healthy older adults. Vitamin C does not appear to have a large influence on the cerebrovascular or ventilatory responses during acute hypoxia.
Collapse
Affiliation(s)
- Sara E. Hartmann
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Xavier Waltz
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Christine K. Kissel
- Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Lian Szabo
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Brandie L. Walker
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases. University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Richard Leigh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases. University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Todd J. Anderson
- Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Marc J. Poulin
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neuroscience University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| |
Collapse
|
44
|
Zhang P, Shi X, Downey HF. Two-week normobaric intermittent-hypoxic exposures stabilize cerebral perfusion during hypocapnia and hypercapnia. Exp Biol Med (Maywood) 2014; 240:961-8. [PMID: 25504012 DOI: 10.1177/1535370214562339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/14/2014] [Indexed: 11/15/2022] Open
Abstract
The effect of moderately extended, intermittent-hypoxia (IH) on cerebral perfusion during changes in CO2 was unknown. Thus, we assessed the changes in cerebral vascular conductance (CVC) and cerebral tissue oxygenation (ScO2) during experimental hypocapnia and hypercapnia following 14-day normobaric exposures to IH (10% O2). CVC was estimated from the ratio of mean middle cerebral arterial blood flow velocity (transcranial Doppler sonography) to mean arterial pressure (tonometry), and ScO2 in the prefrontal cortex was monitored by near-infrared spectroscopy. Changes in CVC and ScO2 during changes in partial pressure of end-tidal CO2 (PETCO2, mass spectrometry) induced by 30-s paced-hyperventilation (hypocapnia) and during 6-min CO2 rebreathing (hypercapnia) were compared before and after 14-day IH exposures in eight young nonsmokers. Repetitive IH exposures reduced the ratio of %ΔCVC/ΔPETCO2 during hypocapnia (1.00 ± 0.13 vs 1.94 ± 0.35 vs %/mmHg, P = 0.026) and the slope of ΔCVC/ΔPETCO2 during hypercapnia (1.79 ± 0.37 vs 2.97 ± 0.64 %/mmHg, P = 0.021), but had no significant effect on ΔScO2/ΔPETCO2. The ventilatory response to hypercapnia during CO2 rebreathing was significantly diminished following 14-day IH exposures (0.83 ± 0.07 vs 1.14 ± 0.09 L/min/mmHg, P = 0.009). We conclude that repetitive normobaric IH exposures significantly diminish variations of cerebral perfusion in response to hypercapnia and hypocapnia without compromising cerebral tissue oxygenation. This IH-induced blunting of cerebral vasoreactivity during CO2 variations helps buffer excessive oscillations of cerebral underperfusion and overperfusion while sustaining cerebral O2 homeostasis.
Collapse
Affiliation(s)
- Peizhen Zhang
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA Beijing Sport University, Beijing 100084, China
| | - Xiangrong Shi
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - H Fred Downey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
45
|
Cheung SS, Mutanen NE, Karinen HM, Koponen AS, Kyröläinen H, Tikkanen HO, Peltonen JE. Ventilatory chemosensitivity, cerebral and muscle oxygenation, and total hemoglobin mass before and after a 72-day mt. Everest expedition. High Alt Med Biol 2014; 15:331-40. [PMID: 25211648 DOI: 10.1089/ham.2013.1153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We investigated the effects of chronic hypobaric hypoxic acclimatization, performed over the course of a 72-day self-supported Everest expedition, on ventilatory chemosensitivity, arterial saturation, and tissue oxygenation adaptation along with total hemoglobin mass (tHb-mass) in nine experienced climbers (age 37±6 years, [Formula: see text] 55±7 mL·kg(-1)·min(-1)). METHODS Exercise-hypoxia tolerance was tested using a constant treadmill exercise of 5.5 km·h(-1) at 3.8% grade (mimicking exertion at altitude) with 3-min steps of progressive normobaric poikilocapnic hypoxia. Breath-by-breath ventilatory responses, Spo2, and cerebral (frontal cortex) and active muscle (vastus lateralis) oxygenation were measured throughout. Acute hypoxic ventilatory response (AHVR) was determined by linear regression slope of ventilation vs. Spo2. PRE and POST (<15 days) expedition, tHb-mass was measured using carbon monoxide-rebreathing. RESULTS Post-expedition, exercise-hypoxia tolerance improved (11:32±3:57 to 16:30±2:09 min, p<0.01). AHVR was elevated (1.25±0.33 to 1.63±0.38 L·min(-1.)%(-1) Spo2, p<0.05). Spo2 decreased throughout exercise-hypoxia in both trials, but was preserved at higher values at 4800 m post-expedition. Cerebral oxygenation decreased progressively with increasing exercise-hypoxia in both trials, with a lower level of deoxyhemoglobin POST at 2400, 3500 and 4800 m. Muscle oxygenation also decreased throughout exercise-hypoxia, with similar patterns PRE and POST. No relationship was observed between the slope of AHVR and cerebral or muscle oxygenation either PRE or POST. Absolute tHb-mass response exhibited great individual variation with a nonsignificant 5.4% increasing trend post-expedition (975±154 g PRE and 1025±124 g POST, p=0.17). CONCLUSIONS We conclude that adaptation to chronic hypoxia during a climbing expedition to Mt. Everest will increase hypoxic tolerance, AHVR, and cerebral but not muscle oxygenation, as measured during simulated acute hypoxia at sea level. However, tHb-mass did not increase significantly and improvement in cerebral oxygenation was not associated with the change in AHVR.
Collapse
Affiliation(s)
- Stephen S Cheung
- 1 Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University , St. Catharines, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang P, Downey HF, Chen S, Shi X. Two-week normobaric intermittent hypoxia exposures enhance oxyhemoglobin equilibrium and cardiac responses during hypoxemia. Am J Physiol Regul Integr Comp Physiol 2014; 307:R721-30. [PMID: 25056104 DOI: 10.1152/ajpregu.00191.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intermittent hypoxia (IH) is extensively applied to challenge cardiovascular and respiratory function, and to induce physiological acclimatization. The purpose of this study was to test the hypothesis that oxyhemoglobin equilibrium and tachycardiac responses during hypoxemia were enhanced after 14-day IH exposures. Normobaric-poikilocapnic hypoxia was induced with inhalation of 10% O2 for 5-6 min interspersed with 4 min recovery on eight nonsmokers. Heart rate (HR), arterial O2 saturation (SaO 2), and end-tidal O2 (PetO 2) were continuously monitored during cyclic normoxia and hypoxia. These variables were compared during the first and fifth hypoxic bouts between day 1 and day 14. There was a rightward shift in the oxyhemoglobin equilibrium response following 14-day IH exposures, as indicated by the greater PetO 2 (an index of arterial Po2) at 50% of SaO 2 on day 14 compared with day 1 [33.9 ± 1.5 vs. 28.2 ± 1.3 mmHg (P = 0.005) during the first hypoxic bout and 39.4 ± 2.4 vs. 31.4 ± 1.5 mmHg (P = 0.006) during the fifth hypoxic bout] and by the augmented gains of ΔSaO 2/ΔPetO 2 (i.e., deoxygenation) during PetO 2 from 65 to 40 mmHg in the first (1.12 ± 0.08 vs. 0.80 ± 0.02%/mmHg, P = 0.001) and the fifth (1.76 ± 0.31 vs. 1.05 ± 0.06%/mmHg, P = 0.024) hypoxic bouts. Repetitive IH exposures attenuated (P = 0.049) the tachycardiac response to hypoxia while significantly enhancing normoxic R-R interval variability in low-frequency and high-frequency spectra without changes in arterial blood pressure at rest or during hypoxia. We conclude that 14-day IH exposures enhance arterial O2 delivery and improve vagal control of HR during hypoxic hypoxemia.
Collapse
Affiliation(s)
- Peizhen Zhang
- Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; Beijing Sport University, Beijing, China
| | - H Fred Downey
- Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| | - Shande Chen
- Department of Biostatistics, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Xiangrong Shi
- Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| |
Collapse
|
47
|
Lewis NCS, Messinger L, Monteleone B, Ainslie PN. Effect of acute hypoxia on regional cerebral blood flow: effect of sympathetic nerve activity. J Appl Physiol (1985) 2014; 116:1189-96. [PMID: 24610534 DOI: 10.1152/japplphysiol.00114.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We examined 1) whether global cerebral blood flow (CBF) would increase across a 6-h bout of normobaric poikilocapnic hypoxia and be mediated by a larger increase in blood flow in the vertebral artery (VA) than in the internal carotid artery (ICA); and 2) whether additional increases in global CBF would be evident following an α1-adrenergic blockade via further dilation of the ICA and VA. In 11 young normotensive individuals, ultrasound measures of ICA and VA flow were obtained in normoxia (baseline) and following 60, 210, and 330 min of hypoxia (FiO2 = 0.11). Ninety minutes prior to final assessment, participants received an α1-adrenoreceptor blocker (prazosin, 1 mg/20 kg body mass) or placebo. Compared with baseline, following 60, 220, and 330 min of hypoxia, global CBF [(ICAFlow + VAFlow) ∗ 2] increased by 160 ± 52 ml/min (+28%; P = 0.05), 134 ± 23 ml/min (+23%; P = 0.02), and 113 ± 51 (+19%; P = 0.27), respectively. Compared with baseline, ICAFlow increased by 23% following 60 min of hypoxia (P = 0.06), after which it progressively declined. The percentage increase in VA flow was consistently larger than ICA flow during hypoxia by ∼20% (P = 0.002). Compared with baseline, ICA and VA diameters increased during hypoxia by ∼9% and ∼12%, respectively (P ≤ 0.05), and were correlated with reductions in SaO2. Flow and diameters were unaltered following α1 blockade (P ≥ 0.10). In conclusion, elevations in global CBF during acute hypoxia are partly mediated via greater increases in VA flow compared with ICA flow; this regional difference was unaltered following α1 blockade, indicating that a heightened sympathetic nerve activity with hypoxia does not constrain further dilation of larger extracranial blood vessels.
Collapse
Affiliation(s)
- Nia C S Lewis
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
| | | | | | | |
Collapse
|
48
|
Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol 2014; 592:841-59. [PMID: 24396059 PMCID: PMC3948549 DOI: 10.1113/jphysiol.2013.268953] [Citation(s) in RCA: 589] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/24/2013] [Indexed: 02/06/2023] Open
Abstract
Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60-150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research.
Collapse
Affiliation(s)
- Christopher K Willie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada V1V 1V7.
| | | | | | | |
Collapse
|
49
|
Rupp T, Esteve F, Bouzat P, Lundby C, Perrey S, Levy P, Robach P, Verges S. Cerebral hemodynamic and ventilatory responses to hypoxia, hypercapnia, and hypocapnia during 5 days at 4,350 m. J Cereb Blood Flow Metab 2014; 34:52-60. [PMID: 24064493 PMCID: PMC3887348 DOI: 10.1038/jcbfm.2013.167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/31/2013] [Accepted: 08/26/2013] [Indexed: 01/18/2023]
Abstract
This study investigated the changes in cerebral near-infrared spectroscopy (NIRS) signals, cerebrovascular and ventilatory responses to hypoxia and CO2 during altitude exposure. At sea level (SL), after 24 hours and 5 days at 4,350 m, 11 healthy subjects were exposed to normoxia, isocapnic hypoxia, hypercapnia, and hypocapnia. The following parameters were measured: prefrontal tissue oxygenation index (TOI), oxy- (HbO2), deoxy- and total hemoglobin (HbTot) concentrations with NIRS, blood velocity in the middle cerebral artery (MCAv) with transcranial Doppler and ventilation. Smaller prefrontal deoxygenation and larger ΔHbTot in response to hypoxia were observed at altitude compared with SL (day 5: ΔHbO2-0.6±1.1 versus -1.8±1.3 μmol/cmper mm Hg and ΔHbTot 1.4±1.3 versus 0.7±1.1 μmol/cm per mm Hg). The hypoxic MCAv and ventilatory responses were enhanced at altitude. Prefrontal oxygenation increased less in response to hypercapnia at altitude compared with SL (day 5: ΔTOI 0.3±0.2 versus 0.5±0.3% mm Hg). The hypercapnic MCAv and ventilatory responses were decreased and increased, respectively, at altitude. Hemodynamic responses to hypocapnia did not change at altitude. Short-term altitude exposure improves cerebral oxygenation in response to hypoxia but decreases it during hypercapnia. Although these changes may be relevant for conditions such as exercise or sleep at altitude, they were not associated with symptoms of acute mountain sickness.
Collapse
Affiliation(s)
- Thomas Rupp
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| | - François Esteve
- 1] U836/team 6, INSERM, Grenoble, France [2] Grenoble Institute of Neurosciences, Joseph Fourier University, Grenoble, France
| | - Pierre Bouzat
- 1] U836/team 6, INSERM, Grenoble, France [2] Grenoble Institute of Neurosciences, Joseph Fourier University, Grenoble, France
| | - Carsten Lundby
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Stéphane Perrey
- Movement To Health (M2H), Montpellier-1 University, Euromov, France
| | - Patrick Levy
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| | - Paul Robach
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France [3] Ecole Nationale de Ski et d'Alpinisme, Chamonix, France
| | - Samuel Verges
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| |
Collapse
|
50
|
Végh T, Szatmári S, Juhász M, László I, Vaskó A, Takács I, Szegedi L, Fülesdi B. One-lung ventilation does not result in cerebral desaturation during application of lung protective strategy if normocapnia is maintained. ACTA ACUST UNITED AC 2013; 100:163-72. [DOI: 10.1556/aphysiol.100.2013.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|