1
|
Butenas ALE, Parr SK, Flax JS, Carroll RJ, Baranczuk AM, Ade CJ, Hageman KS, Musch TI, Copp SW. Protein kinase C epsilon contributes to chronic mechanoreflex sensitization in rats with heart failure. J Physiol 2024. [PMID: 39269684 DOI: 10.1113/jp287020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
We investigated second-messenger signalling components linked to the stimulation of Gq protein-coupled receptors (e.g. thromboxane A2 and bradykinin B2 receptors) on the sensory endings of thin fibre muscle afferents in the chronic mechanoreflex sensitization in rats with myocardial infarction-induced heart failure with reduced ejection fraction (HF-rEF). We hypothesized that injection of either the inositol 1,4,5-trisphosphate (IP3) receptor antagonist xestospongin C (5 µg) or the PKCε translocation inhibitor PKCe141 (45 µg) into the arterial supply of the hindlimb would reduce the increase in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) evoked during 30 s of 1 Hz dynamic hindlimb muscle stretch in decerebrate, unanaesthetized HF-rEF rats but not sham-operated controls (SHAM). Ejection fraction was significantly reduced in HF-rEF (45 (19)%) compared to SHAM (80 (9)%; P < 0.001) rats. In HF-rEF rats (n = 3M/2F), IP3 receptor blockade had no effect on the peak ΔRSNA (pre: 99 (74)%; post: 133 (79)%; P = 0.974) or peak ΔMAP response to stretch (peak ΔMAP: pre: 32 (14) mmHg; post: 36 (21) mmHg; P = 0.719). Conversely, in another group of HF-rEF rats (n = 4M/3F), the PKCε translocation inhibitor reduced the peak ΔRSNA (pre: 110 (77)%; post: 62 (58)%; P = 0.029) and peak ΔMAP response to stretch (pre: 30 (20) mmHg; post: 17 (16) mmHg; P = 0.048). In SHAM counterparts, neither drug affected the mechanoreflex responses. Our findings highlight PKCε, but not IP3 receptors, as a significant second-messenger in the chronic mechanoreflex sensitization in HF-rEF which may play a crucial role in the exaggerated sympathetic response to exercise in this patient population. KEY POINTS: Skeletal muscle contraction results in an exaggerated reflex increase in sympathetic nerve activity in heart failure patients with reduced ejection fraction (HF-rEF) compared to healthy individuals, contributing to increased cardiovascular risk and impaired tolerance for mild exercise. The exaggerated reflex sympathetic responses in HF-rEF may be attributed to a chronic sensitization of mechanically sensitive thin fibre muscle afferents mediated, at least in part, by stimulation of Gq protein-coupled thromboxane A2 and bradykinin B2 receptors on muscle afferent sensory endings. The specific Gq protein-linked signalling mechanisms that produce the chronic mechanoreflex sensitization in HF-rEF have not been investigated but may involve inositol 1,4,5-trisphosphate (IP3) receptors and/or protein kinase C epsilon (PKCε). Here we demonstrate that PKCε, but not IP3 receptors, within the sensory endings of thin fibre muscle afferents plays a role in the sensitization of mechanically sensitive thin fibre muscle afferents in rats with HF-rEF.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Shannon K Parr
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Joseph S Flax
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Raimi J Carroll
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | | | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Bunsawat K, Clifton HL, Ratchford SM, Vranish JR, Alpenglow JK, Haykowsky MJ, Trinity JD, Ryan JJ, Fadel PJ, Wray DW. Cardiovascular responses to static handgrip exercise and postexercise ischemia in heart failure with preserved ejection fraction. J Appl Physiol (1985) 2023; 134:1508-1519. [PMID: 37167264 PMCID: PMC10259865 DOI: 10.1152/japplphysiol.00045.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by reduced ability to sustain physical activity that may be due partly to disease-related changes in autonomic function that contribute to dysregulated cardiovascular control during muscular contraction. Thus, we used a combination of static handgrip exercise (HG) and postexercise ischemia (PEI) to examine the pressor response to exercise and isolate the skeletal muscle metaboreflex, respectively. Mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), and total peripheral resistance (TPR) were assessed during 2-min of static HG at 30 and 40% of maximum voluntary contraction (MVC) and subsequent PEI in 16 patients with HFpEF and 17 healthy, similarly aged controls. Changes in MAP were lower in patients with HFpEF compared with controls during both 30%MVC (Δ11 ± 7 vs. Δ15 ± 8 mmHg) and 40%MVC (Δ19 ± 14 vs. Δ30 ± 8 mmHg), and a similar pattern of response was evident during PEI (30%MVC: Δ8 ± 5 vs. Δ12 ± 8 mmHg; 40%MVC: Δ13 ± 10 vs. Δ18 ± 9 mmHg) (group effect: P = 0.078 and P = 0.017 at 30% and 40% MVC, respectively). Changes in HR, CO, and TPR did not differ between groups during HG or PEI (P > 0.05). Taken together, these data suggest a reduced pressor response to static muscle contractions in patients with HFpEF compared with similarly aged controls that may be mediated partly by a blunted muscle metaboreflex. These findings support a disease-related dysregulation in neural cardiovascular control that may reduce an ability to sustain physical activity in HFpEF.NEW & NOTEWORTHY The current investigation has identified a diminution in the exercise-induced rise in arterial blood pressure (BP) that persisted during postexercise ischemia (PEI) in an intensity-dependent manner in patients with heart failure with preserved ejection fraction (HFpEF) compared with older, healthy controls. These findings suggest that the pressor response to exercise is reduced in patients with HFpEF, and this deficit may be mediated, in part, by a blunted muscle metaboreflex, highlighting the consequences of impaired neural cardiovascular control during exercise in this patient group.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Heather L Clifton
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Stephen M Ratchford
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jennifer R Vranish
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, United States
- Department of Integrative Physiology and Health Science, Alma College, Alma, Michigan, United States
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Mark J Haykowsky
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, United States
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Joel D Trinity
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Paul J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Sprick JD, Jeong J, Sabino-Carvalho JL, Li S, Park J. Neurocirculatory regulation and adaptations to exercise in chronic kidney disease. Am J Physiol Heart Circ Physiol 2023; 324:H843-H855. [PMID: 37000610 PMCID: PMC10191135 DOI: 10.1152/ajpheart.00115.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by pronounced exercise intolerance and exaggerated blood pressure reactivity during exercise. Classic mechanisms of exercise intolerance in CKD have been extensively described previously and include uremic myopathy, chronic inflammation, malnutrition, and anemia. We contend that these classic mechanisms only partially explain the exercise intolerance experienced in CKD and that alterations in cardiovascular and autonomic regulation also play a key contributing role. The purpose of this review is to examine the physiological factors that contribute to neurocirculatory dysregulation during exercise and discuss the adaptations that result from regular exercise training in CKD. Key neurocirculatory mechanisms contributing to exercise intolerance in CKD include augmentation of the exercise pressor reflex, aberrations in neurocirculatory control, and increased neurovascular transduction. In addition, we highlight how some contributing factors may be improved through exercise training, with a specific focus on the sympathetic nervous system. Important areas for future work include understanding how the exercise prescription may best be optimized in CKD and how the beneficial effects of exercise training may extend to the brain.
Collapse
Affiliation(s)
- Justin D Sprick
- Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, Texas, United States
| | - Jinhee Jeong
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jeann L Sabino-Carvalho
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Sabrina Li
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| |
Collapse
|
4
|
Li Q, Qin L, Li J. Characteristics of acid-sensing ion channel currents in male rat muscle dorsal root ganglion neurons following ischemia/reperfusion. Physiol Rep 2023; 11:e15654. [PMID: 36967457 PMCID: PMC10040404 DOI: 10.14814/phy2.15654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/28/2023] Open
Abstract
Peripheral artery diseases (PAD) increases muscle afferent nerve-activated reflex sympathetic nervous and blood pressure responses during exercise (termed as exercise pressor reflex). However, the precise signaling pathways leading to the exaggerated autonomic responses in PAD are undetermined. Considering that limb ischemia/reperfusion (I/R) is a feature of PAD, we determined the characteristics of acid-sensing ion channel (ASIC) currents in muscle dorsal root ganglion (DRG) neurons under the conditions of hindlimb I/R and ischemia of PAD. In particular, we examined ASIC currents in two distinct subpopulations, isolectin B4 -positive, and B4 -negative (IB4+ and IB4-) muscle DRG neurons, linking to glial cell line-derived neurotrophic factor and nerve growth factor. In results, ASIC1a- and ASIC3-like currents were observed in IB4- muscle DRG neurons with a greater percentage of ASIC3-like currents. Hindimb I/R and ischemia did not alter the distribution of ASIC1a and ASIC3 currents with activation of pH 6.7 in IB4+ and IB4- muscle DRG neurons; however, I/R altered the distribution of ASIC3 currents in IB4+ muscle DRG neurons with pH 5.5, but not in IB4- neurons. In addition, I/R and ischemia amplified the density of ASIC3-like currents in IB4- muscle DRG neurons. Our results suggest that a selective subpopulation of muscle afferent nerves should be taken into consideration when ASIC signaling pathways are studied to determine the exercise pressor reflex in PAD.
Collapse
Affiliation(s)
- Qin Li
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Lu Qin
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Jianhua Li
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| |
Collapse
|
5
|
Hinks A, Franchi MV, Power GA. The influence of longitudinal muscle fascicle growth on mechanical function. J Appl Physiol (1985) 2022; 133:87-103. [DOI: 10.1152/japplphysiol.00114.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle has the remarkable ability to remodel and adapt, such as the increase in serial sarcomere number (SSN) or fascicle length (FL) observed after overstretching a muscle. This type of remodelling is termed longitudinal muscle fascicle growth, and its impact on biomechanical function has been of interest since the 1960s due to its clinical applications in muscle strain injury, muscle spasticity, and sarcopenia. Despite simplified hypotheses on how longitudinal muscle fascicle growth might influence mechanical function, existing literature presents conflicting results partly due to a breadth of methodologies. The purpose of this review is to outline what is currently known about the influence of longitudinal muscle fascicle growth on mechanical function and suggest future directions to address current knowledge gaps and methodological limitations. Various interventions indicate longitudinal muscle fascicle growth can increase the optimal muscle length for active force, but whether the whole force-length relationship widens has been less investigated. Future research should also explore the ability for longitudinal fascicle growth to broaden the torque-angle relationship's plateau region, and the relation to increased force during shortening. Without a concurrent increase in intramuscular collagen, longitudinal muscle fascicle growth also reduces passive tension at long muscle lengths; further research is required to understand whether this translates to increased joint range of motion. Lastly, some evidence suggests longitudinal fascicle growth can increase maximum shortening velocity and peak isotonic power, however, there has yet to be direct assessment of these measures in a neurologically intact model of longitudinal muscle fascicle growth.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Martino V. Franchi
- Department of Biomedical Sciences,, University of Padua, Padova, Veneto, Italy
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Chlif M, Ammar MM, Said NB, Sergey L, Ahmaidi S, Alassery F, Hamam H. Mechanism of Dyspnea during Exercise in Children with Corrected Congenital Heart Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:99. [PMID: 35010359 PMCID: PMC8751078 DOI: 10.3390/ijerph19010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
This study will evaluate cardiorespiratory and peripheral muscle function and their relationship with subjective dyspnea threshold after the surgical correction of congenital heart disease in children. Thirteen children with surgically repaired congenital heart disease were recruited. Each participant performed an incremental exercise test on a cycle ergometer until exhaustion. Gas exchanges were continuously sampled to measure the maximal aerobic parameters and ventilatory thresholds. The functional capacity of the subjects was assessed with a 6 min walk test. At the end of the exercise test, isokinetic Cybex Norm was used to evaluate the strength and endurance of the knee extensor muscle in the leg. Dyspnea was subjectively scored with a visual analog scale during the last 15 s of each exercise step. Oxygen consumption measured at the dyspnea score/VO2 relationship located at the dyspnea threshold, at which dyspnea suddenly increased. Results: The maximal and submaximal values of the parameters describing the exercise and the peripheral muscular performances were: VO2 Peak: 33.8 ± 8.9 mL·min-1·kg-1; HR: 174 ± 9 b·min-1; VEmax: 65.68 ± 15.9 L·min-1; P max: 117 ± 27 W; maximal voluntary isometric force MVIF: 120.8 ± 41.9 N/m; and time to exhaustion Tlim: 53 ± 21 s. Oxygen consumption measured at the dyspnea threshold was related to VO2 Peak (R2 = 0.74; p < 0.01), Tlim (R2 = 0.78; p < 0.01), and the distance achieved during the 6MWT (R2 = 0.57; p < 0.05). Compared to the theoretical maximal values for the power output, VO2, and HR, the surgical correction did not repair the exercise performance. After the surgical correction of congenital heart disease, exercise performance was impeded by alterations of the cardiorespiratory function and peripheral local factors. A subjective evaluation of the dyspnea threshold is a reliable criterion that allows the prediction of exercise capacity in subjects suffering from congenital heart disease.
Collapse
Affiliation(s)
- Mehdi Chlif
- EA 3300 “APS and Motor Patterns: Adaptations-Rehabilitation”, Picardie Jules Verne University, 80025 Amiens, France
- National Center of Medicine and Science in Sports (NCMSS), Tunisian Research Laboratory Sports Performance Optimization, Ave Med Ali Akid, El Menzah, Tunis 263, Tunisia;
| | - Mohamed Mustapha Ammar
- Exercise Physiology Department, College of Sport Sciences and Physical Activity, King Saud University, C.P. 22480, Riyadh 11495, Saudi Arabia;
| | - Noureddine Ben Said
- Department of Biomechanics and Motor Behavior, College of Sport Sciences and Physical Activity, King Saud University, C.P. 22480, Riyadh 11495, Saudi Arabia;
| | - Levushkin Sergey
- Federal State-Funded Scientific Institution “Institute of Developmental Physiology of the Russian Academy of Education”, Russian State University of Physical Culture, Sport, Youth and Tourism (SCOLIPE), 105122 Moscow, Russia;
| | - Said Ahmaidi
- National Center of Medicine and Science in Sports (NCMSS), Tunisian Research Laboratory Sports Performance Optimization, Ave Med Ali Akid, El Menzah, Tunis 263, Tunisia;
| | - Fawaz Alassery
- Department of Computer Engineering, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Habib Hamam
- Faculty of Engineering, Moncton University, Moncton, NB E1A 3E9, Canada;
| |
Collapse
|
7
|
Butenas ALE, Rollins KS, Williams AC, Parr SK, Hammond ST, Ade CJ, Hageman KS, Musch TI, Copp SW. Thromboxane A 2 receptors contribute to the exaggerated exercise pressor reflex in male rats with heart failure. Physiol Rep 2021; 9:e15052. [PMID: 34558221 PMCID: PMC8461035 DOI: 10.14814/phy2.15052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023] Open
Abstract
Mechanical and metabolic signals associated with skeletal muscle contraction stimulate the sensory endings of thin fiber muscle afferents and produce reflex increases in sympathetic nerve activity and blood pressure during exercise (i.e., the exercise pressor reflex; EPR). The EPR is exaggerated in patients and animals with heart failure with reduced ejection fraction (HF-rEF) and its activation contributes to reduced exercise capacity within this patient population. Accumulating evidence suggests that the exaggerated EPR in HF-rEF is partially attributable to a sensitization of mechanically activated channels produced by thromboxane A2 receptors (TxA2 -Rs) on those sensory endings; however, this has not been investigated. Accordingly, the purpose of this investigation was to determine the role played by TxA2 -Rs on the sensory endings of thin fiber muscle afferents in the exaggerated EPR in rats with HF-rEF induced by coronary artery ligation. In decerebrate, unanesthetized rats, we found that injection of the TxA2 -R antagonist daltroban (80 μg) into the arterial supply of the hindlimb reduced the pressor response to 30 s of electrically induced 1 Hz dynamic hindlimb muscle contraction in HF-rEF (n = 8, peak ∆MAP pre: 22 ± 3; post: 14 ± 2 mmHg; p = 0.01) but not sham (n = 10, peak ∆MAP pre: 13 ± 3; post: 11 ± 2 mmHg; p = 0.68) rats. In a separate group of HF-rEF rats (n = 4), we found that the systemic (intravenous) injection of daltroban had no effect on the EPR (peak ΔMAP pre: 26 ± 7; post: 25 ± 7 mmHg; p = 0.50). Our data suggest that TxA2 -Rs on thin fiber muscle afferents contribute to the exaggerated EPR evoked in response to dynamic muscle contraction in HF-rEF.
Collapse
Affiliation(s)
| | | | - Auni C. Williams
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| | - Shannon K. Parr
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| | | | - Carl J. Ade
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| | - K. Sue Hageman
- Department of Anatomy and PhysiologyKansas State UniversityManhattanKansasUSA
| | - Timothy I. Musch
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
- Department of Anatomy and PhysiologyKansas State UniversityManhattanKansasUSA
| | - Steven W. Copp
- Department of KinesiologyKansas State UniversityManhattanKansasUSA
| |
Collapse
|
8
|
Hong J, Fu S, Gao L, Cai Y, Lazartigues E, Wang HJ. Voltage-gated potassium channel dysfunction in dorsal root ganglia contributes to the exaggerated exercise pressor reflex in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 2021; 321:H461-H474. [PMID: 34270374 DOI: 10.1152/ajpheart.00256.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An exaggerated exercise pressor reflex (EPR) causes excessive sympathoexcitation and exercise intolerance during physical activity in the chronic heart failure (CHF) state. Muscle afferent sensitization contributes to the genesis of the exaggerated EPR in CHF. However, the cellular mechanisms underlying muscle afferent sensitization in CHF remain unclear. Considering that voltage-gated potassium (Kv) channels critically regulate afferent neuronal excitability, we examined the potential role of Kv channels in mediating the sensitized EPR in male rats with CHF. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting experiments demonstrate that both mRNA and protein expressions of multiple Kv channel isoforms (Kv1.4, Kv3.4, Kv4.2, and Kv4.3) were downregulated in lumbar dorsal root ganglions (DRGs) of CHF rats compared with sham rats. Immunofluorescence data demonstrate significant decreased Kv channel staining in both NF200-positive and IB4-positive lumbar DRG neurons in CHF rats compared with sham rats. Data from patch-clamp experiments demonstrate that the total Kv current, especially IA, was dramatically decreased in medium-sized IB4-negative muscle afferent neurons (a subpopulation containing mostly Aδ neurons) from CHF rats compared with sham rats, indicating a potential functional loss of Kv channels in muscle afferent Aδ neurons. In in vivo experiments, adenoviral overexpression of Kv4.3 in lumbar DRGs for 1 wk attenuated the exaggerated EPR induced by muscle static contraction and the mechanoreflex by passive stretch without affecting the blunted cardiovascular response to hindlimb arterial injection of capsaicin in CHF rats. These data suggest that Kv channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in CHF.NEW & NOTEWORTHY The primary finding of this manuscript is that voltage-gated potassium (Kv) channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in chronic heart failure (CHF). We propose that manipulation of Kv channels in DRG neurons could be considered as a potential new approach to reduce the exaggerated sympathoexcitation and to improve exercise intolerance in CHF, which can ultimately facilitate an improved quality of life and reduce mortality.
Collapse
Affiliation(s)
- Juan Hong
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shubin Fu
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska.,College of Animal Science and Technology, Southwest University, Chongqing, People's Republic of China
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yanhui Cai
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Han-Jun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
9
|
Grassi G, Mancia G, Esler M. CENTRAL AND PERIPHERAL SYMPATHETIC ACTIVATION IN HEART FAILURE. Cardiovasc Res 2021; 118:1857-1871. [PMID: 34240147 DOI: 10.1093/cvr/cvab222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/02/2021] [Indexed: 11/12/2022] Open
Abstract
The sympathetic nervous system overdrive occurring in heart failure has been reported since more than half a century. Refinements in the methodological approaches to assess human sympathetic neural function have allowed during recent years to better define various aspects related to the neuroadrenergic alteration. These include 1) the different participation of the individual regional sympathetic cardiovascular districts at the process, 2) the role of the central nervous system in determining the neuroadrenergic overdrive, 3) the involvement of baroreflex, cardiopulmonary reflex and chemoreflex mechanisms in the phoenomenon, which is also closely linked to inflammation and the immune reaction, 4) the relationships with the severity of the disease, its ischaemic or idiopathic nature and the preserved or reduced left ventricular ejection fraction and 5) the adverse functional and structural impact of the sympathetic activation on cardiovascular organs, such as the brain, the heart and the kidneys. Information have been also gained on the active role exerted by the sympathetic activation on the disease outcome and its potential relevance as target of the therapeutic interventions based on non-pharmacological, pharmacological and invasive approaches, including the renal denervation, the splanchnic sympathetic nerve ablation and the carotid baroreflex stimulation. The still undefined aspects of the neurogenic alterations and the unmet goals of the therapeutic approach having the sympathetic activation as a target of the intervention will be finally mentioned.
Collapse
Affiliation(s)
- Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca
| | - Giuseppe Mancia
- Policlinico di Monza and University Milano-Bicocca, Milan, Italy
| | - Murray Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
10
|
Butenas ALE, Rollins KS, Williams AC, Parr SK, Hammond ST, Ade CJ, Hageman KS, Musch TI, Copp SW. Exaggerated sympathetic and cardiovascular responses to dynamic mechanoreflex activation in rats with heart failure: Role of endoperoxide 4 and thromboxane A 2 receptors. Auton Neurosci 2021; 232:102784. [PMID: 33610008 DOI: 10.1016/j.autneu.2021.102784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
The primary purpose of this investigation was to determine the role played by endoperoxide 4 receptors (EP4-R) and thromboxane A2 receptors (TxA2-R) during isolated dynamic muscle mechanoreflex activation in rats with heart failure with reduced ejection fraction (HF-rEF) and sham-operated healthy controls. We found that injection of the EP4-R antagonist L-161,982 (1 μg) into the arterial supply of the hindlimb had no effect on the peak pressor response to dynamic hindlimb muscle stretch in HF-rEF (n = 6, peak ∆MAP pre: 27 ± 7; post: 27 ± 4 mm Hg; P = 0.99) or sham (n = 6, peak ∆MAP pre: 15 ± 3; post: 13 ± 3 mm Hg; P = 0.67) rats. In contrast, injection of the TxA2-R antagonist daltroban (80 μg) into the arterial supply of the hindlimb reduced the pressor response to dynamic hindlimb muscle stretch in HF-rEF (n = 11, peak ∆MAP pre: 28 ± 4; post: 16 ± 2 mm Hg; P = 0.02) but not sham (n = 8, peak ∆MAP pre: 17 ± 3; post: 16 ± 3; P = 0.84) rats. Our data suggest that TxA2-Rs on thin fibre muscle afferents contribute to the exaggerated mechanoreflex in HF-rEF.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Korynne S Rollins
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Auni C Williams
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Shannon K Parr
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Stephen T Hammond
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States of America
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States of America
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America.
| |
Collapse
|
11
|
Qin L, Li J. Nerve growth factor in muscle afferent neurons of peripheral artery disease and autonomic function. Neural Regen Res 2021; 16:694-699. [PMID: 33063730 PMCID: PMC8067946 DOI: 10.4103/1673-5374.293132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In peripheral artery disease patients, the blood supply directed to the lower limbs is reduced. This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs. The painful perception is induced and exaggerate during walking, and is relieved by rest. This symptom is termed by intermittent claudication. The limb ischemia also amplifies autonomic responses during exercise. In the process of pain and autonomic responses originating exercising muscle, a number of receptors in afferent nerves sense ischemic changes and send signals to the central nervous system leading to autonomic responses. This review integrates recent study results in terms of perspectives including how nerve growth factor affects muscle sensory nerve receptors in peripheral artery disease and thereby alters responses of sympathetic nerve activity and blood pressure to active muscle. For the sensory nerve receptors, we emphasize the role played by transient receptor potential vanilloid type 1, purinergic P2X purinoceptor 3 and acid sensing ion channel subtype 3 in amplified sympathetic nerve activity responses in peripheral artery disease.
Collapse
Affiliation(s)
- Lu Qin
- Heart & Vascular Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Jianhua Li
- Heart & Vascular Institute, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
12
|
Smith JR, Joyner MJ, Curry TB, Borlaug BA, Keller-Ross ML, Van Iterson EH, Olson TP. Locomotor muscle group III/IV afferents constrain stroke volume and contribute to exercise intolerance in human heart failure. J Physiol 2020; 598:5379-5390. [PMID: 32886795 PMCID: PMC10039366 DOI: 10.1113/jp280333] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Heart failure patients with reduced ejection fraction (HFrEF) exhibit severe limitations in exercise capacity ( V̇O2 peak). One of the primary peripheral mechanisms suggested to underlie exercise intolerance in HFrEF is excessive locomotor muscle group III/IV afferent feedback; however, this has never been investigated in human heart failure. HFrEF patients and controls performed an incremental exercise test to volitional exhaustion to determine V̇O2 peak with lumbar intrathecal fentanyl or placebo. During exercise, cardiac output, leg blood flow and radial artery and femoral venous blood gases were measured. With fentanyl, compared with placebo, patients with HFrEF achieved a higher peak workload, V̇O2 peak, cardiac output, stroke volume and leg blood flow. These findings suggest that locomotor muscle group III/IV afferent feedback in HFrEF leads to increased systemic vascular resistance, which constrains stroke volume, cardiac output and O2 delivery thereby impairing V̇O2 peak and thus exercise capacity. ABSTRACT To better understand the underlying mechanisms contributing to exercise limitation in heart failure with reduced ejection fraction (HFrEF), we investigated the influence of locomotor muscle group III/IV afferent inhibition via lumbar intrathecal fentanyl on peak exercise capacity ( V̇O2 peak) and the contributory mechanisms. Eleven HFrEF patients and eight healthy matched controls were recruited. The participants performed an incremental exercise test to volitional exhaustion to determine V̇O2 peak with lumbar intrathecal fentanyl or placebo. During exercise, cardiac output and leg blood flow ( Q̇L ) were measured via open-circuit acetylene wash-in technique and constant infusion thermodilution, respectively. Radial artery and femoral venous blood gases were measured. V̇O2 peak was 15% greater with fentanyl compared with placebo for HFrEF (P < 0.01), while no different in the controls. During peak exercise with fentanyl, cardiac output was 12% greater in HFrEF secondary to significant decreases in systemic vascular resistance and increases in stroke volume compared with placebo (all, P < 0.01). From placebo to fentanyl, leg V̇O2 , Q̇L and O2 delivery were greater for HFrEF during peak exercise (all, P < 0.01), but not control. These findings indicate that locomotor muscle group III/IV afferent feedback in patients with HFrEF leads to increased systemic vascular resistance, which constrains stroke volume, cardiac output and O2 delivery, thereby impairing V̇O2 peak and thus exercise capacity. These findings have important clinical implications as V̇O2 peak is highly predictive of morbidity and mortality in HF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, MN, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, MN, USA
| | - Timothy B Curry
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, MN, USA
| | | | - Manda L Keller-Ross
- Division of Physical Therapy and Rehabilitation Sciences, University of Minnesota, MN, USA
| | - Erik H Van Iterson
- Section of Preventative Cardiology and Rehabilitation, Cleveland Clinic, MN, USA
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, MN, USA
| |
Collapse
|
13
|
Cordeiro ALL, Mascarenhas HDC, Landerson L, Araújo JDS, Borges DL, Melo TAD, Guimarães A, Petto J. Inspiratory Muscle Training Based on Anaerobic Threshold on the Functional Capacity of Patients After Coronary Artery Bypass Grafting: Clinical Trial. Braz J Cardiovasc Surg 2020; 35:942-949. [PMID: 33113311 PMCID: PMC7731849 DOI: 10.21470/1678-9741-2019-0448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Coronary artery bypass grafting (CABG) is associated with reduced ventilatory muscle strength and consequent worsening of functional capacity (FC). Inspiratory Muscle Training (IMT) can be indicated, but there is still a lack of knowledge about the use of the anaerobic threshold (AT) as a basis for prescription. The objective of this study is to evaluate if IMT based on AT modifies FC and inspiratory muscle strength of patients submitted to CABG. METHODS This is a clinical trial. On the first postoperative day, the patients were divided into two groups: the conventional group (IMT-C), which performed IMT based on 40% of maximal inspiratory pressure (MIP), and the IMT-AT group, which performed IMT based on AT. All patients underwent preoperative and postoperative assessment of MIP and performed a six-minute walk test (6MWT). RESULTS Forty-two patients were evaluated, 21 in each group. Their mean age was 61.4±10 years and 27 (64%) of them were male. There was a reduction of inspiratory muscle strength with a delta of 23±13 cmH2O in the IMT-C group vs. 11±10 cmH2O in the IMT-AT group (P<0.01) and of the walking distance with a delta of 94±34 meters in the IMT-C group vs. 57±30 meters in the IMT-AT group (P=0.04). CONCLUSION IMT based on AT minimized the loss of FC and inspiratory muscle strength of patients submitted to CABG.
Collapse
Affiliation(s)
- André Luiz Lisboa Cordeiro
- Department of Human Medicine and Health, Escola Bahiana de Medicina e Saúde Pública, Unidade Acadêmica Brotas, Salvador, Bahia, Brazil.,Department of Physiotherapy, Faculdade Nobre de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Hayssa de Cássia Mascarenhas
- Department of Human Medicine and Health, Escola Bahiana de Medicina e Saúde Pública, Unidade Acadêmica Brotas, Salvador, Bahia, Brazil.,Department of Physiotherapy, Faculdade Nobre de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Lucas Landerson
- Department of Physiotherapy, Faculdade Nobre de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Jaclene da Silva Araújo
- Department of Physiotherapy, Faculdade Nobre de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Daniel Lago Borges
- Department of Physiotherapy, Cardiological Intensive Care Unit, Hospital Universitário da Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | | | - André Guimarães
- Department of Cardiovascular Surgery, Instituto Nobre de Cardiologia, Feira de Santana, Bahia, Brazil
| | - Jefferson Petto
- Department of Human Medicine and Health, Escola Bahiana de Medicina e Saúde Pública, Unidade Acadêmica Brotas, Salvador, Bahia, Brazil.,Department of Physiotherapy, Faculdade Adventista da Bahia, Cachoeira, Bahia, Brazil.,Department of Physiotherapy, Faculdade Social da Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
14
|
Lalande S, Cross TJ, Keller-Ross ML, Morris NR, Johnson BD, Taylor BJ. Exercise Intolerance in Heart Failure: Central Role for the Pulmonary System. Exerc Sport Sci Rev 2020; 48:11-19. [PMID: 31453845 DOI: 10.1249/jes.0000000000000208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We propose that abnormalities of the pulmonary system contribute significantly to the exertional dyspnea and exercise intolerance observed in patients with chronic heart failure. Interventions designed to address the deleterious pulmonary manifestations of heart failure may, therefore, yield promising improvements in exercise tolerance in this population.
Collapse
Affiliation(s)
- Sophie Lalande
- Department of Kinesiology and Heath Education, The University of Texas at Austin, Austin, TX
| | | | - Manda L Keller-Ross
- Divisions of Physical Therapy and Rehabilitation Sciences, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN
| | - Norman R Morris
- School of Physiotherapy and Exercise Science, Griffith University, Queensland, Australia
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Bryan J Taylor
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Smith JR, Hart CR, Ramos PA, Akinsanya JG, Lanza IR, Joyner MJ, Curry TB, Olson TP. Metabo- and mechanoreceptor expression in human heart failure: Relationships with the locomotor muscle afferent influence on exercise responses. Exp Physiol 2020; 105:809-818. [PMID: 32105387 DOI: 10.1113/ep088353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? How do locomotor muscle metabo- and mechanoreceptor expression compare in heart failure patients and controls? Do relationships exist between the protein expression and cardiopulmonary responses during exercise with locomotor muscle neural afferent feedback inhibition? What is the main finding and its importance? Heart failure patients exhibited greater protein expression of transient receptor potential vanilloid type 1 and cyclooxygenase-2 than controls. These findings are important as they identify receptors that may underlie the augmented locomotor muscle neural afferent feedback in heart failure. ABSTRACT Heart failure patients with reduced ejection fraction (HFrEF) exhibit abnormal locomotor group III/IV afferent feedback during exercise; however, the underlying mechanisms are unclear. Therefore, the purpose of this study was to determine (1) metabo- and mechanoreceptor expression in HFrEF and controls and (2) relationships between receptor expression and changes in cardiopulmonary responses with afferent inhibition. Ten controls and six HFrEF performed 5 min of cycling exercise at 65% peak workload with lumbar intrathecal fentanyl (FENT) or placebo (PLA). Arterial blood pressure and catecholamines were measured via radial artery catheter. A vastus lateralis muscle biopsy was performed to quantify cyclooxygenase-2 (COX-2), purinergic 2X3 (P2X3 ), transient receptor potential vanilloid type 1 (TRPV 1), acid-sensing ion channel 3 (ASIC3 ), Piezo 1 and Piezo 2 protein expression. TRPV 1 and COX-2 protein expression was greater in HFrEF than controls (both P < 0.04), while P2X3 , ASIC3 , and Piezo 1 and 2 were not different between groups (all P > 0.16). In all participants, COX-2 protein expression was related to the percentage change in ventilation (r = -0.66) and mean arterial pressure (MAP) (r = -0.82) (both P < 0.01) with FENT (relative to PLA) during exercise. In controls, TRPV 1 protein expression was related to the percentage change in systolic blood pressure (r = -0.77, P = 0.02) and MAP (r = -0.72, P = 0.03) with FENT (relative to PLA) during exercise. TRPV 1 and COX-2 protein levels are elevated in HFrEF compared to controls. These findings suggest that the elevated TRPV 1 and COX-2 expression may contribute to the exaggerated locomotor muscle afferent feedback during cycling exercise in HFrEF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Corey R Hart
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Paola A Ramos
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | - Ian R Lanza
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Angius L, Crisafulli A. Exercise intolerance and fatigue in chronic heart failure: is there a role for group III/IV afferent feedback? Eur J Prev Cardiol 2020; 27:1862-1872. [PMID: 32046526 PMCID: PMC7672669 DOI: 10.1177/2047487320906919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exercise intolerance and early fatiguability are hallmark symptoms of chronic heart failure. While the malfunction of the heart is certainly the leading cause of chronic heart failure, the patho-physiological mechanisms of exercise intolerance in these patients are more complex, multifactorial and only partially understood. Some evidence points towards a potential role of an exaggerated afferent feedback from group III/IV muscle afferents in the genesis of these symptoms. Overactivity of feedback from these muscle afferents may cause exercise intolerance with a double action: by inducing cardiovascular dysregulation, by reducing motor output and by facilitating the development of central and peripheral fatigue during exercise. Importantly, physical inactivity appears to affect the progression of the syndrome negatively, while physical training can partially counteract this condition. In the present review, the role played by group III/IV afferent feedback in cardiovascular regulation during exercise and exercise-induced muscle fatigue of healthy people and their potential role in inducing exercise intolerance in chronic heart failure patients will be summarised.
Collapse
Affiliation(s)
- Luca Angius
- Faculty of Health and Life Sciences, Sport, Exercise and Rehabilitation, Northumbria University, UK
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Laboratory, University of Cagliari, Italy
| |
Collapse
|
17
|
Cristina-Oliveira M, Meireles K, Spranger MD, O'Leary DS, Roschel H, Peçanha T. Clinical safety of blood flow-restricted training? A comprehensive review of altered muscle metaboreflex in cardiovascular disease during ischemic exercise. Am J Physiol Heart Circ Physiol 2019; 318:H90-H109. [PMID: 31702969 DOI: 10.1152/ajpheart.00468.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood flow restriction training (BFRT) is an increasingly widespread method of exercise that involves imposed restriction of blood flow to the exercising muscle. Blood flow restriction is achieved by inflating a pneumatic pressure cuff (or a tourniquet) positioned proximal to the exercising muscle before, and during, the bout of exercise (i.e., ischemic exercise). Low-intensity BFRT with resistance training promotes comparable increases in muscle mass and strength observed during high-intensity exercise without blood flow restriction. BFRT has expanded into the clinical research setting as a potential therapeutic approach to treat functionally impaired individuals, such as the elderly, and patients with orthopedic and cardiovascular disease/conditions. However, questions regarding the safety of BFRT must be fully examined and addressed before the implementation of this exercise methodology in the clinical setting. In this respect, there is a general concern that BFRT may generate abnormal reflex-mediated cardiovascular responses. Indeed, the muscle metaboreflex is an ischemia-induced, sympathoexcitatory pressor reflex originating in skeletal muscle, and the present review synthesizes evidence that BFRT may elicit abnormal cardiovascular responses resulting from increased metaboreflex activation. Importantly, abnormal cardiovascular responses are more clearly evidenced in populations with increased cardiovascular risk (e.g., elderly and individuals with cardiovascular disease). The evidence provided in the present review draws into question the cardiovascular safety of BFRT, which clearly needs to be further investigated in future studies. This information will be paramount for the consideration of BFRT exercise implementation in clinical populations.
Collapse
Affiliation(s)
- Michelle Cristina-Oliveira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Kamila Meireles
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Tiago Peçanha
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Bruce RM, Jolley C, White MJ. Control of exercise hyperpnoea: Contributions from thin-fibre skeletal muscle afferents. Exp Physiol 2019; 104:1605-1621. [PMID: 31429500 DOI: 10.1113/ep087649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? In this review, we examine the evidence for control mechanisms underlying exercise hyperpnoea, giving attention to the feedback from thin-fibre skeletal muscle afferents, and highlight the frequently conflicting findings and difficulties encountered by researchers using a variety of experimental models. What advances does it highlight? There has been a recent resurgence of interest in the role of skeletal muscle afferent involvement, not only as a mechanism of healthy exercise hyperpnoea but also in the manifestation of breathlessness and exercise intolerance in chronic disease. ABSTRACT The ventilatory response to dynamic submaximal exercise is immediate and proportional to metabolic rate, which maintains isocapnia. How these respiratory responses are controlled remains poorly understood, given that the most tightly controlled variable (arterial partial pressure of CO2 /H+ ) provides no error signal for arterial chemoreceptors to trigger reflex increases in ventilation. This review discusses evidence for different postulated control mechanisms, with a focus on the feedback from group III/IV skeletal muscle mechanosensitive and metabosensitive afferents. This concept is attractive, because the stimulation of muscle mechanoreceptors might account for the immediate increase in ventilation at the onset of exercise, and signals from metaboreceptors might be proportional to metabolic rate. A variety of experimental models have been used to establish the contribution of thin-fibre muscle afferents in ventilatory control during exercise, with equivocal results. The inhibition of afferent feedback via the application of lumbar intrathecal fentanyl during exercise suppresses ventilation, which provides the most compelling supportive evidence to date. However, stimulation of afferent feedback at rest has no consistent effect on respiratory output. However, evidence is emerging for synergistic interactions between muscle afferent feedback and other stimulatory inputs to the central respiratory neuronal pool. These seemingly hyperadditive effects might explain the conflicting findings encountered when using different experimental models. We also discuss the increasing evidence that patients with certain chronic diseases exhibit exaggerated muscle afferent activation during exercise, resulting in enhanced cardiorespiratory responses. This might provide a neural link between the well-established limb muscle dysfunction and the associated exercise intolerance and exertional dyspnoea, which might offer therapeutic targets for these patients.
Collapse
Affiliation(s)
- Richard M Bruce
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Sciences, King's College London, London, UK
| | - Caroline Jolley
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Sciences, King's College London, London, UK
| | - Michael J White
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Increased Brain-Derived Neurotrophic Factor in Lumbar Dorsal Root Ganglia Contributes to the Enhanced Exercise Pressor Reflex in Heart Failure. Int J Mol Sci 2019; 20:ijms20061480. [PMID: 30909643 PMCID: PMC6471760 DOI: 10.3390/ijms20061480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
An exaggerated exercise pressor reflex (EPR) is associated with excessive sympatho-excitation and exercise intolerance in the chronic heart failure (CHF) state. We hypothesized that brain-derived neurotrophic factor (BDNF) causes the exaggerated EPR via sensitizing muscle mechanosensitive afferents in CHF. Increased BDNF expression was observed in lumbar dorsal root ganglia (DRGs) from CHF rats compared to sham rats. Immunofluorescence data showed a greater increase in the number of BDNF-positive neurons in medium and large-sized DRG subpopulations from CHF rats. Patch clamp data showed that incubation with BDNF for 4–6 h, significantly decreased the current threshold-inducing action potential (AP), threshold potential and the number of APs during current injection in Dil-labeled isolectin B4 (IB4)-negative medium-sized DRG neurons (mainly mechano-sensitive) from sham rats. Compared to sham rats, CHF rats exhibited an increased number of APs during current injection in the same DRG subpopulation, which was significantly attenuated by 4-h incubation with anti-BDNF. Finally, chronic epidural delivery of anti-BDNF attenuated the exaggerated pressor response to either static contraction or passive stretch in CHF rats whereas this intervention had no effect on the pressor response to hindlimb arterial injection of capsaicin. These data suggest that increased BDNF in lumbar DRGs contributes to the exaggerated EPR in CHF.
Collapse
|
20
|
Hotta N, Kubo A, Mizumura K. Chondroitin sulfate attenuates acid-induced augmentation of the mechanical response in rat thin-fiber muscle afferents in vitro. J Appl Physiol (1985) 2019; 126:1160-1170. [PMID: 30763166 DOI: 10.1152/japplphysiol.00633.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exercise-induced tissue acidosis augments the exercise pressor reflex (EPR). One reason for this may be acid-induced mechanical sensitization in thin-fiber muscle afferents, which is presumably related to EPR. Acid-induced sensitization to mechanical stimulation has been reported to be attenuated in cultured primary-sensory neurons by exogenous chondroitin sulfate (CS) and chondroitinase ABC, suggesting that the extracellular matrix CS proteoglycan is involved in this sensitization. The purpose of this study was to clarify whether acid-induced sensitization of the mechanical response in the thin-fiber muscle afferents is also suppressed by exogenous CS and chondroitinase ABC using a single-fiber recording technique. A total of 88 thin fibers (conduction velocity <15.0 m/s) dissected from 86 male Sprague-Dawley rats were identified. A buffer solution at pH 6.2 lowered their mechanical threshold and increased their response magnitude. Five minutes after CS (0.3 and 0.03%) injection near the receptive field, these acid-induced changes were significantly reduced. No significant difference in attenuation was detected between the two CS concentrations. Chondroitinase ABC also significantly attenuated this sensitization. The control solution (0% CS) did not significantly alter the mechanical sensitization. Furthermore, no significant differences were detected in this sensitization and CS-based suppression between fibers with and without acid-sensitive channels [transient receptor potential vanilloid 1 (TRPV1), acid-sensing ion channel (ASIC)]. In addition, this mechanical sensitization was not changed by TRPV1 and ASIC antagonists, suggesting that these ion channels are not involved in the acid-induced mechanical sensitization of muscle thin-fiber afferents. In conclusion, CS administration has a potential to attenuate the acidosis-induced exaggeration of muscle mechanoreflex. NEW & NOTEWORTHY We found that exogenous chondroitin sulfate attenuated acid-induced mechanical sensitization in thin-fiber muscle afferents that play a crucial role in the exercise pressor reflex. This finding suggests that extracellular matrix chondroitin sulfate proteoglycans may be involved in the mechanism of acid-induced mechanical sensitization and that daily intake of chondroitin sulfate may potentially attenuate this amplification of muscle mechanoreflex and therefore reduce muscle pain related to acidic muscle conditions.
Collapse
Affiliation(s)
- Norio Hotta
- College of Life and Health Sciences, Chubu University , Aichi , Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry , Tokyo , Japan
| | - Kazue Mizumura
- College of Life and Health Sciences, Chubu University , Aichi , Japan.,Department of Physiology, Nihon University School of Dentistry , Tokyo , Japan
| |
Collapse
|
21
|
Drew RC, Blaha CA, Herr MD, Cui R, Sinoway LI. Muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction in healthy humans. Am J Physiol Regul Integr Comp Physiol 2017; 312:R956-R964. [PMID: 28381456 DOI: 10.1152/ajpregu.00322.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/17/2017] [Accepted: 03/30/2017] [Indexed: 12/27/2022]
Abstract
Reflex renal vasoconstriction occurs during exercise, and renal vasoconstriction in response to upper-limb muscle mechanoreflex activation has been documented. However, the renal vasoconstrictor response to muscle mechanoreflex activation originating from lower limbs, with and without local metabolite accumulation, has not been assessed. Eleven healthy young subjects (26 ± 1 yr; 5 men) underwent two trials involving 3-min passive calf muscle stretch (mechanoreflex) during 7.5-min lower-limb circulatory occlusion (CO). In one trial, 1.5-min 70% maximal voluntary contraction isometric calf exercise preceded CO to accumulate metabolites during CO and stretch (mechanoreflex and metaboreflex; 70% trial). A control trial involved no exercise before CO (mechanoreflex alone; 0% trial). Beat-to-beat renal blood flow velocity (RBFV; Doppler ultrasound), mean arterial blood pressure (MAP; photoplethysmographic finger cuff), and heart rate (electrocardiogram) were recorded. Renal vascular resistance (RVR), an index of renal vasoconstriction, was calculated as MAP/RBFV. All baseline cardiovascular variables were similar between trials. Stretch increased RVR and decreased RBFV in both trials (change from CO with stretch: RVR - 0% trial = Δ 10 ± 2%, 70% trial = Δ 7 ± 3%; RBFV - 0% trial = Δ -3.8 ± 1.1 cm/s, 70% trial = Δ -2.7 ± 1.5 cm/s; P < 0.05 for RVR and RBFV). These stretch-induced changes were of similar magnitudes in both trials, e.g., with and without local metabolite accumulation, as well as when thromboxane production was inhibited. These findings suggest that muscle mechanoreflex activation via passive calf stretch causes renal vasoconstriction, with and without muscle metaboreflex activation, in healthy humans.
Collapse
Affiliation(s)
- Rachel C Drew
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Cheryl A Blaha
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Michael D Herr
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Ruda Cui
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
22
|
Li J, Cui J. Purinergic P2X Receptors and Heightened Exercise Pressor Reflex in Peripheral Artery Disease. INTERNAL MEDICINE REVIEW (WASHINGTON, D.C. : ONLINE) 2016; 2. [PMID: 29862378 DOI: 10.18103/imr.v2i10.259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arterial blood pressure (BP) and vasoconstriction regulated by sympathetic nerve activity (SNA) are heightened during exercise in patients with peripheral artery disease (PAD). The exercise pressor reflex is considered as a neural mechanism responsible for the exaggerated autonomic responses to exercise in PAD. A series of studies have employed a rat model of PAD to examine signal pathways at receptor and cellular levels by which the exercise pressor reflex is amplified. This review will summarize results obtained from recent human and animal studies with respect to contribution of muscle afferents to augmented SNA and BP responses in PAD. The role played by adenosine triphosphate (ATP) and ATP sensitive purinergic P2X receptors will be emphasized.
Collapse
Affiliation(s)
- Jianhua Li
- Heart & Vascular Institute, The Penn State University College of Medicine, Hershey, PA 17033
| | - Jian Cui
- Heart & Vascular Institute, The Penn State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
23
|
Lin AM, Liao P, Millson EC, Quyyumi AA, Park J. Tetrahydrobiopterin ameliorates the exaggerated exercise pressor response in patients with chronic kidney disease: a randomized controlled trial. Am J Physiol Renal Physiol 2016; 310:F1016-25. [PMID: 26962106 PMCID: PMC5002055 DOI: 10.1152/ajprenal.00527.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/28/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic kidney disease (CKD) patients have an exaggerated increase in blood pressure (BP) during rhythmic handgrip exercise (RHG 20%) and static handgrip exercise (SHG 30%). Nitric oxide levels increase during exercise and help prevent excessive hypertension by both increasing vasodilation and reducing sympathetic nerve activity (SNA). Therefore, we hypothesized that tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthase, would ameliorate the exaggerated exercise pressor response in CKD patients. In a randomized, double-blinded, placebo-controlled trial, we tested the effects of 12 wk of sapropterin dihydrochloride (6R-BH4; n = 18) versus placebo (n = 14) treatement on BP and muscle SNA (MSNA) responses during RHG 20% and SHG 30% in CKD patients. The 6R-BH4-treated group had a significantly lower systolic BP (+6 ± 1 vs. +13 ± 2 mmHg, P = 0.002) and mean arterial pressure response (+5 ± 1 vs. +10 ± 2 mmHg, P = 0.020) during RHG 20% and a significantly lower systolic BP response (+19 ± 3 vs. +28 ± 3 mmHg, P = 0.043) during SHG 30%. Under baseline conditions, there was no significant difference in MSNA responses between the groups; however, when the BP response during exercise was equalized between the groups using nitroprusside, the 6R-BH4-treated group had a significantly lower MSNA response during RHG 20% (6R-BH4 vs. placebo, +12 ± 1 vs. +21 ± 2 bursts/min, P = 0.004) but not during SHG 30%. These findings suggest that 6R-BH4 ameliorates the augmented BP response during RHG 20% and SHG 30% in CKD patients. A reduction in reflex activation of SNA may contribute to the decreased exercise pressor response during RHG 20% but not during SHG 30% in CKD patients.
Collapse
Affiliation(s)
- Ann M Lin
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Research Service Line, Department of Veterans Affairs Medical Center, Decatur, Georgia
| | - Peizhou Liao
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Erin C Millson
- Clinical Research Network, Atlanta Clinical and Translational Science Institute, Emory University School of Medicine, Atlanta, Georgia; and
| | - Arshed A Quyyumi
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Research Service Line, Department of Veterans Affairs Medical Center, Decatur, Georgia;
| |
Collapse
|
24
|
Xing J, Lu J, Li J. ASIC3 contributes to the blunted muscle metaboreflex in heart failure. Med Sci Sports Exerc 2016; 47:257-63. [PMID: 24983337 DOI: 10.1249/mss.0000000000000415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION During exercise, the sympathetic nervous system is activated and blood pressure and HR increase. In heart failure (HF), the muscle metaboreceptor contribution to sympathetic outflow is attenuated and the mechanoreceptor contribution is accentuated. Previous studies suggest that lactic acid stimulates acid-sensing channel subtype 3 (ASIC3), inducing a neurally mediated pressor response. Thus, we hypothesized that the pressor response to ASIC3 stimulation is smaller in HF rats because of attenuation in expression and function of ASIC3 in sensory nerves. METHODS Lactic acid was injected into the arterial blood supply of the hind limb to stimulate ASIC3 in muscle afferent nerves and evoke muscle metaboreceptor response in control rats and HF rats. In addition, western blot analysis was used to examine expression of ASIC3 in dorsal root ganglion (DRG) and patch clamp to examine current response with ASIC3 activation. RESULTS Lactic acid (4 μmol·kg) increased mean arterial pressure by 28 ± 5 mm Hg in controls (n = 6) but only by 16 ± 3 mm Hg (P < 0.05 vs control) in HF (n = 8). In addition, HF decreased the protein levels of ASIC3 in DRG (optical density, 1.03 ± 0.02 in control, vs 0.79 ± 0.03 in HF; P < 0.05; n = 6 in each group). The peak current amplitude of dorsal DRG neuron in response to ASIC3 stimulation is smaller in HF rats than that in control rats. CONCLUSIONS Compared with those in controls, cardiovascular responses to lactic acid administered into the hind limb muscles are blunted in HF rats owing to attenuated ASIC3. This suggests that ASIC3 plays a role in engagement in the attenuated metaboreceptor component of the exercise pressor reflex in HF.
Collapse
Affiliation(s)
- Jihong Xing
- 1Department of Emergency Medicine, The First Hospital of Jilin University, Norman Bethune College of Medicine, Jilin University, Changchun, CHINA; and 2Heart & Vascular Institute and Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| | | | | |
Collapse
|
25
|
Ren C, Gan X, Wu J, Qiu CY, Hu WP. Enhancement of acid-sensing ion channel activity by metabotropic P2Y UTP receptors in primary sensory neurons. Purinergic Signal 2015; 12:69-78. [PMID: 26538146 DOI: 10.1007/s11302-015-9479-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022] Open
Abstract
Peripheral purinergic signaling plays an important role in nociception. Increasing evidence suggests that metabotropic P2Y receptors are also involved, but little is known about the underlying mechanism. Herein, we report that selective P2Y receptor agonist uridine 5'-triphosphate (UTP) can exert an enhancing effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglia (DRG) neurons. First, UTP dose-dependently increased the amplitude of ASIC currents. UTP also shifted the concentration-response curve for proton upwards, with a 56.6 ± 6.4% increase of the maximal current response to proton. Second, UTP potentiation of proton-gated currents can be mimicked by adenosine 5'-triphosphate (ATP), but not by P2Y1 receptor agonist ADP. Potentiation of UTP was blocked by P2Y receptor antagonist suramin and by inhibition of intracellular G protein, phospholipase C (PLC), protein kinase C (PKC), or protein interacting with C-kinase 1 (PICK1) signaling. Third, UTP altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, UTP dose-dependently exacerbated nociceptive responses to injection of acetic acid in rats. These results suggest that UTP enhanced ASIC-mediated currents and nociceptive responses, which reveal a novel peripheral mechanism underlying UTP-sensitive P2Y2 receptor involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons.
Collapse
Affiliation(s)
- Cuixia Ren
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Xiong Gan
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Jing Wu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Chun-Yu Qiu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Wang-Ping Hu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
26
|
Gibbons DD, Kutschke WJ, Weiss RM, Benson CJ. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle. J Physiol 2015; 593:4575-87. [PMID: 26314284 DOI: 10.1113/jp270690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022] Open
Abstract
Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure.
Collapse
Affiliation(s)
- David D Gibbons
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,The Department of Veterans Medical Center, Iowa City, IA, 52242, USA
| | - William J Kutschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Robert M Weiss
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Christopher J Benson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,The Department of Veterans Medical Center, Iowa City, IA, 52242, USA
| |
Collapse
|
27
|
The effect of losartan on differential reflex control of sympathetic nerve activity in chronic kidney disease. J Hypertens 2015; 33:1249-60. [DOI: 10.1097/hjh.0000000000000535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Abstract
There are nineteen different receptor proteins for adenosine, adenine and uridine nucleotides, and nucleotide sugars, belonging to three families of G protein-coupled adenosine and P2Y receptors, and ionotropic P2X receptors. The majority are functionally expressed in blood vessels, as purinergic receptors in perivascular nerves, smooth muscle and endothelial cells, and roles in regulation of vascular contractility, immune function and growth have been identified. The endogenous ligands for purine receptors, ATP, ADP, UTP, UDP and adenosine, can be released from different cell types within the vasculature, as well as from circulating blood cells, including erythrocytes and platelets. Many purine receptors can be activated by two or more of the endogenous ligands. Further complexity arises because of interconversion between ligands, notably adenosine formation from the metabolism of ATP, leading to complex integrated responses through activation of different subtypes of purine receptors. The enzymes responsible for this conversion, ectonucleotidases, are present on the surface of smooth muscle and endothelial cells, and may be coreleased with neurotransmitters from nerves. What selectivity there is for the actions of purines/pyrimidines comes from differential expression of their receptors within the vasculature. P2X1 receptors mediate the vasocontractile actions of ATP released as a neurotransmitter with noradrenaline (NA) from sympathetic perivascular nerves, and are located on the vascular smooth muscle adjacent to the nerve varicosities, the sites of neurotransmitter release. The relative contribution of ATP and NA as functional cotransmitters varies with species, type and size of blood vessel, neuronal firing pattern, the tone/pressure of the blood vessel, and in ageing and disease. ATP is also a neurotransmitter in non-adrenergic non-cholinergic perivascular nerves and mediates vasorelaxation via smooth muscle P2Y-like receptors. ATP and adenosine can act as neuromodulators, with the most robust evidence being for prejunctional inhibition of neurotransmission via A1 adenosine receptors, but also prejunctional excitation and inhibition of neurotransmission via P2X and P2Y receptors, respectively. P2Y2, P2Y4 and P2Y6 receptors expressed on the vascular smooth muscle are coupled to vasocontraction, and may have a role in pathophysiological conditions, when purines are released from damaged cells, or when there is damage to the protective barrier that is the endothelium. Adenosine is released during hypoxia to increase blood flow via vasodilator A2A and A2B receptors expressed on the endothelium and smooth muscle. ATP is released from endothelial cells during hypoxia and shear stress and can act at P2Y and P2X4 receptors expressed on the endothelium to increase local blood flow. Activation of endothelial purine receptors leads to the release of nitric oxide, hyperpolarising factors and prostacyclin, which inhibits platelet aggregation and thus ensures patent blood flow. Vascular purine receptors also regulate endothelial and smooth muscle growth, and inflammation, and thus are involved in the underlying processes of a number of cardiovascular diseases.
Collapse
Affiliation(s)
- Vera Ralevic
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| | - William R Dunn
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
29
|
Zucker IH, Schultz HD, Patel KP, Wang H. Modulation of angiotensin II signaling following exercise training in heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H781-91. [PMID: 25681422 PMCID: PMC4398865 DOI: 10.1152/ajpheart.00026.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Sympathetic activation is a consistent finding in the chronic heart failure (CHF) state. Current therapy for CHF targets the renin-angiotensin II (ANG II) and adrenergic systems. Angiotensin converting enzyme (ACE) inhibitors and ANG II receptor blockers are standard treatments along with β-adrenergic blockade. However, the mortality and morbidity of this disease is still extremely high, even with good medical management. Exercise training (ExT) is currently being used in many centers as an adjunctive therapy for CHF. Clinical studies have shown that ExT is a safe, effective, and inexpensive way to improve quality of life, work capacity, and longevity in patients with CHF. This review discusses the potential neural interactions between ANG II and sympatho-excitation in CHF and the modulation of this interaction by ExT. We briefly review the current understanding of the modulation of the angiotensin type 1 receptor in sympatho-excitatory areas of the brain and in the periphery (i.e., in the carotid body and skeletal muscle). We discuss possible cellular mechanisms by which ExT may impact the sympatho-excitatory process by reducing oxidative stress, increasing nitric oxide. and reducing ANG II. We also discuss the potential role of ACE2 and Ang 1-7 in the sympathetic response to ExT. Fruitful areas of further investigation are the role and mechanisms by which pre-sympathetic neuronal metabolic activity in response to individual bouts of exercise regulate redox mechanisms and discharge at rest in CHF and other sympatho-excitatory states.
Collapse
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hanjun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
30
|
Burnstock G, Pelleg A. Cardiac purinergic signalling in health and disease. Purinergic Signal 2015; 11:1-46. [PMID: 25527177 PMCID: PMC4336308 DOI: 10.1007/s11302-014-9436-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/09/2023] Open
Abstract
This review is a historical account about purinergic signalling in the heart, for readers to see how ideas and understanding have changed as new experimental results were published. Initially, the focus is on the nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory nerves, as well as in intracardiac neurons. Control of the heart by centers in the brain and vagal cardiovascular reflexes involving purines are also discussed. The actions of adenine nucleotides and nucleosides on cardiomyocytes, atrioventricular and sinoatrial nodes, cardiac fibroblasts, and coronary blood vessels are described. Cardiac release and degradation of ATP are also described. Finally, the involvement of purinergic signalling and its therapeutic potential in cardiac pathophysiology is reviewed, including acute and chronic heart failure, ischemia, infarction, arrhythmias, cardiomyopathy, syncope, hypertrophy, coronary artery disease, angina, diabetic cardiomyopathy, as well as heart transplantation and coronary bypass grafts.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
31
|
Abboud FM, Benson CJ. ASICs and cardiovascular homeostasis. Neuropharmacology 2015; 94:87-98. [PMID: 25592213 DOI: 10.1016/j.neuropharm.2014.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 12/28/2022]
Abstract
In this review we address primarily the role of ASICs in determining sensory signals from arterial baroreceptors, peripheral chemoreceptors, and cardiopulmonary and somatic afferents. Alterations in these sensory signals during acute cardiovascular stresses result in changes in sympathetic and parasympathetic activities that restore cardiovascular homeostasis. In pathological states, however, chronic dysfunctions of these afferents result in serious sympatho-vagal imbalances with significant increases in mortality and morbidity. We identified a role for ASIC2 in the mechano-sensitivity of aortic baroreceptors and of ASIC3 in the pH sensitivity of carotid bodies. In spontaneously hypertensive rats, we reported decreased expression of ASIC2 in nodose ganglia neurons and overexpression of ASIC3 in carotid bodies. This reciprocal expression of ASIC2 and ASIC3 results in reciprocal changes in sensory sensitivity of baro- and chemoreceptors and a consequential synergistic exaggeration sympathetic nerve activity. A similar reciprocal sensory dysautonomia prevails in heart failure and increases the risk of mortality. There is also evidence that ASIC heteromers in skeletal muscle afferents contribute significantly to the exercise pressor reflex. In cardiac muscle afferents of the dorsal root ganglia, they contribute to nociception and to the detrimental sympathetic activation during ischemia. Finally, we report that an inhibitory influence of ASIC2-mediated baroreceptor activity suppresses the sympatho-excitatory reflexes of the chemoreceptors and skeletal muscle afferents, as well as the ASIC1a-mediated excitation of central neurons during fear, threat, or panic. The translational potential of activation of ASIC2 in cardiovascular disease states may be a beneficial sympatho-inhibition and parasympathetic activation. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- François M Abboud
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Christopher J Benson
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
32
|
Wang HJ, Cahoon R, Cahoon EB, Zheng H, Patel KP, Zucker IH. Glutamatergic receptor dysfunction in spinal cord contributes to the exaggerated exercise pressor reflex in heart failure. Am J Physiol Heart Circ Physiol 2014; 308:H447-55. [PMID: 25502111 DOI: 10.1152/ajpheart.00735.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Excitatory amino acids (e.g., glutamate) released by contraction-activated skeletal muscle afferents into the dorsal horn of the spinal cord initiate the central component of the exercise pressor reflex (EPR) in physiological conditions. However, the role of glutamate and glutamate receptors in mediating the exaggerated EPR in the chronic heart failure (CHF) state remains to be determined. In the present study, we performed microinjection of glutamate receptor antagonists into ipisilateral L4/L5 dorsal horns to investigate their effects on the pressor response to static contraction induced by stimulation of the peripheral end of L4/L5 ventral roots in decerebrate sham-operated (sham) and CHF rats. Microinjection of glutamate (10 mM, 100 nl) into the L4 or L5 dorsal horn caused a greater pressor response in CHF rats compared with sham rats. Furthermore, microinjection of either the broad-spectrum glutamate receptor antagonist kynurenate (10 mM, 100 nl) or the N-methyl-d-aspartate (NMDA) receptor antagonist dl-2-amino-5-phosphonovalerate (50 mM, 100 nl) or the non-NMDA-sensitive receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (5 mM, 100 nl) into L4/5 dorsal horns decreased the pressor response to static contraction in CHF rats to a greater extent than in sham rats. Molecular evidence showed that the protein expression of glutamate receptors (both non-NMDA and NMDA) was elevated in the dorsal horn of the lumbar spinal cord in CHF rats. In addition, data from microdialysis experiments demonstrated that although basal glutamate release at the dorsal horn at rest was similar between sham and CHF rats (225 ± 50 vs. 260 ± 63 nM in sham vs. CHF rats, n = 4, P > 0.05), CHF rats exhibit greater glutamate release into the dorsal horn during muscle contraction compared with sham rats (549 ± 60 vs. 980 ± 65 nM in sham vs. CHF rats, n = 4, P < 0.01). These data indicate that the spinal glutamate system contributes to the exaggerated EPR in the CHF state.
Collapse
Affiliation(s)
- Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Rebecca Cahoon
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska
| | - Edgar B Cahoon
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska
| | - Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| |
Collapse
|
33
|
Schiavuzzo JG, Teixeira JM, Melo B, da Silva dos Santos DF, Jorge CO, Oliveira-Fusaro MCG, Parada CA. Muscle hyperalgesia induced by peripheral P2X3 receptors is modulated by inflammatory mediators. Neuroscience 2014; 285:24-33. [PMID: 25446353 DOI: 10.1016/j.neuroscience.2014.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 11/25/2022]
Abstract
ATP, via activation of P2X3 receptors, has been highlighted as a key target in inflammatory hyperalgesia. Therefore, the aim of this study was to confirm whether the activation of P2X3 receptors in the gastrocnemius muscle of rats induces mechanical muscle hyperalgesia and, if so, to analyze the involvement of the classical inflammatory mediators (bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines and neutrophil migration) in this response. Intramuscular administration of the non-selective P2X3 receptor agonist α,β-meATP in the gastrocnemius muscle of rats induced mechanical muscle hyperalgesia, which, in turn, was prevented by the selective P2X3 and P2X2/3 receptors antagonist A-317491, the selective bradykinin B1-receptor antagonist Des-Arg9-[Leu8]-BK (DALBK), the cyclooxygenase inhibitor indomethacin, the β1- or β2-adrenoceptor antagonist atenolol and ICI 118,551, respectively. Also, the nonspecific selectin inhibitor fucoidan. α,β-meATP induced increases in the local concentration of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β), which were reduced by bradykinin antagonist. Finally, α,β-meATP also induced neutrophil migration. Together, these findings suggest that α,β-meATP induced mechanical hyperalgesia in the gastrocnemius muscle of rats via activation of peripheral P2X3 receptors, which involves bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines release and neutrophil migration. It is also indicated that bradykinin is the key modulator of the mechanical muscle hyperalgesia induced by P2X3 receptors. Therefore, we suggest that P2X3 receptors are important targets to control muscle inflammatory pain.
Collapse
Affiliation(s)
- J G Schiavuzzo
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences - UNICAMP, Limeira, Sao Paulo, Brazil; Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - J M Teixeira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - B Melo
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences - UNICAMP, Limeira, Sao Paulo, Brazil
| | - D F da Silva dos Santos
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences - UNICAMP, Limeira, Sao Paulo, Brazil
| | - C O Jorge
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences - UNICAMP, Limeira, Sao Paulo, Brazil
| | - M C G Oliveira-Fusaro
- Laboratory of Studies of Pain and Inflammation, School of Applied Sciences - UNICAMP, Limeira, Sao Paulo, Brazil.
| | - C A Parada
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| |
Collapse
|
34
|
Abnormal neurocirculatory control during exercise in humans with chronic renal failure. Auton Neurosci 2014; 188:74-81. [PMID: 25458430 DOI: 10.1016/j.autneu.2014.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/13/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023]
Abstract
Abnormal neurocirculatory control during exercise is one important mechanism leading to exercise intolerance in patients with both end-stage renal disease (ESRD) and earlier stages of chronic kidney disease (CKD). This review will provide an overview of mechanisms underlying abnormal neurocirculatory and hemodynamic responses to exercise in patients with kidney disease. Recent studies have shown that ESRD and CKD patients have an exaggerated increase in blood pressure (BP) during both isometric and rhythmic exercise. Subsequent studies examining the role of the exercise pressor reflex in the augmented pressor response revealed that muscle sympathetic nerve activity (MSNA) was not augmented during exercise in these patients, and metaboreflex-mediated increases in MSNA were blunted, while mechanoreflex-mediated increases were preserved under basal conditions. However, normalizing the augmented BP response during exercise via infusion of nitroprusside (NTP), and thereby equalizing baroreflex-mediated suppression of MSNA, an important modulator of the final hemodynamic response to exercise, revealed that CKD patients had an exaggerated increase in MSNA during isometric and rhythmic exercise. In addition, mechanoreflex-mediated control was augmented, and metaboreceptor blunting was no longer apparent in CKD patients with baroreflex normalization. Factors leading to mechanoreceptor sensitization, and other mechanisms underlying the exaggerated exercise pressor response, such as impaired functional sympatholysis, should be investigated in future studies.
Collapse
|
35
|
Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions. PLoS One 2014; 9:e110020. [PMID: 25330387 PMCID: PMC4201522 DOI: 10.1371/journal.pone.0110020] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/14/2014] [Indexed: 01/05/2023] Open
Abstract
Background Heart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting. Methods and Results We employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65), MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels. Conclusions Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.
Collapse
|
36
|
Nobrega ACL, O'Leary D, Silva BM, Marongiu E, Piepoli MF, Crisafulli A. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. BIOMED RESEARCH INTERNATIONAL 2014; 2014:478965. [PMID: 24818143 PMCID: PMC4000959 DOI: 10.1155/2014/478965] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/04/2014] [Indexed: 12/12/2022]
Abstract
During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed.
Collapse
Affiliation(s)
- Antonio C. L. Nobrega
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Donal O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruno Moreira Silva
- Section of Exercise Physiology, Department of Physiology, Federal University of São Paulo, SP, Brazil
| | - Elisabetta Marongiu
- Sports Physiology laboratory Lab., Department of Medical Sciences, University of Cagliari, Italy
| | - Massimo F. Piepoli
- Heart Failure Unit, Cardiac Department, Guglielmo da Saliceto Polichirurgico Hospital, Piacenza, Italy
| | - Antonio Crisafulli
- Sports Physiology laboratory Lab., Department of Medical Sciences, University of Cagliari, Italy
| |
Collapse
|
37
|
Li J, Xing J, Lu J. Nerve Growth Factor, Muscle Afferent Receptors and Autonomic Responsiveness with Femoral Artery Occlusion. JOURNAL OF MODERN PHYSIOLOGICAL RESEARCH 2014; 1:1-18. [PMID: 25346945 PMCID: PMC4207086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The exercise pressor reflex is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA). Studies of humans and animals have indicated that the exercise pressor reflex is exaggerated in a number of cardiovascular diseases. For the last several years, a series of studies have employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD), one of the most common cardiovascular disorders. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. Our studies have demonstrated that the receptors on thin fiber muscle afferents including transient receptor potential vanilloid type 1 (TRPV1), purinergic P2X3 and acid sensing ion channel subtype 3 (ASIC3) are engaged in augmented autonomic responses this disease. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic responses in PAD. We will emphasize the role played by nerve growth factor (NGF) in regulating those sensory receptors in the processing of amplified exercise pressor reflex. Also, we will discuss the role played by hypoxia-inducible facor-1α regarding the enhanced autonomic reflex with femoral artery occlusion. The purpose of this review is to focus on a theme namely that PAD accentuates reflexively autonomic responses to exercise and further address regulatory mechanisms leading to abnormal autonomic responsiveness.
Collapse
Affiliation(s)
- Jianhua Li
- Heart & Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jihong Xing
- Heart & Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jian Lu
- Heart & Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
38
|
Piepoli MF, Crisafulli A. Pathophysiology of human heart failure: importance of skeletal muscle myopathy and reflexes. Exp Physiol 2013; 99:609-15. [PMID: 24293507 DOI: 10.1113/expphysiol.2013.074310] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the last 20 years there has been mounting evidence that chronic heart failure (CHF) has a complex pathophysiology, which begins with an abnormality of the heart as a 'primum movens', but involves adaptive changes in many body parts, including the cardiovascular, musculoskeletal, renal, neuroendocrine, haemostatic, immune and inflammatory systems. Alterations in skeletal muscle are also of importance in limiting functional capacity in patients with CHF, because reduced physical activity plays some part in the muscle alterations in CHF. On the whole, these abnormalities resemble those induced by physical deconditioning. Moreover, the overactivation of signals originating from skeletal muscle receptors (mechano-metaboreceptors) is an intriguing hypothesis proposed to explain the origin of symptoms and the beneficial effect of exercise training in the CHF syndrome. These reflexes may contribute to sympathetic overactivation, to exercise intolerance and to the progression of CHF syndrome. The so-called metaboreflex has been reported to be hyperactive in CHF and to be responsible for a paradoxical increase in systemic vascular resistance and decrease in cardiac output whenever activated in these patients. This report is a brief summary of the latest news in this area of research.
Collapse
Affiliation(s)
- Massimo F Piepoli
- * Department of Medical Sciences, Sports Physiology Laboratory, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy.
| | | |
Collapse
|
39
|
Abstract
During dynamic exercise, the healthy pulmonary system faces several major challenges, including decreases in mixed venous oxygen content and increases in mixed venous carbon dioxide. As such, the ventilatory demand is increased, while the rising cardiac output means that blood will have considerably less time in the pulmonary capillaries to accomplish gas exchange. Blood gas homeostasis must be accomplished by precise regulation of alveolar ventilation via medullary neural networks and sensory reflex mechanisms. It is equally important that cardiovascular and pulmonary system responses to exercise be precisely matched to the increase in metabolic requirements, and that the substantial gas transport needs of both respiratory and locomotor muscles be considered. Our article addresses each of these topics with emphasis on the healthy, young adult exercising in normoxia. We review recent evidence concerning how exercise hyperpnea influences sympathetic vasoconstrictor outflow and the effect this might have on the ability to perform muscular work. We also review sex-based differences in lung mechanics.
Collapse
Affiliation(s)
- Andrew William Sheel
- The School of Kinesiology, The University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
40
|
Abstract
NEW FINDINGS What is the topic of this review? This brief review describes the work of Professor John Coote and colleagues at the University of Birmingham, which has contributed to understanding of the role of muscle afferent involvement in cardiorespiratory control in exercise. What advances does it highlight? The seminal findings of John Coote's early work are highlighted, as well as more recent developments in the field, especially the role of muscle afferents in the control of human ventilation during exercise. Through the work of John Coote, research into the role of muscle afferent involvement in cardiorespiratory control has had strong links with Birmingham since the late 1960s. This brief review gives an historical background to John's early work and how his research and mentorship of colleagues continues to have a profound influence on the field today.
Collapse
Affiliation(s)
- Michael J White
- * School of Sport, Exercise & Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
41
|
Kuniyoshi RR, Martinelli M, Negrão CE, Siqueira SF, Rondon MUPB, Trombetta IC, Kuniyoshi FHS, Laterza MC, Nishioka SAD, Costa R, Tamaki WT, Crevelari ES, Peixoto GDL, Ramires JAF, Kalil R. Effects of cardiac resynchronization therapy on muscle sympathetic nerve activity. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2013; 37:11-8. [PMID: 23952584 DOI: 10.1111/pace.12254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Muscle sympathetic nerve activity (MSNA) is an independent prognostic marker in patients with heart failure (HF). Therefore, its relevance to the treatment of HF patients is unquestionable. OBJECTIVES In this study, we investigated the effects of cardiac resynchronization therapy (CRT) on MSNA response at rest and during exercise in patients with advanced HF. METHODS We assessed 11 HF patients (51 ± 3.4 years; New York Heart Association class III-IV; left ventricular ejection fraction 27.8 ± 2.2%; optimal medical therapy) submitted to CRT. Evaluations were made prior to and 3 months after CRT. MSNA was performed at rest and during moderate static exercise (handgrip). Peak oxygen consumption (VO2 ) was evaluated by means of cardiopulmonary exercise test. HF patients with advanced NYHA class without CRT and healthy individuals were also studied. RESULTS CRT reduced MSNA at rest (48.9 ± 11.1 bursts/min vs 33.7 ± 15.3 bursts/min, P < 0.05) and during handgrip exercise (MSNA 62.3 ± 13.1 bursts/min vs 46.9 ± 14.3 bursts/min, P < 0.05). Among HF patients submitted to CRT, the peak VO2 increased (12.9 ± 2.8 mL/kg/min vs 16.5 ± 3.9 mL/kg/min, P < 0.05) and an inverse correlation between peak VO2 and resting MSNA (r = -0.74, P = 0.01) was observed. CONCLUSIONS In patients with advanced HF and severe systolic dysfunction: (1) a significant reduction of MSNA (at rest and during handgrip) occurred after CRT, and this behavior was significantly superior to HF patients receiving only medical therapy; (2) MSNA reduction after CRT had an inverse correlation with O2 consumption outcomes.
Collapse
|
42
|
Lu J, Xing J, Li J. Bradykinin B2 receptor contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion. Am J Physiol Heart Circ Physiol 2013; 304:H1166-74. [PMID: 23417862 DOI: 10.1152/ajpheart.00926.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Static muscle contraction activates the exercise pressor reflex, which in turn increases sympathetic nerve activity (SNA) and blood pressure (BP). Bradykinin (BK) is considered as a muscle metabolite responsible for modulation of the sympathetic and cardiovascular responses to muscle contraction. Prior studies have suggested that kinin B2 receptor mediates the effects of BK on the reflex SNA and BP responses during stimulation of skeletal muscle afferents. In patients with peripheral artery disease and a rat model with femoral artery ligation, amplified SNA and BP responses to static exercise were observed. This dysfunction of the exercise pressor reflex has previously been shown to be mediated, in part, by muscle mechanoreflex overactivity. Thus, in this report, we determined whether kinin B2 receptor contributes to the augmented mechanoreflex activity in rats with 24 h of femoral artery occlusion. First, Western blot analysis was used to examine protein expression of B2 receptors in dorsal root ganglion tissues of control limbs and ligated limbs. Our data show that B2 receptor displays significant overexpression in ligated limbs as compared with control limbs (optical density: 0.94 ± 0.02 in control and 1.87 ± 0.08 after ligation, P < 0.05 vs. control; n = 6 in each group). Second, mechanoreflex was evoked by muscle stretch and the reflex renal SNA (RSNA) and mean arterial pressure (MAP) responses to muscle stretch were examined after HOE-140, a B2 receptors blocker, was injected into the arterial blood supply of the hindlimb muscles. The results demonstrate that the stretch-evoked reflex responses were attenuated by administration of HOE-140 in control rats and ligated rats; however, the attenuating effects of HOE-140 were significantly greater in ligated rats, i.e., after 5 μg/kg of HOE-140 RSNA and MAP responses evoked by 0.5 kg of muscle tension were attenuated by 43% and 25% in control vs. 54% and 34% in ligation (P < 0.05 vs. control group; n = 11 in each group). In contrast, there was no significant difference in B1 receptor expression in both experimental groups, and arterial injection of R-715, a B1 receptors blocker, had no significant effects on RSNA and MAP responses evoked by muscle stretch. Accordingly, results obtained from this study support our hypothesis that heightened kinin B2 receptor expression in the sensory nerves contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion.
Collapse
Affiliation(s)
- Jian Lu
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
43
|
Xing J, Lu J, Li J. Augmented P2X response and immunolabeling in dorsal root ganglion neurons innervating skeletal muscle following femoral artery occlusion. J Neurophysiol 2013; 109:2161-8. [PMID: 23343900 DOI: 10.1152/jn.01068.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The responsiveness of sensory neurons to muscle metabolites is altered under the conditions of insufficient limb blood supply in some diseases, such as peripheral artery disease. The purpose of this study was to examine ATP-induced current with activation of purinergic P2X subtypes P2X₃ and P2X₂/₃ in dorsal root ganglion (DRG) neurons of control limbs and limbs with 24 h of femoral artery occlusion using whole cell patch-clamp methods. Also, dual-labeling immunohistochemistry was employed to determine existence of P2X₃ expression in DRG neurons of thin-fiber afferents. DRG neurons from 4- to 6-wk-old rats were labeled by injecting the fluorescence tracer DiI into the hindlimb muscles 4-5 days before the recording experiments. Transient (P2X₃), mixed (P2X₃ and P2X₂/₃), and sustained (P2X₂/₃) current responses to α,β-methylene ATP (a P2X receptor agonist) are observed in small and medium DRG neurons, and size distribution of DRG neurons is similar in control and occluded limbs. However, the peak current amplitude of DRG neuron induced by stimulation of P2X₃ and/or P2X₂/₃ is larger in occluded limbs than that in control limbs. Moreover, the percentage of DRG neurons with P2X₃ transient currents is greater after arterial occlusion compared with control. In addition, a rapid desensitization was observed in DRG neurons with transient currents, but not with sustained currents in control and occluded groups. Furthermore, results from immunofluorescence experiments show that femoral artery occlusion primarily augments P2X₃ expression within DRG neurons projecting C-fiber afferents. Overall, these findings suggest that 1) greater ATP-induced currents with activation of P2X₃ and P2X₂/₃ are developed when hindlimb arterial blood supply is deficient under ischemic conditions and 2) increased P2X₃ expression is largely observed in C-fibers of DRG neurons after hindlimb vascular insufficiency.
Collapse
Affiliation(s)
- Jihong Xing
- Pennsylvania State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
44
|
Park J, Quyyumi AA, Middlekauff HR. Exercise pressor response and arterial baroreflex unloading during exercise in chronic kidney disease. J Appl Physiol (1985) 2012; 114:538-49. [PMID: 23239869 DOI: 10.1152/japplphysiol.01037.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have poor exercise capacity, which contributes to cardiovascular risk. We sought to determine whether patients with stage 2 or stage 3 CKD have an augmented blood pressure (BP) response during exercise, and if so, whether overactivation of the sympathetic nervous system (SNS) during exercise might play a role. In 13 patients with CKD and hypertension and 13 controls with hypertension, we measured hemodynamics and muscle sympathetic nerve activity (MSNA) during the following maneuvers: low-level rhythmic handgrip (RHG 20%), which primarily stimulates mechanoreceptors, and moderate static handgrip exercise (SHG 30%) followed by posthandgrip circulatory arrest (PHGCA), which isolates metaboreceptors. During baseline studies, patients with CKD had significantly greater increases in mean arterial pressure (MAP) during SHG 30% (P = 0.045), RHG 20% (P = 0.031), and PHGCA (P = 0.043); however, the MSNA response was not augmented in patients with CKD compared with controls. We hypothesized that an augmented SNS response during exercise might be revealed in CKD if arterial baroreflex constraint was equalized using nitroprusside (NTP). These exercise maneuvers were repeated in patients with CKD during NTP infusion to equalize the BP response between groups, thereby relieving baroreflex-mediated suppression of SNS activity. With NTP infusion, patients with CKD had significantly increased MSNA responses during SHG 30% (P = 0.0044), and RHG 20% (P = 0.0064), but not during PHGCA (P > 0.05), suggesting increased reflex activation of the SNS during exercise, which may be mediated by mechanoreceptors but not metaboreceptors. Patients with CKD have an exaggerated BP response during rhythmic and static exercise with underlying SNS overactivation that is revealed during arterial baroreflex unloading during exercise.
Collapse
Affiliation(s)
- Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
45
|
Wang HJ, Zucker IH, Wang W. Muscle reflex in heart failure: the role of exercise training. Front Physiol 2012; 3:398. [PMID: 23060821 PMCID: PMC3464681 DOI: 10.3389/fphys.2012.00398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022] Open
Abstract
Exercise evokes sympathetic activation and increases blood pressure and heart rate (HR). Two neural mechanisms that cause the exercise-induced increase in sympathetic discharge are central command and the exercise pressor reflex (EPR). The former suggests that a volitional signal emanating from central motor areas leads to increased sympathetic activation during exercise. The latter is a reflex originating in skeletal muscle which contributes significantly to the regulation of the cardiovascular and respiratory systems during exercise. The afferent arm of this reflex is composed of metabolically sensitive (predominantly group IV, C-fibers) and mechanically sensitive (predominately group III, A-delta fibers) afferent fibers. Activation of these receptors and their associated afferent fibers reflexively adjusts sympathetic and parasympathetic nerve activity during exercise. In heart failure, the sympathetic activation during exercise is exaggerated, which potentially increases cardiovascular risk and contributes to exercise intolerance during physical activity in chronic heart failure (CHF) patients. A therapeutic strategy for preventing or slowing the progression of the exaggerated EPR may be of benefit in CHF patients. Long-term exercise training (ExT), as a non-pharmacological treatment for CHF increases exercise capacity, reduces sympatho-excitation and improves cardiovascular function in CHF animals and patients. In this review, we will discuss the effects of ExT and the mechanisms that contribute to the exaggerated EPR in the CHF state.
Collapse
Affiliation(s)
- Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | | | | |
Collapse
|
46
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
|
48
|
Li J, Xing J. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease. Front Physiol 2012; 3:247. [PMID: 22934005 PMCID: PMC3429025 DOI: 10.3389/fphys.2012.00247] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/17/2012] [Indexed: 01/23/2023] Open
Abstract
The exercise pressor reflex (EPR) is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure (BP) and heart rate primarily through activation of sympathetic nerve activity (SNA). Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and BP to static exercise are heightened in peripheral artery disease (PAD), one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1), purinergic P2X, and acid sensing ion channel (ASIC). The role played by nerve growth factor in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.
Collapse
Affiliation(s)
- Jianhua Li
- Heart and Vascular Institute, Penn State University College of Medicine Hershey, PA, USA
| | | |
Collapse
|
49
|
Lu J, Xing J, Li J. Role for NGF in augmented sympathetic nerve response to activation of mechanically and metabolically sensitive muscle afferents in rats with femoral artery occlusion. J Appl Physiol (1985) 2012; 113:1311-22. [PMID: 22744968 DOI: 10.1152/japplphysiol.00617.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arterial blood pressure and heart rate responses to static contraction of the hindlimb muscles are greater in rats whose femoral arteries were previously ligated than in control rats. Also, the prior findings demonstrate that nerve growth factor (NGF) is increased in sensory neurons-dorsal root ganglion (DRG) neurons of occluded rats. However, the role for endogenous NGF in engagement of the augmented sympathetic and pressor responses to stimulation of mechanically and/or metabolically sensitive muscle afferent nerves during static contraction after femoral artery ligation has not been specifically determined. In the present study, both afferent nerves and either of them were activated by muscle contraction, passive tendon stretch, and arterial injection of lactic acid into the hindlimb muscles. Data showed that femoral occlusion-augmented blood pressure response to contraction was significantly attenuated by a prior administration of the NGF antibody (NGF-Ab) into the hindlimb muscles. The effects of NGF neutralization were not seen when the sympathetic nerve and pressor responses were evoked by stimulation of mechanically sensitive muscle afferent nerves with tendon stretch in occluded rats. In addition, chemically sensitive muscle afferent nerves were stimulated by lactic acid injected into arterial blood supply of the hindlimb muscles after the prior NGF-Ab, demonstrating that the reflex muscle responses to lactic acid were significantly attenuated. The results of this study further showed that NGF-Ab attenuated an increase in acid-sensing ion channel subtype 3 (ASIC3) of DRG in occluded rats. Moreover, immunohistochemistry was employed to examine the number of C-fiber and A-fiber DRG neurons. The data showed that distribution of DRG neurons with different thin fiber phenotypes was not notably altered when NGF was infused into the hindlimb muscles. However, NGF increased expression of ASIC3 in DRG neurons with C-fiber but not A-fiber. Overall, these data suggest that 1) NGF is amplified in sensory nerves of occluded rats and contributes to augmented reflex sympathetic and blood pressure responses evoked by stimulation of chemically, but not mechanically, sensitive muscle afferent nerves and 2) NGF likely plays a role in modulating the muscle metaboreflex via enhancement of ASIC3 expression in C-fiber of DRG neurons.
Collapse
Affiliation(s)
- Jian Lu
- Pennsylvania State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
50
|
Exercise intolerance in pulmonary arterial hypertension. Pulm Med 2012; 2012:359204. [PMID: 22737582 PMCID: PMC3377355 DOI: 10.1155/2012/359204] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 01/12/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with symptoms of dyspnea and fatigue, which contribute to exercise limitation. The origins and significance of dyspnea and fatigue in PAH are not completely understood. This has created uncertainly among healthcare professionals regarding acceptable levels of these symptoms, on exertion, for patients with PAH. Dysfunction of the right ventricle (RV) contributes to functional limitation and mortality in PAH; however, the role of the RV in eliciting dyspnea and fatigue has not been thoroughly examined. This paper explores the contribution of the RV and systemic and peripheral abnormalities to exercise limitation and symptoms in PAH. Further, it explores the relationship between exercise abnormalities and symptoms, the utility of the cardiopulmonary exercise test in identifying RV dysfunction, and offers suggestions for further research.
Collapse
|