1
|
Dominiquini-Moraes B, Bernardes-Ribeiro M, Patrone LGA, Fonseca EM, Frias AT, Silva KSC, Araujo-Lopes R, Szawka RE, Bícego KC, Zangrossi H, Gargaglioni LH. Impact of the estrous cycle on brain monoamines and behavioral and respiratory responses to CO 2 in mice. Pflugers Arch 2024:10.1007/s00424-024-03040-w. [PMID: 39601888 DOI: 10.1007/s00424-024-03040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
The prevalence of panic disorder is two to four times higher in women compared to that in men, and hormonal changes during the menstrual cycle play a role in the occurrence of panic attacks. Here, we investigated the effect of the estrous cycle on the ventilatory and behavioral responses to CO2 in mice. Female mice in proestrus, estrus, metestrus, or diestrus were exposed to 20% CO2, and their escape behaviors, brain monoamines, and plasma levels of 17β-estradiol (E2) and progesterone (P4) were measured. Pulmonary ventilation (V̇E), oxygen consumption (V̇O2), and body core temperature (TB) were also measured during normocapnia followed by CO2. Females exposed to 20% CO2 exhibited an escape behavior, but the estrous cycle did not affect this response. Females in all phases of the estrous cycle showed higher V̇E and lower TB during hypercapnia. In diestrus, there was an attenuation of CO2-induced hyperventilation with no change in V̇O2, whereas in estrus, this response was accompanied by a reduction in V̇O2. Hypercapnia also increased the concentration of plasma P4 and central DOPAC, the main dopamine metabolite, in all females. There was an estrous cycle effect on brainstem serotonin, with females in estrus showing a higher concentration than females in the metestrus and diestrus phases. Therefore, our data suggest that hypercapnia induces panic-related behaviors and ventilatory changes that lead to an increase in P4 secretion in female mice, likely originating from the adrenals. The estrous cycle does not affect the behavioral response but interferes in the ventilatory and metabolic responses to CO2 in mice.
Collapse
Affiliation(s)
- Beatriz Dominiquini-Moraes
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Mariana Bernardes-Ribeiro
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Elisa M Fonseca
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alana T Frias
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Kaoma S Costa Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberta Araujo-Lopes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
2
|
Souza JR, Lima-Silveira L, Accorsi-Mendonça D, Machado BH. Enhancement of the Evoked Excitatory Transmission in the Nucleus Tractus Solitarius Neurons after Sustained Hypoxia in Mice Depends on A 2A Receptors. Neuroscience 2024; 536:57-71. [PMID: 37979842 DOI: 10.1016/j.neuroscience.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The first synapses of the afferents of peripheral chemoreceptors are located in the Nucleus Tractus Solitarius (NTS) and there is evidence that short-term sustained hypoxia (SH - 24 h, FiO2 0.1) facilitates glutamatergic transmission in NTS neurons of rats. Adenosine is an important neuromodulator of synaptic transmission and hypoxia contributes to increase its extracellular concentration. The A2A receptors mediate the excitatory actions of adenosine and are active players in the modulation of neuronal networks in the NTS. Herein, we used knockout mice for A2A receptors (A2AKO) and electrophysiological recordings of NTS neurons were performed to evaluate the contribution of these receptors in the changes in synaptic transmission in NTS neurons of mice submitted to SH. The membrane passive properties and excitability of NTS neurons were not affected by SH and were similar between A2AKO and wild-type mice. The overall amplitude of spontaneous glutamatergic currents in NTS neurons of A2AKO mice was lower than in Balb/c WT mice. SH increased the amplitude of evoked glutamatergic currents of NTS neurons from WT mice by a non-presynaptic mechanism, but this enhancement was not observed in NTS neurons of A2AKO mice. Under normoxia, the amplitude of evoked glutamatergic currents was similar between WT and A2AKO mice. The data indicate that A2A receptors (a) modulate spontaneous glutamatergic currents, (b) do not modulate the evoked glutamatergic transmission in the NTS neurons under control conditions, and (c) are required for the enhancement of glutamatergic transmission observed in the NTS neurons of mice submitted to SH.
Collapse
Affiliation(s)
- Juliana R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.
| |
Collapse
|
3
|
Obray JD, Small CA, Baldwin EK, Jang EY, Lee JG, Yang CH, Yorgason JT, Steffensen SC. Dopamine D2-Subtype Receptors Outside the Blood-Brain Barrier Mediate Enhancement of Mesolimbic Dopamine Release and Conditioned Place Preference by Intravenous Dopamine. Front Cell Neurosci 2022; 16:944243. [PMID: 35903367 PMCID: PMC9314669 DOI: 10.3389/fncel.2022.944243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Dopamine (DA) is a cell-signaling molecule that does not readily cross the blood-brain barrier. Despite this, peripherally administered DA enhances DA levels in the nucleus accumbens and alters DA-related behaviors. This study was designed to investigate whether DA subtype-2 receptors are involved in the enhancement of nucleus accumbens (NAc) DA levels elicited by intravenous DA administration. This was accomplished by using microdialysis in the NAc and extracellular single unit recordings of putative DA neurons in the ventral tegmental area (VTA). Additionally, the reinforcing properties of intravenous DA were investigated using a place conditioning paradigm and the effects of intravenous DA on ultrasonic vocalizations were assessed. Following administration of intravenous dopamine, the firing rate of putative DA neurons in the VTA displayed a biphasic response and DA levels in the nucleus accumbens were enhanced. Pretreatment with domperidone, a peripheral-only DA D2 receptor (D2R) antagonist, reduced intravenous DA mediated increases in VTA DA neuron activity and NAc DA levels. Pretreatment with phentolamine, a peripheral α-adrenergic receptor antagonist, did not alter the effects of IV DA on mesolimbic DA neurotransmission. These results provide evidence for peripheral D2R mediation of the effects of intravenous DA on mesolimbic DA signaling.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Christina A. Small
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Emily K. Baldwin
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Eun Young Jang
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jin Gyeom Lee
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Jordan T. Yorgason
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Scott C. Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| |
Collapse
|
4
|
Martinez D, Lima-Silveira L, Matott MP, Hasser EM, Kline DD. Gamma-Aminobutyric Acid Transporters in the Nucleus Tractus Solitarii Regulate Inhibitory and Excitatory Synaptic Currents That Influence Cardiorespiratory Function. Front Physiol 2022; 12:821110. [PMID: 35095576 PMCID: PMC8795970 DOI: 10.3389/fphys.2021.821110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
The brainstem nucleus tractus solitarii (nTS) processes and modulates the afferent arc of critical peripheral cardiorespiratory reflexes. Sensory afferents release glutamate to initiate the central component of these reflexes, and glutamate concentration is critically controlled by its removal via astrocytic neurotransmitter transporters. Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the nTS providing tonic and phasic modulation of neuronal activity. GABA is removed from the extracellular space through GABA transporters (GATs), however, the role of GATs in nTS synaptic transmission and their influence on cardiorespiratory function is unknown. We hypothesized that GATs tonically restrain nTS inhibitory signaling and given the considerable nTS GABA-glutamate cross-talk, modify excitatory signaling and thus cardiorespiratory function. Reverse transcription real-time polymerase chain reaction (RT-PCR), immunoblot and immunohistochemistry showed expression of GAT-1 and GAT-3 mRNA and protein within the rat nTS, with GAT-3 greater than GAT-1, and GAT-3 colocalizing with astrocyte S100B. Recordings in rat nTS slices demonstrated GAT-3 block decreased spontaneous inhibitory postsynaptic current (IPSC) frequency and reduced IPSC amplitude evoked from electrical stimulation of the medial nTS. Block of GAT-3 also increased spontaneous excitatory postsynaptic current (EPSC) frequency yet did not alter sensory afferent-evoked EPSC amplitude. Block of GAT-3 in the nTS of anesthetized rats increased mean arterial pressure, heart rate, sympathetic nerve activity, and minute phrenic nerve activity. These results demonstrate inhibitory and excitatory neurotransmission in the nTS is significantly modulated by endogenous GAT-3 to influence basal cardiorespiratory function.
Collapse
Affiliation(s)
- Diana Martinez
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Ludmila Lima-Silveira
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Michael P Matott
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Eileen M Hasser
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - David D Kline
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Rocha ACG, Cristina-Silva C, Taxini CL, da Costa Silva KS, Lima VTM, Macari M, Bícego KC, Szawka RE, Gargaglioni LH. Embryonic Thermal Manipulation Affects Ventilation, Metabolism, Thermal Control and Central Dopamine in Newly Hatched and Juvenile Chicks. Front Physiol 2021; 12:699142. [PMID: 34220555 PMCID: PMC8249324 DOI: 10.3389/fphys.2021.699142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022] Open
Abstract
The first third of incubation is critical for embryonic development, and environmental changes during this phase can affect the physiology and survival of the embryos. We evaluated the effects of low (LT), control (CT), and high (HT) temperatures during the first 5 days of incubation on ventilation (V.E), body temperature (Tb), oxygen consumption (V.O2), respiratory equivalent (V.E/V.O2), and brain monoamines on 3-days-old (3d) and 14-days-old (14d) male and female chickens. The body mass of LT animals of both ages and sexes was higher compared to HT and CT animals (except for 3d males). The heart mass of 14d HT animals was higher than that of CT animals. Thermal manipulation did not affect V.E, V.O2 or V.E/V.O2 of 3d animals in normoxia, except for 3d LT males V.E, which was lower than CT. Regarding 14d animals, the HT females showed a decrease in V.E and V.O2 compared to CT and LT groups, while the HT males displayed a lower V.O2 compared to CT males, but no changes in V.E/V.O2. Both sexes of 14d HT chickens presented a greater Tb compared to CT animals. Thermal manipulations increased the dopamine turnover in the brainstem of 3d females. No differences were observed in ventilatory and metabolic parameters in the 3d animals of either sexes, and 14d males under 7% CO2. The hypercapnic hyperventilation was attenuated in the 14d HT females due to changes in V.O2, without alterations in V.E. The 14d LT males showed a lower V.E, during hypercapnia, compared to CT, without changes in V.O2, resulting in an attenuation in V.E/V.O2. During hypoxia, 3d LT females showed an attenuated hyperventilation, modulated by a higher V.O2. In 14d LT and HT females, the increase in V.E was greater and the hypometabolic response was attenuated, compared to CT females, which resulted in no change in the V.E/V.O2. In conclusion, thermal manipulations affect hypercapnia-induced hyperventilation more so than hypoxic challenge, and at both ages, females are more affected by thermal manipulation than males.
Collapse
Affiliation(s)
- Aline C G Rocha
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Caroline Cristina-Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | | | - Kaoma Stephani da Costa Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Virgínia T M Lima
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Marcos Macari
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
6
|
Tang DL, Luan YW, Zhou CY, Xiao C. D2 receptor activation relieves pain hypersensitivity by inhibiting superficial dorsal horn neurons in parkinsonian mice. Acta Pharmacol Sin 2021; 42:189-198. [PMID: 32694753 DOI: 10.1038/s41401-020-0433-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic pain is a common and undertreated nonmotor symptom in Parkinson's disease (PD). Although chronic pain is improved by L-dopa in some PD patients, the underlying mechanisms remain unclear. In this study, we established PD mice by unilateral microinjection of 6-OHDA in the medial forebrain bundle to investigate the contribution of spinal cord dopamine receptors to parkinsonian pain hypersensitivity. The von Frey filament tests and thermal pain tests revealed that these PD mice displayed decreased nociceptive thresholds in both hindpaws; intrathecal injection of L-dopa or apomorphine significantly increased the mechanical and thermal nociceptive thresholds, and the analgesic effect was mimicked by ropinirole (a D2 receptor agonist), but not SKF38393 (a D1/D5 receptor agonist), and blocked by sulpiride (a D2 receptor antagonist), but not SKF83566 (a D1/D5 receptor antagonist). Whole-cell recordings in lumber spinal cord slices showed that superficial dorsal horn (SDH) neurons in PD mice exhibited hyperexcitability, including more depolarized resting membrane potentials and more action potentials evoked by depolarizing current steps, which were mitigated by ropinirole. Furthermore, ropinirole inhibited the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in SDH neurons more strongly in PD mice than in control mice. However, sulpiride caused less disinhibition of sEPSCs in PD mice than in control mice. Taken together, our data reveal that pain hypersensitivity in PD mice is associated with hyperexcitability of SDH neurons, and both events are reversed by activation of spinal D2 receptors. Therefore, spinal D2 receptors can be promising therapeutic targets for the treatment of PD pain.
Collapse
|
7
|
Falquetto B, Thieme K, Malta MB, e Rocha KC, Tuppy M, Potje SR, Antoniali C, Rodrigues AC, Munhoz CD, Moreira TS, Takakura AC. Oxidative stress in the medullary respiratory neurons contributes to respiratory dysfunction in the 6‐OHDA model of Parkinson's disease. J Physiol 2020; 598:5271-5293. [DOI: 10.1113/jp279791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/14/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Bárbara Falquetto
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Karina Thieme
- Department of Physiology and Biophysics Instituto de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Marília B. Malta
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Karina C. e Rocha
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Marina Tuppy
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Simone R. Potje
- Department of Basic Sciences School of Dentistry São Paulo State University (UNESP) Araçatuba SP 16015‐050 Brazil
| | - Cristina Antoniali
- Department of Basic Sciences School of Dentistry São Paulo State University (UNESP) Araçatuba SP 16015‐050 Brazil
| | - Alice C. Rodrigues
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Carolina D. Munhoz
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Thiago S. Moreira
- Department of Physiology and Biophysics Instituto de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| | - Ana C. Takakura
- Department of Pharmacology Institute de Ciencias Biomedicas Universidade de Sao Paulo São Paulo SP 05508‐000 Brazil
| |
Collapse
|
8
|
Martinez D, Rogers RC, Hasser EM, Hermann GE, Kline DD. Loss of excitatory amino acid transporter restraint following chronic intermittent hypoxia contributes to synaptic alterations in nucleus tractus solitarii. J Neurophysiol 2020; 123:2122-2135. [PMID: 32347148 PMCID: PMC7311725 DOI: 10.1152/jn.00766.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Peripheral viscerosensory afferent signals are transmitted to the nucleus tractus solitarii (nTS) via release of glutamate. Following release, glutamate is removed from the extrasynaptic and synaptic cleft via excitatory amino acid transporters (EAATs), thus limiting glutamate receptor activation or over activation, and maintaining its working range. We have shown that EAAT block with the antagonist threo-β-benzyloxyaspartic acid (TBOA) depolarized nTS neurons and increased spontaneous excitatory postsynaptic current (sEPSC) frequency yet reduced the amplitude of afferent (TS)-evoked EPSCs (TS-EPSCs). Interestingly, chronic intermittent hypoxia (CIH), a model of obstructive sleep apnea (OSA), produces similar synaptic responses as EAAT block. We hypothesized EAAT expression or function are downregulated after CIH, and this reduction in glutamate removal contributes to the observed neurophysiological responses. To test this hypothesis, we used brain slice electrophysiology and imaging of glutamate release and TS-afferent Ca2+ to compare nTS properties of rats exposed to 10 days of normoxia (Norm; 21%O2) or CIH. Results show that EAAT blockade with (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]-amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) in Norm caused neuronal depolarization, generation of an inward current, and increased spontaneous synaptic activity. The latter augmentation was eliminated by inclusion of tetrodotoxin in the perfusate. TS stimulation during TFB-TBOA also elevated extracellular glutamate and decreased presynaptic Ca2+ and TS-EPSC amplitude. In CIH, the effects of EAAT block are eliminated or attenuated. CIH reduced EAAT expression in nTS, which may contribute to the attenuated function seen in this condition. Therefore, CIH reduces EAAT influence on synaptic and neuronal activity, which may lead to the physiological consequences seen in OSA and CIH.NEW & NOTEWORTHY Removal of excitatory amino acid transporter (EAAT) restraint increases spontaneous synaptic activity yet decreases afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. In the chronic intermittent hypoxia model of obstructive sleep apnea, this restraint is lost due to reduction in EAAT expression and function. Thus EAATs are important in controlling elevated glutamatergic signaling, and loss of such control results in maladaptive synaptic signaling.
Collapse
Affiliation(s)
- Diana Martinez
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | | | - Eileen M. Hasser
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | | | - David D. Kline
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
9
|
Fox G, Kranke P. A pharmacological profile of intravenous amisulpride for the treatment of postoperative nausea and vomiting. Expert Rev Clin Pharmacol 2020; 13:331-340. [PMID: 32245336 DOI: 10.1080/17512433.2020.1750366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The issue of postoperative nausea and vomiting (PONV) remains important in surgical practice, contributing to patient distress, slower recovery, and increased use of healthcare resources. Many surgical patients report it to be a worse problem than the pain. New antiemetics of different classes are still needed to help manage PONV effectively, especially the treatment of established PONV after the failure of common prophylactic antiemetics such as 5-HT3-antagonists and corticosteroids. Intravenous amisulpride, a drug with a long history of safe use in oral form as an antipsychotic, has recently been approved in the US (trade name: Barhemsys) as an intravenous antiemetic for the prevention and treatment of PONV. AREAS COVERED This review article summarizes the published data on the clinical pharmacology, safety, and efficacy of intravenous amisulpride as an antiemetic, supplemented by published data on oral amisulpride, where relevant to the intravenous form. Literature was obtained via the PubMed search terms 'intravenous amisulpride' and 'amisulpride AND safety.' Both primary and secondary pharmacology are covered, along with clinical pharmacokinetics (distribution, metabolism, and excretion). The review of clinical safety and efficacy includes data from four studies in the prevention of PONV, two in the treatment of PONV and two investigating effects on the QT interval of the electrocardiogram in healthy volunteers. EXPERT OPINION Given the importance of sufficient PONV prevention for patients and the healthcare system, the availability of intravenous amisulpride is helpful, restoring the dopamine-antagonist class as a potential mainstay in both combination prophylaxis and treatment.
Collapse
Affiliation(s)
- Gabriel Fox
- The Officers' Mess, Acacia Pharma Ltd , Cambridge, UK
| | - Peter Kranke
- Department of Anaesthesia and Critical Care, University Hospitals of Würzburg , Würzburg, Germany
| |
Collapse
|
10
|
Matott MP, Hasser EM, Kline DD. Sustained Hypoxia Alters nTS Glutamatergic Signaling and Expression and Function of Excitatory Amino Acid Transporters. Neuroscience 2020; 430:131-140. [PMID: 32032667 PMCID: PMC7560968 DOI: 10.1016/j.neuroscience.2020.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/11/2020] [Accepted: 01/23/2020] [Indexed: 01/16/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the nucleus tractus solitarii (nTS) and mediates chemoreflex function during periods of low oxygen (i.e. hypoxia). We have previously shown that nTS excitatory amino acid transporters (EAATs), specifically EAAT-2, located on glia modulate neuronal activity, cardiorespiratory and chemoreflex function under normal conditions via its tonic uptake of extracellular glutamate. Chronic sustained hypoxia (SH) elevates nTS synaptic transmission and chemoreflex function. The goal of this study was to determine the extent to which glial EAAT-2 contributes to SH-induced nTS synaptic alterations. To do so, male Sprague-Dawley rats (4-7 weeks) were exposed to either 1, 3, or 7 days of SH (10% O2, 24 h/day) and compared to normoxic controls (21% O2, 24 h/day, i.e., 0 days SH). After which, the nTS was harvested for patch clamp electrophysiology, quantitative real-time PCR, immunohistochemistry and immunoblots. SH induced time- and parameter-dependent increases in excitatory postsynaptic currents (EPSCs). TS-evoked EPSC amplitude increased after 1D SH which returned at 3D and 7D SH. Spontaneous EPSC frequency increased only after 3D SH, which returned to normoxic levels at 7D SH. EPSC enhancement occurred primarily by presynaptic mechanisms. Inhibition of EAAT-2 with dihydrokainate (DHK, 300 µM) did not alter EPSCs following 1D SH but induced depolarizing inward currents (Ihold). After 3D SH, DHK decreased TS-EPSC amplitude yet its resulting Ihold was eliminated. EAAT-2 mRNA and protein increased after 3D and 7D SH, respectively. These data suggest that SH alters the expression and function of EAAT-2 which may have a neuroprotective effect.
Collapse
Affiliation(s)
- Michael P Matott
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA
| | - Eileen M Hasser
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA
| | - David D Kline
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Martinez D, Rogers RC, Hermann GE, Hasser EM, Kline DD. Astrocytic glutamate transporters reduce the neuronal and physiological influence of metabotropic glutamate receptors in nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol 2020; 318:R545-R564. [PMID: 31967862 PMCID: PMC7099463 DOI: 10.1152/ajpregu.00319.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Astrocytic excitatory amino acid transporters (EAATs) are critical to restraining synaptic and neuronal activity in the nucleus tractus solitarii (nTS). Relief of nTS EAAT restraint generates two opposing effects, an increase in neuronal excitability that reduces blood pressure and breathing and an attenuation in afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. Although the former is due, in part, to activation of ionotropic glutamate receptors, there remains a substantial contribution from another unidentified glutamate receptor. In addition, the mechanism(s) by which EAAT inhibition reduced TS-EPSC amplitude is unknown. Metabotropic glutamate receptors (mGluRs) differentially modulate nTS excitability. Activation of group I mGluRs on nTS neuron somas leads to depolarization, whereas group II/III mGluRs on sensory afferents decrease TS-EPSC amplitude. Thus we hypothesize that EAATs control postsynaptic excitability and TS-EPSC amplitude via restraint of mGluR activation. To test this hypothesis, we used in vivo recording, brain slice electrophysiology, and imaging of glutamate release and TS-afferent Ca2+. Results show that EAAT blockade in the nTS with (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) induced group I mGluR-mediated depressor, bradycardic, and apneic responses that were accompanied by neuronal depolarization, elevated discharge, and increased spontaneous synaptic activity. Conversely, upon TS stimulation TFB-TBOA elevated extracellular glutamate to decrease presynaptic Ca2+ and TS-EPSC amplitude via activation of group II/III mGluRs. Together, these data suggest an important role of EAATs in restraining mGluR activation and overall cardiorespiratory function.
Collapse
Affiliation(s)
- Diana Martinez
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | | | | | - Eileen M. Hasser
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - David D. Kline
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
12
|
Getsy PM, Mayer CA, MacFarlane PM, Jacono FJ, Wilson CG. Acute lung injury in neonatal rats causes postsynaptic depression in nucleus tractus solitarii second-order neurons. Respir Physiol Neurobiol 2019; 269:103250. [PMID: 31352011 DOI: 10.1016/j.resp.2019.103250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/14/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022]
Abstract
Acute Lung Injury (ALI) alters pulmonary reflex responses, in part due to changes in modulation within the lung and airway neuronal control networks. We hypothesized that synaptic efficacy of nucleus tractus solitarii (nTS) neurons, receiving input from lung, airway, and other viscerosensory afferent fibers, would decrease following ALI. Sprague Dawley neonatal rats (postnatal days 9-11) were given intratracheal installations of saline or bleomycin (a well-characterized model that reproduces the pattern of ALI) and then, one week later, in vitro slices were prepared for whole-cell and perforated whole-cell patch-clamp experiments (postnatal days 16-21). In preparations from ALI rats, 2nd-order nTS neurons had significantly decreased amplitudes of both spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs), compared to saline controls. Rise and decay times of sEPSCs were slower in whole-cell recordings from ALI animals. Similarly, the amplitude of tractus solitarii evoked EPSCs (TS-eEPSCs) were significantly lower in 2nd-order nTS neurons from ALI rats. Overall these results suggest the presence of postsynaptic depression at TS-nTS synapses receiving lung, airway, and other viscerosensory afferent tractus solitarii input after bleomycin-induced ALI.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Physiology and Biophysics, CWRU School of Medicine, Cleveland, OH, 44106, United States; Department of Pediatrics, Rainbow Babies & Children's Hospital, CWRU School of Medicine, Cleveland, OH, 44106, United States
| | - Catherine A Mayer
- Department of Pediatrics, Rainbow Babies & Children's Hospital, CWRU School of Medicine, Cleveland, OH, 44106, United States
| | - Peter M MacFarlane
- Department of Pediatrics, Rainbow Babies & Children's Hospital, CWRU School of Medicine, Cleveland, OH, 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, CWRU School of Medicine, Cleveland, OH, 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH, 44106, United States
| | - Christopher G Wilson
- Department of Pediatrics and Lawrence D. Long, MD Center for Perinatal Biology Loma Linda University Loma Linda, CA, United States.
| |
Collapse
|
13
|
O'Connor KM, Lucking EF, Golubeva AV, Strain CR, Fouhy F, Cenit MC, Dhaliwal P, Bastiaanssen TFS, Burns DP, Stanton C, Clarke G, Cryan JF, O'Halloran KD. Manipulation of gut microbiota blunts the ventilatory response to hypercapnia in adult rats. EBioMedicine 2019; 44:618-638. [PMID: 30898652 PMCID: PMC6606895 DOI: 10.1016/j.ebiom.2019.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It is increasingly evident that perturbations to the diversity and composition of the gut microbiota have significant consequences for the regulation of integrative physiological systems. There is growing interest in the potential contribution of microbiota-gut-brain signalling to cardiorespiratory control in health and disease. METHODS In adult male rats, we sought to determine the cardiorespiratory effects of manipulation of the gut microbiota following a 4-week administration of a cocktail of antibiotics. We subsequently explored the effects of administration of faecal microbiota from pooled control (vehicle) rat faeces, given by gavage to vehicle- and antibiotic-treated rats. FINDINGS Antibiotic intervention depressed the ventilatory response to hypercapnic stress in conscious animals, owing to a reduction in the respiratory frequency response to carbon dioxide. Baseline frequency, respiratory timing variability, and the expression of apnoeas and sighs were normal. Microbiota-depleted rats had decreased systolic blood pressure. Faecal microbiota transfer to vehicle- and antibiotic-treated animals also disrupted the gut microbiota composition, associated with depressed ventilatory responsiveness to hypercapnia. Chronic antibiotic intervention or faecal microbiota transfer both caused significant disruptions to brainstem monoamine neurochemistry, with increased homovanillic acid:dopamine ratio indicative of increased dopamine turnover, which correlated with the abundance of several bacteria of six different phyla. INTERPRETATION Chronic antibiotic administration and faecal microbiota transfer disrupt gut microbiota, brainstem monoamine concentrations and the ventilatory response to hypercapnia. We suggest that aberrant microbiota-gut-brain axis signalling has a modulatory influence on respiratory behaviour during hypercapnic stress. FUND: Department of Physiology and APC Microbiome Ireland, University College Cork, Ireland.
Collapse
Affiliation(s)
- Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Conall R Strain
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - María C Cenit
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Institute of Agrochemistry and Food Technology (IATA), National Council for Scientific Research (CSIC), Valencia, Spain
| | - Pardeep Dhaliwal
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
14
|
Kline DD, Wang S, Kunze DL. TRPV1 channels contribute to spontaneous glutamate release in nucleus tractus solitarii following chronic intermittent hypoxia. J Neurophysiol 2019; 121:881-892. [PMID: 30601692 PMCID: PMC6520621 DOI: 10.1152/jn.00536.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) reduces afferent-evoked excitatory postsynaptic currents (EPSCs) but enhances basal spontaneous (s) and asynchronous (a) EPSCs in second-order neurons of nucleus tractus solitarii (nTS), a major area for cardiorespiratory control. The net result is an increase in synaptic transmission. The mechanisms by which this occurs are unknown. The N-type calcium channel and transient receptor potential cation channel TRPV1 play prominent roles in nTS sEPSCs and aEPSCs. The functional role of these channels in CIH-mediated afferent-evoked EPSC, sEPSC, and aEPSC was tested in rat nTS slices following antagonist inhibition and in mouse nTS slices that lack TRPV1. Block of N-type channels decreased aEPSCs in normoxic and, to a lesser extent, CIH-exposed rats. sEPSCs examined in the presence of TTX (miniature EPSCs) were also decreased by N-type block in normoxic but not CIH-exposed rats. Antagonist inhibition of TRPV1 reduced the normoxic and the CIH-mediated increase in sEPSCs, aEPSCs, and mEPSCs. As in rats, in TRPV1+/+ control mice, aEPSCs, sEPSCs, and mEPSCs were enhanced following CIH. However, none were enhanced in TRPV1-/- null mice. Normoxic tractus solitarii (TS)-evoked EPSC amplitude, and the decrease after CIH, were comparable in control and null mice. In rats, TRPV1 was localized in the nodose-petrosal ganglia (NPG) and their central branches. CIH did not alter TRPV1 mRNA but increased its protein in NPG consistent with an increased contribution of TRPV1. Together, our studies indicate TRPV1 contributes to the CIH increase in aEPSCs and mEPSCs, but the CIH reduction in TS-EPSC amplitude occurs via an alternative mechanism. NEW & NOTEWORTHY This study provides information on the underlying mechanisms responsible for the chronic intermittent hypoxia (CIH) increase in synaptic transmission that leads to exaggerated sympathetic nervous and respiratory activity at baseline and in response to low oxygen. We demonstrate that the CIH increase in asynchronous and spontaneous excitatory postsynaptic currents (EPSCs) and miniature EPSCs, but not decrease in afferent-driven EPSCs, is dependent on transient receptor potential vanilloid type 1 (TRPV1). Thus TRPV1 is important in controlling nucleus tractus solitarii synaptic activity during CIH.
Collapse
Affiliation(s)
- David D Kline
- Department of Biomedical Sciences, University of Missouri , Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - Sheng Wang
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio
- Rammelkamp Center for Education and Research, MetroHealth Medical System, Cleveland, Ohio
| | - Diana L Kunze
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio
- Rammelkamp Center for Education and Research, MetroHealth Medical System, Cleveland, Ohio
| |
Collapse
|
15
|
Leyrer-Jackson JM, Thomas MP. Subtype-specific effects of dopaminergic D2 receptor activation on synaptic trains in layer V pyramidal neurons in the mouse prefrontal cortex. Physiol Rep 2018; 5:5/22/e13499. [PMID: 29150590 PMCID: PMC5704077 DOI: 10.14814/phy2.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 11/24/2022] Open
Abstract
In humans, prefrontal cortical areas are known to support executive functions. In mice, these functions are mediated by homologous regions in the medial prefrontal cortex (mPFC). Executive processes are critically dependent on optimal levels of dopamine (DA), but the cellular mechanisms of DA modulation are incompletely understood. Stable patterns of neuronal activity may be sensitive to frequency-dependent changes in synaptic transmission. We characterized the effects of D2 receptor (D2R) activation on short-term excitatory postsynaptic potential (EPSP) dynamics evoked at varying frequencies in the two subtypes of layer V pyramidal neurons in mouse mPFC We isolated NMDA receptor and non-NMDA receptor-mediated components of EPSP trains evoked by stimulating fibers within layer V or layer I. All significant effects of D2 receptor activation were confined to type I (corticopontine) cells. First, we found that with layer I stimulation, D2R activation reduces the amplitude of NMDAR-mediated EPSPs, with no effect on facilitation or depression of these responses at lower frequencies, but leading to facilitation with high frequency stimulation. Further, the non-NMDA component also underwent synaptic depression at low frequencies. Second, with layer V stimulation, D2R activation had no effect on NMDA or non-NMDA receptor-mediated EPSP components. Overall, our results suggest that D2R activation may modulate memory functions by inhibiting 'top-down' influences from apical tuft inputs activated at low frequencies, while promoting 'top-down' influences from inputs activated at higher frequencies. These data provide further insight into mechanisms of dopamine's modulation of executive functions.
Collapse
Affiliation(s)
- Jonna M Leyrer-Jackson
- University of Northern Colorado School of Biological Sciences University of Northern Colorado, Greeley, Colorado
| | - Mark P Thomas
- University of Northern Colorado School of Biological Sciences University of Northern Colorado, Greeley, Colorado
| |
Collapse
|
16
|
Anselmi L, Toti L, Bove C, Travagli RA. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat. Am J Physiol Gastrointest Liver Physiol 2017; 313:G434-G441. [PMID: 28729246 PMCID: PMC5792220 DOI: 10.1152/ajpgi.00180.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 01/31/2023]
Abstract
Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1) assess the gastric effects of brain stem DA application, 2) identify the DA receptor subtype, and, 3) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility.NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway.
Collapse
Affiliation(s)
- L. Anselmi
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - L. Toti
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - C. Bove
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - R. A. Travagli
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
17
|
L-DOPA inhibits excitatory synaptic transmission in the rat nucleus tractus solitarius through release of dopamine. Neuroscience 2017; 360:18-27. [PMID: 28757247 DOI: 10.1016/j.neuroscience.2017.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/29/2022]
Abstract
The mode of action of L-DOPA on excitatory synaptic transmission in second-order neurons of the nucleus tractus solitarius (NTS) was studied using the rat brainstem slices. Superfusion of L-DOPA (10μM) reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) without any effect on the amplitude. A low concentration (1μM) was ineffective on the mEPSCs, and the highest concentration (100μM) exerted a stronger inhibitory effect. L-DOPA (10μM) decreased the amplitude of EPSCs (eEPSCs) evoked by electrical stimulation of the tractus solitarius and increased the paired-pulse ratio. The inhibitory effects of L-DOPA on mEPSCs and eEPSCs were similar to those of dopamine (100μM). The effects of L-DOPA were blocked by a competitive antagonist, L-DOPA methyl ester (100μM) and also by a D2 receptor antagonist, sulpiride (10μM), while those of dopamine were blocked by the latter but not by the former. In reserpine (5mg/kg, s.c.)-treated rats, the effects of L-DOPA on both mEPSCs and eEPSCs were completely abolished, but those of dopamine remained unchanged. The present results suggest a possibility that L-DOPA may induce the release of dopamine from the axon terminals in the NTS and the released dopamine suppresses the glutamatergic transmission through activation of the presynaptic D2 receptors.
Collapse
|
18
|
Abstract
Ventilatory inhibition is considered an undesirable pharmacological side effect of pharmacotherapy in neurodegenerative conditions underlain by brain dopamine deficiency. In this context, oleic derivatives of dopamine or N-acyl-dopamines are novel substances that may be of high therapeutic interest as having the ability to cross the blood-brain barrier and acting in dopamine-like manner. In the present study we seek to define the influence of N-acyl-dopamines on lung ventilation and its hypoxic responses in the rat. We found that N-oleoyl-dopamine decreased both normoxic and peak hypoxic ventilation in response to 8% acute hypoxia, on average, by 31% and 41%, respectively. Its metabolite, 3'-O-methyl-N-oleoyl-dopamine, caused a 15% ventilatory decrease each, whereas an oleic ester derivative, 3'-O-oleoyl-N-oleoyl-dopamine, caused 11% and 19% ventilatory decreases, respectively. All three N-acyl-dopamines investigated displayed an inhibitory effect on ventilation. The findings indicate that 3'-O-methyl-N-oleoyl-dopamine and 3'-O-oleoyl-N-oleoyl-dopamine performed better than N-oleoyl-dopamine in term of less ventilatory suppression, albeit the differences among the three compounds were modest. We conclude that N-acyl-dopamines are worthy of intensified explorations as potential carriers of dopamine molecule in view of the lack of clinically effective methods of dopamine delivery into the brain in neurodegenerative conditions.
Collapse
|
19
|
Zhuang J, Gao X, Gao F, Xu F. Mu-opioid receptors in the caudomedial NTS are critical for respiratory responses to stimulation of bronchopulmonary C-fibers and carotid body in conscious rats. Respir Physiol Neurobiol 2017; 235:71-78. [DOI: 10.1016/j.resp.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 01/08/2023]
|
20
|
Bialkowska M, Boguszewski P, Pokorski M. Breathing in Parkinsonism in the Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 884:1-11. [PMID: 26542599 DOI: 10.1007/5584_2015_177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Parkinsonism is underlain by dopamine (DA) deficiency in the mid-brain, a neurotransmitter innately involved with respiratory regulation. However, the state of respiration in parkinsonism is an unsettled issue. In this study we seek to determine ventilation and its responses to hypoxia in a reserpine--alpha-methyl-tyrosine model of parkinsonism in the rat. We also attempted to differentiate between the role of discrete brain and carotid body DA stores in the modulation of the hypoxic ventilatory response (HVR). To this end we used domperidone, a peripheral D2 receptor antagonist, and levodopa, a central D2 receptor agonist. The HVRs to acute 12% and 8% hypoxia were studied in a whole body plethysmograph in the same rats before and after the induction of parkinsonic symptoms in conscious rats. We found that resting ventilation and the HVR were distinctly reduced in parkinsonism. The reduction was particularly evident in the peak hypoxic hyperpneic augmentation. Domperidone, which enhanced ventilation in the control healthy condition, failed to reverse the reduced parkinsonic HVR. In contrast, levodopa, which did not appreciably affected ventilation in the healthy condition, caused the parkinsonic HVR to return to and above the baseline healthy level. The findings demonstrate the predominance of a lack of the central DA stimulatory element and minimize the role of carotid body DA in the ventilatory impediment of parkinsonism. In conclusion, the study provides the pathophysiological savvy concerning the respiratory insufficiency of parkinsonism, a sequela which carries a risk of chronically impaired blood oxygenation, which may drive the disease worsening.
Collapse
|
21
|
Development of Hiccup in Male Patients Hospitalized in a Psychiatric Ward: Is it Specifically Related to the Aripiprazole-Benzodiazepine Combination? Clin Neuropharmacol 2016; 39:67-72. [PMID: 26818041 DOI: 10.1097/wnf.0000000000000129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to identify hiccup cases among patients hospitalized in a psychiatric ward and focus on their treatment, so to establish intervention risk. METHODS We reviewed records of 354 consecutively admitted patients during the year 2013 to identify hiccup cases. RESULTS Hiccup occurred in 7 patients on both aripiprazole and benzodiazepines and in one on delorazepam. No patient on aripiprazole alone developed hiccup. No patient on drugs other than aripiprazole or benzodiazepines developed hiccup. The symptom subsided in 3 cases upon discontinuing aripiprazole and in 5 cases after discontinuing the benzodiazepine (including the case on delorazepam alone); in 2 cases of persistent hiccup, the symptom resolved after adding the calcium channel blocker, pregabalin. All patients developing hiccup were male. There was a 70-fold increase in the risk for developing hiccup in the aripiprazole/benzodiazepine intake condition versus all other conditions, and it further increased if limiting to the male sex. LIMITATIONS The retrospective nature of the study was its limitation. CONCLUSIONS Hospitalized psychiatric patients on both aripiprazole and benzodiazepines may be at significant risk of hiccup. This clinical awareness could lead to antipsychotic and/or benzodiazepine discontinuation or switch or to the addition of calcium channel blocker inhibitors.
Collapse
|
22
|
Prabhakar NR, Peng YJ, Kumar GK, Nanduri J. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol 2016; 5:561-77. [PMID: 25880505 DOI: 10.1002/cphy.c140039] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen levels, and the resulting chemoreflex is a potent regulator of blood pressure. Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in adult humans and infants born preterm. Adult patients with recurrent apnea exhibit heightened sympathetic nerve activity and hypertension. Adults born preterm are predisposed to early onset of hypertension. Available evidence suggests that carotid body chemoreflex contributes to hypertension caused by IH in both adults and neonates. Experimental models of IH provided important insights into cellular and molecular mechanisms underlying carotid body chemoreflex-mediated hypertension. This article provides a comprehensive appraisal of how IH affects carotid body function, underlying cellular, molecular, and epigenetic mechanisms, and the contribution of chemoreflex to the hypertension.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology for O2 Sensing, Biological Sciences Division, University of Chicago, Illinois, USA
| | | | | | | |
Collapse
|
23
|
Schlenker EH, Del Rio R, Schultz HD. In adult female hamsters hypothyroidism stimulates D1 receptor-mediated breathing without altering D1 receptor expression. Respir Physiol Neurobiol 2015; 218:32-9. [PMID: 26232642 DOI: 10.1016/j.resp.2015.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 11/29/2022]
Abstract
Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH 23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors.
Collapse
Affiliation(s)
- Evelyn H Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA.
| | - Rodrigo Del Rio
- Department of Cellular & Integrative Physiology, University of Nebraska College of Medicine, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Harold D Schultz
- Department of Cellular & Integrative Physiology, University of Nebraska College of Medicine, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA
| |
Collapse
|
24
|
Kron M, Lang M, Adams IT, Sceniak M, Longo F, Katz DM. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome. Dis Model Mech 2015; 7:1047-55. [PMID: 25147297 PMCID: PMC4142725 DOI: 10.1242/dmm.016030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Reduced levels of brain-derived neurotrophic factor (BDNF) are thought to contribute to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS) and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to behavioral arousal in symptomatic RTT mice.
Collapse
Affiliation(s)
- Miriam Kron
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Min Lang
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ian T Adams
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Michael Sceniak
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Frank Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
25
|
Minic Z, O'Leary DS, Scislo TJ. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism. Am J Physiol Heart Circ Physiol 2015; 309:H185-97. [PMID: 25910812 DOI: 10.1152/ajpheart.00838.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/21/2015] [Indexed: 11/22/2022]
Abstract
Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism.
Collapse
Affiliation(s)
- Zeljka Minic
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Tadeusz J Scislo
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
26
|
Mayer CA, Wilson CG, MacFarlane PM. Changes in carotid body and nTS neuronal excitability following neonatal sustained and chronic intermittent hypoxia exposure. Respir Physiol Neurobiol 2014; 205:28-36. [PMID: 25266393 DOI: 10.1016/j.resp.2014.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 02/07/2023]
Abstract
We investigated whether pre-treatment with neonatal sustained hypoxia (SH) prior to chronic intermittent hypoxia (SH+CIH) would modify in vitro carotid body (CB) chemoreceptor activity and the excitability of neurons in the caudal nucleus of the solitary tract (nTS). Sustained hypoxia followed by CIH exposure simulates an oxygen paradigm experienced by extremely premature infants who developed persistent apnea. Rat pups were treated with 5 days of SH (11% O2) from postnatal age 1 (P1) followed by 10 days of subsequent chronic intermittent hypoxia (CIH, 5% O2/5 min, 8 h/day, between P6 and P15) as described previously (Mayer et al., Respir. Physiol. Neurobiol. 187(2): 167-75, 2013). At the end of SH+CIH exposure (P16), basal firing frequency was enhanced, and the hypoxic sensory response of single unit CB chemoafferents was attenuated. Further, basal firing frequency and the amplitude of evoked excitatory post-synaptic currents (ESPC's) of nTS neurons was augmented compared to age-matched rats raised in normoxia. These effects were unique to SH+CIH exposure as neither SH or CIH alone elicited any comparable effect on chemoafferent activity or nTS function. These data indicated that pre-treatment with neonatal SH prior to CIH exposure uniquely modified mechanisms of peripheral (CB) and central (nTS) neural function in a way that would be expected to disturb the ventilatory response to acute hypoxia.
Collapse
Affiliation(s)
- C A Mayer
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - C G Wilson
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA 92350, USA
| | - P M MacFarlane
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA.
| |
Collapse
|
27
|
Ostrowski TD, Ostrowski D, Hasser EM, Kline DD. Depressed GABA and glutamate synaptic signaling by 5-HT1A receptors in the nucleus tractus solitarii and their role in cardiorespiratory function. J Neurophysiol 2014; 111:2493-504. [PMID: 24671532 PMCID: PMC4044435 DOI: 10.1152/jn.00764.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/19/2014] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT), and its 5-HT1A receptor (5-HT1AR) subtype, is a powerful modulator of the cardiorespiratory system and its sensory reflexes. The nucleus tractus solitarii (nTS) serves as the first central station for visceral afferent integration and is critical for cardiorespiratory reflex responses. However, the physiological and synaptic role of 5-HT1ARs in the nTS is relatively unknown. In the present study, we examined the distribution and modulation of 5-HT1ARs on cardiorespiratory and synaptic parameters in the nTS. 5-HT1ARs were widely distributed to cell bodies within the nTS but not synaptic terminals. In anesthetized rats, activation of 5-HT1ARs by microinjection of the 5-HT1AR agonist 8-OH-DPAT into the caudal nTS decreased minute phrenic neural activity via a reduction in phrenic amplitude. In brain stem slices, 8-OH-DPAT decreased the amplitude of glutamatergic tractus solitarii-evoked excitatory postsynaptic currents, and reduced overall spontaneous excitatory nTS network activity. These effects persisted in the presence of GABAA receptor blockade and were antagonized by coapplication of 5-HT1AR blocker WAY-100135. 5-HT1AR blockade alone had no effect on tractus solitarii-evoked excitatory postsynaptic currents, but increased excitatory network activity. On the other hand, GABAergic nTS-evoked inhibitory postsynaptic currents did not change by activation of the 5-HT1ARs, but spontaneous inhibitory nTS network activity decreased. Blocking 5-HT1ARs tended to increase nTS-evoked inhibitory postsynaptic currents and inhibitory network activity. Taken together, 5-HT1ARs in the caudal nTS decrease breathing, likely via attenuation of afferent transmission, as well as overall nTS network activity.
Collapse
Affiliation(s)
- Tim D Ostrowski
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Daniela Ostrowski
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Eileen M Hasser
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D Kline
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
28
|
Zhang L, Bose P, Warren RA. Dopamine preferentially inhibits NMDA receptor-mediated EPSCs by acting on presynaptic D1 receptors in nucleus accumbens during postnatal development. PLoS One 2014; 9:e86970. [PMID: 24784836 PMCID: PMC4006738 DOI: 10.1371/journal.pone.0086970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022] Open
Abstract
Nucleus accumbens (nAcb), a major site of action of drugs of abuse and dopamine (DA) signalling in MSNs (medium spiny neurons), is critically involved in mediating behavioural responses of drug addiction. Most studies have evaluated the effects of DA on MSN firing properties but thus far, the effects of DA on a cellular circuit involving glutamatergic afferents to the nAcb have remained rather elusive. In this study we attempted to characterize the effects of dopamine (DA) on evoked glutamatergic excitatory postsynaptic currents (EPSCs) in nAcb medium spiny (MS) neurons in 1 to 21 day-old rat pups. The EPSCs evoked by local nAcb stimuli displayed both AMPA/KA and NMDA receptor-mediated components. The addition of DA to the superfusing medium produced a marked decrease of both components of the EPSCs that did not change during the postnatal period studied. Pharmacologically isolated AMPA/KA receptor-mediated response was inhibited on average by 40% whereas the isolated NMDA receptor-mediated EPSC was decreased by 90%. The effect of DA on evoked EPSCs were mimicked by the D1-like receptor agonist SKF 38393 and antagonized by the D1-like receptor antagonist SCH 23390 whereas D2-like receptor agonist or antagonist respectively failed to mimic or to block the action of DA. DA did not change the membrane input conductance of MS neurons or the characteristics of EPSCs produced by the local administration of glutamate in the presence of tetrodotoxin. In contrast, DA altered the paired-pulse ratio of evoked EPSCs. The present results show that the activation D1-like dopaminergic receptors modulate glutamatergic neurotransmission by preferentially inhibiting NMDA receptor-mediated EPSC through presynaptic mechanisms.
Collapse
Affiliation(s)
- Liming Zhang
- Centre de recherche Fernand-Seguin, University of Montreal, Montreal, Canada
- Department of Physiology, University of Montreal, Montreal, Canada
| | - Poulomee Bose
- Department of Psychiatry, University of Montreal, Montreal, Canada
| | - Richard A. Warren
- Centre de recherche Fernand-Seguin, University of Montreal, Montreal, Canada
- Department of Psychiatry, University of Montreal, Montreal, Canada
- * E-mail:
| |
Collapse
|
29
|
Ostrowski TD, Hasser EM, Heesch CM, Kline DD. H₂O₂ induces delayed hyperexcitability in nucleus tractus solitarii neurons. Neuroscience 2014; 262:53-69. [PMID: 24397952 DOI: 10.1016/j.neuroscience.2013.12.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
Hydrogen peroxide (H₂O₂) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H₂O₂ is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H₂O₂ modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10-500 μM H₂O₂. However, 500 μM H₂O₂ modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance (R(i)), hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H₂O₂ increased conductance of barium-sensitive potassium currents, and block of these currents ablated H₂O₂-induced changes in RMP, Ri and AP discharge. Following washout of H₂O₂ AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H₂O₂ exposure. H₂O₂ effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H₂O₂ initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes.
Collapse
Affiliation(s)
- T D Ostrowski
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - E M Hasser
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - C M Heesch
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - D D Kline
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
30
|
Brain neuronal activation induced by flibanserin treatment in female rats. Psychopharmacology (Berl) 2013; 230:639-52. [PMID: 23857113 DOI: 10.1007/s00213-013-3194-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/17/2013] [Indexed: 12/19/2022]
Abstract
RATIONALE Flibanserin, a 5-HT1A agonist and 5-HT2A antagonist, is developed for the treatment of hypoactive sexual desire disorder in women, and its efficacy has been evidenced in several clinical studies. Flibanserin prosexual effects have been also evidenced in preclinical animal models. However, the mechanism of action of flibanserin remains not fully understood. OBJECTIVE The aim of the present study was to examine brain neuronal activation in female rats treated with flibanserin, using single immunocytochemical labeling of Fos protein, a marker of neuronal activation, and co-localization of Fos and catecholaminergic marker. METHOD Six groups of female rats received either acute or chronic administrations of vehicle, flibanserin 15 mg/kg or flibanserin 45 mg/kg. The brains were collected and processed for immunocytochemical labeling. RESULTS Acute flibanserin increased levels of Fos immunoreactivity in the nucleus accumbens, arcuate hypothalamic nucleus, locus coeruleus, lateral paragigantocellular nucleus, and nucleus of the solitary tract. Chronic 22-day treatment with flibanserin increased Fos expression in the medial preoptic area and arcuate nucleus of the hypothalamus, ventral tegmental area, locus coeruleus, and lateral paragigantocellular nucleus. Both acute and chronic flibanserin increased the density of activated catecholaminergic neurons in the ventral tegmental area but not in the locus coeruleus. CONCLUSION Altogether, our results showed that flibanserin, at the dose known to enhance female sexual motivation, preferentially activated the brain regions belonging to the mesolimbic dopaminergic pathway and hypothalamic structures involved in the integration of sexual cues related to sexual motivation.
Collapse
|
31
|
Minic Z, O'Leary DS, Scislo TJ. Nucleus tractus solitarii A(2a) adenosine receptors inhibit cardiopulmonary chemoreflex control of sympathetic outputs. Auton Neurosci 2013; 180:32-42. [PMID: 24216055 DOI: 10.1016/j.autneu.2013.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/03/2013] [Accepted: 10/16/2013] [Indexed: 01/18/2023]
Abstract
Previously we have shown that stimulation of inhibitory A1 adenosine receptors located in the nucleus tractus solitarii (NTS) attenuates cardiopulmonary chemoreflex (CCR) evoked inhibition of renal, adrenal and lumbar sympathetic nerve activity and reflex decreases in arterial pressure and heart rate. Activation of facilitatory A2a adenosine receptors, which dominate over A1 receptors in the NTS, contrastingly alters baseline activity of regional sympathetic outputs: it decreases renal, increases adrenal and does not change lumbar nerve activity. Considering that NTS A2a receptors may facilitate release of inhibitory transmitters we hypothesized that A2a receptors will act in concert with A1 receptors differentially inhibiting regional sympathetic CCR responses (adrenal>lumbar>renal). In urethane/chloralose anesthetized rats (n=38) we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of serotonin 5HT3 receptor agonist, phenylbiguanide, (1-8μg/kg) before and after selective stimulation, blockade or combined blockade and stimulation of NTS A2a adenosine receptors (microinjections into the NTS of CGS-21680 0.2-20pmol/50nl, ZM-241385 40pmol/100nl or ZM-241385+CGS-21680, respectively). We found that stimulation of A2a adenosine receptors uniformly inhibited the regional sympathetic and hemodynamic reflex responses and this effect was abolished by the selective blockade of NTS A2a receptors. This indicates that A2a receptor triggered inhibition of CCR responses and the contrasting shifts in baseline sympathetic activity are mediated via different mechanisms. These data implicate that stimulation of NTS A2a receptors triggers unknown inhibitory mechanism(s) which in turn inhibit transmission in the CCR pathway when adenosine is released into the NTS during severe hypotension.
Collapse
Affiliation(s)
- Zeljka Minic
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Donal S O'Leary
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Tadeusz J Scislo
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| |
Collapse
|
32
|
Accorsi-Mendonça D, Zoccal DB, Bonagamba LGH, Machado BH. Glial cells modulate the synaptic transmission of NTS neurons sending projections to ventral medulla of Wistar rats. Physiol Rep 2013; 1:e00080. [PMID: 24303152 PMCID: PMC3831896 DOI: 10.1002/phy2.80] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/08/2013] [Accepted: 07/14/2013] [Indexed: 12/15/2022] Open
Abstract
There is evidence that sympathoexcitatory and respiratory responses to chemoreflex activation involve ventrolateral medulla-projecting nucleus tractus solitarius (NTS) neurons (NTS-VLM neurons) and also that ATP modulates this neurotransmission. Here, we evaluated whether or not astrocytes is the source of endogenous ATP modulating the synaptic transmission in NTS-VLM neurons. Synaptic activities of putative astrocytes or NTS-VLM neurons were recorded using whole cell patch clamp. Tractus solitarius (TS) stimulation induced TS-evoked excitatory postsynaptic currents (TS-eEPSCs) in NTS-VLM neurons as well in NTS putative astrocytes, which were also identified by previous labeling. Fluoracetate (FAC), an inhibitor of glial metabolism, reduced TS-eEPSCs amplitude (-85.6 ± 16 vs. -39 ± 7.1 pA, n = 12) and sEPSCs frequency (2.8 ± 0.5 vs. 1.8 ± 0.46 Hz, n = 10) in recorded NTS-VLM neurons, indicating a gliomodulation of glutamatergic currents. To verify the involvement of endogenous ATP a purinergic antagonist was used, which reduced the TS-eEPSCs amplitude (-207 ± 50 vs. -149 ± 50 pA, n = 6), the sEPSCs frequency (1.19 ± 0.2 vs. 0.62 ± 0.11 Hz, n = 6), and increased the paired-pulse ratio (PPR) values (∼20%) in NTS-VLM neurons. Simultaneous perfusion of Pyridoxalphosphate-6-azophenyl-2',5'-disulfonic acid (iso-PPADS) and FAC produced reduction in TS-eEPSCs similar to that observed with iso-PPADS or FAC alone, indicating that glial cells are the source of ATP released after TS stimulation. Extracellular ATP measurement showed that FAC reduced evoked and spontaneous ATP release. All together these data show that putative astrocytes are the source of endogenous ATP, which via activation of presynaptic P2X receptors, facilitates the evoked glutamate release and increases the synaptic transmission efficacy in the NTS-VLM neurons probably involved with the peripheral chemoreflex pathways.
Collapse
Affiliation(s)
- Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
33
|
Ramirez JM, Garcia AJ, Anderson TM, Koschnitzky JE, Peng YJ, Kumar GK, Prabhakar NR. Central and peripheral factors contributing to obstructive sleep apneas. Respir Physiol Neurobiol 2013; 189:344-53. [PMID: 23770311 DOI: 10.1016/j.resp.2013.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 11/30/2022]
Abstract
Apnea, the cessation of breathing, is a common physiological and pathophysiological phenomenon. Among the different forms of apnea, obstructive sleep apnea (OSA) is clinically the most prominent manifestation. OSA is characterized by repetitive airway occlusions that are typically associated with peripheral airway obstructions. However, it would be an oversimplification to conclude that OSA is caused by peripheral obstructions. OSA is the result of a dynamic interplay between chemo- and mechanosensory reflexes, neuromodulation, behavioral state and the differential activation of the central respiratory network and its motor outputs. This interplay has numerous neuronal and cardiovascular consequences that are initially adaptive but in the long-term become major contributors to morbidity and mortality. Not only OSA, but also central apneas (CA) have multiple, and partly overlapping mechanisms. In OSA and CA the underlying mechanisms are neither "exclusively peripheral" nor "exclusively central" in origin. This review discusses the complex interplay of peripheral and central nervous components that characterizes the cessation of breathing.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Dyavanapalli J, Byrne P, Mendelowitz D. Activation of D2-like dopamine receptors inhibits GABA and glycinergic neurotransmission to pre-motor cardiac vagal neurons in the nucleus ambiguus. Neuroscience 2013; 247:213-26. [PMID: 23727508 DOI: 10.1016/j.neuroscience.2013.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 12/16/2022]
Abstract
The parasympathetic control of heart rate arises from premotor cardiac vagal neurons (CVNs) located in the nucleus ambiguus (NA). Previous microinjection studies in NA show that dopamine evokes a decrease in heart rate, but the underlying mechanisms responsible for these responses were not identified. This study tested whether dopamine modulates inhibitory GABAergic and glycinergic and/or excitatory glutamatergic neurotransmission to CVNs. Retrogradely labeled CVNs were identified in an in vitro rat brainstem slice preparation and synaptic events were recorded using whole cell voltage clamp techniques. Bath application of dopamine (100 μM) had no effect on excitatory synaptic events, but reversibly inhibited the frequency (but not amplitude) of GABAergic inhibitory postsynaptic currents (IPSCs) in CVNs. Similarly, dopamine (10 μM and 100 μM) inhibited glycinergic IPSC frequency by ~50% and 70% respectively. The reduction in inhibitory neurotransmission to CVNs by dopamine was prevented by the sodium channel blocker TTX (1μM) indicating that the dopamine mediated effects were action potential dependent. Dopamine evoked responses were mimicked by the D2-like receptor agonist, Quinpirole but not D1-like receptor agonist, SKF 38393. In addition, the dopamine mediated depression of inhibitory synaptic responses were prevented by the D2-like receptor antagonist sulpiride, but not by D1-like or adrenergic or serotonergic receptor antagonists, suggesting that these responses were D2-like receptor mediated and not D1-like or adrenergic or 5-HT receptor mediated. These data suggest that dopamine acts via dis-inhibition, and diminishes inhibitory GABAergic and glycinergic neurotransmission to CVNs, which would be predicted to increase parasympathetic activity to the heart and evoke a bradycardia.
Collapse
Affiliation(s)
- J Dyavanapalli
- Department of Pharmacology & Physiology, The George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| | | | | |
Collapse
|
35
|
Brain activity mapping in Mecp2 mutant mice reveals functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment. J Neurosci 2013; 32:13860-72. [PMID: 23035095 DOI: 10.1523/jneurosci.2159-12.2012] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excitatory-inhibitory imbalance has been identified within specific brain microcircuits in models of Rett syndrome (RTT) and other autism spectrum disorders (ASDs). However, macrocircuit dysfunction across the RTT brain as a whole has not been defined. To approach this issue, we mapped expression of the activity-dependent, immediate-early gene product Fos in the brains of wild-type (Wt) and methyl-CpG-binding protein 2 (Mecp2)-null (Null) mice, a model of RTT, before and after the appearance of overt symptoms (3 and 6 weeks of age, respectively). At 6 weeks, Null mice exhibit significantly less Fos labeling than Wt in limbic cortices and subcortical structures, including key nodes in the default mode network. In contrast, Null mice exhibit significantly more Fos labeling than Wt in the hindbrain, most notably in cardiorespiratory regions of the nucleus tractus solitarius (nTS). Using nTS as a model, whole-cell recordings demonstrated that increased Fos expression in Nulls at 6 weeks of age is associated with synaptic hyperexcitability, including increased frequency of spontaneous and miniature EPSCs and increased amplitude of evoked EPSCs in Nulls. No such effect of genotype on Fos or synaptic function was seen at 3 weeks. In the mutant forebrain, reduced Fos expression, as well as abnormal sensorimotor function, were reversed by the NMDA receptor antagonist ketamine. In light of recent findings that the default mode network is hypoactive in autism, our data raise the possibility that hypofunction within this meta-circuit is a shared feature of RTT and other ASDs and is reversible.
Collapse
|
36
|
Andresen MC, Fawley JA, Hofmann ME. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus. Front Neurosci 2013; 6:191. [PMID: 23335875 PMCID: PMC3541483 DOI: 10.3389/fnins.2012.00191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022] Open
Abstract
The brainstem nucleus of the solitary tract (NTS) holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST) with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g., hypothalamus) neuron sources. Presynaptic receptors for angiotensin (AT1), vasopressin (V1a), oxytocin, opioid (MOR), ghrelin (GHSR1), and cholecystokinin differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 and the cannabinoid receptor that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.
Collapse
Affiliation(s)
- Michael C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University Portland, OR, USA
| | | | | |
Collapse
|
37
|
Sykora C, Amor M, Schlenker E. Age and hypothyroidism affect dopamine modulation of breathing and D2 receptor levels. Respir Physiol Neurobiol 2013; 185:257-64. [DOI: 10.1016/j.resp.2012.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/12/2012] [Accepted: 10/02/2012] [Indexed: 12/29/2022]
|
38
|
Andresen MC, Hofmann ME, Fawley JA. The unsilent majority-TRPV1 drives "spontaneous" transmission of unmyelinated primary afferents within cardiorespiratory NTS. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1207-16. [PMID: 23076872 PMCID: PMC3532589 DOI: 10.1152/ajpregu.00398.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/11/2012] [Indexed: 01/29/2023]
Abstract
Cranial primary afferent sensory neurons figure importantly in homeostatic control of visceral organ systems. Of the two broad classes of visceral afferents, the role of unmyelinated or C-type class remains poorly understood. This review contrasts key aspects of peripheral discharge properties of C-fiber afferents and their glutamate transmission mechanisms within the solitary tract nucleus (NTS). During normal prevailing conditions, most information arrives at the NTS through myelinated A-type nerves. However, most of visceral afferent axons (75-90%) in NTS are unmyelinated, C-type axons. Centrally, C-type solitary tract (ST) afferent terminals have presynaptic transient receptor potential vanilloid type 1 (TRPV1) receptors. Capsaicin activation of TRPV1 blocks phasic or synchronous release of glutamate but facilitates release of glutamate from a separate pool of vesicles. This TRPV1-operated pool of vesicles is active at normal temperatures and is responsible for actively driving a 10-fold higher release of glutamate at TRPV1 compared with TRPV1- terminals even in the absence of afferent action potentials. This novel TRPV1 mechanism is responsible for an additional asynchronous release of glutamate that is not present in myelinated terminals. The NTS is rich with presynaptic G protein-coupled receptors, and the implications of TRPV1-operated glutamate offer unique targets for signaling in C-type sensory afferent terminals from neuropeptides, inflammatory mediators, lipid metabolites, cytokines, and cannabinoids. From a homeostatic view, this combination could have broad implications for integration in chronic pathological disturbances in which the numeric dominance of C-type endings and TRPV1 would broadly disturb multisystem control mechanisms.
Collapse
Affiliation(s)
- Michael C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
39
|
McDougall SJ, Andresen MC. Independent transmission of convergent visceral primary afferents in the solitary tract nucleus. J Neurophysiol 2012; 109:507-17. [PMID: 23114206 DOI: 10.1152/jn.00726.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cranial primary afferents from the viscera enter the brain at the solitary tract nucleus (NTS), where their information is integrated for homeostatic reflexes. The organization of sensory inputs is poorly understood, despite its critical impact on overall reflex performance characteristics. Single afferents from the solitary tract (ST) branch within NTS and make multiple contacts onto individual neurons. Many neurons receive more than one ST input. To assess the potential interaction between converging afferents and proximal branching near to second-order neurons, we probed near the recorded soma in horizontal slices from rats with focal electrodes and minimal shocks. Remote ST shocks evoked monosynaptic excitatory postsynaptic currents (EPSCs), and nearby focal shocks also activated monosynaptic EPSCs. We tested the timing and order of stimulation to determine whether focal shocks influenced ST responses and vice versa in single neurons. Focal-evoked EPSC response profiles closely resembled ST-EPSC characteristics. Mean synaptic jitters, failure rates, depression, and phenotypic segregation by capsaicin responsiveness were indistinguishable between focal and ST-evoked EPSCs. ST-EPSCs failed to affect focal-EPSCs within neurons, indicating that release sites and synaptic terminals were functionally independent and isolated from cross talk or neurotransmitter overflow. In only one instance, focal shocks intercepted and depleted the ST axon generating evoked EPSCs. Despite large numbers of functional contacts, multiple afferents do not appear to interact, and ST axon branches may be limited to close to the soma. Thus single or multiple primary afferents and their presynaptic active release sites act independently when they contact single second-order NTS neurons.
Collapse
Affiliation(s)
- Stuart J McDougall
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA.
| | | |
Collapse
|
40
|
Austgen JR, Dantzler HA, Barger BK, Kline DD. 5-hydroxytryptamine 2C receptors tonically augment synaptic currents in the nucleus tractus solitarii. J Neurophysiol 2012; 108:2292-305. [PMID: 22855775 PMCID: PMC3545023 DOI: 10.1152/jn.00049.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/29/2012] [Indexed: 12/20/2022] Open
Abstract
The nucleus tractus solitarii (nTS) is the primary termination and integration point for visceral afferents in the brain stem. Afferent glutamate release and its efficacy on postsynaptic activity within this nucleus are modulated by additional neuromodulators and transmitters, including serotonin (5-HT) acting through its receptors. The 5-HT(2) receptors in the medulla modulate the cardiorespiratory system and autonomic reflexes, but the distribution of the 5-HT(2C) receptor and the role of these receptors during synaptic transmission in the nTS remain largely unknown. In the present study, we examined the distribution of 5-HT(2C) receptors in the nTS and their role in modulating excitatory postsynaptic currents (EPSCs) in monosynaptic nTS neurons in the horizontal brain stem slice. Real-time RT-PCR and immunohistochemistry identified 5-HT(2C) receptor message and protein in the nTS and suggested postsynaptic localization. In nTS neurons innervated by general visceral afferents, 5-HT(2C) receptor activation increased solitary tract (TS)-EPSC amplitude and input resistance and depolarized membrane potential. Conversely, 5-HT(2C) receptor blockade reduced TS-EPSC and miniature EPSC amplitude, as well as input resistance, and hyperpolarized membrane potential. Synaptic parameters in nTS neurons that receive sensory input from carotid body chemoafferents were also attenuated by 5-HT(2C) receptor blockade. Taken together, these data suggest that 5-HT(2C) receptors in the nTS are located postsynaptically and augment excitatory neurotransmission.
Collapse
Affiliation(s)
- James R Austgen
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | | | | |
Collapse
|
41
|
Prabhakar NR, Kumar GK, Peng YJ. Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol (1985) 2012; 113:1304-10. [PMID: 22723632 DOI: 10.1152/japplphysiol.00444.2012] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recurrent apnea with chronic intermittent hypoxia (CIH) is a major clinical problem in adult humans and infants born preterm. Patients with recurrent apnea exhibit heightened sympathetic activity as well as elevated plasma catecholamine levels, and these phenotypes are effectively recapitulated in rodent models of CIH. This article summarizes findings from studies addressing sympathetic activation in recurrent apnea patients and rodent models of CIH and the underlying cellular and molecular mechanisms. Available evidence suggests that augmented chemoreflex and attenuated baroreflex contribute to sympathetic activation by CIH. Studies on rodents showed that CIH augments the carotid body response to hypoxia and attenuates the carotid baroreceptor response to increased sinus pressures. Processing of afferent information from chemoreceptors at the central nervous system is also facilitated by CIH. Adult and neonatal rats exposed to CIH exhibit augmented catecholamine secretion from the adrenal medulla. Adrenal demedullation prevents the elevation of circulating catecholamines in CIH-exposed rodents. Reactive oxygen species (ROS)-mediated signaling is emerging as the major cellular mechanism triggering sympatho-adrenal activation by CIH. Molecular mechanisms underlying increased ROS generation by CIH seem to involve transcriptional dysregulation of genes encoding pro-and antioxidant enzymes by hypoxia-inducible factor-1 and -2, respectively.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and The Center for Systems Biology of Oxygen Sensing, Biological Sciences Division, Dept. of Medicine, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | | | |
Collapse
|
42
|
Schlenker EH. Effects of hypothyroidism on the respiratory system and control of breathing: Human studies and animal models. Respir Physiol Neurobiol 2012; 181:123-31. [DOI: 10.1016/j.resp.2012.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/16/2012] [Accepted: 02/19/2012] [Indexed: 01/11/2023]
Affiliation(s)
- Evelyn H Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St., Vermillion, SD 57069, United States.
| |
Collapse
|
43
|
Lalley PM, Mifflin SW. Opposing effects on the phrenic motor pathway attributed to dopamine-D1 and -D3/D2 receptor activation. Respir Physiol Neurobiol 2012; 181:183-93. [PMID: 22465544 DOI: 10.1016/j.resp.2012.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 01/11/2023]
Abstract
Previous in vivo studies revealed that dopamine-D1-agonists elevate excitability of ventral respiratory column (VRC) neurons and increase discharge activity in the phrenic motor output through actions in the brainstem. In this in vivo study performed on pentobarbital-anesthetized cats, we show that D1-agonists (SKF-38393, dihydrexidine) given intravenously enhanced discharge activity in VRC inspiratory neurons and the phrenic nerve in two stages; discharge intensity first increased to a peak and then discharge duration increased. Cross-correlation analysis of VRC inspiratory neuron and phrenic nerve discharges showed that both stages increased strength of coupling between medullary inspiratory neurons and the phrenic motoneuron output. Intracellular recording and microiontophoresis experiments indicated that D1-agonists produced their stimulatory effects indirectly through actions on synaptic inputs to VRC inspiratory neurons. Because other laboratories have provided evidence that dopamine acting on other types of receptors depresses respiratory neuron excitability we tested the effects of piribedil, an agonist that activates receptors of the generally depressant D3/D2-dopamine receptor family, on phrenic nerve activity. Piribedil depressed phrenic nerve inspiratory discharge intensity, prolonged discharge duration, slowed burst frequency and slowed rate of action potential augmentation. The effects of piribedil were partially counteracted by intravenous injection of dihydrexidine. We propose that under normal, steady state conditions, D1-receptor-mediated excitatory modulation of phrenic motor output overrides D3/D2-receptor mediated inhibition.
Collapse
Affiliation(s)
- Peter M Lalley
- The University of Wisconsin Medical Sciences Center, United States
| | | |
Collapse
|
44
|
Mejías-Aponte CA, Kiyatkin EA. Ventral tegmental area neurons are either excited or inhibited by cocaine's actions in the peripheral nervous system. Neuroscience 2012; 207:182-97. [PMID: 22300980 DOI: 10.1016/j.neuroscience.2012.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 01/13/2023]
Abstract
Cocaine's multiple pharmacological substrates are ubiquitously present in the peripheral and central nervous system. Thus, upon its administration, cocaine acts in the periphery before directly acting in the brain. We determined whether cocaine alters ventral tegmental area (VTA) neuronal activity via its peripheral actions. In urethane-anesthetized rats, we recorded VTA neuron's responses to intravenous injections of two cocaine analogs: cocaine-hydrochloride (HCl, 0.25 mg/kg), which readily cross the blood-brain barrier (BBB), and cocaine-methiodide (MI, 0.33 mg/kg), which does not cross the BBB. Both cocaine analogs produced sustained changes in discharge rates that began 5 s after the initiation of a 10-s drug infusion. Within the first 90 s post-injection, the magnitudes of neuronal responsiveness of both cocaine analogs were comparable, but later the effects of cocaine-HCl were stronger and persisted longer than those of cocaine-MI. The proportion of neurons responsive to cocaine-HCl was twice that of cocaine-MI (74% and 35%, respectively). Both analogs also differed in their response onsets. Cocaine-MI rarely evoked responses after 1 min, whereas cocaine-HCl continued to evoke responses within 3 min post-injection. VTA neurons were either excited or inhibited by both cocaine analogs. Most units responsive to cocaine-MI, regardless of whether they were excited or inhibited, had electrophysiological characteristics of putative dopamine (DA) neurons. Units inhibited by cocaine-HCl also had characteristics of DA neurons, whereas excited neurons had widely varying action potential durations and discharge rates. Cocaine-MI and cocaine-HCl each produced changes in VTA neuron activity under full DA receptor blockade. However, the duration of inhibition was shortened and the number of excitations increased, and they occurred with an earlier onset during DA receptor blockade. These findings indicate that cocaine acts peripherally with a short latency and alters the activity of VTA neurons before its well-known direct actions in the brain.
Collapse
Affiliation(s)
- C A Mejías-Aponte
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Triad Technology Center Suite 2200, 333 Cassell Dr., Baltimore, MD 21224, USA.
| | | |
Collapse
|
45
|
Hypothyroidism stimulates D2 receptor-mediated breathing in response to acute hypoxia and alters D2 receptors levels in carotid bodies and brain. Respir Physiol Neurobiol 2011; 180:69-78. [PMID: 22051191 DOI: 10.1016/j.resp.2011.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/16/2011] [Accepted: 10/18/2011] [Indexed: 01/11/2023]
Abstract
Hypothyroidism can depress breathing and alter dopamine D2 receptor expression and function. We hypothesized that relative to euthyroid hamsters (EH), hypothyroid hamsters (HH) contain increased D2 receptors in brain regions associated with breathing and carotid bodies (CB), and that stimulation of D2 receptors would decease ventilation more in the HH compared to the EH. Hamsters were treated with vehicle, carmoxirile (peripherally acting D2 receptor agonist), or bromocriptine (central and peripherally acting D2 receptor agonist) and breathing was evaluated during exposure to air, hypoxia, and then air. HH exhibited increased D2 receptor protein levels in the striatum and CB, but decreased levels in the paraventricular hypothalamic nucleus. Relative to vehicle, carmoxirole and bromocriptine stimulated ventilation in the HH during and following exposure to hypoxia. Only bromocriptine depressed ventilation in the EH during and after exposure to hypoxia. Thus, hypothyroidism impacts the expression of D2 receptors in the carotid body, PVN and striatum, and D2 stimulation affects ventilation remarkably differently than in EH.
Collapse
|
46
|
Austgen JR, Hermann GE, Dantzler HA, Rogers RC, Kline DD. Hydrogen sulfide augments synaptic neurotransmission in the nucleus of the solitary tract. J Neurophysiol 2011; 106:1822-32. [PMID: 21734104 PMCID: PMC3191839 DOI: 10.1152/jn.00463.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/05/2011] [Indexed: 01/16/2023] Open
Abstract
Within the brain stem, the nucleus tractus solitarii (NTS) serves as a principal central site for sensory afferent integration from the cardiovascular and respiratory reflexes. Neuronal activity and synaptic transmission in the NTS are highly pliable and subject to neuromodulation. In the central nervous system, hydrogen sulfide (H₂S) is a gasotransmitter generated primarily by the enzyme cystathionine-β-synthase (CBS). We sought to determine the role of H₂S, and its generation by CBS, in NTS excitability. Real-time RT-PCR, immunoblot, and immunohistochemistry analysis identified the presence of CBS in the NTS. Patch-clamp electrophysiology in brain stem slices examined excitatory postsynaptic currents (EPSCs) and membrane properties in monosynaptically driven NTS neurons. Confocal imaging of labeled afferent synaptic terminals in NTS slices monitored intracellular calcium. Exogenous H₂S significantly increased the amplitude of evoked solitary tract (TS)-EPSCs, frequency of miniature (m)EPSCs, and presynaptic terminal calcium fluorescence in the NTS. H₂S did not alter action potential discharge or postsynaptic properties. On the other hand, the CBS inhibitor aminooxyacetate (AOA) significantly reduced the amplitude of TS-EPSCs and presynaptic terminal calcium fluorescence in the NTS without altering postsynaptic properties. Taken together, these data support a presynaptic role for endogenous H₂S in modulation of excitatory neurotransmission in the NTS.
Collapse
Affiliation(s)
- James R Austgen
- Department of Biomedical Science, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
47
|
Clark CG, Hasser EM, Kunze DL, Katz DM, Kline DD. Endogenous brain-derived neurotrophic factor in the nucleus tractus solitarius tonically regulates synaptic and autonomic function. J Neurosci 2011; 31:12318-29. [PMID: 21865474 PMCID: PMC3408222 DOI: 10.1523/jneurosci.0746-11.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are highly expressed in the nucleus tractus solitarius (nTS), the principal target of cardiovascular primary afferent input to the brainstem. However, little is known about the role of BDNF signaling in nTS in cardiovascular homeostasis. We examined whether BDNF in nTS modulates cardiovascular function in vivo and regulates synaptic and/or neuronal activity in isolated brainstem slices. Microinjection of BDNF into the rat medial nTS (mnTS), a region critical for baroreflex control of sympathetic outflow, produced dose-dependent increases in mean arterial pressure (MAP), heart rate (HR), and lumbar sympathetic nerve activity (LSNA) that were blocked by the tyrosine kinase inhibitor K252a. In contrast, immunoneutralization of endogenous BDNF (anti-BDNF), or microinjection of K252a alone, decreased MAP, HR, and LSNA. The effects of anti-BDNF were abolished by blockade of ionotropic glutamate receptors, indicating a role for glutamate signaling in the response to BDNF. In vitro, BDNF reduced the amplitude of miniature EPSCs as well as solitary tract (TS) evoked EPSC amplitude and action potential discharge (APD) in second-order nTS neurons. BDNF effects on EPSCs were independent of GABAergic signaling and abolished by AMPA receptor blockade. In contrast, K252a increased spontaneous EPSC frequency and TS evoked EPSC amplitude. BDNF also attenuated APD evoked by injection of depolarizing current into second-order neurons, indicating reduced intrinsic neuronal excitability. Our data demonstrate that BDNF signaling in mnTS plays a tonic role in regulating cardiovascular function, likely via modulation of primary afferent glutamatergic excitatory transmission and neural activity.
Collapse
Affiliation(s)
- Catharine G. Clark
- Dalton Cardiovascular Research Center
- Departments of Biomedical Sciences, and
| | - Eileen M. Hasser
- Dalton Cardiovascular Research Center
- Departments of Biomedical Sciences, and
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211
| | - Diana L. Kunze
- Rammelkamp Center, MetroHealth Systems, Cleveland, Ohio 44109, and
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - David M. Katz
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - David D. Kline
- Dalton Cardiovascular Research Center
- Departments of Biomedical Sciences, and
| |
Collapse
|
48
|
Ohi Y, Tsunekawa S, Haji A. Dextromethorphan inhibits the glutamatergic synaptic transmission in the nucleus tractus solitarius of guinea pigs. J Pharmacol Sci 2011; 116:54-62. [PMID: 21487194 DOI: 10.1254/jphs.11008fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Dextromethorphan (DEX) is a widely used non-opioid antitussive. However, the precise site of action and its mechanism were not fully understood. We examined the effects of DEX on AMPA receptor-mediated glutamatergic transmission in the nucleus tractus solitarius (NTS) of guinea pigs. Excitatory postsynaptic currents (evoked EPSCs: eEPSCs) were evoked in the second-order neurons by electrical stimulation of the tractus solitarius. DEX reversibly decreased the eEPSC amplitude in a concentration-dependent manner. The DEX-induced inhibition of eEPSC was accompanied by an increased paired-pulse ratio. Miniature EPSCs (mEPSCs) were also recorded in the presence of Cd(2+) or tetrodotoxin. DEX decreased the frequency of mEPSCs without affecting their amplitude. Topically applied AMPA provoked an inward current in the neurons, which was unchanged during the perfusion of DEX. BD1047, a σ-1-receptor antagonist, did not block the inhibitory effect of DEX on the eEPSCs, but antagonized the inhibition of eEPSCs induced by SKF-10047, a σ-1 agonist. Haloperidol, a σ-1 and -2 receptor ligand, had no influence on the inhibitory action of DEX. These results suggest that DEX inhibits glutamate release from the presynaptic terminals projecting to the second-order NTS neurons, but this effect of DEX is not mediated by the activation of σ receptors.
Collapse
Affiliation(s)
- Yoshiaki Ohi
- Laboratory of Neuropharmacology, School of Pharmacy, Aichi Gakuin University, Chikusa, Nagoya 464-8650, Japan
| | | | | |
Collapse
|
49
|
Ortiz AN, Oien DB, Moskovitz J, Johnson MA. Quantification of reserve pool dopamine in methionine sulfoxide reductase A null mice. Neuroscience 2011; 177:223-9. [PMID: 21219974 DOI: 10.1016/j.neuroscience.2011.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/13/2010] [Accepted: 01/03/2011] [Indexed: 11/18/2022]
Abstract
Methionine sulfoxide reductase A knockout (MsrA-/-) mice, which serve as a potential model for neurodegeneration, suffer from increased oxidative stress and have previously been found to have chronically elevated brain dopamine (DA) content levels relative to control mice. Additionally, these high levels parallel the increased presynaptic DA release. In this study, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to quantify striatal reserve pool DA in knockout mice and wild-type control mice. Reserve pool DA efflux, induced by amphetamine (AMPH), was measured in brain slices from knockout and wild type (WT) mice in the presence of α-methyl-p-tyrosine, a DA synthesis inhibitor. Additionally, the stimulated release of reserve pool DA, mobilized by cocaine (COC), was measured. Both efflux and stimulated release measurements were enhanced in slices from knockout mice, suggesting that these mice have greater reserve pool DA stores than wild-type and that these stores are effectively mobilized. Moreover, dopamine transporter (DAT) labeling data indicate that the difference in measured DA efflux was likely not caused by altered DAT protein expression. Additionally, slices from MsrA-/- and wild-type mice were equally responsive to increasing extracellular calcium concentrations, suggesting that potential differences in either calcium entry or intracellular calcium handling are not responsible for increased reserve pool DA release. Collectively, these results demonstrate that MsrA-/- knockout mice maintain a larger DA reserve pool than wild-type control mice, and that this pool is readily mobilized.
Collapse
Affiliation(s)
- A N Ortiz
- Department of Chemistry and R. N. Adams Institute of Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
50
|
Widdicombe J, Tatar M, Fontana G, Hanacek J, Davenport P, Lavorini F, Bolser D. Workshop: tuning the 'cough center'. Pulm Pharmacol Ther 2011; 24:344-52. [PMID: 21215322 DOI: 10.1016/j.pupt.2010.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 12/28/2010] [Indexed: 01/10/2023]
Abstract
The Workshop considered the mechanisms whereby the 'cough center' could be tuned by various afferent inputs. There were particular presentations on the effects of inputs from the nose, mouth, respiratory tract and lungs, cerebral cortex, somatic tissues and the pharynx. From all these sites cough induced from the lungs could be increased or decreased in its strength or modified in its pattern. Thus 'tuning' of cough could be due to the interaction of afferent inputs, or to the sensitization or desensitization of brainstem neural pathways. The pattern of response depended on the 'type' of cough being studied and, in some instances, on the timing of the sensory input into the brainstem. Cough inputs could also affect various 'non-cough' motor outputs from the brain, although this was not the main theme of the Workshop. The main conclusion was that cough is not a stereotyped output from the medullary 'cough center', but that its pattern and strength depend on many afferent inputs acting on the 'cough center'.
Collapse
Affiliation(s)
- J Widdicombe
- University of London, 116 Pepys Road, London SW20 8NY, UK.
| | | | | | | | | | | | | | | |
Collapse
|