1
|
Assimopoulos S, Warrington S, Bryant KL, Pszczolkowski S, Jbabdi S, Mars RB, Sotiropoulos SN. Generalising XTRACT tractography protocols across common macaque brain templates. Brain Struct Funct 2024; 229:1873-1888. [PMID: 38388696 PMCID: PMC11485040 DOI: 10.1007/s00429-024-02760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Non-human primates are extensively used in neuroscience research as models of the human brain, with the rhesus macaque being a prominent example. We have previously introduced a set of tractography protocols (XTRACT) for reconstructing 42 corresponding white matter (WM) bundles in the human and the macaque brain and have shown cross-species comparisons using such bundles as WM landmarks. Our original XTRACT protocols were developed using the F99 macaque brain template. However, additional macaque template brains are becoming increasingly common. Here, we generalise the XTRACT tractography protocol definitions across five macaque brain templates, including the F99, D99, INIA, Yerkes and NMT. We demonstrate equivalence of such protocols in two ways: (a) Firstly by comparing the bodies of the tracts derived using protocols defined across the different templates considered, (b) Secondly by comparing the projection patterns of the reconstructed tracts across the different templates in two cross-species (human-macaque) comparison tasks. The results confirm similarity of all predictions regardless of the macaque brain template used, providing direct evidence for the generalisability of these tractography protocols across the five considered templates.
Collapse
Affiliation(s)
- Stephania Assimopoulos
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Katherine L Bryant
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université, Marseille, France
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stefan Pszczolkowski
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Parks TV, Szczupak D, Choi SH, Schaeffer DJ. Noninvasive focal transgene delivery with viral neuronal tracers in the marmoset monkey. CELL REPORTS METHODS 2024; 4:100709. [PMID: 38359822 PMCID: PMC10921014 DOI: 10.1016/j.crmeth.2024.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
We establish a reliable method for selectively delivering adeno-associated viral vectors (AAVs) across the blood-brain barrier (BBB) in the marmoset without the need for neurosurgical injection. We focally perturbed the BBB (∼1 × 2 mm) in area 8aD of the frontal cortex in four adult marmoset monkeys using low-intensity transcranial focused ultrasound aided by microbubbles. Within an hour of opening the BBB, either AAV2 or AAV9 was delivered systemically via tail-vein injection. In all four marmosets, fluorescence-encoded neurons were observed at the site of BBB perturbation, with AAV2 showing a sparse distribution of transduced neurons when compared to AAV9. The results are compared to direct intracortical injections of anterograde tracers into area 8aD and similar (albeit sparser) long-range connectivity was observed. With evidence of transduced neurons specific to the region of BBB opening as well as long-distance tracing, we establish a framework for focal noninvasive transgene delivery to the marmoset brain.
Collapse
Affiliation(s)
- T Vincenza Parks
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diego Szczupak
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sang-Ho Choi
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Baldassarro VA, Stanzani A, Giardino L, Calzà L, Lorenzini L. Neuroprotection and neuroregeneration: roles for the white matter. Neural Regen Res 2022; 17:2376-2380. [PMID: 35535874 PMCID: PMC9120696 DOI: 10.4103/1673-5374.335834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Efficient strategies for neuroprotection and repair are still an unmet medical need for neurodegenerative diseases and lesions of the central nervous system. Over the last few decades, a great deal of attention has been focused on white matter as a potential therapeutic target, mainly due to the discovery of the oligodendrocyte precursor cells in the adult central nervous system, a cell type able to fully repair myelin damage, and to the development of advanced imaging techniques to visualize and measure white matter lesions. The combination of these two events has greatly increased the body of research into white matter alterations in central nervous system lesions and neurodegenerative diseases and has identified the oligodendrocyte precursor cell as a putative target for white matter lesion repair, thus indirectly contributing to neuroprotection. This review aims to discuss the potential of white matter as a therapeutic target for neuroprotection in lesions and diseases of the central nervous system. Pivot conditions are discussed, specifically multiple sclerosis as a white matter disease; spinal cord injury, the acute lesion of a central nervous system component where white matter prevails over the gray matter, and Alzheimer's disease, where the white matter was considered an ancillary component until recently. We first describe oligodendrocyte precursor cell biology and developmental myelination, and its regulation by thyroid hormones, then briefly describe white matter imaging techniques, which are providing information on white matter involvement in central nervous system lesions and degenerative diseases. Finally, we discuss pathological mechanisms which interfere with myelin repair in adulthood.
Collapse
Affiliation(s)
| | - Agnese Stanzani
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Bologna; Fondazione IRET, Ozzano Emilia, Italy
| | - Laura Calzà
- Fondazione IRET, Ozzano Emilia; Department of Pharmacy and Biotechnology, University of Bologna, Bologna; Montecatone Rehabilitation Institute, Imola, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Naredo-Gonzalez G, Upreti R, Jansen MA, Semple S, Sutcliffe OB, Marshall I, Walker BR, Andrew R. Non-invasive in vivo assessment of 11β-hydroxysteroid dehydrogenase type 1 activity by 19F-Magnetic Resonance Spectroscopy. Sci Rep 2022; 12:16268. [PMID: 36175417 PMCID: PMC9523021 DOI: 10.1038/s41598-022-18740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies tissue glucocorticoid levels and is a pharmaceutical target in diabetes and cognitive decline. Clinical translation of inhibitors is hampered by lack of in vivo pharmacodynamic biomarkers. Our goal was to monitor substrates and products of 11β-HSD1 non-invasively in liver via 19Fluorine magnetic resonance spectroscopy (19F-MRS). Interconversion of mono/poly-fluorinated substrate/product pairs was studied in Wistar rats (male, n = 6) and healthy men (n = 3) using 7T and 3T MRI scanners, respectively. Here we show that the in vitro limit of detection, as absolute fluorine content, was 0.625 μmole in blood. Mono-fluorinated steroids, dexamethasone and 11-dehydrodexamethasone, were detected in phantoms but not in vivo in human liver following oral dosing. A non-steroidal polyfluorinated tracer, 2-(phenylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethanone and its metabolic product were detected in vivo in rat liver after oral administration of the keto-substrate, reading out reductase activity. Administration of a selective 11β-HSD1 inhibitor in vivo in rats altered total liver 19F-MRS signal. We conclude that there is insufficient sensitivity to measure mono-fluorinated tracers in vivo in man with current dosage regimens and clinical scanners. However, since reductase activity was observed in rats using poly-fluorinated tracers, this concept could be pursued for translation to man with further development.
Collapse
Affiliation(s)
- Gregorio Naredo-Gonzalez
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Rita Upreti
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Maurits A Jansen
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Edinburgh Imaging, Queen's Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Scott Semple
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Edinburgh Imaging, Queen's Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Ian Marshall
- Edinburgh Imaging, Queen's Medical Research Institute, 47 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, Edinburgh, EH16 4SB, Scotland, UK
| | - Brian R Walker
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.,Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK.
| |
Collapse
|
5
|
Grier MD, Yacoub E, Adriany G, Lagore RL, Harel N, Zhang RY, Lenglet C, Uğurbil K, Zimmermann J, Heilbronner SR. Ultra-high field (10.5T) diffusion-weighted MRI of the macaque brain. Neuroimage 2022; 255:119200. [PMID: 35427769 PMCID: PMC9446284 DOI: 10.1016/j.neuroimage.2022.119200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/08/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Diffu0sion-weighted magnetic resonance imaging (dMRI) is a non-invasive imaging technique that provides information about the barriers to the diffusion of water molecules in tissue. In the brain, this information can be used in several important ways, including to examine tissue abnormalities associated with brain disorders and to infer anatomical connectivity and the organization of white matter bundles through the use of tractography algorithms. However, dMRI also presents certain challenges. For example, historically, the biological validation of tractography models has shown only moderate correlations with anatomical connectivity as determined through invasive tract-tracing studies. Some of the factors contributing to such issues are low spatial resolution, low signal-to-noise ratios, and long scan times required for high-quality data, along with modeling challenges like complex fiber crossing patterns. Leveraging the capabilities provided by an ultra-high field scanner combined with denoising, we have acquired whole-brain, 0.58 mm isotropic resolution dMRI with a 2D-single shot echo planar imaging sequence on a 10.5 Tesla scanner in anesthetized macaques. These data produced high-quality tractograms and maps of scalar diffusion metrics in white matter. This work demonstrates the feasibility and motivation for in-vivo dMRI studies seeking to benefit from ultra-high fields.
Collapse
Affiliation(s)
- Mark D Grier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gregor Adriany
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Russell L Lagore
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ru-Yuan Zhang
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, P.R. China; Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States; Center for Neuroengineering, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
6
|
Ultra-high-field MRI studies of brain structure and function in humans and nonhuman primates: A collaborative approach to precision medicine. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Roumazeilles L, Lange FJ, Benn RA, Andersson JLR, Bertelsen MF, Manger PR, Flach E, Khrapitchev AA, Bryant KL, Sallet J, Mars RB. Cortical Morphology and White Matter Tractography of Three Phylogenetically Distant Primates: Evidence for a Simian Elaboration. Cereb Cortex 2021; 32:1608-1624. [PMID: 34518890 PMCID: PMC9016287 DOI: 10.1093/cercor/bhab285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Comparative neuroimaging has been used to identify changes in white matter architecture across primate species phylogenetically close to humans, but few have compared the phylogenetically distant species. Here, we acquired postmortem diffusion imaging data from ring-tailed lemurs (Lemur catta), black-capped squirrel monkeys (Saimiri boliviensis), and rhesus macaques (Macaca mulatta). We were able to establish templates and surfaces allowing us to investigate sulcal, cortical, and white matter anatomy. The results demonstrate an expansion of the frontal projections of the superior longitudinal fasciculus complex in squirrel monkeys and rhesus macaques compared to ring-tailed lemurs, which correlates with sulcal anatomy and the lemur’s smaller prefrontal granular cortex. The connectivity of the ventral pathway in the parietal region is also comparatively reduced in ring-tailed lemurs, with the posterior projections of the inferior longitudinal fasciculus not extending toward parietal cortical areas as in the other species. In the squirrel monkeys we note a very specific occipito-parietal anatomy that is apparent in their surface anatomy and the expansion of the posterior projections of the optical radiation. Our study supports the hypothesis that the connectivity of the prefrontal-parietal regions became relatively elaborated in the simian lineage after divergence from the prosimian lineage.
Collapse
Affiliation(s)
- Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13TA, UK
| | - Frederik J Lange
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX39DU, UK
| | - R Austin Benn
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Jesper L R Andersson
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX39DU, UK
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg 2000, Denmark
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Edmund Flach
- Wildlife Health Services, Zoological Society of London, London NW14RY, UK (now retired)
| | - Alexandre A Khrapitchev
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX37DQ, UK
| | - Katherine L Bryant
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX39DU, UK
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13TA, UK.,Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX39DU, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen 6525 HR, The Netherlands
| |
Collapse
|
8
|
Adam R, Schaeffer DJ, Johnston K, Menon RS, Everling S. Structural alterations in cortical and thalamocortical white matter tracts after recovery from prefrontal cortex lesions in macaques. Neuroimage 2021; 232:117919. [PMID: 33652141 DOI: 10.1016/j.neuroimage.2021.117919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
Unilateral damage to the frontoparietal network typically impairs saccade target selection within the contralesional visual hemifield. Severity of deficits and the degree of recovery have been associated with widespread network dysfunction, yet it is not clear how these behavioural and functional brain changes relate with the underlying structural white matter tracts. Here, we investigated whether recovery after unilateral prefrontal cortex (PFC) lesions was associated with changes in white matter microstructure across large-scale frontoparietal cortical and thalamocortical networks. Diffusion-weighted imaging was acquired in four male rhesus macaques at pre-lesion, week 1, and week 8-16 post-lesion when target selection deficits largely recovered. Probabilistic tractography was used to reconstruct cortical frontoparietal fiber tracts, including the superior longitudinal fasciculus (SLF) and transcallosal fibers connecting the PFC or posterior parietal cortex (PPC), as well as thalamocortical fiber tracts connecting the PFC and PPC to thalamic nuclei. We found that the two animals with small PFC lesions showed increased fractional anisotropy in both cortical and thalamocortical fiber tracts when behaviour had recovered. However, we found that fractional anisotropy decreased in cortical frontoparietal tracts after larger PFC lesions yet increased in some thalamocortical tracts at the time of behavioural recovery. These findings indicate that behavioural recovery after small PFC lesions may be supported by both cortical and subcortical areas, whereas larger PFC lesions may have induced widespread structural damage and hindered compensatory remodeling in the cortical frontoparietal network.
Collapse
Affiliation(s)
- Ramina Adam
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada
| | - David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, PA, United States
| | - Kevin Johnston
- The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Ravi S Menon
- Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Medical Biophysics, University of Western Ontario, London, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Robarts Research Institute, University of Western Ontario, London, Canada; The Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Canada.
| |
Collapse
|
9
|
Schaeffer DJ, Liu C, Silva AC, Everling S. Magnetic Resonance Imaging of Marmoset Monkeys. ILAR J 2021; 61:274-285. [PMID: 33631015 PMCID: PMC8918195 DOI: 10.1093/ilar/ilaa029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/22/2020] [Accepted: 10/23/2020] [Indexed: 11/12/2022] Open
Abstract
The use of the common marmoset monkey (Callithrix jacchus) for neuroscientific research has grown markedly in the last decade. Magnetic resonance imaging (MRI) has played a significant role in establishing the extent of comparability of marmoset brain architecture with the human brain and brains of other preclinical species (eg, macaques and rodents). As a non-invasive technique, MRI allows for the flexible acquisition of the same sequences across different species in vivo, including imaging of whole-brain functional topologies not possible with more invasive techniques. Being one of the smallest New World primates, the marmoset may be an ideal nonhuman primate species to study with MRI. As primates, marmosets have an elaborated frontal cortex with features analogous to the human brain, while also having a small enough body size to fit into powerful small-bore MRI systems typically employed for rodent imaging; these systems offer superior signal strength and resolution. Further, marmosets have a rich behavioral repertoire uniquely paired with a lissencephalic cortex (like rodents). This smooth cortical surface lends itself well to MRI and also other invasive methodologies. With the advent of transgenic modification techniques, marmosets have gained significant traction as a powerful complement to canonical mammalian modelling species. Marmosets are poised to make major contributions to preclinical investigations of the pathophysiology of human brain disorders as well as more basic mechanistic explorations of the brain. The goal of this article is to provide an overview of the practical aspects of implementing MRI and fMRI in marmosets (both under anesthesia and fully awake) and discuss the development of resources recently made available for marmoset imaging.
Collapse
Affiliation(s)
- David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - CiRong Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stefan Everling
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Abstract
Comparative neuroscience is entering the era of big data. New high-throughput methods and data-sharing initiatives have resulted in the availability of large, digital data sets containing many types of data from ever more species. Here, we present a framework for exploiting the new possibilities offered. The multimodality of the data allows vertical translations, which are comparisons of different aspects of brain organization within a single species and across scales. Horizontal translations compare particular aspects of brain organization across species, often by building abstract feature spaces. Combining vertical and horizontal translations allows for more sophisticated comparisons, including relating principles of brain organization across species by contrasting horizontal translations, and for making formal predictions of unobtainable data based on observed results in a model species.
Collapse
Affiliation(s)
- Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom; .,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 HR Nijmegen, The Netherlands
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
11
|
Bryant KL, Li L, Eichert N, Mars RB. A comprehensive atlas of white matter tracts in the chimpanzee. PLoS Biol 2020; 18:e3000971. [PMID: 33383575 PMCID: PMC7806129 DOI: 10.1371/journal.pbio.3000971] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/13/2021] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Chimpanzees (Pan troglodytes) are, along with bonobos, humans’ closest living relatives. The advent of diffusion MRI tractography in recent years has allowed a resurgence of comparative neuroanatomical studies in humans and other primate species. Here we offer, in comparative perspective, the first chimpanzee white matter atlas, constructed from in vivo chimpanzee diffusion-weighted scans. Comparative white matter atlases provide a useful tool for identifying neuroanatomical differences and similarities between humans and other primate species. Until now, comprehensive fascicular atlases have been created for humans (Homo sapiens), rhesus macaques (Macaca mulatta), and several other nonhuman primate species, but never in a nonhuman ape. Information on chimpanzee neuroanatomy is essential for understanding the anatomical specializations of white matter organization that are unique to the human lineage. Diffusion MRI tractography reveals the first complete atlas of white matter of the chimpanzee, with the potential to help understand differences between the organization of human and chimpanzee brains.
Collapse
Affiliation(s)
- Katherine L. Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Longchuan Li
- Marcus Autism Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, United States of America
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rogier B. Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Abstract
The common marmoset (Callithrix jacchus), a small New World primate, is receiving substantial attention in the neuroscience and biomedical science fields because its anatomical features, functional and behavioral characteristics, and reproductive features and its amenability to available genetic modification technologies make it an attractive experimental subject. In this review, I outline the progress of marmoset neuroscience research and summarize both the current status (opportunities and limitations) of and the future perspectives on the application of marmosets in neuroscience and disease modeling.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; .,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Hori Y, Schaeffer DJ, Yoshida A, Cléry JC, Hayrynen LK, Gati JS, Menon RS, Everling S. Cortico-Subcortical Functional Connectivity Profiles of Resting-State Networks in Marmosets and Humans. J Neurosci 2020; 40:9236-9249. [PMID: 33097633 PMCID: PMC7687060 DOI: 10.1523/jneurosci.1984-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Understanding the similarity of cortico-subcortical networks topologies between humans and nonhuman primate species is critical to study the origin of network alternations underlying human neurologic and neuropsychiatric diseases. The New World common marmoset (Callithrix jacchus) has become popular as a nonhuman primate model for human brain function. Most marmoset connectomic research, however, has exclusively focused on cortical areas, with connectivity to subcortical networks less extensively explored. Here, we aimed to first isolate patterns of subcortical connectivity with cortical resting-state networks in awake marmosets using resting-state fMRI, then to compare these networks with those in humans using connectivity fingerprinting. In this study, we used 5 marmosets (4 males, 1 female). While we could match several marmoset and human resting-state networks based on their functional fingerprints, we also found a few striking differences, for example, strong functional connectivity of the default mode network with the superior colliculus in marmosets that was much weaker in humans. Together, these findings demonstrate that many of the core cortico-subcortical networks in humans are also present in marmosets, but that small, potentially functionally relevant differences exist.SIGNIFICANCE STATEMENT The common marmoset is becoming increasingly popular as an additional preclinical nonhuman primate model for human brain function. Here we compared the functional organization of cortico-subcortical networks in marmosets and humans using ultra-high field fMRI. We isolated the patterns of subcortical connectivity with cortical resting-state networks (RSNs) in awake marmosets using resting-state fMRI and then compared these networks with those in humans using connectivity fingerprinting. While we could match several marmoset and human RSNs based on their functional fingerprints, we also found several striking differences. Together, these findings demonstrate that many of the core cortico-subcortical RSNs in humans are also present in marmosets, but that small, potentially functionally relevant differences exist.
Collapse
Affiliation(s)
- Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Atsushi Yoshida
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lauren K Hayrynen
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
14
|
Li X, Liu T, Li Y, Li Q, Wang X, Hu X, Guo L, Zhang T, Liu T. Marmoset Brain ISH Data Revealed Molecular Difference Between Cortical Folding Patterns. Cereb Cortex 2020; 31:1660-1674. [PMID: 33152757 DOI: 10.1093/cercor/bhaa317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/23/2020] [Accepted: 09/29/2020] [Indexed: 01/14/2023] Open
Abstract
Literature studies have demonstrated the structural, connectional, and functional differences between cortical folding patterns in mammalian brains, such as convex and concave patterns. However, the molecular underpinning of such convex/concave differences remains largely unknown. Thanks to public access to a recently released set of marmoset whole-brain in situ hybridization data by RIKEN, Japan; this data's accessibility empowers us to improve our understanding of the organization, regulation, and function of genes and their relation to macroscale metrics of brains. In this work, magnetic resonance imaging and diffusion tensor imaging macroscale neuroimaging data in this dataset were used to delineate convex/concave patterns in marmoset and to examine their structural features. Machine learning and visualization tools were employed to investigate the possible transcriptome difference between cortical convex and concave patterns. Experimental results demonstrated that a collection of genes is differentially expressed in convex and concave patterns, and their expression profiles can robustly characterize and differentiate the two folding patterns. More importantly, neuroscientific interpretations of these differentially expressed genes, as well as axonal guidance pathway analysis and gene enrichment analysis, offer novel understanding of structural and functional differences between cortical folding patterns in different regions from a molecular perspective.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Liu
- Center for Genomics and Computational Biology, College of Science, North China University of Science and Technology, 063210, China.,Center of Computational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yujie Li
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Qing Li
- The Information Processing Laboratory, School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
| | - Xianqiao Wang
- Computational Nano/Bio-Mechanics Lab, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Xintao Hu
- Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Guo
- Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo Zhang
- Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Handler WB, Bindseil G, Chaddock R, Dalrymple B, Gati JS, Gilbert KM, Harris CT, Klassen ML, Peterson J, Van Sas F, Chronik BA. Design and construction of a gradient coil for high resolution marmoset imaging. Biomed Phys Eng Express 2020; 6:045022. [PMID: 33444282 DOI: 10.1088/2057-1976/ab8d97] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A gradient coil with integrated second and third order shims has been designed and constructed for use inside an actively shielded 310 mm horizontal bore 9.4 T small animal MRI. An extension of the boundary element method, to minimise the power deposited in conducting surfaces, was used to design the gradients, and a boundary element method with a constraint on mutual inductance was used to design the shims. The gradient coil allows for improved imaging performance and was optimized for an imaging region appropriate for marmoset imaging studies. Efficiencies of 1.5 mT m-1 A-1 were achieved in a 15 cm wide bore while maintaining gradient uniformity ≤5% over the 8 cm region of interest. Two new cooling methods were implemented which allowed the gradient coil to operate at 100 A RMS, 25 % of max current with a temperature rise below 30 C.
Collapse
Affiliation(s)
- William B Handler
- xMR lab, Physics and Astronomy Department, Western University, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kaneko T, Takemura H, Pestilli F, Silva AC, Ye FQ, Leopold DA. Spatial organization of occipital white matter tracts in the common marmoset. Brain Struct Funct 2020; 225:1313-1326. [PMID: 32253509 PMCID: PMC7577349 DOI: 10.1007/s00429-020-02060-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/18/2020] [Indexed: 11/30/2022]
Abstract
The primate brain contains a large number of interconnected visual areas, whose spatial organization and intracortical projections show a high level of conservation across species. One fiber pathway of recent interest is the vertical occipital fasciculus (VOF), which is thought to support communication between dorsal and ventral visual areas in the occipital lobe. A recent comparative diffusion MRI (dMRI) study reported that the VOF in the macaque brain bears a similar topology to that of the human, running superficial and roughly perpendicular to the optic radiation. The present study reports a comparative investigation of the VOF in the common marmoset, a small New World monkey whose lissencephalic brain is approximately tenfold smaller than the macaque and 150-fold smaller than the human. High-resolution ex vivo dMRI of two marmoset brains revealed an occipital white matter structure that closely resembles that of the larger primate species, with one notable difference. Namely, unlike in the macaque and the human, the VOF in the marmoset is spatially fused with other, more anterior vertical tracts, extending anteriorly between the parietal and temporal cortices. We compare several aspects of this continuous structure, which we term the VOF complex (VOF +), and neighboring fasciculi to those of macaques and humans. We hypothesize that the essential topology of the VOF+ is a conserved feature of the posterior cortex in anthropoid primates, with a clearer fragmentation into multiple named fasciculi in larger, more gyrified brains.
Collapse
Affiliation(s)
- Takaaki Kaneko
- RIKEN Center for Brain Science (CBS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, 41 Kanrin, Inuyamas-shi, Aichi, 484-8506, Japan.
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, 1-4 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN, 47405, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Eichert N, Verhagen L, Folloni D, Jbabdi S, Khrapitchev AA, Sibson NR, Mantini D, Sallet J, Mars RB. What is special about the human arcuate fasciculus? Lateralization, projections, and expansion. Cortex 2019; 118:107-115. [PMID: 29937266 PMCID: PMC6699597 DOI: 10.1016/j.cortex.2018.05.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 11/27/2022]
Abstract
Evolutionary adaptations of the human brain are the basis for our unique abilities such as language. An expansion of the arcuate fasciculus (AF), the dorsal language tract, in the human lineage involving left lateralization is considered canonical, but this hypothesis has not been tested in relation to other architectural adaptations in the human brain. Using diffusion-weighted MRI, we examined AF in the human and macaque and quantified species differences in white matter architecture and surface representations. To compare surface results in the two species, we transformed macaque representations to human space using a landmark-based monkey-to-human cortical expansion model. We found that the human dorsal AF, but not the ventral inferior fronto-occipital fasciculus (IFO), is left-lateralized. In the monkey AF is not lateralized. Moreover, compared to the macaque, human AF is relatively increased with respect to IFO. A comparison of human and transformed macaque surface representations suggests that cortical expansion alone cannot account for the species differences in the surface representation of AF. Our results show that the human AF has undergone critical anatomical modifications in comparison with the macaque AF. More generally, this work demonstrates that studies on the human brain specializations underlying the language connectome can benefit from current methodological advances in comparative neuroanatomy.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alexandre A Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Dante Mantini
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; Research Centre for Motor Control and Neuroplasticity, KU Leuven, Heverlee, Belgium
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Araújo Góis Morais PL, García-Amado M, Lima RRM, Córdoba-Claros A, Souza Cavalcante J, Clascá F, Nascimento ES. Cyto- and Myelo-Architecture of the Amygdaloid Complex of the Common Marmoset Monkey ( Callithrix jacchus). Front Neuroanat 2019; 13:36. [PMID: 30971903 PMCID: PMC6446959 DOI: 10.3389/fnana.2019.00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
The amygdaloid complex (AC) is a heterogeneous aggregate of nuclei located in the rostromedial region of the temporal lobe. In addition to being partly connected among themselves, the AC nuclei are strongly interconnected with the cerebral cortex, striatum, basal forebrain, hypothalamus and brainstem. Animal and human functional studies have established that the AC is a central hub of the neuronal networks supporting emotional responsivity, particularly its negative/aversive components. Dysfunction of AC circuits in humans has been implicated in anxiety, depression, schizophrenia and bipolar disorder. The small New-World marmoset monkey (Callithrix jacchus) has recently become a key model for neuroscience research. However, the nuclear and fiber tract organization of marmoset AC has not been examined in detail. Thus, the extent to which it can be compared to the AC of Old-World (human and macaque) primates is yet unclear. Here, using Nissl and acetylcholinesterase (AChE) histochemical stains as a reference, we analyzed the cytoarchitecture and nuclear parcellation of the marmoset AC. In addition, given the increasing relevance of tractographic localization for high-resolution in vivo imaging studies in non-human primates, we also identified the myelin fiber tracts present within and around the AC as revealed by the Gallyas method. The present study provides a detailed atlas of marmoset AC. Moreover, it reveals that, despite phylogenetic distance and brain size differences, every nucleus and myelinated axon bundle described in human and macaque studies can be confidently recognized in marmosets.
Collapse
Affiliation(s)
- Paulo Leonardo Araújo Góis Morais
- Department of Morphology, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Department of Anatomy & Neuroscience, School of Medicine, Autonoma de Madrid University, Madrid, Spain
| | - María García-Amado
- Department of Anatomy & Neuroscience, School of Medicine, Autonoma de Madrid University, Madrid, Spain
| | | | - Angélica Córdoba-Claros
- Department of Anatomy & Neuroscience, School of Medicine, Autonoma de Madrid University, Madrid, Spain
| | | | - Francisco Clascá
- Department of Anatomy & Neuroscience, School of Medicine, Autonoma de Madrid University, Madrid, Spain
| | | |
Collapse
|
19
|
Mars RB, O'Muircheartaigh J, Folloni D, Li L, Glasser MF, Jbabdi S, Bryant KL. Concurrent analysis of white matter bundles and grey matter networks in the chimpanzee. Brain Struct Funct 2019; 224:1021-1033. [PMID: 30569281 PMCID: PMC6499872 DOI: 10.1007/s00429-018-1817-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/11/2018] [Indexed: 01/22/2023]
Abstract
Understanding the phylogeny of the human brain requires an appreciation of brain organization of our closest animal relatives. Neuroimaging tools such as magnetic resonance imaging (MRI) allow us to study whole-brain organization in species which can otherwise not be studied. Here, we used diffusion MRI to reconstruct the connections of the cortical hemispheres of the chimpanzee. This allowed us to perform an exploratory analysis of the grey matter structures of the chimpanzee cerebral cortex and their underlying white matter connectivity profiles. We identified a number of networks that strongly resemble those found in other primates, including the corticospinal system, limbic connections through the cingulum bundle and fornix, and occipital-temporal and temporal-frontal systems. Notably, chimpanzee temporal cortex showed a strong resemblance to that of the human brain, providing some insight into the specialization of the two species' shared lineage.
Collapse
Affiliation(s)
- Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Jonathan O'Muircheartaigh
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, Sackler Institute for Translational Neurodevelopment, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University Medical School, Saint Louis, MO, USA
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Katherine L Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Gilbert KM, Schaeffer DJ, Gati JS, Klassen LM, Everling S, Menon RS. Open-source hardware designs for MRI of mice, rats, and marmosets: Integrated animal holders and radiofrequency coils. J Neurosci Methods 2019; 312:65-72. [DOI: 10.1016/j.jneumeth.2018.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 01/24/2023]
|
21
|
Mars RB, Passingham RE, Jbabdi S. Connectivity Fingerprints: From Areal Descriptions to Abstract Spaces. Trends Cogn Sci 2018; 22:1026-1037. [PMID: 30241910 PMCID: PMC6198109 DOI: 10.1016/j.tics.2018.08.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022]
Abstract
Fifteen years ago, Passingham and colleagues proposed that brain areas can be described in terms of their unique pattern of input and output connections with the rest of the brain, and that these connections are a crucial determinant of their function. We explore how the advent of neuroimaging of connectivity has allowed us to test and extend this proposal. We show that describing the brain in terms of an abstract connectivity space, as opposed to physical locations of areas, provides a natural and powerful framework for thinking about brain function and its variation across the brains of individuals, populations, and species.
Collapse
Affiliation(s)
- Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Richard E Passingham
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Human Neuroimaging, University College, London, London, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Mars RB, Eichert N, Jbabdi S, Verhagen L, Rushworth MF. Connectivity and the search for specializations in the language-capable brain. Curr Opin Behav Sci 2018; 21:19-26. [PMID: 33898657 PMCID: PMC7610656 DOI: 10.1016/j.cobeha.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The search for the anatomical basis of language has traditionally been a search for specializations. More recently such research has focused both on aspects of brain organization that are unique to humans and aspects shared with other primates. This work has mostly concentrated on the architecture of connections between brain areas. However, as specializations can take many guises, comparison of anatomical organization across species is often complicated. We demonstrate how viewing different types of specializations within a common framework allows one to better appreciate both shared and unique aspects of brain organization. We illustrate this point by discussing recent insights into the anatomy of the dorsal language pathway to the frontal cortex and areas for laryngeal control in the motor cortex.
Collapse
Affiliation(s)
- Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Matthew Fs Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|