1
|
Flores JC, Sarkar D, Zito K. A synapse-specific refractory period for plasticity at individual dendritic spines. Proc Natl Acad Sci U S A 2025; 122:e2410433122. [PMID: 39772745 PMCID: PMC11745398 DOI: 10.1073/pnas.2410433122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
How newly formed memories are preserved while brain plasticity is ongoing has been a source of debate. One idea is that synapses which experienced recent plasticity become resistant to further plasticity, a type of metaplasticity often referred to as saturation. Here, we probe the local dendritic mechanisms that limit plasticity at recently potentiated synapses. We show that recently potentiated individual synapses exhibit a synapse-specific refractory period for further potentiation. We further found that the refractory period is associated with reduced postsynaptic CaMKII signaling; however, stronger synaptic activation fully restored CaMKII signaling but only partially restored the ability for further plasticity. Importantly, the refractory period is released after one hour, a timing that coincides with the enrichment of several postsynaptic proteins to preplasticity levels. Notably, increasing the level of the postsynaptic scaffolding protein, PSD95, but not of PSD93, overcomes the refractory period. Our results support a model in which potentiation at a single synapse is sufficient to initiate a synapse-specific refractory period that persists until key postsynaptic proteins regain their steady-state synaptic levels.
Collapse
Affiliation(s)
- Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA95618
| | - Dipannita Sarkar
- Center for Neuroscience, University of California, Davis, CA95618
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA95618
| |
Collapse
|
2
|
Liu M, Jin S, Liu M, Yang B, Wang Q, Fan C, Li Z, Wu L. Global research hotspots and trends of theta burst stimulation from 2004 to 2023: a bibliometric analysis. Front Neurol 2024; 15:1469877. [PMID: 39719979 PMCID: PMC11666417 DOI: 10.3389/fneur.2024.1469877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
Background Theta burst stimulation (TBS) has garnered widespread attention in the scientific community, but a comprehensive bibliometric analysis of TBS research remains absent. This study aims to fill this gap by elucidating the characteristics, hotspots, and trends in TBS publications over the past 20 years using bibliometric methods. Methods We retrieved TBS-related publications from January 1, 2004, to December 31, 2023, from the Web of Science Core Collection (WoSCC). The analysis focused on articles and review articles. Data were processed using the bibliometric package in R software, and CiteSpace and VOSviewer were employed for bibliometric and knowledge mapping analyses. Results A total of 1,206 publications were identified, with 858 included in the analysis. The annual publication volume showed a fluctuating upward trend. Leading institutions and authors were predominantly from the United States of America (USA) and European countries. Core journals and publications also primarily originated from these regions. Current research hotspots include the clinical applications and mechanisms of TBS in neurorehabilitation and depression. TBS cerebellar stimulation has emerged as a promising therapeutic target. Future research is likely to focus on dysphagia, cognitive impairments, and post-traumatic stress disorder. Conclusion This bibliometric analysis provides an overview of the basic knowledge structure, research hotspots, and development trends in TBS research over the past two decades. The findings offer valuable insights into the evolving landscape of TBS research and its potential directions.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Shasha Jin
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mengya Liu
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qian Wang
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Chunliang Fan
- Department of Physical Therapy, Beijing Xiaotangshan Hospital, Beijing, China
| | - Zhe Li
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Wu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| |
Collapse
|
3
|
Cui H, Ding H, Hu L, Zhao Y, Shu Y, Voon V. A novel dual-site OFC-dlPFC accelerated repetitive transcranial magnetic stimulation for depression: a pilot randomized controlled study. Psychol Med 2024; 54:1-14. [PMID: 39440449 PMCID: PMC11578911 DOI: 10.1017/s0033291724002289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND This study aimed to evaluate a novel rTMS protocol for treatment-resistant depression (TRD), using an EEG 10-20 system guided dual-target accelerated approach of right lateral orbitofrontal cortex (lOFC) inhibition followed by left dorsolateral prefrontal cortex (dlPFC) excitation, along with comparing 20 Hz dlPFC accelerated TMS v. sham. METHODS Seventy five patients participated in this trial consisting of 20 sessions over 5 consecutive days comparing dual-site (cTBS of right lOFC followed sequentially by 20 Hz rTMS of left dlPFC), active control (sham right lOFC followed by 20 Hz rTMS of left dlPFC) and sham control (sham for both targets). Resting-state fMRI was acquired prior to and following treatment. RESULTS Hamilton Rating Scale for Depression (HRSD-24) scores were similarly significantly improved at 4 weeks in both the Dual and Single group relative to Sham. Planned comparisons immediately after treatment highlighted greater HRSD-24 clinical responders (Dual: 47.8% v. Single:18.2% v. Sham:4.3%, χ2 = 13.0, p = 0.002) and in PHQ-9 scores by day 5 in the Dual relative to Sham group. We further showed that accelerated 20 Hz stimulation targeting the left dlPFC (active control) is significantly better than sham at 4 weeks. Dual stimulation decreased lOFC-subcallosal cingulate functional connectivity. Greater baseline lOFC-thalamic connectivity predicted better therapeutic response, while decreased lOFC-thalamic connectivity correlated with better response. CONCLUSIONS Our novel accelerated dual TMS protocol shows rapid clinically relevant antidepressant efficacy which may be related to state-modulation. This study has implications for community-based accessible TMS without neuronavigation and rapid onset targeting suicidal ideation and accelerated discharge from hospital.
Collapse
Affiliation(s)
- Hailun Cui
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Ding
- Department of Radiology, The Second People's Hospital of Guizhou Province, Guiyang, China
| | - Lingyan Hu
- Department of Psychiatric Rehabilitation, The Second People's Hospital of Guizhou Province, Guiyang, China
| | - Yijie Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
- Zhangjiang Fudan International Innovation Centre, Shanghai, China
| | - Yanping Shu
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang, China
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
- Zhangjiang Fudan International Innovation Centre, Shanghai, China
| |
Collapse
|
4
|
Goldenkoff ER, Deluisi JA, Lee TG, Hampstead BM, Taylor SF, Polk TA, Vesia M. Repeated spaced cortical paired associative stimulation promotes additive plasticity in the human parietal-motor circuit. Clin Neurophysiol 2024; 166:202-210. [PMID: 39182339 DOI: 10.1016/j.clinph.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE Repeated spaced sessions of repetitive transcranial magnetic stimulation (TMS) to the human primary motor cortex can lead to dose-dependent increases in motor cortical excitability. However, this has yet to be demonstrated in a defined cortical circuit. We aimed to examine the effects of repeated spaced cortical paired associative stimulation (cPAS) on excitability in the motor cortex. METHODS cPAS was delivered to the primary motor cortex (M1) and posterior parietal cortex (PPC) with two coils. In the multi-dose condition, three sessions of cPAS were delivered 50-min apart. The single-dose condition had one session of cPAS, followed by two sessions of a control cPAS protocol. Motor-evoked potentials were evaluated before and up to 40 min after each cPAS session as a measure of cortical excitability. RESULTS Compared to a single dose of cPAS, motor cortical excitability significantly increased after multi-dose cPAS. Increasing the number of cPAS sessions resulted in a cumulative, dose-dependent effect on excitability in the motor cortex, with each successive cPAS session leading to notable increases in potentiation. CONCLUSION Repeated spaced cPAS sessions summate to increase motor cortical excitability induced by single cPAS. SIGNIFICANCE Repeated spaced cPAS could potentially restore abilities lost due to disorders like stroke.
Collapse
Affiliation(s)
| | | | - Taraz G Lee
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | | | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
5
|
Panda R, Deluisi JA, Lee TG, Davis S, Muñoz-Orozco I, Albin RL, Vesia M. Improving efficacy of repetitive transcranial magnetic stimulation for treatment of Parkinson disease gait disorders. Front Hum Neurosci 2024; 18:1445595. [PMID: 39253068 PMCID: PMC11381384 DOI: 10.3389/fnhum.2024.1445595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder that causes motor and cognitive deficits, presenting complex challenges for therapeutic interventions. Repetitive transcranial magnetic stimulation (rTMS) is a type of neuromodulation that can produce plastic changes in neural activity. rTMS has been trialed as a therapy to treat motor and non-motor symptoms in persons with Parkinson disease (PwP), particularly treatment-refractory postural instability and gait difficulties such as Freezing of Gait (FoG), but clinical outcomes have been variable. We suggest improving rTMS neuromodulation therapy for balance and gait abnormalities in PwP by targeting brain regions in cognitive-motor control networks. rTMS studies in PwP often targeted motor targets such as the primary motor cortex (M1) or supplementary motor area (SMA), overlooking network interactions involved in posture-gait control disorders. We propose a shift in focus toward alternative stimulation targets in basal ganglia-cortex-cerebellum networks involved in posture-gait control, emphasizing the dorsolateral prefrontal cortex (dlPFC), cerebellum (CB), and posterior parietal cortex (PPC) as potential targets. rTMS might also be more effective if administered during behavioral tasks designed to activate posture-gait control networks during stimulation. Optimizing stimulation parameters such as dosage and frequency as used clinically for the treatment of depression may also be useful. A network-level perspective suggests new directions for exploring optimal rTMS targets and parameters to maximize neural plasticity to treat postural instabilities and gait difficulties in PwP.
Collapse
Affiliation(s)
- Rupsha Panda
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Joseph A Deluisi
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Taraz G Lee
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Sheeba Davis
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | | | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service & GRECC, VAAAHS, Ann Arbor, MI, United States
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Gall CM, Le AA, Lynch G. Contributions of site- and sex-specific LTPs to everyday memory. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230223. [PMID: 38853551 PMCID: PMC11343211 DOI: 10.1098/rstb.2023.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 06/11/2024] Open
Abstract
Commentaries about long-term potentiation (LTP) generally proceed with an implicit assumption that largely the same physiological effect is sampled across different experiments. However, this is clearly not the case. We illustrate the point by comparing LTP in the CA3 projections to CA1 with the different forms of potentiation in the dentate gyrus. These studies lead to the hypothesis that specialized properties of CA1-LTP are adaptations for encoding unsupervised learning and episodic memory, whereas the dentate gyrus variants subserve learning that requires multiple trials and separation of overlapping bodies of information. Recent work has added sex as a second and somewhat surprising dimension along which LTP is also differentiated. Triggering events for CA1-LTP differ between the sexes and the adult induction threshold is significantly higher in females; these findings help explain why males have an advantage in spatial learning. Remarkably, the converse is true before puberty: Females have the lower LTP threshold and are better at spatial memory problems. A mechanism has been identified for the loss-of-function in females but not for the gain-of-function in males. We propose that the many and disparate demands of natural environments, with different processing requirements across ages and between sexes, led to the emergence of multiple LTPs. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA92697, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
- Department of Psychiatry and Human Behavior, University of California at Irvine, Irvine, CA92868, USA
| |
Collapse
|
7
|
Harris KM, Kuwajima M, Flores JC, Zito K. Synapse-specific structural plasticity that protects and refines local circuits during LTP and LTD. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230224. [PMID: 38853547 PMCID: PMC11529630 DOI: 10.1098/rstb.2023.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 06/11/2024] Open
Abstract
Synapses form trillions of connections in the brain. Long-term potentiation (LTP) and long-term depression (LTD) are cellular mechanisms vital for learning that modify the strength and structure of synapses. Three-dimensional reconstruction from serial section electron microscopy reveals three distinct pre- to post-synaptic arrangements: strong active zones (AZs) with tightly docked vesicles, weak AZs with loose or non-docked vesicles, and nascent zones (NZs) with a postsynaptic density but no presynaptic vesicles. Importantly, LTP can be temporarily saturated preventing further increases in synaptic strength. At the onset of LTP, vesicles are recruited to NZs, converting them to AZs. During recovery of LTP from saturation (1-4 h), new NZs form, especially on spines where AZs are most enlarged by LTP. Sentinel spines contain smooth endoplasmic reticulum (SER), have the largest synapses and form clusters with smaller spines lacking SER after LTP recovers. We propose a model whereby NZ plasticity provides synapse-specific AZ expansion during LTP and loss of weak AZs that drive synapse shrinkage during LTD. Spine clusters become functionally engaged during LTP or disassembled during LTD. Saturation of LTP or LTD probably acts to protect recently formed memories from ongoing plasticity and may account for the advantage of spaced over massed learning. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Kristen M. Harris
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX78712, USA
| | - Masaaki Kuwajima
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX78712, USA
| | - Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA95618, USA
| |
Collapse
|
8
|
Flores JC, Zito K. A synapse-specific refractory period for plasticity at individual dendritic spines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595787. [PMID: 38826343 PMCID: PMC11142223 DOI: 10.1101/2024.05.24.595787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
How newly formed memories are preserved while brain plasticity is ongoing has been a source of debate. One idea is that synapses which experienced recent plasticity become resistant to further plasticity, a type of metaplasticity often referred to as saturation. Here, we probe the local dendritic mechanisms that limit plasticity at recently potentiated synapses. We show that recently potentiated individual synapses exhibit a synapse-specific refractory period for further potentiation. We further found that the refractory period is associated with reduced postsynaptic CaMKII signaling; however, stronger synaptic activation only partially restored the ability for further plasticity. Importantly, the refractory period is released after one hour, a timing that coincides with the enrichment of several postsynaptic proteins to pre-plasticity levels. Notably, increasing the level of the postsynaptic scaffolding protein, PSD95, but not of PSD93, overcomes the refractory period. Our results support a model in which potentiation at a single synapse is sufficient to initiate a synapse-specific refractory period that persists until key postsynaptic proteins regain their steady-state synaptic levels.
Collapse
Affiliation(s)
- Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA 95618
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA 95618
| |
Collapse
|
9
|
Quintanilla J, Jia Y, Pruess BS, Chavez J, Gall CM, Lynch G, Gunn BG. Pre- versus Post-synaptic Forms of LTP in Two Branches of the Same Hippocampal Afferent. J Neurosci 2024; 44:e1449232024. [PMID: 38326038 PMCID: PMC10919254 DOI: 10.1523/jneurosci.1449-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
There has been considerable controversy about pre- versus postsynaptic expression of memory-related long-term potentiation (LTP), with corresponding disputes about underlying mechanisms. We report here an instance in male mice, in which both types of potentiation are expressed but in separate branches of the same hippocampal afferent. Induction of LTP in the dentate gyrus (DG) branch of the lateral perforant path (LPP) reduces paired-pulse facilitation, is blocked by antagonism of cannabinoid receptor type 1, and is not affected by suppression of postsynaptic actin polymerization. These observations are consistent with presynaptic expression. The opposite pattern of results was obtained in the LPP branch that innervates the distal dendrites of CA3: LTP did not reduce paired-pulse facilitation, was unaffected by the cannabinoid receptor blocker, and required postsynaptic actin filament assembly. Differences in the two LPP termination sites were also noted for frequency facilitation of synaptic responses, an effect that was reproduced in a two-step simulation by small adjustments to vesicle release dynamics. These results indicate that different types of glutamatergic neurons impose different forms of filtering and synaptic plasticity on their afferents. They also suggest that inputs are routed to, and encoded by, different sites within the hippocampus depending upon the pattern of activity arriving over the parent axon.
Collapse
Affiliation(s)
- J Quintanilla
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - Y Jia
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - B S Pruess
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - J Chavez
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - C M Gall
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
- Neurobiology & Behavior, University of California, Irvine, California 92697
| | - G Lynch
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
- Psychiatry & Human Behavior, University of California, Irvine, California 92697
| | - B G Gunn
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| |
Collapse
|
10
|
Sohn MN, Brown JC, Sharma P, Ziemann U, McGirr A. Pharmacological adjuncts and transcranial magnetic stimulation-induced synaptic plasticity: a systematic review. J Psychiatry Neurosci 2024; 49:E59-E76. [PMID: 38359933 PMCID: PMC10890793 DOI: 10.1503/jpn.230090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a noninvasive neurostimulation modality that has been used to study human synaptic plasticity. Leveraging work in ex vivo preparations, mechanistically informed pharmacological adjuncts to TMS have been used to improve our fundamental understanding of TMS-induced synaptic plasticity. METHODS We systematically reviewed the literature pairing pharmacological adjuncts with TMS plasticity-induction protocols in humans. We searched MEDLINE, PsycINFO, and Embase from 2013 to Mar. 10, 2023. Studies published before 2013 were extracted from a previous systematic review. We included studies using repetitive TMS, theta-burst stimulation, paired associative stimulation, and quadripulse stimulation paradigms in healthy and clinical populations. RESULTS Thirty-six studies met our inclusion criteria (28 in healthy and 8 in clinical populations). Most pharmacological agents have targeted the glutamatergic N-methyl-d-aspartate (NMDA; 15 studies) or dopamine receptors (13 studies). The NMDA receptor is necessary for TMS-induced plasticity; however, sufficiency has not been shown across protocols. Dopaminergic modulation of TMS-induced plasticity appears to be dose-dependent. The GABAergic, cholinergic, noradrenergic, and serotonergic neurotransmitter systems have small evidence bases supporting modulation of TMS-induced plasticity, as do voltage-gated calcium and sodium channels. Studies in clinical populations suggest that pharmacological adjuncts to TMS may rescue motor cortex plasticity, with implications for therapeutic applications of TMS and a promising clinical trial in depression. LIMITATIONS This review is limited by the predominance in the literature of studies with small sample sizes and crossover designs. CONCLUSION Pharmacologically enhanced TMS largely parallels findings from ex vivo preparations. As this area expands and novel targets are tested, adequately powered samples in healthy and clinical populations will inform the mechanisms of TMS-induced plasticity in health and disease.
Collapse
Affiliation(s)
- Myren N Sohn
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada (Sohn, McGirr); the Department of Psychiatry, University of Calgary, Alta., Canada (Sohn, McGirr); the Mathison Centre for Mental Health Research and Education, Calgary, Alta., Canada (Sohn, McGirr); the McLean Hospital, Division of Neurotherapeutics, Belmont, Mass., USA (Brown, Sharma); the Department of Psychiatry, Harvard Medical School, Boston, Mass., USA (Brown); the Department of Neurology & Stroke, Eberhard-Karls University, Tübingen, Germany (Ziemann); and the Hertie-Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany (Ziemann)
| | - Joshua C Brown
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada (Sohn, McGirr); the Department of Psychiatry, University of Calgary, Alta., Canada (Sohn, McGirr); the Mathison Centre for Mental Health Research and Education, Calgary, Alta., Canada (Sohn, McGirr); the McLean Hospital, Division of Neurotherapeutics, Belmont, Mass., USA (Brown, Sharma); the Department of Psychiatry, Harvard Medical School, Boston, Mass., USA (Brown); the Department of Neurology & Stroke, Eberhard-Karls University, Tübingen, Germany (Ziemann); and the Hertie-Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany (Ziemann)
| | - Prayushi Sharma
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada (Sohn, McGirr); the Department of Psychiatry, University of Calgary, Alta., Canada (Sohn, McGirr); the Mathison Centre for Mental Health Research and Education, Calgary, Alta., Canada (Sohn, McGirr); the McLean Hospital, Division of Neurotherapeutics, Belmont, Mass., USA (Brown, Sharma); the Department of Psychiatry, Harvard Medical School, Boston, Mass., USA (Brown); the Department of Neurology & Stroke, Eberhard-Karls University, Tübingen, Germany (Ziemann); and the Hertie-Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany (Ziemann)
| | - Ulf Ziemann
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada (Sohn, McGirr); the Department of Psychiatry, University of Calgary, Alta., Canada (Sohn, McGirr); the Mathison Centre for Mental Health Research and Education, Calgary, Alta., Canada (Sohn, McGirr); the McLean Hospital, Division of Neurotherapeutics, Belmont, Mass., USA (Brown, Sharma); the Department of Psychiatry, Harvard Medical School, Boston, Mass., USA (Brown); the Department of Neurology & Stroke, Eberhard-Karls University, Tübingen, Germany (Ziemann); and the Hertie-Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany (Ziemann)
| | - Alexander McGirr
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada (Sohn, McGirr); the Department of Psychiatry, University of Calgary, Alta., Canada (Sohn, McGirr); the Mathison Centre for Mental Health Research and Education, Calgary, Alta., Canada (Sohn, McGirr); the McLean Hospital, Division of Neurotherapeutics, Belmont, Mass., USA (Brown, Sharma); the Department of Psychiatry, Harvard Medical School, Boston, Mass., USA (Brown); the Department of Neurology & Stroke, Eberhard-Karls University, Tübingen, Germany (Ziemann); and the Hertie-Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany (Ziemann)
| |
Collapse
|
11
|
Brosens N, Simon C, Kessels HW, Lucassen PJ, Krugers HJ. Early life stress lastingly alters the function and AMPA-receptor composition of glutamatergic synapses in the hippocampus of male mice. J Neuroendocrinol 2023; 35:e13346. [PMID: 37901923 DOI: 10.1111/jne.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 10/31/2023]
Abstract
Early postnatal life is a sensitive period of development that shapes brain structure and function later in life. Exposure to stress during this critical time window can alter brain development and may enhance the susceptibility to psychopathology and neurodegenerative disorders later in life. The developmental effects of early life stress (ELS) on synaptic function are not fully understood, but could provide mechanistic insights into how ELS modifies later brain function and disease risk. We here assessed the effects of ELS on synaptic function and composition in the hippocampus of male mice. Mice were subjected to ELS by housing dams and pups with limited bedding and nesting material from postnatal days (P) 2-9. Synaptic strength was measured in terms of miniature excitatory postsynaptic currents (mEPSCs) in the hippocampal dentate gyrus at three different developmental stages: the early postnatal phase (P9), preadolescence (P21, at weaning) and adulthood at 3 months of age (3MO). Hippocampal synaptosome fractions were isolated from P9 and 3MO tissue and analyzed for protein content to assess postsynaptic composition. Finally, dendritic spine density was assessed in the DG at 3MO. At P9, ELS increased mEPSC frequency and amplitude. In parallel, synaptic composition was altered as PSD-95, GluA3 and GluN2B content were significantly decreased. The increased mEPSC frequency was sustained up to 3MO, at which age, GluA3 content was significantly increased. No differences were found in dendritic spine density. These findings highlight how ELS affects the development of hippocampal synapses, which could provide valuable insight into mechanisms how ELS alters brain function later in life.
Collapse
Affiliation(s)
- Niek Brosens
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Carla Simon
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Paul J Lucassen
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Harm J Krugers
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Sanchez-Brualla I, Ghosh A, Gibatova VA, Quinlan S, Witherspoon E, Vicini S, Forcelli PA. Phenobarbital does not worsen outcomes of neonatal hypoxia on hippocampal LTP on rats. Front Neurol 2023; 14:1295934. [PMID: 38073649 PMCID: PMC10703306 DOI: 10.3389/fneur.2023.1295934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 10/28/2024] Open
Abstract
Introduction Neonatal hypoxia is a common cause of early-life seizures. Both hypoxia-induced seizures (HS), and the drugs used to treat them (e.g., phenobarbital, PB), have been reported to have long-lasting impacts on brain development. For example, in neonatal rodents, HS reduces hippocampal long-term potentiation (LTP), while PB exposure disrupts GABAergic synaptic maturation in the hippocampus. Prior studies have examined the impact of HS and drug treatment separately, but in the clinic, PB is unlikely to be given to neonates without seizures, and neonates with seizures are very likely to receive PB. To address this gap, we assessed the combined and separate impacts of neonatal HS and PB treatment on the development of hippocampal LTP. Methods Male and female postnatal day (P)7 rat pups were subjected to graded global hypoxia (or normoxia as a control) and treated with either PB (or vehicle as a control). On P13-14 (P13+) or P29-37 (P29+), we recorded LTP of the Schaffer collaterals into CA1 pyramidal layer in acute hippocampal slices. We compared responses to theta burst stimulation (TBS) and tetanization induction protocols. Results Under the TBS induction protocol, female rats showed an LTP impairment caused by HS, which appeared only at P29+. This impairment was delayed compared to male rats. While LTP in HS males was impaired at P13+, it normalized by P29+. Under the tetanization protocol, hypoxia produced larger LTP in males compared to female rats. PB injection, under TBS, did not exacerbate the effects of hypoxia. However, with the tetanization protocol, PB - on the background of HS - compensated for these effects, returning LTP to control levels. Discussion These results point to different susceptibility to hypoxia as a function of sex and age, and a non-detrimental effect of PB when administered after hypoxic seizures.
Collapse
Affiliation(s)
- Irene Sanchez-Brualla
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Anjik Ghosh
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Viktoriya A. Gibatova
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Sean Quinlan
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Eric Witherspoon
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| | - Patrick A. Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
13
|
Neuteboom D, Zantvoord JB, Goya-Maldonado R, Wilkening J, Dols A, van Exel E, Lok A, de Haan L, Scheepstra KWF. Accelerated intermittent theta burst stimulation in major depressive disorder: A systematic review. Psychiatry Res 2023; 327:115429. [PMID: 37625365 DOI: 10.1016/j.psychres.2023.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Major depressive disorder [MDD] is expected to be the leading cause of overall global burden of disease by the year 2030 [WHO]. Non-response to first line pharmacological and psychotherapeutic antidepressive treatments is substantial, with treatment-resistant depression [TRD] affecting approximately one third of depressed patients. There is an urgent need for rapid acting and effective treatments in this population. Repetitive Transcranial Magnetic Stimulation [rTMS] is an non-invasive treatment option for patients with MDD or TRD. Recent studies have proposed new paradigms of TMS, one paradigm is accelerated intermittent Theta Burst Stimulation [aiTBS]. OBJECTIVE This systematic review assesses the efficacy, safety and tolerability of aiTBS in patients with MDD. METHODS This review was registered with PROSPERO [ID number: 366556]. A systematic literature review was performed using Pubmed, Web of Science and PsycINFO. Case reports/series, open-label and randomized controlled trials [RCTs] were eligible for inclusion if they met the following criteria; full text publication available in English describing a form of aiTBS for MDD or TRD. aiTBS was defined as at least three iTBS treatments sessions per day, during at least four days for one week. RESULTS 32 studies were identified describing aiTBS in MDD, 13 studies described overlapping samples. Six articles from five unique studies met eligibility criteria; two open-label studies and three RCTs [two double blind and one quadruple blind]. Response rates directly after treatment ranged from 20.0% to 86.4% and remission rates ranged from 10.0 to 86.4%. Four weeks after treatment response rates ranged from 0.0% to 66.7% and remission rates ranged from 0.0% to 57.1%. Three articles described a significant reduction in suicidality scores. aiTBS was well tolerated and safe, with no serious adverse events reported. CONCLUSIONS aiTBS is a promising form of non-invasive brain stimulation [NIBS] with rapid antidepressant and antisuicidal effects in MDD. Additionally, aiTBS was well tolerated and safe. However, the included studies had small samples sizes and differed in frequency, intersession interval, neuro localization and stimulation intensity. Replication studies and larger RCTs are warranted to establish efficacy, safety and long term effects.
Collapse
Affiliation(s)
- Daan Neuteboom
- Amsterdam UMC, University of Amsterdam, Adult Psychiatry, Meibergdreef 9, Amsterdam 1105AZ, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress and Sleep, Amsterdam, the Netherlands.
| | - Jasper B Zantvoord
- Amsterdam UMC, University of Amsterdam, Adult Psychiatry, Meibergdreef 9, Amsterdam 1105AZ, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress and Sleep, Amsterdam, the Netherlands
| | - Roberto Goya-Maldonado
- Department of Psychiatry and Psychotherapy, Laboratory of Systems Neuroscience and imaging in Psychiatry (SNIP-lab), University Medical Center Göttingen, Göttingen, Germany
| | - Jonas Wilkening
- Department of Psychiatry and Psychotherapy, Laboratory of Systems Neuroscience and imaging in Psychiatry (SNIP-lab), University Medical Center Göttingen, Göttingen, Germany
| | - Annemieke Dols
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress and Sleep, Amsterdam, the Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Psychiatry, Amsterdam UMC, Location VUmc, the Netherlands
| | - Eric van Exel
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress and Sleep, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam UMC, Location VUmc, the Netherlands; Department of Old Age Psychiatry GGZinGeest, the Netherlands
| | - Anja Lok
- Amsterdam UMC, University of Amsterdam, Adult Psychiatry, Meibergdreef 9, Amsterdam 1105AZ, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress and Sleep, Amsterdam, the Netherlands; Center for Urban Mental Health, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Amsterdam UMC, University of Amsterdam, Adult Psychiatry, Meibergdreef 9, Amsterdam 1105AZ, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress and Sleep, Amsterdam, the Netherlands
| | - Karel W F Scheepstra
- Amsterdam UMC, University of Amsterdam, Adult Psychiatry, Meibergdreef 9, Amsterdam 1105AZ, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress and Sleep, Amsterdam, the Netherlands; Center for Urban Mental Health, University of Amsterdam, the Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands
| |
Collapse
|
14
|
Wrightson JG, Cole J, Sohn MN, McGirr A. The effects of D-Cycloserine on corticospinal excitability after repeated spaced intermittent theta-burst transcranial magnetic stimulation: A randomized controlled trial in healthy individuals. Neuropsychopharmacology 2023; 48:1217-1224. [PMID: 37041205 PMCID: PMC10267195 DOI: 10.1038/s41386-023-01575-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/13/2023]
Abstract
Repeated spaced TMS protocols, also termed accelerated TMS protocols, are of increasing therapeutic interest. The long-term potentiation (LTP)-like effects of repeated spaced intermittent theta-burst transcranial magnetic stimulation (iTBS) are presumed to be N-Methyl-D-Aspartate receptor (NMDA-R) dependent; however, this has not been tested. We tested whether the LTP-like effects of repeated spaced iTBS are influenced by low-dose D-Cycloserine (100 mg), an NMDA-R partial-agonist. We conducted a randomized, double-blind, placebo-controlled crossover trial in 20 healthy adults from August 2021-Feb 2022. Participants received repeated spaced iTBS, consisting of two iTBS sessions 60 minutes apart, to the primary motor cortex. The peak-to-peak amplitude of the motor evoked potentials (MEP) at 120% resting motor threshold (RMT) was measured after each iTBS. The TMS stimulus-response (TMS-SR; 100-150% RMT) was measured at baseline, +30 min, and +60 min after each iTBS. We found evidence for a significant Drug*iTBS effect in MEP amplitude, revealing that D-Cycloserine enhanced MEP amplitudes relative to the placebo. When examining TMS-SR, pairing iTBS with D-Cycloserine increased the TMS-SR slope relative to placebo after both iTBS tetani, and this was due to an increase in the upper bound of the TMS-SR. This indicates that LTP-like and metaplastic effects of repeated-spaced iTBS involve NMDA-R, as revealed by two measures of corticospinal excitability, and that low-dose D-Cycloserine facilitates the physiological effects of repeated spaced iTBS. However, extension of these findings to clinical populations and therapeutic protocols targeting non-motor regions of cortex requires empirical validation.
Collapse
Affiliation(s)
- James G Wrightson
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jaeden Cole
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Maya N Sohn
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada.
| |
Collapse
|
15
|
Gall CM, Le AA, Lynch G. Sex differences in synaptic plasticity underlying learning. J Neurosci Res 2023; 101:764-782. [PMID: 33847004 PMCID: PMC10337639 DOI: 10.1002/jnr.24844] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
16
|
Zhang TR, Askari B, Kesici A, Guilherme E, Vila-Rodriguez F, Snyder JS. Intermittent theta burst transcranial magnetic stimulation induces hippocampal mossy fibre plasticity in male but not female mice. Eur J Neurosci 2023; 57:310-323. [PMID: 36484786 DOI: 10.1111/ejn.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Transcranial magnetic stimulation (TMS) induces electric fields that depolarise or hyperpolarise neurons. Intermittent theta burst stimulation (iTBS), a patterned form of TMS that is delivered at the theta frequency (~5 Hz), induces neuroplasticity in the hippocampus, a brain region that is implicated in memory and learning. One form of plasticity that is unique to the hippocampus is adult neurogenesis; however, little is known about whether TMS or iTBS in particular affects newborn neurons. Here, we therefore applied repeated sessions of iTBS to male and female mice and measured the extent of adult neurogenesis and the morphological features of immature neurons. We found that repeated sessions of iTBS did not significantly increase the amount of neurogenesis or affect the gross dendritic morphology of new neurons, and there were no sex differences in neurogenesis rates or aspects of afferent morphology. In contrast, efferent properties of newborn neurons varied as a function of sex and stimulation. Chronic iTBS increased the size of mossy fibre terminals, which synapse onto Cornu Ammonis 3 (CA3) pyramidal neurons, but only in males. iTBS also increased the number of terminal-associated filopodia, putative synapses onto inhibitory interneurons but only in male mice. This efferent plasticity could result from a general trophic effect, or it could reflect accelerated maturation of immature neurons. Given the important role of mossy fibre synapses in hippocampal learning, our results identify a neurobiological effect of iTBS that might be associated with sex-specific changes in cognition.
Collapse
Affiliation(s)
- Tian Rui Zhang
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Baran Askari
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aydan Kesici
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evelyn Guilherme
- Department of Physiotherapy, Federal University of Sao Carlos, Sao Carlo, Brazil
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Bakulin IS, Poydasheva AG, Zabirova AH, Suponeva NA, Piradov MA. Metaplasticity and non-invasive brain stimulation: the search for new biomarkers and directions for therapeutic neuromodulation. ANNALS OF CLINICAL AND EXPERIMENTAL NEUROLOGY 2022; 16:74-82. [DOI: 10.54101/acen.2022.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metaplasticity (plasticity of synaptic plasticity) is defined as a change in the direction or degree of synaptic plasticity in response to preceding neuronal activity. Recent advances in brain stimulation methods have enabled us to non-invasively examine cortical metaplasticity, including research in a clinical setting. According to current knowledge, non-invasive neuromodulation affects synaptic plasticity by inducing cortical processes that are similar to long-term potentiation and depression. Two stimulation blocks are usually used to assess metaplasticity priming and testing blocks. The technology of studying metaplasticity involves assessing the influence of priming on the testing protocol effect.
Several dozen studies have examined the effects of different stimulation protocols in healthy persons. They found that priming can both enhance and weaken, or even change the direction of the testing protocol effect. The interaction between priming and testing stimulation depends on many factors: the direction of their effect, duration of the stimulation blocks, and the interval between them.
Non-invasive brain stimulation can be used to assess aberrant metaplasticity in nervous system diseases, in order to develop new biomarkers. Metaplasticity disorders are found in focal hand dystonia, migraine with aura, multiple sclerosis, chronic disorders of consciousness, and age-related cognitive changes.
The development of new, metaplasticity-based, optimized, combined stimulation protocols appears to be highly promising for use in therapeutic neuromodulation in clinical practice.
Collapse
|
18
|
Cole EJ, Phillips AL, Bentzley BS, Stimpson KH, Nejad R, Barmak F, Veerapal C, Khan N, Cherian K, Felber E, Brown R, Choi E, King S, Pankow H, Bishop JH, Azeez A, Coetzee J, Rapier R, Odenwald N, Carreon D, Hawkins J, Chang M, Keller J, Raj K, DeBattista C, Jo B, Espil FM, Schatzberg AF, Sudheimer KD, Williams NR. Stanford Neuromodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial. Am J Psychiatry 2022; 179:132-141. [PMID: 34711062 DOI: 10.1176/appi.ajp.2021.20101429] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Depression is the leading cause of disability worldwide, and half of patients with depression have treatment-resistant depression. Intermittent theta-burst stimulation (iTBS) is approved by the U.S. Food and Drug Administration for the treatment of treatment-resistant depression but is limited by suboptimal efficacy and a 6-week duration. The authors addressed these limitations by developing a neuroscience-informed accelerated iTBS protocol, Stanford neuromodulation therapy (SNT; previously referred to as Stanford accelerated intelligent neuromodulation therapy, or SAINT). This protocol was associated with a remission rate of ∼90% after 5 days of open-label treatment. Here, the authors report the results of a sham-controlled double-blind trial of SNT for treatment-resistant depression. METHODS Participants with treatment-resistant depression currently experiencing moderate to severe depressive episodes were randomly assigned to receive active or sham SNT. Resting-state functional MRI was used to individually target the region of the left dorsolateral prefrontal cortex most functionally anticorrelated with the subgenual anterior cingulate cortex. The primary outcome was score on the Montgomery-Åsberg Depression Rating Scale (MADRS) 4 weeks after treatment. RESULTS At the planned interim analysis, 32 participants with treatment-resistant depression had been enrolled, and 29 participants who continued to meet inclusion criteria received either active (N=14) or sham (N=15) SNT. The mean percent reduction from baseline in MADRS score 4 weeks after treatment was 52.5% in the active treatment group and 11.1% in the sham treatment group. CONCLUSIONS SNT, a high-dose iTBS protocol with functional-connectivity-guided targeting, was more effective than sham stimulation for treatment-resistant depression. Further trials are needed to determine SNT's durability and to compare it with other treatments.
Collapse
Affiliation(s)
- Eleanor J Cole
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Angela L Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Brandon S Bentzley
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Katy H Stimpson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Romina Nejad
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Fahim Barmak
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Clive Veerapal
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Naushaba Khan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Kirsten Cherian
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Emily Felber
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Randi Brown
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Elizabeth Choi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Sinead King
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Heather Pankow
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - James H Bishop
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Azeezat Azeez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - John Coetzee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Rachel Rapier
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Nicole Odenwald
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - David Carreon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Jessica Hawkins
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Maureen Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Jennifer Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Kristin Raj
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Charles DeBattista
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Flint M Espil
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Keith D Sudheimer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| | - Nolan R Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, Calif. (all authors except King and Sudheimer); U.S. Department of Veterans Affairs, Palo Alto, Calif. (Phillips, Azeez, Coetzee); Department of Psychology, Palo Alto University, Palo Alto, Calif. (Stimpson, Cherian, Felber, Brown, Choi); Centre for Neuroimaging and Cognitive Genomics, National University of Ireland, Galway (King); Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale (Sudheimer)
| |
Collapse
|
19
|
Thomson AC, Sack AT. How to Design Optimal Accelerated rTMS Protocols Capable of Promoting Therapeutically Beneficial Metaplasticity. Front Neurol 2020; 11:599918. [PMID: 33224103 PMCID: PMC7674552 DOI: 10.3389/fneur.2020.599918] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Alix C Thomson
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht, Netherlands.,Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht, Netherlands.,Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
20
|
Ostrovskaya OI, Cao G, Eroglu C, Harris KM. Developmental onset of enduring long-term potentiation in mouse hippocampus. Hippocampus 2020; 30:1298-1312. [PMID: 32894631 DOI: 10.1002/hipo.23257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/18/2020] [Accepted: 08/13/2020] [Indexed: 11/10/2022]
Abstract
Analysis of long-term potentiation (LTP) provides a powerful window into cellular mechanisms of learning and memory. Prior work shows late LTP (L-LTP), lasting >3 hr, occurs abruptly at postnatal day 12 (P12) in the stratum radiatum of rat hippocampal area CA1. The goal here was to determine the developmental profile of synaptic plasticity leading to L-LTP in the mouse hippocampus. Two mouse strains and two mutations known to affect synaptic plasticity were chosen: C57BL/6J and Fmr1-/y on the C57BL/6J background, and 129SVE and Hevin-/- (Sparcl1-/- ) on the 129SVE background. Like rats, hippocampal slices from all of the mice showed test pulse-induced depression early during development that was gradually resolved with maturation by 5 weeks. All the mouse strains showed a gradual progression between P10-P35 in the expression of short-term potentiation (STP), lasting ≤1 hr. In the 129SVE mice, L-LTP onset (>25% of slices) occurred by 3 weeks, reliable L-LTP (>50% slices) was achieved by 4 weeks, and Hevin-/- advanced this profile by 1 week. In the C57BL/6J mice, L-LTP onset occurred significantly later, over 3-4 weeks, and reliability was not achieved until 5 weeks. Although some of the Fmr1-/y mice showed L-LTP before 3 weeks, reliable L-LTP also was not achieved until 5 weeks. L-LTP onset was not advanced in any of the mouse genotypes by multiple bouts of theta-burst stimulation at 90 or 180 min intervals. These findings show important species differences in the onset of STP and L-LTP, which occur at the same age in rats but are sequentially acquired in mice.
Collapse
Affiliation(s)
- Olga I Ostrovskaya
- Department of Neuroscience, Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, USA
| | - Guan Cao
- Department of Neuroscience, Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology Regeneration Next Initiative, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
21
|
Timmer MCJ, Steendijk P, Arend SM, Versteeg M. Making a Lecture Stick: the Effect of Spaced Instruction on Knowledge Retention in Medical Education. MEDICAL SCIENCE EDUCATOR 2020; 30:1211-1219. [PMID: 34457784 PMCID: PMC8368805 DOI: 10.1007/s40670-020-00995-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Poor knowledge retention is a persistent problem among medical students. This challenging issue may be addressed by optimizing frequently used instructional designs, such as lectures. Guided by neuroscientific literature, we designed a spaced learning lecture in which the educator repeats the to-be-learned information using short temporal intervals. We investigated if this modified instructional design could enhance students' retention. MATERIALS AND METHODS Second-year medical students (n = 148) were randomly allocated to either the spaced lecture or the traditional lecture. The spaced lecture consisted of three 15-min instructional periods, separated by 5-min intervals. A short summary of the preceding information was provided after each interval. The traditional lecture encompassed the same information including the summary in the massed format, thus without the intervals. All students performed a baseline knowledge test 2 weeks prior to the lectures and students' knowledge retention was assessed 8 days after the lectures. RESULTS The average score on the retention test (α = 0.74) was not significantly different between the spaced lecture group (33.8% ± 13.6%) and the traditional lecture group (31.8% ± 12.9%) after controlling for students' baseline-test performance (F(1,104) = 0.566, p = 0.458). Students' narrative comments showed that the spaced lecture format was well-received and subjectively benefitted their attention-span and cognitive engagement. DISCUSSION AND CONCLUSION We were unable to show increased knowledge retention after the spaced lecture compared with the traditional lecture. Based on these findings, we provide recommendations for further research. Ultimately, we aim for optimized spaced learning designs to facilitate learning in the medical curriculum and to help educate health professionals with a solid knowledge base.
Collapse
Affiliation(s)
- Marnix C. J. Timmer
- Center for Innovation in Medical Education, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul Steendijk
- Center for Innovation in Medical Education, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sandra M. Arend
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Versteeg
- Center for Innovation in Medical Education, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
22
|
Kronberg G, Rahman A, Sharma M, Bikson M, Parra LC. Direct current stimulation boosts hebbian plasticity in vitro. Brain Stimul 2020; 13:287-301. [PMID: 31668982 PMCID: PMC6989352 DOI: 10.1016/j.brs.2019.10.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/10/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There is evidence that transcranial direct current stimulation (tDCS) can improve learning performance. Arguably, this effect is related to long term potentiation (LTP), but the precise biophysical mechanisms remain unknown. HYPOTHESIS We propose that direct current stimulation (DCS) causes small changes in postsynaptic membrane potential during ongoing endogenous synaptic activity. The altered voltage dynamics in the postsynaptic neuron then modify synaptic strength via the machinery of endogenous voltage-dependent Hebbian plasticity. This hypothesis predicts that DCS should exhibit Hebbian properties, namely pathway specificity and associativity. METHODS We studied the effects of DCS applied during the induction of LTP in the CA1 region of rat hippocampal slices and using a biophysical computational model. RESULTS DCS enhanced LTP, but only at synapses that were undergoing plasticity, confirming that DCS respects Hebbian pathway specificity. When different synaptic pathways cooperated to produce LTP, DCS enhanced this cooperation, boosting Hebbian associativity. Further slice experiments and computer simulations support a model where polarization of postsynaptic pyramidal neurons drives these plasticity effects through endogenous Hebbian mechanisms. The model is able to reconcile several experimental results by capturing the complex interaction between the induced electric field, neuron morphology, and endogenous neural activity. CONCLUSIONS These results suggest that tDCS can enhance associative learning. We propose that clinical tDCS should be applied during tasks that induce Hebbian plasticity to harness this phenomenon, and that the effects should be task specific through their interaction with endogenous plasticity mechanisms. Models that incorporate brain state and plasticity mechanisms may help to improve prediction of tDCS outcomes.
Collapse
Affiliation(s)
- Greg Kronberg
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA.
| | - Asif Rahman
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA
| | - Mahima Sharma
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of New York, CUNY, 160 Convent Avenue, New York, NY, USA
| |
Collapse
|
23
|
Affiliation(s)
- Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
24
|
Chirillo MA, Waters MS, Lindsey LF, Bourne JN, Harris KM. Local resources of polyribosomes and SER promote synapse enlargement and spine clustering after long-term potentiation in adult rat hippocampus. Sci Rep 2019; 9:3861. [PMID: 30846859 PMCID: PMC6405867 DOI: 10.1038/s41598-019-40520-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
Synapse clustering facilitates circuit integration, learning, and memory. Long-term potentiation (LTP) of mature neurons produces synapse enlargement balanced by fewer spines, raising the question of how clusters form despite this homeostatic regulation of total synaptic weight. Three-dimensional reconstruction from serial section electron microscopy (3DEM) revealed the shapes and distributions of smooth endoplasmic reticulum (SER) and polyribosomes, subcellular resources important for synapse enlargement and spine outgrowth. Compared to control stimulation, synapses were enlarged two hours after LTP on resource-rich spines containing polyribosomes (4% larger than control) or SER (15% larger). SER in spines shifted from a single tubule to complex spine apparatus after LTP. Negligible synapse enlargement (0.6%) occurred on resource-poor spines lacking SER and polyribosomes. Dendrites were divided into discrete synaptic clusters surrounded by asynaptic segments. Spine density was lowest in clusters having only resource-poor spines, especially following LTP. In contrast, resource-rich spines preserved neighboring resource-poor spines and formed larger clusters with elevated total synaptic weight following LTP. These clusters also had more shaft SER branches, which could sequester cargo locally to support synapse growth and spinogenesis. Thus, resources appear to be redistributed to synaptic clusters with LTP-related synapse enlargement while homeostatic regulation suppressed spine outgrowth in resource-poor synaptic clusters.
Collapse
Affiliation(s)
- Michael A Chirillo
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,Fulbright U.S. Scholar Program, University of Belgrade, Studentski trg 1, Belgrade, 11000, Serbia
| | - Mikayla S Waters
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,McGovern Medical School in Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Laurence F Lindsey
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,Google Seattle, Seattle, Washington, 98103, USA
| | - Jennifer N Bourne
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Kristen M Harris
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
25
|
Patriarchi T, Buonarati OR, Hell JW. Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by β2 adrenergic receptor/PKA and Ca 2+/CaMKII signaling. EMBO J 2018; 37:e99771. [PMID: 30249603 PMCID: PMC6187224 DOI: 10.15252/embj.201899771] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
The synapse transmits, processes, and stores data within its tiny space. Effective and specific signaling requires precise alignment of the relevant components. This review examines current insights into mechanisms of AMPAR and NMDAR localization by PSD-95 and their spatial distribution at postsynaptic sites to illuminate the structural and functional framework of postsynaptic signaling. It subsequently delineates how β2 adrenergic receptor (β2 AR) signaling via adenylyl cyclase and the cAMP-dependent protein kinase PKA is organized within nanodomains. Here, we discuss targeting of β2 AR, adenylyl cyclase, and PKA to defined signaling complexes at postsynaptic sites, i.e., AMPARs and the L-type Ca2+ channel Cav1.2, and other subcellular surface localizations, the role of A kinase anchor proteins, the physiological relevance of the spatial restriction of corresponding signaling, and their interplay with signal transduction by the Ca2+- and calmodulin-dependent kinase CaMKII How localized and specific signaling by cAMP occurs is a central cellular question. The dendritic spine constitutes an ideal paradigm for elucidating the dimensions of spatially restricted signaling because of their small size and defined protein composition.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Humans
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synapses/genetics
- Synapses/metabolism
Collapse
Affiliation(s)
- Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | | | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
26
|
Long-term potentiation expands information content of hippocampal dentate gyrus synapses. Proc Natl Acad Sci U S A 2018; 115:E2410-E2418. [PMID: 29463730 DOI: 10.1073/pnas.1716189115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.
Collapse
|
27
|
Guimarães Marques MJ, Reyes-Garcia SZ, Marques-Carneiro JE, Lopes-Silva LB, Andersen ML, Cavalheiro EA, Scorza FA, Scorza CA. Long-term Potentiation Decay and Poor Long-lasting Memory Process in the Wild Rodents Proechimys from Brazil's Amazon Rainforest. Front Behav Neurosci 2018; 12:2. [PMID: 29410617 PMCID: PMC5787059 DOI: 10.3389/fnbeh.2018.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/09/2018] [Indexed: 11/17/2022] Open
Abstract
Proechimys are small terrestrial rodents from Amazon rainforest. Each animal species is adapted to a specific environment in which the animal evolved therefore without comparative approaches unique characteristics of distinct species cannot be fully recognized. Laboratory rodents are exceedingly inbred strains dissociated from their native habitats and their fundamental ecological aspects are abstracted. Thus, the employment of exotic non-model species can be informative and complement conventional animal models. With the aim of promoting comparative studies between the exotic wildlife populations in the laboratory and traditional rodent model, we surveyed a type of synaptic plasticity intimately related to memory encoding in animals. Using theta-burst paradigm, in vitro long-term potentiation (LTP) in the CA1 subfield of hippocampal slices was assessed in the Amazon rodents Proechimys and Wistar rats. Memory, learning and anxiety were investigated through the plus-maze discriminative avoidance task (PM-DAT) and object recognition test. In PM-DAT, both animal species were submitted to two test sessions (3-h and 24-h) after the conditioning training. Proechimys exhibited higher anxiety-like behavior in the training session but during test sessions both species exhibited similar patterns of anxiety-related behavior. After 3-h of the training, Proechimys and Wistar spent significantly less time in the aversive enclosed arm than in the non-aversive arm. But, at 24-h after training, Wistar rats remained less time in the aversive closed arm in comparison with the non-aversive one, while Proechimys rodents spent the same amount of time in both enclosed arms. In the object recognition test, both species were evaluated at 24-h after the acquisition session and similar findings than those of the PM-DAT (24-h) were obtained, suggesting that long-term memory duration did not persist for 24-h in the Amazon rodent. Field excitatory post-synaptic potentials recordings revealed that LTP decays rapidly over time reaching basal levels at 90 min after theta-burst stimulation in Proechimys, contrasting to the stable LTP found in the Wistar rats which was observed throughout 3-h recording period. These findings suggest a link between the LTP decay and the lack of 24-h long-lasting memory process in Proechimys. Nevertheless, why early-phase LTP in Proechimys decays very rapidly remains to be elucidated.
Collapse
Affiliation(s)
- Marcia J Guimarães Marques
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Selvin Z Reyes-Garcia
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Ciencias Morfológicas, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - José E Marques-Carneiro
- Université de Strasbourg-INSERM U-1114-Neuropsychologie Cognitive, Physiopathologie de la Schizophrénie, Strasbourg, France
| | - Leonardo B Lopes-Silva
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Esper A Cavalheiro
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fulvio A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Regulation of Rho GTPase proteins during spine structural plasticity for the control of local dendritic plasticity. Curr Opin Neurobiol 2017; 45:193-201. [PMID: 28709063 DOI: 10.1016/j.conb.2017.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023]
Abstract
While it is generally appreciated that learning involves the structural rearrangement of neuronal circuits, the underlying orchestration of molecular events that drives these changes is not as well understood. Recent studies on the spatiotemporal organization of synaptic signaling events have provided new insights into the biochemical underpinnings of various expressions of structural neuronal plasticity, as well as the functional consequences that emerge because of the particular behavior of the molecules involved. In particular, activity patterns of and interplay among a class of morphogenic signaling proteins, the Rho GTPases, and their downstream signals, are found to be critical for linking neuronal activity with various forms of neuronal plasticity. We review recent findings on this topic and discuss their physiological implications.
Collapse
|
29
|
Smith HL, Bourne JN, Cao G, Chirillo MA, Ostroff LE, Watson DJ, Harris KM. Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP. eLife 2016; 5. [PMID: 27991850 PMCID: PMC5235352 DOI: 10.7554/elife.15275] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondria support synaptic transmission through production of ATP, sequestration of calcium, synthesis of glutamate, and other vital functions. Surprisingly, less than 50% of hippocampal CA1 presynaptic boutons contain mitochondria, raising the question of whether synapses without mitochondria can sustain changes in efficacy. To address this question, we analyzed synapses from postnatal day 15 (P15) and adult rat hippocampus that had undergone theta-burst stimulation to produce long-term potentiation (TBS-LTP) and compared them to control or no stimulation. At 30 and 120 min after TBS-LTP, vesicles were decreased only in presynaptic boutons that contained mitochondria at P15, and vesicle decrement was greatest in adult boutons containing mitochondria. Presynaptic mitochondrial cristae were widened, suggesting a sustained energy demand. Thus, mitochondrial proximity reflected enhanced vesicle mobilization well after potentiation reached asymptote, in parallel with the apparently silent addition of new dendritic spines at P15 or the silent enlargement of synapses in adults. DOI:http://dx.doi.org/10.7554/eLife.15275.001
Collapse
Affiliation(s)
- Heather L Smith
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus, Aurora, United States
| | - Guan Cao
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Michael A Chirillo
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Linnaea E Ostroff
- Center for Neural Science, New York University, Washington, New York
| | - Deborah J Watson
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| |
Collapse
|
30
|
Watson DJ, Ostroff L, Cao G, Parker PH, Smith H, Harris KM. LTP enhances synaptogenesis in the developing hippocampus. Hippocampus 2016; 26:560-76. [PMID: 26418237 PMCID: PMC4811749 DOI: 10.1002/hipo.22536] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2015] [Indexed: 12/27/2022]
Abstract
In adult hippocampus, long-term potentiation (LTP) produces synapse enlargement while preventing the formation of new small dendritic spines. Here, we tested how LTP affects structural synaptic plasticity in hippocampal area CA1 of Long-Evans rats at postnatal day 15 (P15). P15 is an age of robust synaptogenesis when less than 35% of dendritic spines have formed. We hypothesized that LTP might therefore have a different effect on synapse structure than in adults. Theta-burst stimulation (TBS) was used to induce LTP at one site and control stimulation was delivered at an independent site, both within s. radiatum of the same hippocampal slice. Slices were rapidly fixed at 5, 30, and 120 min after TBS, and processed for analysis by three-dimensional reconstruction from serial section electron microscopy (3DEM). All findings were compared to hippocampus that was perfusion-fixed (PF) in vivo at P15. Excitatory and inhibitory synapses on dendritic spines and shafts were distinguished from synaptic precursors, including filopodia and surface specializations. The potentiated response plateaued between 5 and 30 min and remained potentiated prior to fixation. TBS resulted in more small spines relative to PF by 30 min. This TBS-related spine increase lasted 120 min, hence, there were substantially more small spines with LTP than in the control or PF conditions. In contrast, control test pulses resulted in spine loss relative to PF by 120 min, but not earlier. The findings provide accurate new measurements of spine and synapse densities and sizes. The added or lost spines had small synapses, took time to form or disappear, and did not result in elevated potentiation or depression at 120 min. Thus, at P15 the spines formed following TBS, or lost with control stimulation, appear to be functionally silent. With TBS, existing synapses were awakened and then new spines formed as potential substrates for subsequent plasticity.
Collapse
Affiliation(s)
- Deborah J. Watson
- Department of Neuroscience, Center for Learning and MemoryInstitute for Neuroscience, University of Texas at AustinAustinTexas78731
| | | | - Guan Cao
- Department of Neuroscience, Center for Learning and MemoryInstitute for Neuroscience, University of Texas at AustinAustinTexas78731
| | - Patrick H. Parker
- Department of Neuroscience, Center for Learning and MemoryInstitute for Neuroscience, University of Texas at AustinAustinTexas78731
| | - Heather Smith
- Department of Neuroscience, Center for Learning and MemoryInstitute for Neuroscience, University of Texas at AustinAustinTexas78731
| | - Kristen M. Harris
- Department of Neuroscience, Center for Learning and MemoryInstitute for Neuroscience, University of Texas at AustinAustinTexas78731
| |
Collapse
|
31
|
Form and Function of Sleep Spindles across the Lifespan. Neural Plast 2016; 2016:6936381. [PMID: 27190654 PMCID: PMC4848449 DOI: 10.1155/2016/6936381] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 01/11/2023] Open
Abstract
Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia) and during aging (such as neurodegenerative conditions), both types of disorders may benefit from therapies based on a better understanding of spindle function.
Collapse
|
32
|
Smolen P, Zhang Y, Byrne JH. The right time to learn: mechanisms and optimization of spaced learning. Nat Rev Neurosci 2016; 17:77-88. [PMID: 26806627 PMCID: PMC5126970 DOI: 10.1038/nrn.2015.18] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For many types of learning, spaced training, which involves repeated long inter-trial intervals, leads to more robust memory formation than does massed training, which involves short or no intervals. Several cognitive theories have been proposed to explain this superiority, but only recently have data begun to delineate the underlying cellular and molecular mechanisms of spaced training, and we review these theories and data here. Computational models of the implicated signalling cascades have predicted that spaced training with irregular inter-trial intervals can enhance learning. This strategy of using models to predict optimal spaced training protocols, combined with pharmacotherapy, suggests novel ways to rescue impaired synaptic plasticity and learning.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, P.O. BOX 20708, Houston, Texas 77030, USA
| | - Yili Zhang
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, P.O. BOX 20708, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, P.O. BOX 20708, Houston, Texas 77030, USA
| |
Collapse
|
33
|
Spaced training rescues memory and ERK1/2 signaling in fragile X syndrome model mice. Proc Natl Acad Sci U S A 2014; 111:16907-12. [PMID: 25385607 DOI: 10.1073/pnas.1413335111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent studies have shown that short, spaced trains of afferent stimulation produce much greater long-term potentiation (LTP) than that obtained with a single, prolonged stimulation episode. The present studies demonstrate that spaced training regimens, based on these LTP timing rules, facilitate learning in wild-type (WT) mice and can offset learning and synaptic signaling impairments in the fragile X mental retardation 1 (Fmr1) knockout (KO) model of fragile X syndrome. We determined that 5 min of continuous training supports object location memory (OLM) in WT but not Fmr1 KO mice. However, the same amount of training distributed across three short trials, spaced by one hour, produced robust long-term memory in the KOs. At least three training trials were needed to realize the benefit of spacing, and intertrial intervals shorter or longer than 60 min were ineffective. Multiple short training trials also rescued novel object recognition in Fmr1 KOs. The spacing effect was surprisingly potent: just 1 min of OLM training, distributed across three trials, supported robust memory in both genotypes. Spacing also rescued training-induced activation of synaptic ERK1/2 in dorsal hippocampus of Fmr1 KO mice. These results show that a spaced training regimen designed to maximize synaptic potentiation facilitates recognition memory in WT mice and can offset synaptic signaling and memory impairments in a model of congenital intellectual disability.
Collapse
|