1
|
Sicre M, Ambroggi F, Meffre J. Two Distinct Neuronal Populations in the Rat Parafascicular Nucleus Oppositely Encode the Engagement in Stimulus-driven Reward-seeking. Curr Neuropharmacol 2024; 22:1551-1565. [PMID: 38847144 PMCID: PMC11097993 DOI: 10.2174/1570159x22666240131114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The thalamus is a phylogenetically well-preserved structure. Known to densely contact cortical regions, its role in the transmission of sensory information to the striatal complex has been widely reconsidered in recent years. METHODS The parafascicular nucleus of the thalamus (Pf) has been implicated in the orientation of attention toward salient sensory stimuli. In a stimulus-driven reward-seeking task, we sought to characterize the electrophysiological activity of Pf neurons in rats. RESULTS We observed a predominance of excitatory over inhibitory responses for all events in the task. Neurons responded more strongly to the stimulus compared to lever-pressing and reward collecting, confirming the strong involvement of the Pf in sensory information processing. The use of long sessions allowed us to compare neuronal responses to stimuli between trials when animals were engaged in action and those when they were not. We distinguished two populations of neurons with opposite responses: MOTIV+ neurons responded more intensely to stimuli followed by a behavioral response than those that were not. Conversely, MOTIV- neurons responded more strongly when the animal did not respond to the stimulus. In addition, the latency of excitation of MOTIV- neurons was shorter than that of MOTIV+ neurons. CONCLUSION Through this encoding, the Pf could perform an early selection of environmental stimuli transmitted to the striatum according to motivational level.
Collapse
Affiliation(s)
- Mehdi Sicre
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, Marseille, France
| | - Frederic Ambroggi
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, Marseille, France
- Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS, INT, Marseille, France
| | - Julie Meffre
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, Marseille, France
| |
Collapse
|
2
|
Yi D, Hartner JP, Ung BS, Zhu HL, Watson BO, Chen L. 3D Printed Skull Cap and Benchtop Fabricated Microwire-Based Microelectrode Array for Custom Rat Brain Recordings. Bioengineering (Basel) 2022; 9:bioengineering9100550. [PMID: 36290518 PMCID: PMC9598465 DOI: 10.3390/bioengineering9100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Microwire microelectrode arrays (MEAs) have been a popular low-cost tool for chronic electrophysiological recordings and are an inexpensive means to record the electrical dynamics crucial to brain function. However, both the fabrication and implantation procedures for multi-MEAs on a single rodent are time-consuming and the accuracy and quality are highly manual skill-dependent. To address the fabrication and implantation challenges for microwire MEAs, (1) a computer-aided designed and 3D printed skull cap for the pre-determined implantation locations of each MEA and (2) a benchtop fabrication approach for low-cost custom microwire MEAs were developed. A proof-of-concept design of a 32-channel 4-MEA (8-wire each) recording system was prototyped and tested through Sprague Dawley rat recordings. The skull cap design, based on the CT-scan of a single rat conforms well with multiple Sprague Dawley rats of various sizes, ages, and weight with a minimal bregma alignment error (A/P axis standard error of the mean = 0.25 mm, M/L axis standard error of the mean = 0.07 mm, n = 6). The prototyped 32-channel system was able to record the spiking activities over five months. The developed benchtop fabrication method and the 3D printed skull cap implantation platform would enable neuroscience groups to conduct in-house design, fabrication, and implantation of customizable microwire MEAs at a lower cost than the current commercial options and experience a shorter lead time for the design modifications and iterations.
Collapse
Affiliation(s)
- Dongyang Yi
- Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | - Brian S. Ung
- Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Harrison L. Zhu
- Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Brendon O. Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lei Chen
- Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
3
|
In-house fabrication of bipolar electrode-cannula assembly for electrical stimulation and drug delivery at the same site in rat brain. J Pharmacol Toxicol Methods 2022; 118:107194. [PMID: 35779851 DOI: 10.1016/j.vascn.2022.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022]
Abstract
Strategies drawn at understanding the functional attributes of specific neural circuits often necessitate electrical stimulation and pharmacological manipulation at the same anatomical site. We describe a simple, inexpensive and reliable method to fabricate a bipolar electrode-cannula assembly for delivery of electric pulses and administration of neuroactive agents at the same site in the rat brain. The assembly consisting of a guide cannula, dummy cannula, internal cannula and bipolar electrode was fabricated using syringe needles, wires and simple electronic components. To test the usefulness of the device, it was implanted on the skull of a rat specifically targeting the posterior ventral tegmental area (pVTA). The rat was conditioned to press the lever in intracranial self-stimulation (ICSS) protocol in an operant chamber. The number of lever presses in a 30 min task was monitored. Intra-pVTA administration with bicuculline (GABAA receptor antagonist) increased the lever press activity, while muscimol (GABAA receptor agonist) had opposite effect. The results confirm that the group of neurons responding to the electrical stimulation probably receive GABAergic inputs. The device is light in weight, costs less than a dollar and can be fabricated from readily available components. It can serve a useful purpose in electrically stimulating any given target in the brain - before, during or after pharmacological manipulation at the same locus and may find application in neuropharmacological and neurobehavioral studies.
Collapse
|
4
|
Sun C, Cao Y, Huang J, Huang K, Lu Y, Zhong C. Low-cost and easy-fabrication lightweight drivable electrode array for multiple-regions electrophysiological recording in free-moving mice. J Neural Eng 2022; 19. [PMID: 34996053 DOI: 10.1088/1741-2552/ac494e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Extracellular electrophysiology has been widely applied to neural circuit dissections. However, long-term multiregional recording in free-moving mice remains a challenge. Low-cost and easy-fabrication of elaborate drivable electrodes is required for their prevalence. APPROACH A three-layer nested construct (OD ~1.80 mm, length ~10 mm, <0.1g) was recruited as a drivable component, which consisted of an ethylene-vinyl acetate copolymer (EVA) heat-shrinkable tube, non-closed loop ceramic bushing, and stainless ferrule with a bulge twining silver wire. The supporting and working components were equipped with drivable components to be assembled into a drivable microwire electrode array with a nested structure (drivable MEANS). Two drivable microwire electrode arrays were independently implanted for chronic recording in different brain areas at respective angles. An optic fiber was easily loaded into the drivable MEANS to achieve optogenetic modulation and electrophysiological recording simultaneously. MAIN RESULTS The drivable MEANS had lightweight (~ 0.37 g), small (~ 15 mm ×15 mm × 4 mm), and low cost (≤ $64.62). Two drivable MEANS were simultaneously implanted in mice, and high-quality electrophysiological recordings could be applied ≥ 5 months after implantation in freely behaving animals. Electrophysiological recordings and analysis of the lateral septum (LS) and lateral hypothalamus (LH) in food-seeking behavior demonstrated that our drivable MEANS can be used to dissect the function of neural circuits. An optical fiber-integrated drivable MEANS (~ 0.47 g) was used to stimulate and record LS neurons, which suggested that changes in working components can achieve more functions than electrophysiological recordings, such as optical stimulation, drug release, and calcium imaging. SIGNIFICANCE Drivable MEANS is an easily fabricated, lightweight drivable microwire electrode array for multiple-region electrophysiological recording in free-moving mice. Our design is likely to be a valuable platform for both current and prospective users, as well as for developers of multifunctional electrodes for free-moving mice.
Collapse
Affiliation(s)
- Chongyang Sun
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen, Guangdong, 518055, CHINA
| | - Yi Cao
- University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, CHINA
| | - Jianyu Huang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen, Guangdong, 518055, CHINA
| | - Kang Huang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen, Guangdong, 518055, CHINA
| | - Yi Lu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen, Guangdong, 518055, CHINA
| | - Cheng Zhong
- Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Beijing, 100864, CHINA
| |
Collapse
|
5
|
Vega-Villar M, Horvitz JC, Nicola SM. NMDA receptor-dependent plasticity in the nucleus accumbens connects reward-predictive cues to approach responses. Nat Commun 2019; 10:4429. [PMID: 31562332 PMCID: PMC6764993 DOI: 10.1038/s41467-019-12387-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Learning associations between environmental cues and rewards is a fundamental adaptive function. Via such learning, reward-predictive cues come to activate approach to locations where reward is available. The nucleus accumbens (NAc) is essential for cued approach behavior in trained subjects, and cue-evoked excitations in NAc neurons are critical for the expression of this behavior. Excitatory synapses within the NAc undergo synaptic plasticity that presumably contributes to cued approach acquisition, but a direct link between synaptic plasticity within the NAc and the development of cue-evoked neural activity during learning has not been established. Here we show that, with repeated cue-reward pairings, cue-evoked excitations in the NAc emerge and grow in the trials prior to the detectable expression of cued approach behavior. We demonstrate that the growth of these signals requires NMDA receptor-dependent plasticity within the NAc, revealing a neural mechanism by which the NAc participates in learning of conditioned reward-seeking behaviors. Conditioned stimuli elicit phasic changes in nucleus accumbens (NAc) firing that invigorate approach responses to predicted rewards. Here the authors show that NAc neurons acquire cue-evoked responses during learning as a result of excitatory plasticity within the NAc.
Collapse
Affiliation(s)
- Mercedes Vega-Villar
- Department of Psychology, The Graduate Center, City University of New York, 365 Fifth Avenue, 6th Floor, New York, NY, 10016, USA.,Department of Psychology, City College of New York, City University of New York, 160 Convent Avenue, NAC 7/120, New York, NY, 10031, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room-111, Bronx, NY, 10461, USA
| | - Jon C Horvitz
- Department of Psychology, City College of New York, City University of New York, 160 Convent Avenue, NAC 7/120, New York, NY, 10031, USA
| | - Saleem M Nicola
- Department of Neuroscience, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room-111, Bronx, NY, 10461, USA. .,Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
6
|
Caref K, Nicola SM. Endogenous opioids in the nucleus accumbens promote approach to high-fat food in the absence of caloric need. eLife 2018; 7:34955. [PMID: 29582754 PMCID: PMC5903865 DOI: 10.7554/elife.34955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
When relatively sated, people (and rodents) are still easily tempted to consume calorie-dense foods, particularly those containing fat and sugar. Consumption of such foods while calorically replete likely contributes to obesity. The nucleus accumbens (NAc) opioid system has long been viewed as a critical substrate for this behavior, mainly via contributions to the neural control of consumption and palatability. Here, we test the hypothesis that endogenous NAc opioids also promote appetitive approach to calorie-dense food in states of relatively high satiety. We simultaneously recorded NAc neuronal firing and infused a µ-opioid receptor antagonist into the NAc while rats performed a cued approach task in which appetitive and consummatory phases were well separated. The results reveal elements of a neural mechanism by which NAc opioids promote approach to high-fat food despite the lack of caloric need, demonstrating a potential means by which the brain is biased towards overconsumption of palatable food. Imagine that you have just finished Thanksgiving dinner. You are completely full, having eaten large portions of turkey, green beans and mashed potatoes. Yet, despite feeling full, you still find yourself tempted by a slice of pie for dessert, maybe even with ice cream on top. Why is it that in such a state of fullness, you desire a slice of pie but not, say, another helping of green beans? The answer may lie in the way the brain responds to food when we do not need any more calories. At such times, your brain drives you to continue eating only those foods that are tasty and calorie-dense. This preference for fatty and sweet foods may have been helpful in the past when we could not be certain where our next meal would come from. But in modern times, the widespread availability of food makes this preference potentially harmful. For example, the drive to consume fatty and sweet foods even when not hungry may now be contributing to soaring levels of obesity and type 2 diabetes. What exactly is happening inside the brain to produce this behavior? Previous work has implicated a structure called the nucleus accumbens. When scientists activated proteins called mu opioid receptors within the nucleus accumbens, animals ate more of the foods that they find tasty. However, they were not as interested in eating more of the foods that they are more ambivalent towards. Caref and Nicola now show that preventing opioid binding makes rats unwilling to respond to a cue to obtain cream, an appetizing, high-fat reward. It also abolishes the brain activity that drives the rats to respond the cue. Crucially, however, this effect only occurs in rats that are not hungry. It therefore appears that opioid binding in the nucleus accumbens drives animals to approach and eat high-fat foods, but only when they do not need the calories. That is, it increases fat consumption in animals that are not actually hungry. A drug that selectively blocks mu opioid receptors in the nucleus accumbens may reduce this behavior. Such a drug could potentially help to prevent obesity and the health problems associated with it.
Collapse
Affiliation(s)
- Kevin Caref
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | - Saleem M Nicola
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States.,Department of Psychiatry, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
7
|
Retailleau A, Morris G. Spatial Rule Learning and Corresponding CA1 Place Cell Reorientation Depend on Local Dopamine Release. Curr Biol 2018; 28:836-846.e4. [DOI: 10.1016/j.cub.2018.01.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 11/25/2022]
|
8
|
Morrison SE, McGinty VB, du Hoffmann J, Nicola SM. Limbic-motor integration by neural excitations and inhibitions in the nucleus accumbens. J Neurophysiol 2017; 118:2549-2567. [PMID: 28794196 DOI: 10.1152/jn.00465.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/20/2017] [Accepted: 08/07/2017] [Indexed: 11/22/2022] Open
Abstract
The nucleus accumbens (NAc) has often been described as a "limbic-motor interface," implying that the NAc integrates the value of expected rewards with the motor planning required to obtain them. However, there is little direct evidence that the signaling of individual NAc neurons combines information about predicted reward and behavioral response. We report that cue-evoked neural responses in the NAc form a likely physiological substrate for its limbic-motor integration function. Across task contexts, individual NAc neurons in behaving rats robustly encode the reward-predictive qualities of a cue, as well as the probability of behavioral response to the cue, as coexisting components of the neural signal. In addition, cue-evoked activity encodes spatial and locomotor aspects of the behavioral response, including proximity to a reward-associated target and the latency and speed of approach to the target. Notably, there are important limits to the ability of NAc neurons to integrate motivational information into behavior: in particular, updating of predicted reward value appears to occur on a relatively long timescale, since NAc neurons fail to discriminate between cues with reward associations that change frequently. Overall, these findings suggest that NAc cue-evoked signals, including inhibition of firing (as noted here for the first time), provide a mechanism for linking reward prediction and other motivationally relevant factors, such as spatial proximity, to the probability and vigor of a reward-seeking behavioral response.NEW & NOTEWORTHY The nucleus accumbens (NAc) is thought to link expected rewards and action planning, but evidence for this idea remains sparse. We show that, across contexts, both excitatory and inhibitory cue-evoked activity in the NAc jointly encode reward prediction and probability of behavioral responding to the cue, as well as spatial and locomotor properties of the response. Interestingly, although spatial information in the NAc is updated quickly, fine-grained updating of reward value occurs over a longer timescale.
Collapse
Affiliation(s)
- Sara E Morrison
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, New York; and
| | - Vincent B McGinty
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, New York; and
| | - Johann du Hoffmann
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Saleem M Nicola
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, New York; and .,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
9
|
Simple Method for Fabricating Slender Infusion-Recording Assembly in 30-Gauge Syringe Needle. J Med Biol Eng 2016. [DOI: 10.1007/s40846-016-0187-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
du Hoffmann J, Nicola SM. Activation of Dopamine Receptors in the Nucleus Accumbens Promotes Sucrose-Reinforced Cued Approach Behavior. Front Behav Neurosci 2016; 10:144. [PMID: 27471453 PMCID: PMC4943936 DOI: 10.3389/fnbeh.2016.00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/23/2016] [Indexed: 01/19/2023] Open
Abstract
Dopamine receptor activation in the nucleus accumbens (NAc) promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety.
Collapse
Affiliation(s)
- Johann du Hoffmann
- Department of Neuroscience and Psychiatry, Albert Einstein College of Medicine Bronx, NY, USA
| | - Saleem M Nicola
- Department of Neuroscience and Psychiatry, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
11
|
Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington's disease. Proc Natl Acad Sci U S A 2016; 113:5736-41. [PMID: 27140644 DOI: 10.1073/pnas.1603871113] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have identified impairments in neural induction and in striatal and cortical neurogenesis in Huntington's disease (HD) knock-in mouse models and associated embryonic stem cell lines. However, the potential role of these developmental alterations for HD pathogenesis and progression is currently unknown. To address this issue, we used BACHD:CAG-Cre(ERT2) mice, which carry mutant huntingtin (mHtt) modified to harbor a floxed exon 1 containing the pathogenic polyglutamine expansion (Q97). Upon tamoxifen administration at postnatal day 21, the floxed mHtt-exon1 was removed and mHtt expression was terminated (Q97(CRE)). These conditional mice displayed similar profiles of impairments to those mice expressing mHtt throughout life: (i) striatal neurodegeneration, (ii) early vulnerability to NMDA-mediated excitotoxicity, (iii) impairments in motor coordination, (iv) temporally distinct abnormalities in striatal electrophysiological activity, and (v) altered corticostriatal functional connectivity and plasticity. These findings strongly suggest that developmental aberrations may play important roles in HD pathogenesis and progression.
Collapse
|
12
|
Keller CJ, Chen C, Lado FA, Khodakhah K. The Limited Utility of Multiunit Data in Differentiating Neuronal Population Activity. PLoS One 2016; 11:e0153154. [PMID: 27111446 PMCID: PMC4844128 DOI: 10.1371/journal.pone.0153154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/06/2016] [Indexed: 11/19/2022] Open
Abstract
To date, single neuron recordings remain the gold standard for monitoring the activity of neuronal populations. Since obtaining single neuron recordings is not always possible, high frequency or ‘multiunit activity’ (MUA) is often used as a surrogate. Although MUA recordings allow one to monitor the activity of a large number of neurons, they do not allow identification of specific neuronal subtypes, the knowledge of which is often critical for understanding electrophysiological processes. Here, we explored whether prior knowledge of the single unit waveform of specific neuron types is sufficient to permit the use of MUA to monitor and distinguish differential activity of individual neuron types. We used an experimental and modeling approach to determine if components of the MUA can monitor medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) in the mouse dorsal striatum. We demonstrate that when well-isolated spikes are recorded, the MUA at frequencies greater than 100Hz is correlated with single unit spiking, highly dependent on the waveform of each neuron type, and accurately reflects the timing and spectral signature of each neuron. However, in the absence of well-isolated spikes (the norm in most MUA recordings), the MUA did not typically contain sufficient information to permit accurate prediction of the respective population activity of MSNs and FSIs. Thus, even under ideal conditions for the MUA to reliably predict the moment-to-moment activity of specific local neuronal ensembles, knowledge of the spike waveform of the underlying neuronal populations is necessary, but not sufficient.
Collapse
Affiliation(s)
- Corey J. Keller
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- Stanford Neurosciences Institute, Stanford University, Stanford, CA, United States of America
- * E-mail:
| | - Christopher Chen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Fred A. Lado
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Neurology, Montefiore Medical Center, Bronx, NY, United States of America
| | - Kamran Khodakhah
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
| |
Collapse
|
13
|
Senkov O, Mironov A, Dityatev A. A novel versatile hybrid infusion-multielectrode recording (HIME) system for acute drug delivery and multisite acquisition of neuronal activity in freely moving mice. Front Neurosci 2015; 9:425. [PMID: 26594144 PMCID: PMC4633504 DOI: 10.3389/fnins.2015.00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022] Open
Abstract
To characterize information transfer in defined brain circuits involving multiple brain regions and to evaluate underlying molecular mechanisms and their dysregulation in major brain diseases, a simple and reliable system is ultimately required for electrophysiological recording of local field potentials (LFPs, or local EEG) in combination with local delivery of drugs, enzymes and gene expression-controlling viruses near the place of recording. Here we provide a new design of a versatile reusable hybrid infusion-recording (HIME) system which can be utilized in freely moving mice performing cognitive tasks. The HIME system allows monitoring neuronal activity in multiple layers in several brain structures. Here, we provide examples of bilateral injection and recordings of full spectrum of learning and memory related oscillations, i.e., theta (4-12 Hz), gamma (40-100) and ripple activity (130-150 Hz), in five hippocampal layers as well as in the CA1 and CA2 regions. Furthermore, the system is designed to be used for parallel recordings in the amygdala, cortex and other brain areas, before and after infusion of reagents of interest, either in or off a cognitive test. We anticipate that the HIME system can be particularly convenient to advance functional neuroglycobiological studies and molecular deciphering of mechanisms governing long-term memory consolidation.
Collapse
Affiliation(s)
- Oleg Senkov
- Molecular Neuroplasticity Group, Deutsches Zentrum für Neurodegenerative Erkrankungen Magdeburg, Germany
| | - Andrey Mironov
- Neurotechnologies Department, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod, Russia ; Nizhny Novgorod State Medical Academy Nizhny Novgorod, Russia
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, Deutsches Zentrum für Neurodegenerative Erkrankungen Magdeburg, Germany ; Medizinische Fakultät, Otto-von-Güricke-Universität Magdeburg Magdeburg, Germany
| |
Collapse
|
14
|
Breysse E, Pelloux Y, Baunez C. The Good and Bad Differentially Encoded within the Subthalamic Nucleus in Rats(1,2,3). eNeuro 2015; 2:ENEURO.0014-15.2015. [PMID: 26478913 PMCID: PMC4607759 DOI: 10.1523/eneuro.0014-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/14/2015] [Accepted: 08/25/2015] [Indexed: 11/23/2022] Open
Abstract
The subthalamic nucleus (STN) has only recently been added into the reward circuit. It has been shown to encode information regarding rewards (4% sucrose, 32% cocaine). To investigate the encoding of negative value, STN neurons were recorded in rats performing a task using discriminative stimuli predicting various rewards and especially during the replacement of a positive reinforcer (4% sucrose) by an aversive reinforcer (quinine). The results show that STN neurons encode information relative to both positive and aversive reinforcers via specialized subpopulations. The specialization is reset when the context is modified (change from a favorable context (4% vs 32% sucrose) to an unfavorable context (quinine vs 32% sucrose). An excitatory response to the cue light predicting the reward seems to be associated with the preferred situation, suggesting that STN plays a role in encoding the relative value of rewards. STN also seems to play a critical role in the encoding of execution error. Indeed, various subpopulations of neurons responding exclusively at early (i.e., "oops neurons") or at correct lever release were identified. The oops neurons respond mostly when the preferred reward (32% sucrose) is missed. Furthermore, STN neurons respond to reward omission, suggesting a role in reward prediction error. These properties of STN neurons strengthen its position in the reward circuit as a key cerebral structure through which reward-related processes are mediated. It is particularly important given the fact that STN is the target of surgical treatment for Parkinson's disease and obsessive compulsive disorders, and has been suggested for the treatment of addiction as well.
Collapse
Affiliation(s)
- Emmanuel Breysse
- Centre National de la Recherche Scientifique and Aix Marseille Université, Institut de Neurosciences de la Timone Unité Mixte de Recherche 7289 , 13385 Marseille, France
| | - Yann Pelloux
- Centre National de la Recherche Scientifique and Aix Marseille Université, Institut de Neurosciences de la Timone Unité Mixte de Recherche 7289 , 13385 Marseille, France
| | - Christelle Baunez
- Centre National de la Recherche Scientifique and Aix Marseille Université, Institut de Neurosciences de la Timone Unité Mixte de Recherche 7289 , 13385 Marseille, France
| |
Collapse
|
15
|
Abstract
Both animals and humans often prefer rewarding options that are nearby over those that are distant, but the neural mechanisms underlying this bias are unclear. Here we present evidence that a proximity signal encoded by neurons in the nucleus accumbens drives proximate reward bias by promoting impulsive approach to nearby reward-associated objects. On a novel decision-making task, rats chose the nearer option even when it resulted in greater effort expenditure and delay to reward; therefore, proximate reward bias was unlikely to be caused by effort or delay discounting. The activity of individual neurons in the nucleus accumbens did not consistently encode the reward or effort associated with specific alternatives, suggesting that it does not participate in weighing the values of options. In contrast, proximity encoding was consistent and did not depend on the subsequent choice, implying that accumbens activity drives approach to the nearest rewarding option regardless of its specific associated reward size or effort level.
Collapse
|
16
|
Dopamine invigorates reward seeking by promoting cue-evoked excitation in the nucleus accumbens. J Neurosci 2015; 34:14349-64. [PMID: 25339748 DOI: 10.1523/jneurosci.3492-14.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Approach to reward is a fundamental adaptive behavior, disruption of which is a core symptom of addiction and depression. Nucleus accumbens (NAc) dopamine is required for reward-predictive cues to activate vigorous reward seeking, but the underlying neural mechanism is unknown. Reward-predictive cues elicit both dopamine release in the NAc and excitations and inhibitions in NAc neurons. However, a direct link has not been established between dopamine receptor activation, NAc cue-evoked neuronal activity, and reward-seeking behavior. Here, we use a novel microelectrode array that enables simultaneous recording of neuronal firing and local dopamine receptor antagonist injection. We demonstrate that, in the NAc of rats performing a discriminative stimulus task for sucrose reward, blockade of either D1 or D2 receptors selectively attenuates excitation, but not inhibition, evoked by reward-predictive cues. Furthermore, we establish that this dopamine-dependent signal is necessary for reward-seeking behavior. These results demonstrate a neural mechanism by which NAc dopamine invigorates environmentally cued reward-seeking behavior.
Collapse
|
17
|
Short latency cerebellar modulation of the basal ganglia. Nat Neurosci 2014; 17:1767-75. [PMID: 25402853 PMCID: PMC4241171 DOI: 10.1038/nn.3868] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/14/2014] [Indexed: 12/13/2022]
Abstract
The graceful, purposeful motion of our body is an engineering feat which remains unparalleled in robotic devices using advanced artificial intelligence. Much of the information required for complex movements is generated by the cerebellum and the basal ganglia in conjunction with the cortex. Cerebellum and basal ganglia have been thought to communicate with each other only through slow multi-synaptic cortical loops, begging the question as to how they coordinate their outputs in real time. Here we show in mice that the cerebellum rapidly modulates the activity of the striatum via a disynaptic pathway. Under physiological conditions this short latency pathway is capable of facilitating optimal motor control by allowing the basal ganglia to incorporate time-sensitive cerebellar information and by guiding the sign of cortico-striatal plasticity. Conversely, under pathological condition this pathway relays aberrant cerebellar activity to the basal ganglia to cause dystonia.
Collapse
|
18
|
McCall JG, Kim TI, Shin G, Huang X, Jung YH, Al-Hasani R, Omenetto FG, Bruchas MR, Rogers JA. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat Protoc 2013; 8:2413-2428. [PMID: 24202555 PMCID: PMC4005292 DOI: 10.1038/nprot.2013.158] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The rise of optogenetics provides unique opportunities to advance materials and biomedical engineering, as well as fundamental understanding in neuroscience. This protocol describes the fabrication of optoelectronic devices for studying intact neural systems. Unlike optogenetic approaches that rely on rigid fiber optics tethered to external light sources, these novel devices carry wirelessly powered microscale, inorganic light-emitting diodes (μ-ILEDs) and multimodal sensors inside the brain. We describe the technical procedures for construction of these devices, their corresponding radiofrequency power scavengers and their implementation in vivo for experimental application. In total, the timeline of the procedure, including device fabrication, implantation and preparation to begin in vivo experimentation, can be completed in ~3-8 weeks. Implementation of these devices allows for chronic (tested for up to 6 months) wireless optogenetic manipulation of neural circuitry in animals navigating complex natural or home-cage environments, interacting socially, and experiencing other freely moving behaviors.
Collapse
Affiliation(s)
- Jordan G. McCall
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tae-il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 440-746, Korea
- IBS Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
| | - Gunchul Shin
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xian Huang
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yei Hwan Jung
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ream Al-Hasani
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fiorenzo G. Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, MA 02115, USA
- Department of Physics, Tufts University, Medford, MA 02115, USA
| | - Michael R. Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
19
|
Aksenov DP, Li L, Iordanescu G, Miller MJ, Wyrwicz AM. Volume effect of localized injection in functional MRI and electrophysiology. Magn Reson Med 2013; 72:1170-5. [PMID: 24273205 DOI: 10.1002/mrm.24996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/19/2013] [Accepted: 09/21/2013] [Indexed: 11/09/2022]
Abstract
PURPOSE The local injection of neurotransmitter agonists and antagonists to modulate recorded neurons in awake animals has long been an important and widely used technique in neuroscience. Combined with functional magnetic resonance imaging (fMRI) and simultaneous electrophysiology, local injection enables the study of specific brain regions under precise modulations of their neuronal activity. However, localized injections are often accompanied by mechanical displacement of the tissue, known as volume effect (VE), which can induce changes in electrophysiological recordings as well as artifacts that are particular to fMRI studies. METHODS We characterize the changes produced by VE in an agarose phantom as well as during stimulus-evoked and resting-state fMRI and simultaneously acquired electrophysiology in awake rabbits. RESULTS Our results demonstrate that localized injection can produce significant intensity changes in fMRI data, even while effects on electrophysiological recordings are minimized. These changes are localized to the vicinity of the injection needle and diminish over time due to diffusion of the injected volume. CONCLUSION Sufficient time should be allowed for drug diffusion to ensure stable results, particularly for resting-state fMRI experiments.
Collapse
Affiliation(s)
- Daniil P Aksenov
- Center for Basic MR Research, NorthShore University HealthSystem, Evanston, Illinois, USA
| | | | | | | | | |
Collapse
|
20
|
McGinty VB, Lardeux S, Taha SA, Kim JJ, Nicola SM. Invigoration of reward seeking by cue and proximity encoding in the nucleus accumbens. Neuron 2013; 78:910-22. [PMID: 23764290 DOI: 10.1016/j.neuron.2013.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
A key function of the nucleus accumbens is to promote vigorous reward seeking, but the corresponding neural mechanism has not been identified despite many years of research. Here, we study cued flexible approach behavior, a form of reward seeking that strongly depends on the accumbens, and we describe a robust, single-cell neural correlate of behavioral vigor in the excitatory response of accumbens neurons to reward-predictive cues. Well before locomotion begins, this cue-evoked excitation predicts both the movement initiation latency and the speed of subsequent flexible approach responses, but not those of stereotyped, inflexible responses. Moreover, the excitation simultaneously signals the subject's proximity to the approach target, a signal that appears to mediate greater response vigor on trials that begin with the subject closer to the target. These results demonstrate a neural mechanism for response invigoration whereby accumbens neuronal encoding of reward availability and target proximity together drive the onset and speed of reward-seeking locomotion.
Collapse
Affiliation(s)
- Vincent B McGinty
- Department of Psychiatry, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|