1
|
Hsu C, Liu T, Juan C. Oscillatory Transcranial Electrical Stimulation and the Amplitude-Modulated Frequency Dictate the Quantitative Features of Phosphenes. Eur J Neurosci 2025; 61:e16658. [PMID: 39777808 PMCID: PMC11708813 DOI: 10.1111/ejn.16658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Previous research demonstrated that transcranial alternating current stimulation (tACS) can induce phosphene perception. However, tACS involves rhythmic changes in the electric field and alternating polarity (excitatory vs. inhibitory phases), leaving the precise mechanism behind phosphene perception unclear. To disentangle the effects of rhythmic changes from those of alternating polarity, this study employs oscillatory transcranial direct current stimulation (otDCS), in which the current oscillation remains confined to either a positive or negative polarity, thereby eliminating the influence of polarity switching. We applied scalp electrical stimulations using both polarity-switching (tACS) and non-polarity-switching (otDCS) methods, with anodal or cathodal polarities, targeting the occipital lobe. All stimulations were performed using sinusoidal or amplitude modulation (AM) waveforms at threshold or suprathreshold intensities. Our results show that tACS results in faster response times compared to cathodal otDCS, but not anodal otDCS, while anodal otDCS elicits greater brightness perception than both cathodal otDCS and tACS. Additionally, AM frequency induced a higher threshold than the sinusoidal frequency, and response times were slower in the AM condition across all positive, negative, and polarity-switching stimulations. However, stimulation intensity in the anodal AM condition could influence speed ratings, unlike in cathodal or tACS conditions. Our findings reveal that both tACS and otDCS induce phosphenes, with significant differences between polarities and current oscillation types, indicating that both mechanisms are critical in phosphene induction. This study provides evidence linking phosphene occurrence to oscillatory current activity and highlights the robustness and impact of AM coding in visual perception.
Collapse
Affiliation(s)
- Che‐Yi Hsu
- Institute of Cognitive NeuroscienceNational Central UniversityTaiwan
| | - Tzu‐Ling Liu
- Institute of Cognitive NeuroscienceNational Central UniversityTaiwan
| | - Chi‐Hung Juan
- Institute of Cognitive NeuroscienceNational Central UniversityTaiwan
- Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaiwan
| |
Collapse
|
2
|
Sarrazin V, Overman MJ, Mezossy-Dona L, Browning M, O'Shea J. Prefrontal cortex stimulation normalizes deficient adaptive learning from outcome contingencies in low mood. Transl Psychiatry 2024; 14:487. [PMID: 39695073 DOI: 10.1038/s41398-024-03204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Depression and anxiety are associated with deficits in adjusting learning behaviour to changing outcome contingencies. This is likely to drive and maintain symptoms, for instance, by perpetuating negative biases or a sense of uncontrollability. Normalising such deficits in adaptive learning might therefore be a novel treatment target for affective disorders. The aim of this experimental medicine study was to test whether prefrontal cortex transcranial direct current stimulation (tDCS) could normalise these aberrant learning processes in depressed mood. To test proof-of-concept, we combined tDCS with a decision-making paradigm that manipulates the volatility of reward and punishment associations. 85 participants with low mood received tDCS during (or before) the task. In two sessions participants received real or sham tDCS in counter-balanced order. Compared to healthy controls (n = 40), individuals with low mood showed significantly impaired adjustment of learning rates to the volatility of loss outcomes. Prefrontal tDCS applied during task performance normalised this deficit, by increasing the adjustment of loss learning rates. As predicted, prefrontal tDCS before task performance (control) had no effect. Thus, the effect was cognitive-state dependent. Our study shows, for the first time, that a candidate depression treatment, prefrontal tDCS, when paired with a task, can reverse deficits in adaptive learning from outcome contingencies in low mood. Thus, combining neurostimulation with a concurrent cognitive manipulation is a potential novel strategy to enhance the effect of tDCS in depression treatment.
Collapse
Affiliation(s)
- Verena Sarrazin
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, United Kingdom.
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom.
- Oxford Centre for Human Brain Activity (OHBA), University of Oxford, OX3 7JX, Oxford, United Kingdom.
| | - Margot Juliëtte Overman
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity (OHBA), University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - Luca Mezossy-Dona
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity (OHBA), University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - Michael Browning
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, United Kingdom
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity (OHBA), University of Oxford, OX3 7JX, Oxford, United Kingdom
| |
Collapse
|
3
|
Chen Y, Ou Z, Hao N, Zhang H, Zhang E, Zhou D, Wu X. Transcranial direct current stimulation in the management of epilepsy: a meta-analysis and systematic review. Front Neurol 2024; 15:1462364. [PMID: 39588230 PMCID: PMC11586187 DOI: 10.3389/fneur.2024.1462364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Background Transcranial direct current stimulation (tDCS) has recently become a novel and non-invasive treatment option for refractory epilepsy. Previous systematic reviews have suggested that tDCS may be effective in treating epilepsy, this study presents the first meta-analysis on its effectiveness. Methods We searched PubMed, Embase, Cochrane Library, and Web of Science for relevant randomized controlled trials (RCTs) from database inception to May 2024. The Cochrane risk of bias tool RoB2.0 was used to assess the risk of bias. Primary outcomes included changes in seizure frequency from baseline and the proportion of patients with a ≥50% reduction in seizure frequency. Results Of the 608 studies initially identified, 14 were finally included. The pooled results from the random-effects model indicated that tDCS significantly reduced seizure frequency (WMD 0.41, 95% CI 0.24, 0.59). Further subgroup analysis revealed that tDCS significantly reduced seizure frequency in temporal lobe epilepsy, and seizure frequency was more alleviated in studies that had treatment sessions of fewer than 5 times, and followed up within 2 months' post-treatment. Only four studies provided data on patients with a ≥50% reduction in seizure frequency, showing no significant difference (RR 2.96, 95% CI 0.85, 10.32). In the systematic review, three studies analyzed cognitive function changes after tDCS treatment, but none reported significant improvements. The most common side effect during tDCS treatment was transient tingling, and no patients required additional life-support measures due to side effects. Conclusion The current meta-analysis on available trials indicates that tDCS can effectively reduce seizure frequency in the short term and is well-tolerated. However, its impact on cognitive improvement in epilepsy patients requires further investigation. Systematic review registration https://inplasy.com/inplasy-2024-6-0033/, identifier INPLASY202460033.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xintong Wu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Stefanski M, Arora Y, Cheung M, Dutta A. Modal Analysis of Cerebrovascular Effects for Digital Health Integration of Neurostimulation Therapies-A Review of Technology Concepts. Brain Sci 2024; 14:591. [PMID: 38928591 PMCID: PMC11201600 DOI: 10.3390/brainsci14060591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Transcranial electrical stimulation (tES) is increasingly recognized for its potential to modulate cerebral blood flow (CBF) and evoke cerebrovascular reactivity (CVR), which are crucial in conditions like mild cognitive impairment (MCI) and dementia. This study explores the impact of tES on the neurovascular unit (NVU), employing a physiological modeling approach to simulate the vascular response to electric fields generated by tES. Utilizing the FitzHugh-Nagumo model for neuroelectrical activity, we demonstrate how tES can initiate vascular responses such as vasoconstriction followed by delayed vasodilation in cerebral arterioles, potentially modulated by a combination of local metabolic demands and autonomic regulation (pivotal locus coeruleus). Here, four distinct pathways within the NVU were modeled to reflect the complex interplay between synaptic activity, astrocytic influences, perivascular potassium dynamics, and smooth muscle cell responses. Modal analysis revealed characteristic dynamics of these pathways, suggesting that oscillatory tES may finely tune the vascular tone by modulating the stiffness and elasticity of blood vessel walls, possibly by also impacting endothelial glycocalyx function. The findings underscore the therapeutic potential vis-à-vis blood-brain barrier safety of tES in modulating neurovascular coupling and cognitive function needing the precise modulation of NVU dynamics. This technology review supports the human-in-the-loop integration of tES leveraging digital health technologies for the personalized management of cerebral blood flow, offering new avenues for treating vascular cognitive disorders. Future studies should aim to optimize tES parameters using computational modeling and validate these models in clinical settings, enhancing the understanding of tES in neurovascular health.
Collapse
Affiliation(s)
- Marcel Stefanski
- School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK
| | - Yashika Arora
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Mancheung Cheung
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK
| |
Collapse
|
5
|
Wu PJ, Huang CH, Lee SY, Chang AYW, Wang WC, Lin CCK. The distinct and potentially conflicting effects of tDCS and tRNS on brain connectivity, cortical inhibition, and visuospatial memory. Front Hum Neurosci 2024; 18:1415904. [PMID: 38873654 PMCID: PMC11169625 DOI: 10.3389/fnhum.2024.1415904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Noninvasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS) and transcranial random noise stimulation (tRNS), are emerging as promising tools for enhancing cognitive functions by modulating brain activity and enhancing cognitive functions. Despite their potential, the specific and combined effects of tDCS and tRNS on brain functions, especially regarding functional connectivity, cortical inhibition, and memory performance, are not well-understood. This study aims to explore the distinct and combined impacts of tDCS and tRNS on these neural and cognitive parameters. Using a within-subject design, ten participants underwent four stimulation conditions: sham, tDCS, tRNS, and combined tDCS + tRNS. We assessed the impact on resting-state functional connectivity, cortical inhibition via Cortical Silent Period (CSP), and visuospatial memory performance using the Corsi Block-tapping Test (CBT). Our results indicate that while tDCS appears to induce brain lateralization, tRNS has more generalized and dispersive effects. Interestingly, the combined application of tDCS and tRNS did not amplify these effects but rather suggested a non-synergistic interaction, possibly due to divergent mechanistic pathways, as observed across fMRI, CSP, and CBT measures. These findings illuminate the complex interplay between tDCS and tRNS, highlighting their non-additive effects when used concurrently and underscoring the necessity for further research to optimize their application for cognitive enhancement.
Collapse
Affiliation(s)
- Pei-Jung Wu
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hsu Huang
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuenn-Yuh Lee
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Alice Y. W. Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chi Wang
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chou-Ching K. Lin
- Department of Neurology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Overman MJ, Sarrazin V, Browning M, O'Shea J. Stimulating human prefrontal cortex increases reward learning. Neuroimage 2023; 271:120029. [PMID: 36925089 DOI: 10.1016/j.neuroimage.2023.120029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Work in computational psychiatry suggests that mood disorders may stem from aberrant reinforcement learning processes. Specifically, it has been proposed that depressed individuals believe that negative events are more informative than positive events, resulting in higher learning rates from negative outcomes (Pulcu and Browning, 2019). In this proof-of-concept study, we investigated whether transcranial direct current stimulation (tDCS) applied to dorsolateral prefrontal cortex, as commonly used in depression treatment trials, might change learning rates for affective outcomes. Healthy adults completed an established reinforcement learning task (Pulcu and Browning, 2017) in which the information content of reward and loss outcomes was manipulated by varying the volatility of stimulus-outcome associations. Learning rates on the tasks were quantified using computational models. Stimulation over dorsolateral prefrontal cortex (DLPFC) but not motor cortex (M1) increased learning rates specifically for reward outcomes. The effects of prefrontal tDCS were cognitive state-dependent: tDCS applied during task performance increased learning rates for wins; tDCS applied before task performance decreased both win and loss learning rates. A replication study confirmed the key finding that tDCS to DLPFC during task performance increased learning rates specifically for rewards. Taken together, these findings demonstrate the potential of tDCS for modulating computational parameters of reinforcement learning that are relevant to mood disorders.
Collapse
Affiliation(s)
- Margot Juliëtte Overman
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, United Kingdom; Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, United Kingdom; Oxford Centre for Human Brain Activity (OHBA), University of Oxford, OX3 7JX, United Kingdom
| | - Verena Sarrazin
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, United Kingdom; Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, United Kingdom; Oxford Centre for Human Brain Activity (OHBA), University of Oxford, OX3 7JX, United Kingdom
| | - Michael Browning
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, United Kingdom
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, United Kingdom; Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, United Kingdom; Oxford Centre for Human Brain Activity (OHBA), University of Oxford, OX3 7JX, United Kingdom.
| |
Collapse
|
7
|
No robust online effects of transcranial direct current stimulation on corticospinal excitability. Brain Stimul 2022; 15:1254-1268. [PMID: 36084908 DOI: 10.1016/j.brs.2022.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been used for over twenty years to modulate cortical (particularly motor corticospinal) excitability both during (online) and outlasting (offline) the stimulation, with the former effects associated to the latter. However, tDCS effects are highly variable, partially because stimulation intensity is commonly not adjusted individually (in contrast to transcranial magnetic stimulation, TMS). In Experiment 1, we therefore explored an empirical approach of personalizing tDCS intensity for the primary motor cortex (M1) based on dose-response curves (DRCs), individually relating tDCS Intensity (in steps from 0.3 to 2.0 mA) and Polarity (anodal, cathodal) to the online modulation of concurrent TMS motor evoked potentials (MEP), assessing DRC reliability across two separate days. No robust DRCs could be observed, neither at the individual nor at the group level, with the only robust effect being a (paradoxical) MEP facilitation during cathodal tDCS at 2.0 mA, but no modulation at traditional intensities of or near 1 mA. In Experiment 2, we therefore attempted to replicate the classical bidirectional online MEP modulation during 1 mA tDCS that had been reported by several of the early seminal tDCS papers. We either closely recreated stimulation parameters and temporal protocol of these original studies (Experiment 2A) or slightly modernized them according to current standards (Experiment 2B). In neither experiment did we observed any significant online MEP modulation. We conclude that an empirical titration of individually effective tDCS intensities may not be feasible as online tDCS effects do not appear to be sufficiently robust.
Collapse
|
8
|
Sanchez E, Blais H, Duclos C, Arbour C, Van Der Maren S, El-Khatib H, Baril AA, Bernard F, Carrier J, Gosselin N. Sleep from acute to chronic traumatic brain injury and cognitive outcomes. Sleep 2022; 45:zsac123. [PMID: 35640250 PMCID: PMC9366647 DOI: 10.1093/sleep/zsac123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/13/2022] [Indexed: 09/29/2023] Open
Abstract
STUDY OBJECTIVES Traumatic brain injuries (TBIs) cause persistent cerebral damage and cognitive deficits. Because sleep may be a critical factor for brain recovery, we characterized the sleep of patients with TBI from early hospitalization to years post-injury and explored the hypothesis that better sleep during hospitalization predicts more favorable long-term cognitive outcomes. METHODS We tested patients with moderate-to-severe TBI in the hospitalized (n = 11) and chronic (n = 43) stages using full-night polysomnography, with 82% of the hospitalized group being retested years post-injury. Hospitalized patients with severe orthopedic and/or spinal cord injury (n = 14) and healthy participants (n = 36) were tested as controls for the hospitalized and chronic TBI groups, respectively. Groups had similar age and sex and were compared for sleep characteristics, including slow waves and spindles. For patients with TBI, associations between sleep during hospitalization and long-term memory and executive function were assessed. RESULTS Hospitalized patients with TBI or orthopedic injuries had lower sleep efficiency, higher wake after sleep onset, and lower spindle density than the chronic TBI and healthy control groups, but only hospitalized patients with brain injury had an increased proportion of slow-wave sleep. During hospitalization for TBI, less fragmented sleep, more slow-wave sleep, and higher spindle density were associated to more favorable cognitive outcomes years post-injury, while injury severity markers were not associated with these outcomes. CONCLUSION These findings highlight the importance of sleep following TBI, as it could be a strong predictor of neurological recovery, either as a promoter or an early marker of cognitive outcomes.
Collapse
Affiliation(s)
- Erlan Sanchez
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
| | - Catherine Duclos
- Montreal General Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Caroline Arbour
- Centre Intégré de Traumatologie, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Faculty of Nursing, Université de Montréal, Montreal, Quebec, Canada
| | - Solenne Van Der Maren
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Héjar El-Khatib
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health University Institute, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Francis Bernard
- Centre Intégré de Traumatologie, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Short periods of bipolar anodal TDCS induce no instantaneous dose-dependent increase in cerebral blood flow in the targeted human motor cortex. Sci Rep 2022; 12:9580. [PMID: 35688875 PMCID: PMC9187751 DOI: 10.1038/s41598-022-13091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Anodal transcranial direct current stimulation (aTDCS) of primary motor hand area (M1-HAND) can enhance corticomotor excitability, but it is still unknown which current intensity produces the strongest effect on intrinsic neural firing rates and synaptic activity. Magnetic resonance imaging (MRI) combined with pseudo-continuous Arterial Spin Labeling (pcASL MRI) can map regional cortical blood flow (rCBF). The measured rCBF signal is sensitive to regional changes in neuronal activity due to neurovascular coupling. Therefore, concurrent TDCS and pcASL MRI may reveal the relationship between current intensity and TDCS-induced changes in overall firing rates and synaptic activity in the cortical target. Here we employed pcASL MRI to map acute rCBF changes during short-duration aTDCS of left M1-HAND. Using the rCBF response as a proxy for regional neuronal activity, we investigated if short-duration aTDCS produces an instantaneous dose-dependent rCBF increase in the targeted M1-HAND that may be useful for individual dosing. Nine healthy right-handed participants received 30 s of aTDCS at 0.5, 1.0, 1.5, and 2.0 mA with the anode placed over left M1-HAND and cathode over the right supraorbital region. Concurrent pcASL MRI at 3 T probed TDCS-related rCBF changes in the targeted M1-HAND. Movement-induced rCBF changes were also assessed. Apart from a subtle increase in rCBF at 0.5 mA, short-duration aTDCS did not modulate rCBF in the M1-HAND relative to no-stimulation periods. None of the participants showed a dose-dependent increase in rCBF during aTDCS, even after accounting for individual differences in TDCS-induced electrical field strength. In contrast, finger movements led to robust activation of left M1-HAND before and after aTDCS. Short-duration bipolar aTDCS does not produce consistant instantaneous dose-dependent rCBF increases in the targeted M1-HAND at conventional intensity ranges. Therefore, the regional hemodynamic response profile to short-duration aTDCS may not be suited to inform individual dosing of TDCS intensity.
Collapse
|
10
|
Liu B, Yan X, Chen X, Wang Y, Gao X. tACS facilitates flickering driving by boosting steady-state visual evoked potentials. J Neural Eng 2021; 18. [PMID: 34962233 DOI: 10.1088/1741-2552/ac3ef3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
Objective.There has become of increasing interest in transcranial alternating current stimulation (tACS) since its inception nearly a decade ago. tACS in modulating brain state is an active area of research and has been demonstrated effective in various neuropsychological and clinical domains. In the visual domain, much effort has been dedicated to brain rhythms and rhythmic stimulation, i.e. tACS. However, less is known about the interplay between the rhythmic stimulation and visual stimulation.Approach.Here, we used steady-state visual evoked potential (SSVEP), induced by flickering driving as a widely used technique for frequency-tagging, to investigate the aftereffect of tACS in healthy human subjects. Seven blocks of 64-channel electroencephalogram were recorded before and after the administration of 20min 10Hz tACS, while subjects performed several blocks of SSVEP tasks. We characterized the physiological properties of tACS aftereffect by comparing and validating the temporal, spatial, spatiotemporal and signal-to-noise ratio (SNR) patterns between and within blocks in real tACS and sham tACS.Main results.Our result revealed that tACS boosted the 10Hz SSVEP significantly. Besides, the aftereffect on SSVEP was mitigated with time and lasted up to 5 min.Significance.Our results demonstrate the feasibility of facilitating the flickering driving by external rhythmic stimulation and open a new possibility to alter the brain state in a direction by noninvasive transcranial brain stimulation.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xinyi Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Kudo D, Koseki T, Katagiri N, Yoshida K, Takano K, Jin M, Nito M, Tanabe S, Yamaguchi T. Individualized beta-band oscillatory transcranial direct current stimulation over the primary motor cortex enhances corticomuscular coherence and corticospinal excitability in healthy individuals. Brain Stimul 2021; 15:46-52. [PMID: 34742996 DOI: 10.1016/j.brs.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Simultaneously modulating individual neural oscillation and cortical excitability may be important for enhancing communication between the primary motor cortex and spinal motor neurons, which plays a key role in motor control. However, it is unknown whether individualized beta-band oscillatory transcranial direct current stimulation (otDCS) enhances corticospinal oscillation and excitability. OBJECTIVE This study investigated the effects of individualized beta-band otDCS on corticomuscular coherence (CMC) and corticospinal excitability in healthy individuals. METHODS In total, 29 healthy volunteers participated in separate experiments. They received the following stimuli for 10 min on different days: 1) 2-mA otDCS with individualized beta-band frequencies, 2) 2-mA transcranial alternating current stimulation (tACS) with individualized beta-band frequencies, and 3) 2-mA transcranial direct current stimulation (tDCS). The changes in CMC between the vertex and tibialis anterior (TA) muscle and TA muscle motor-evoked potentials (MEPs) were assessed before and after (immediately, 10 min, and 20 min after) stimulation on different days. Additionally, 20-Hz otDCS for 10 min was applied to investigate the effects of a fixed beta-band frequency on CMC. RESULTS otDCS significantly increased CMC and MEPs immediately after stimulation, whereas tACS and tDCS had no effects. There was a significant negative correlation between normalized CMC changes in response to 20-Hz otDCS and the numerical difference between the 20-Hz and individualized CMC peak frequency before the stimulation. CONCLUSIONS These findings suggest that simultaneous modulation of neural oscillation and cortical excitability is critical for enhancing corticospinal communication. Individualized otDCS holds potential as a useful method in the field of neurorehabilitation.
Collapse
Affiliation(s)
- Daisuke Kudo
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan; Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Tadaki Koseki
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Natsuki Katagiri
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Kaito Yoshida
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Keita Takano
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Masafumi Jin
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan.
| | - Mitsuhiro Nito
- Department of Anatomy and Structural Science, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi, 470-1192, Japan.
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
12
|
Geffen A, Bland N, Sale MV. Effects of Slow Oscillatory Transcranial Alternating Current Stimulation on Motor Cortical Excitability Assessed by Transcranial Magnetic Stimulation. Front Hum Neurosci 2021; 15:726604. [PMID: 34588969 PMCID: PMC8473706 DOI: 10.3389/fnhum.2021.726604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Converging evidence suggests that transcranial alternating current stimulation (tACS) may entrain endogenous neural oscillations to match the frequency and phase of the exogenously applied current and this entrainment may outlast the stimulation (although only for a few oscillatory cycles following the cessation of stimulation). However, observing entrainment in the electroencephalograph (EEG) during stimulation is extremely difficult due to the presence of complex tACS artifacts. The present study assessed entrainment to slow oscillatory (SO) tACS by measuring motor cortical excitability across different oscillatory phases during (i.e., online) and outlasting (i.e., offline) stimulation. 30 healthy participants received 60 trials of intermittent SO tACS (0.75 Hz; 16 s on/off interleaved) at an intensity of 2 mA peak-to-peak. Motor cortical excitability was assessed using transcranial magnetic stimulation (TMS) of the hand region of the primary motor cortex (M1HAND) to induce motor evoked potentials (MEPs) in the contralateral thumb. MEPs were acquired at four time-points within each trial – early online, late online, early offline, and late offline – as well as at the start and end of the overall stimulation period (to probe longer-lasting aftereffects of tACS). A significant increase in MEP amplitude was observed from pre- to post-tACS (paired-sample t-test; t29 = 2.64, P = 0.013, d = 0.48) and from the first to the last tACS block (t29 = −2.93, P = 0.02, d = 0.54). However, no phase-dependent modulation of excitability was observed. Therefore, although SO tACS had a facilitatory effect on motor cortical excitability that outlasted stimulation, there was no evidence supporting entrainment of endogenous oscillations as the underlying mechanism.
Collapse
Affiliation(s)
- Asher Geffen
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Nicholas Bland
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Martin V Sale
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
13
|
Dehnavi F, Koo-Poeggel PC, Ghorbani M, Marshall L. Spontaneous slow oscillation - slow spindle features predict induced overnight memory retention. Sleep 2021; 44:6277833. [PMID: 34003291 PMCID: PMC8503833 DOI: 10.1093/sleep/zsab127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Study Objectives Synchronization of neural activity within local networks and between brain regions is a major contributor to rhythmic field potentials such as the EEG. On the other hand, dynamic changes in microstructure and activity are reflected in the EEG, for instance slow oscillation (SO) slope can reflect synaptic strength. SO-spindle coupling is a measure for neural communication. It was previously associated with memory consolidation, but also shown to reveal strong interindividual differences. In studies, weak electric current stimulation has modulated brain rhythms and memory retention. Here, we investigate whether SO-spindle coupling and SO slope during baseline sleep are associated with (predictive of) stimulation efficacy on retention performance. Methods Twenty-five healthy subjects participated in three experimental sessions. Sleep-associated memory consolidation was measured in two sessions, in one anodal transcranial direct current stimulation oscillating at subjects individual SO frequency (so-tDCS) was applied during nocturnal sleep. The third session was without a learning task (baseline sleep). The dependence on SO-spindle coupling and SO-slope during baseline sleep of so-tDCS efficacy on retention performance were investigated. Results Stimulation efficacy on overnight retention of declarative memories was associated with nesting of slow spindles to SO trough in deep nonrapid eye movement baseline sleep. Steepness and direction of SO slope in baseline sleep were features indicative for stimulation efficacy. Conclusions Findings underscore a functional relevance of activity during the SO up-to-down state transition for memory consolidation and provide support for distinct consolidation mechanisms for types of declarative memories.
Collapse
Affiliation(s)
- Fereshteh Dehnavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ping Chai Koo-Poeggel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.,Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck
| |
Collapse
|
14
|
Khanna P, Totten D, Novik L, Roberts J, Morecraft RJ, Ganguly K. Low-frequency stimulation enhances ensemble co-firing and dexterity after stroke. Cell 2021; 184:912-930.e20. [PMID: 33571430 DOI: 10.1016/j.cell.2021.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/08/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022]
Abstract
Electrical stimulation is a promising tool for modulating brain networks. However, it is unclear how stimulation interacts with neural patterns underlying behavior. Specifically, how might external stimulation that is not sensitive to the state of ongoing neural dynamics reliably augment neural processing and improve function? Here, we tested how low-frequency epidural alternating current stimulation (ACS) in non-human primates recovering from stroke interacted with task-related activity in perilesional cortex and affected grasping. We found that ACS increased co-firing within task-related ensembles and improved dexterity. Using a neural network model, we found that simulated ACS drove ensemble co-firing and enhanced propagation of neural activity through parts of the network with impaired connectivity, suggesting a mechanism to link increased co-firing to enhanced dexterity. Together, our results demonstrate that ACS restores neural processing in impaired networks and improves dexterity following stroke. More broadly, these results demonstrate approaches to optimize stimulation to target neural dynamics.
Collapse
Affiliation(s)
- Preeya Khanna
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Douglas Totten
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Lisa Novik
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jeffrey Roberts
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Robert J Morecraft
- Laboratory of Neurological Sciences, Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, USA
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
15
|
Bernardi L, Bertuccelli M, Formaggio E, Rubega M, Bosco G, Tenconi E, Cattelan M, Masiero S, Del Felice A. Beyond physiotherapy and pharmacological treatment for fibromyalgia syndrome: tailored tACS as a new therapeutic tool. Eur Arch Psychiatry Clin Neurosci 2021; 271:199-210. [PMID: 33237361 PMCID: PMC7867558 DOI: 10.1007/s00406-020-01214-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/07/2020] [Indexed: 12/17/2022]
Abstract
Fibromyalgia syndrome (FMS) is a complex pain disorder, characterized by diffuse pain and cognitive disturbances. Abnormal cortical oscillatory activity may be a promising biomarker, encouraging non-invasive neurostimulation techniques as a treatment. We aimed to modulate abnormal slow cortical oscillations by delivering transcranial alternating current stimulation (tACS) and physiotherapy to reduce pain and cognitive symptoms. This was a double-blinded, randomized, crossover trial conducted between February and September 2018 at the Rehabilitation Unit of a teaching Hospital (NCT03221413). Participants were randomly assigned to tACS or random noise stimulation (RNS), 5 days/week for 2 weeks followed by ad hoc physiotherapy. Clinical and cognitive assessments were performed at T0 (baseline), T1 (after stimulation), T2 (1 month after stimulation). Electroencephalogram (EEG) spectral topographies recorded from 15 participants confirmed slow-rhythm prevalence and provided tACS tailored stimulation parameters and electrode sites. Following tACS, EEG alpha1 ([8-10] Hz) activity increased at T1 (p = 0.024) compared to RNS, pain symptoms assessed by Visual Analog Scale decreased at T1 (T1 vs T0 p = 0.010), self-reported cognitive skills and neuropsychological scores improved both at T1 and T2 (Patient-Reported Outcomes in Cognitive Impairment, T0-T2, p = 0.024; Everyday memory questionnaire, T1 compared to RNS, p = 0.012; Montréal Cognitive Assessment, T0 vs T1, p = 0.048 and T0 vs T2, p = 0.009; Trail Making Test B T0-T2, p = 0.034). Psychopathological scales and other neuropsychological scores (Trail Making Test-A; Total Phonemic Fluency; Hopkins Verbal Learning Test-Revised; Rey-Osterrieth Complex Figure) improved both after tACS and RNS but earlier improvements (T1) were registered only after tACS. These results support tACS coupled with physiotherapy in treating FMS cognitive symptoms, pain and subclinical psychopathology.
Collapse
Affiliation(s)
- Laura Bernardi
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Paduas, Italy
| | - Margherita Bertuccelli
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128, Paduas, Italy. .,Department of Neurosciencse and Padova Neuroscience Center, University of Padova, 35131, Padua, Italy.
| | - Emanuela Formaggio
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Paduas, Italy
| | - Maria Rubega
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Paduas, Italy
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35031 Padua, Italy
| | - Elena Tenconi
- Department of Neuroscience and Padova Neuroscience Center, Psychiatric Clinic, University of Padova, Via Giustiniani 3, 35128 Padua, Italy
| | - Manuela Cattelan
- Department of Statistical Sciences, University of Padova, via C. Battisti 241, 35121 Padua, Italy
| | - Stefano Masiero
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Paduas, Italy ,Department of Neurosciencse and Padova Neuroscience Center, University of Padova, 35131 Padua, Italy
| | - Alessandra Del Felice
- Department of Neuroscience, Section of Rehabilitation, University of Padova, via Giustiniani 3, 35128 Paduas, Italy ,Department of Neurosciencse and Padova Neuroscience Center, University of Padova, 35131 Padua, Italy
| |
Collapse
|
16
|
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021; 132:269-306. [PMID: 33243615 PMCID: PMC9094636 DOI: 10.1016/j.clinph.2020.10.003] [Citation(s) in RCA: 599] [Impact Index Per Article: 149.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
This article is based on a consensus conference, promoted and supported by the International Federation of Clinical Neurophysiology (IFCN), which took place in Siena (Italy) in October 2018. The meeting intended to update the ten-year-old safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings (Rossi et al., 2009). Therefore, only emerging and new issues are covered in detail, leaving still valid the 2009 recommendations regarding the description of conventional or patterned TMS protocols, the screening of subjects/patients, the need of neurophysiological monitoring for new protocols, the utilization of reference thresholds of stimulation, the managing of seizures and the list of minor side effects. New issues discussed in detail from the meeting up to April 2020 are safety issues of recently developed stimulation devices and pulse configurations; duties and responsibility of device makers; novel scenarios of TMS applications such as in the neuroimaging context or imaging-guided and robot-guided TMS; TMS interleaved with transcranial electrical stimulation; safety during paired associative stimulation interventions; and risks of using TMS to induce therapeutic seizures (magnetic seizure therapy). An update on the possible induction of seizures, theoretically the most serious risk of TMS, is provided. It has become apparent that such a risk is low, even in patients taking drugs acting on the central nervous system, at least with the use of traditional stimulation parameters and focal coils for which large data sets are available. Finally, new operational guidelines are provided for safety in planning future trials based on traditional and patterned TMS protocols, as well as a summary of the minimal training requirements for operators, and a note on ethics of neuroenhancement.
Collapse
Affiliation(s)
- Simone Rossi
- Department of Scienze Mediche, Chirurgiche e Neuroscienze, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Italy.
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany; Institue of Medical Psychology, Otto-Guericke University Magdeburg, Germany
| | - Sven Bestmann
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carmen Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Linda L Carpenter
- Butler Hospital, Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Massimo Cincotta
- Unit of Neurology of Florence - Central Tuscany Local Health Authority, Florence, Italy
| | - Robert Chen
- Krembil Research Institute and Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Jeff D Daskalakis
- Center for Addiction and Mental Health (CAMH), University of Toronto, Canada
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico, Roma, Italy
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA
| | - Donald Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki, AHEPA University Hospital, Greece
| | | | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Aalto, Finland
| | - Jean Pascal Lefaucheur
- EA 4391, ENT Team, Faculty of Medicine, Paris Est Creteil University (UPEC), Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, (APHP), Créteil, France
| | - Letizia Leocani
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| | - Sarah H Lisanby
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Angel V Peterchev
- Departments of Psychiatry & Behavioral Sciences, Biomedical Engineering, Electrical & Computer Engineering, and Neurosurgery, Duke University, Durham, NC, USA
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Rothwell
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Paolo M Rossini
- Department of Neuroscience and Rehabilitation, IRCCS San Raffaele-Pisana, Roma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikatzu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abraham Zangen
- Zlotowski Center of Neuroscience, Ben Gurion University, Beer Sheva, Israel
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
17
|
Shou Z, Li Z, Wang X, Chen M, Bai Y, Di H. Non-invasive brain intervention techniques used in patients with disorders of consciousness. Int J Neurosci 2020; 131:390-404. [PMID: 32238043 DOI: 10.1080/00207454.2020.1744598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aim of the study: With the development of emergency medicine and intensive care technology, the number of people who survive with disorders of consciousness (DOC) has dramatically increased. The diagnosis and treatment of such patients have attracted much attention from the medical community. From the latest evidence-based guidelines, non-invasive brain intervention (NIBI) techniques may be valuable and promising in the diagnosis and conscious rehabilitation of DOC patients.Methods: This work reviews the studies on NIBI techniques for the assessment and intervention of DOC patients.Results: A large number of studies have explored the application of NIBI techniques in DOC patients. The NIBI techniques include transcranial magnetic stimulation, transcranial electric stimulation, music stimulation, near-infrared laser stimulation, focused shock wave therapy, low-intensity focused ultrasound pulsation and transcutaneous auricular vagus nerve stimulation.Conclusions: NIBI techniques present numerous advantages such as being painless, safe and inexpensive; having adjustable parameters and targets; and having broad development prospects in treating DOC patients.
Collapse
Affiliation(s)
- Zeyu Shou
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhilong Li
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xueying Wang
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Miaoyang Chen
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yang Bai
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Haibo Di
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
Deng Y, Reinhart RMG, Choi I, Shinn-Cunningham BG. Causal links between parietal alpha activity and spatial auditory attention. eLife 2019; 8:e51184. [PMID: 31782732 PMCID: PMC6904218 DOI: 10.7554/elife.51184] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/28/2019] [Indexed: 11/13/2022] Open
Abstract
Both visual and auditory spatial selective attention result in lateralized alpha (8-14 Hz) oscillatory power in parietal cortex: alpha increases in the hemisphere ipsilateral to attentional focus. Brain stimulation studies suggest a causal relationship between parietal alpha and suppression of the representation of contralateral visual space. However, there is no evidence that parietal alpha controls auditory spatial attention. Here, we performed high definition transcranial alternating current stimulation (HD-tACS) on human subjects performing an auditory task in which they directed attention based on either spatial or nonspatial features. Alpha (10 Hz) but not theta (6 Hz) HD-tACS of right parietal cortex interfered with attending left but not right auditory space. Parietal stimulation had no effect for nonspatial auditory attention. Moreover, performance in post-stimulation trials returned rapidly to baseline. These results demonstrate a causal, frequency-, hemispheric-, and task-specific effect of parietal alpha brain stimulation on top-down control of auditory spatial attention.
Collapse
Affiliation(s)
- Yuqi Deng
- Biomedical EngineeringBoston UniversityBostonUnited States
| | | | - Inyong Choi
- Communication Sciences and DisordersUniversity of IowaIowa CityUnited States
| | - Barbara G Shinn-Cunningham
- Biomedical EngineeringBoston UniversityBostonUnited States
- Neuroscience InstituteCarnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
19
|
Distinct Montages of Slow Oscillatory Transcranial Direct Current Stimulation (so-tDCS) Constitute Different Mechanisms during Quiet Wakefulness. Brain Sci 2019; 9:brainsci9110324. [PMID: 31739576 PMCID: PMC6896026 DOI: 10.3390/brainsci9110324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Slow oscillatory- (so-) tDCS has been applied in many sleep studies aimed to modulate brain rhythms of slow wave sleep and memory consolidation. Yet, so-tDCS may also modify coupled oscillatory networks. Efficacy of weak electric brain stimulation is however variable and dependent upon the brain state at the time of stimulation (subject and/or task-related) as well as on stimulation parameters (e.g., electrode placement and applied current. Anodal so-tDCS was applied during wakefulness with eyes-closed to examine efficacy when deviating from the dominant brain rhythm. Additionally, montages of different electrodes size and applied current strength were used. During a period of quiet wakefulness bilateral frontolateral stimulation (F3, F4; return electrodes at ipsilateral mastoids) was applied to two groups: ‘Group small’ (n = 16, f:8; small electrodes: 0.50 cm2; maximal current per electrode pair: 0.26 mA) and ‘Group Large’ (n = 16, f:8; 35 cm2; 0.35 mA). Anodal so-tDCS (0.75 Hz) was applied in five blocks of 5 min epochs with 1 min stimulation-free epochs between the blocks. A finger sequence tapping task (FSTT) was used to induce comparable cortical activity across sessions and subject groups. So-tDCS resulted in a suppression of alpha power over the parietal cortex. Interestingly, in Group Small alpha suppression occurred over the standard band (8–12 Hz), whereas for Group Large power of individual alpha frequency was suppressed. Group Small also revealed a decrease in FSTT performance at retest after stimulation. It is essential to include concordant measures of behavioral and brain activity to help understand variability and poor reproducibility in oscillatory-tDCS studies.
Collapse
|
20
|
Banerjee S, Grover S, Sridharan D. Unraveling Causal Mechanisms of Top-Down and Bottom-Up Visuospatial Attention with Non-invasive Brain Stimulation. J Indian Inst Sci 2019; 97:451-475. [PMID: 31231154 PMCID: PMC6588534 DOI: 10.1007/s41745-017-0046-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Attention is a process of selection that allows us to intelligently navigate the abundance of information in our world. Attention can be either directed voluntarily based on internal goals-"top-down" or goal-directed attention-or captured automatically, by salient stimuli-"bottom-up" or stimulus-driven attention. Do these two modes of attention control arise from same or different brain circuits? Do they share similar or distinct neural mechanisms? In this review, we explore this dichotomy between the neural bases of top-down and bottom-up attention control, with a special emphasis on insights gained from non-invasive neurostimulation techniques, specifically, transcranial magnetic stimulation (TMS). TMS enables spatially focal and temporally precise manipulation of brain activity. We explore a significant literature devoted to investigating the role of fronto-parietal brain regions in top-down and bottom-up attention with TMS, and highlight key areas of convergence and debate. We also discuss recent advances in combinatorial paradigms that combine TMS with other imaging modalities, such as functional magnetic resonance imaging or electroencephalography. These paradigms are beginning to bridge essential gaps in our understanding of the neural pathways by which TMS affects behavior, and will prove invaluable for unraveling mechanisms of attention control, both in health and in disease.
Collapse
Affiliation(s)
- Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
21
|
Intracortical Dynamics Underlying Repetitive Stimulation Predicts Changes in Network Connectivity. J Neurosci 2019; 39:6122-6135. [PMID: 31182638 DOI: 10.1523/jneurosci.0535-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Targeted stimulation can be used to modulate the activity of brain networks. Previously we demonstrated that direct electrical stimulation produces predictable poststimulation changes in brain excitability. However, understanding the neural dynamics during stimulation and its relationship to poststimulation effects is limited but critical for treatment optimization. Here, we applied 10 Hz direct electrical stimulation across several cortical regions in 14 human subjects (6 males) implanted with intracranial electrodes for seizure monitoring. The stimulation train was characterized by a consistent increase in high gamma (70-170 Hz) power. Immediately post-train, low-frequency (1-8 Hz) power increased, resulting in an evoked response that was highly correlated with the neural response during stimulation. Using two measures of network connectivity, corticocortical evoked potentials (indexing effective connectivity), and theta coherence (indexing functional connectivity), we found a stronger response to stimulation in regions that were highly connected to the stimulation site. In these regions, repeated cycles of stimulation trains and rest progressively altered the stimulation response. Finally, after just 2 min (∼10%) of repetitive stimulation, we were able to predict poststimulation connectivity changes with high discriminability. Together, this work reveals a relationship between stimulation dynamics and poststimulation connectivity changes in humans. Thus, measuring neural activity during stimulation can inform future plasticity-inducing protocols.SIGNIFICANCE STATEMENT Brain stimulation tools have the potential to revolutionize the treatment of neuropsychiatric disorders. Despite the widespread use of brain stimulation techniques such as transcranial magnetic stimulation, the therapeutic efficacy of these technologies remains suboptimal. This is in part because of a lack of understanding of the dynamic neural changes that occur during stimulation. In this study, we provide the first detailed characterization of neural activity during plasticity induction through intracranial electrode stimulation and recording in 14 medication-resistant epilepsy patients. These results fill a missing gap in our understanding of stimulation-induced plasticity in humans. In the longer-term, these data will also guide our translational efforts toward non-invasive, personalized, closed-loop neuromodulation therapy for neurological and psychiatric disorders in humans.
Collapse
|
22
|
D'Atri A, Scarpelli S, Gorgoni M, Alfonsi V, Annarumma L, Giannini AM, Ferrara M, Ferlazzo F, Rossini PM, De Gennaro L. Bilateral Theta Transcranial Alternating Current Stimulation (tACS) Modulates EEG Activity: When tACS Works Awake It Also Works Asleep. Nat Sci Sleep 2019; 11:343-356. [PMID: 31819688 PMCID: PMC6875492 DOI: 10.2147/nss.s229925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Recent studies demonstrate that 5-Hz bilateral transcranial alternating current stimulation (θ-tACS) on fronto-temporal areas affects resting EEG enhancing cortical synchronization, but it does not affect subjective sleepiness. This dissociation raises questions on the resemblance of this effect to the physiological falling asleep process. The current study aimed to evaluate the ability of fronto-temporal θ-tACS to promote sleep. SUBJECTS AND METHODS Twenty subjects (10 F/10 M; mean age: 24.60 ± 2.9 y) participated in a single-blind study consisting of two within-subject sessions (active/sham), one week apart in counterbalanced order. Stimulation effects on EEG were assessed during wake and post-stimulation nap. The final sample included participants who fell asleep in both sessions (n=17). RESULTS Group analyses on the whole sample reported no θ-tACS effects on subjective sleepiness and sleep measures, while a different scenario came to light by analysing data of responders to the stimulation (ie, subjects actually showing the expected increase of theta activity in the wake EEG after the θ-tACS, n=7). Responders reported a significant increase in subjective sleepiness during wakefulness after the active stimulation as compared to the sham. Moreover, the sleep after the θ-tACS compared to sham in this sub-group showed: (1) greater slow-wave activity (SWA); (2) SWA time-course revealing increases much larger as closer to the sleep onset; (3) stimulation-induced changes in SWA during sleep topographically associated to those in theta activity during wake. CONCLUSION Subjects who show the expected changes during wake after the stimulation also had a consistent pattern of changes during sleep. The enhancement of cortical synchronization by θ-tACS during wakefulness actually corresponds to increased sleep pressure, but it occurs only in some individuals. Thus, θ-tACS can enhance sleep, although individual factors to be further investigated affect the actual responsiveness to this treatment.
Collapse
Affiliation(s)
- Aurora D'Atri
- Department of Psychology, University of Rome "Sapienza", Rome, Italy.,Area of Neuroscience, IRCCS San Raffaele Pisana, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - Valentina Alfonsi
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | | | | | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fabio Ferlazzo
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - Paolo Maria Rossini
- Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy.,Department Geriatrics, Neuroscience & Orthopaedics, Policlinic A. Gemelli Foundation-IRCCS, Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, University of Rome "Sapienza", Rome, Italy.,Area of Neuroscience, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
23
|
Liu A, Vöröslakos M, Kronberg G, Henin S, Krause MR, Huang Y, Opitz A, Mehta A, Pack CC, Krekelberg B, Berényi A, Parra LC, Melloni L, Devinsky O, Buzsáki G. Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun 2018; 9:5092. [PMID: 30504921 PMCID: PMC6269428 DOI: 10.1038/s41467-018-07233-7] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022] Open
Abstract
Noninvasive brain stimulation techniques are used in experimental and clinical fields for their potential effects on brain network dynamics and behavior. Transcranial electrical stimulation (TES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), has gained popularity because of its convenience and potential as a chronic therapy. However, a mechanistic understanding of TES has lagged behind its widespread adoption. Here, we review data and modelling on the immediate neurophysiological effects of TES in vitro as well as in vivo in both humans and other animals. While it remains unclear how typical TES protocols affect neural activity, we propose that validated models of current flow should inform study design and artifacts should be carefully excluded during signal recording and analysis. Potential indirect effects of TES (e.g., peripheral stimulation) should be investigated in more detail and further explored in experimental designs. We also consider how novel technologies may stimulate the next generation of TES experiments and devices, thus enhancing validity, specificity, and reproducibility.
Collapse
Affiliation(s)
- Anli Liu
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA.
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA.
| | - Mihály Vöröslakos
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, Faculty of Medicine, University of Szeged, 10 Dom sq., Szeged, H-6720, Hungary
- New York University Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA
| | - Greg Kronberg
- Department of Biomedical Engineering, City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Simon Henin
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA
| | - Matthew R Krause
- Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Yu Huang
- Department of Biomedical Engineering, City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Alexander Opitz
- Department of Biomedical Engineering of Minnesota, 312 Church St. SE, Minneapolis, MN, 55455, USA
| | - Ashesh Mehta
- Department of Neurosurgery, Hofstra Northwell School of Medicine, 611 Northern Blvd, Great Neck, NY, 11021, USA
- Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Christopher C Pack
- Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ, 07102, USA
| | - Antal Berényi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, Faculty of Medicine, University of Szeged, 10 Dom sq., Szeged, H-6720, Hungary
| | - Lucas C Parra
- Department of Biomedical Engineering, City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Lucia Melloni
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA
- Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322, Frankfurt am Main, Germany
| | - Orrin Devinsky
- New York University Comprehensive Epilepsy Center, 223 34th Street, New York, NY, 10016, USA
- Department of Neurology, NYU Langone Health, 222 East 41st Street, 14th Floor, New York, NY, 10016, USA
| | - György Buzsáki
- New York University Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA.
| |
Collapse
|
24
|
Li G, Henriquez CS, Fröhlich F. Rhythmic modulation of thalamic oscillations depends on intrinsic cellular dynamics. J Neural Eng 2018; 16:016013. [PMID: 30524080 DOI: 10.1088/1741-2552/aaeb03] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Rhythmic brain stimulation has emerged as a powerful tool to modulate cognition and to target pathological oscillations related to neurological and psychiatric disorders. However, we lack a systematic understanding of how periodic stimulation interacts with endogenous neural activity as a function of the brain state and target. APPROACH To address this critical issue, we applied periodic stimulation to a unified biophysical thalamic network model that generates multiple distinct oscillations, and examined thoroughly the impact of rhythmic stimulation on different oscillatory states. MAIN RESULTS We found that rhythmic perturbation induces four basic response mechanisms: entrainment, acceleration, resonance and suppression. Importantly, the appearance and expression of these mechanisms depend highly on the intrinsic cellular dynamics in each state. Specifically, the low-threshold bursting of thalamocortical cells (TCs) in delta (δ) oscillation renders the network relatively insensitive to entrainment; the high-threshold bursting of TCs in alpha (α) oscillation leads to widespread oscillation suppression while the tonic spiking of TC cells in gamma (γ) oscillation results in prominent entrainment and resonance. In addition, we observed entrainment discontinuity during α oscillation that is mediated by firing pattern switching of high-threshold bursting TC cells. Furthermore, we demonstrate that direct excitatory stimulation of the lateral geniculate nucleus (LGN) entrains thalamic oscillations via an asymmetric Arnold tongue that favors higher frequency entrainment and resonance, while stimulation of the inhibitory circuit, the reticular nucleus, induces much weaker and more symmetric entrainment and resonance. These results support the notion that rhythmic stimulation engages brain oscillations in a state- and target-dependent manner. SIGNIFICANCE Overall, our study provides, for the first time, insights into how the biophysics of thalamic oscillations guide the emergence of complex, state-dependent mechanisms of target engagement, which can be leveraged for the future rational design of novel therapeutic stimulation modalities.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | | | | |
Collapse
|
25
|
The Efficacy of Transcranial Current Stimulation Techniques to Modulate Resting-State EEG, to Affect Vigilance and to Promote Sleepiness. Brain Sci 2018; 8:brainsci8070137. [PMID: 30037023 PMCID: PMC6071002 DOI: 10.3390/brainsci8070137] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023] Open
Abstract
Transcranial Current Stimulations (tCSs) are non-invasive brain stimulation techniques which modulate cortical excitability and spontaneous brain activity by the application of weak electric currents through the scalp, in a safe, economic, and well-tolerated manner. The direction of the cortical effects mainly depend on the polarity and the waveform of the applied current. The aim of the present work is to provide a broad overview of recent studies in which tCS has been applied to modulate sleepiness, sleep, and vigilance, evaluating the efficacy of different stimulation techniques and protocols. In recent years, there has been renewed interest in these stimulations and their ability to affect arousal and sleep dynamics. Furthermore, we critically review works that, by means of stimulating sleep/vigilance patterns, in the sense of enhancing or disrupting them, intended to ameliorate several clinical conditions. The examined literature shows the efficacy of tCSs in modulating sleep and arousal pattern, likely acting on the top-down pathway of sleep regulation. Finally, we discuss the potential application in clinical settings of this neuromodulatory technique as a therapeutic tool for pathological conditions characterized by alterations in sleep and arousal domains and for sleep disorders per se.
Collapse
|
26
|
D'Atri A, Romano C, Gorgoni M, Scarpelli S, Alfonsi V, Ferrara M, Ferlazzo F, Rossini PM, De Gennaro L. Bilateral 5 Hz transcranial alternating current stimulation on fronto-temporal areas modulates resting-state EEG. Sci Rep 2017; 7:15672. [PMID: 29142322 PMCID: PMC5688177 DOI: 10.1038/s41598-017-16003-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 11/03/2017] [Indexed: 02/08/2023] Open
Abstract
Rhythmic non-invasive brain stimulations are promising tools to modulate brain activity by entraining neural oscillations in specific cortical networks. The aim of the study was to assess the possibility to influence the neural circuits of the wake-sleep transition in awake subjects via a bilateral transcranial alternating current stimulation at 5 Hz (θ-tACS) on fronto-temporal areas. 25 healthy volunteers participated in two within-subject sessions (θ-tACS and sham), one week apart and in counterbalanced order. We assessed the stimulation effects on cortical EEG activity (28 derivations) and self-reported sleepiness (Karolinska Sleepiness Scale). θ-tACS induced significant increases of the theta activity in temporo-parieto-occipital areas and centro-frontal increases in the alpha activity compared to sham but failed to induce any online effect on sleepiness. Since the total energy delivered in the sham condition was much less than in the active θ-tACS, the current data are unable to isolate the specific effect of entrained theta oscillatory activity per se on sleepiness scores. On this basis, we concluded that θ-tACS modulated theta and alpha EEG activity with a topography consistent with high sleep pressure conditions. However, no causal relation can be traced on the basis of the current results between these rhythms and changes on sleepiness.
Collapse
Affiliation(s)
- Aurora D'Atri
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
- IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy
| | - Claudia Romano
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
| | - Valentina Alfonsi
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio (Coppito 2), 67100 Coppito, L'Aquila, Italy
| | - Fabio Ferlazzo
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy
| | - Paolo Maria Rossini
- IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy
- Institute of Neurology, Catholic University of The Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, University of Rome "Sapienza", Via dei Marsi 78, 00185, Rome, Italy.
- IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy.
| |
Collapse
|
27
|
Raffin E, Hummel FC. Restoring Motor Functions After Stroke: Multiple Approaches and Opportunities. Neuroscientist 2017; 24:400-416. [DOI: 10.1177/1073858417737486] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
More than 1.5 million people suffer a stroke in Europe per year and more than 70% of stroke survivors experience limited functional recovery of their upper limb, resulting in diminished quality of life. Therefore, interventions to address upper-limb impairment are a priority for stroke survivors and clinicians. While a significant body of evidence supports the use of conventional treatments, such as intensive motor training or constraint-induced movement therapy, the limited and heterogeneous improvements they allow are, for most patients, usually not sufficient to return to full autonomy. Various innovative neurorehabilitation strategies are emerging in order to enhance beneficial plasticity and improve motor recovery. Among them, robotic technologies, brain-computer interfaces, or noninvasive brain stimulation (NIBS) are showing encouraging results. These innovative interventions, such as NIBS, will only provide maximized effects, if the field moves away from the “one-fits all” approach toward a “patient-tailored” approach. After summarizing the most commonly used rehabilitation approaches, we will focus on NIBS and highlight the factors that limit its widespread use in clinical settings. Subsequently, we will propose potential biomarkers that might help to stratify stroke patients in order to identify the individualized optimal therapy. We will discuss future methodological developments, which could open new avenues for poststroke rehabilitation, toward more patient-tailored precision medicine approaches and pathophysiologically motivated strategies.
Collapse
Affiliation(s)
- Estelle Raffin
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
28
|
On the effectiveness of event-related beta tACS on episodic memory formation and motor cortex excitability. Brain Stimul 2017; 10:910-918. [DOI: 10.1016/j.brs.2017.04.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/18/2017] [Accepted: 04/27/2017] [Indexed: 11/21/2022] Open
|
29
|
Stecher HI, Pollok TM, Strüber D, Sobotka F, Herrmann CS. Ten Minutes of α-tACS and Ambient Illumination Independently Modulate EEG α-Power. Front Hum Neurosci 2017; 11:257. [PMID: 28572761 PMCID: PMC5435819 DOI: 10.3389/fnhum.2017.00257] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/29/2017] [Indexed: 11/13/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) sees increased use in neurosciences as a tool for the exploration of brain oscillations. It has been shown that tACS stimulation in specific frequency bands can result in aftereffects of modulated oscillatory brain activity that persist after the stimulation has ended. The general relationship between persistency of the effect and duration of stimulation is sparsely investigated but previous research has shown that the occurrence of tACS aftereffects depends on the brain state before and during stimulation. Early alpha neurofeedback research suggests that particularly in the alpha band the responsiveness to a manipulation depends on the ambient illumination during measurement. Therefore, in the present study we assessed the brain's susceptibility to tACS at the individual alpha frequency during darkness compared to ambient illumination. We measured alpha power after 10 min of stimulation in 30 participants while they continuously performed a visual vigilance task. Our results show that immediately after stimulation, the alpha power in the illumination condition for both the stimulated and sham group has increased by only about 7%, compared to about 20% in both groups in the 'dark' condition. For the group that did not receive stimulation, the power in darkness remained stable after stimulation, whereas the power in light increased by an additional 10% during the next 30 min. For the group that did receive stimulation, alpha power during these 30 min increased by another 11% in light and 22% in darkness. Since alpha power already increased by about 10% without stimulation, the effect of illumination does not seem to have interacted with the effect of stimulation. Instead, both effects seem to have added up linearly. Although our findings do not show that illumination-induced differences in oscillatory activity influence the susceptibility toward tACS, they stress the importance of controlling for factors like ambient light that might add an independent increase or decrease to the power of brain oscillations during periods, where possible persistent effects of stimulation are explored.
Collapse
Affiliation(s)
- Heiko I Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky UniversityOldenburg, Germany
| | - Tania M Pollok
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky UniversityOldenburg, Germany
| | - Daniel Strüber
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky UniversityOldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky UniversityOldenburg, Germany
| | - Fabian Sobotka
- Division of Epidemiology and Biometry, Department of Health Services Research, Carl von Ossietzky UniversityOldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky UniversityOldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky UniversityOldenburg, Germany
| |
Collapse
|
30
|
Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, Sack AT, Miniussi C, Antal A, Siebner HR, Ziemann U, Herrmann CS. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clin Neurophysiol 2017; 128:843-857. [PMID: 28233641 DOI: 10.1016/j.clinph.2017.01.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/10/2016] [Accepted: 01/08/2017] [Indexed: 01/31/2023]
Abstract
Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges.
Collapse
Affiliation(s)
- Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| | - Til Ole Bergmann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Institute for Medical Psychology and Behavioral Neurobiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Flavio Fröhlich
- Department of Psychiatry & Department of Biomedical Engineering & Department of Cell Biology and Physiology & Neuroscience Center & Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Surjo R Soekadar
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy & MEG Center, University Hospital of Tübingen, Tübingen, Germany
| | - John-Stuart Brittain
- Nuffield Department of Clinical Neurosciences, Charles Wolfson Neuroscience Clinical Research Facility, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Institut du Cerveau et la Moelle (ICM), CNRS UMR 7225-INSERM U-117, Université Pierre et Marie Curie, Paris, France
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Carlo Miniussi
- Center for Mind/Brain Sciences CIMeC University of Trento, Rovereto, Italy & Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Göttingen, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Center for Excellence "Hearing4all", European Medical School, Carl von Ossietzky University & Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
31
|
Campos-Beltrán D, Marshall L. Electric Stimulation to Improve Memory Consolidation During Sleep. COGNITIVE NEUROSCIENCE OF MEMORY CONSOLIDATION 2017. [DOI: 10.1007/978-3-319-45066-7_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. Neuroimage 2016; 140:4-19. [DOI: 10.1016/j.neuroimage.2016.02.012] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/26/2016] [Accepted: 02/07/2016] [Indexed: 12/23/2022] Open
|
33
|
Tatti E, Rossi S, Innocenti I, Rossi A, Santarnecchi E. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives. Ageing Res Rev 2016; 29:66-89. [PMID: 27221544 DOI: 10.1016/j.arr.2016.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/01/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction.
Collapse
|
34
|
Raco V, Bauer R, Tharsan S, Gharabaghi A. Combining TMS and tACS for Closed-Loop Phase-Dependent Modulation of Corticospinal Excitability: A Feasibility Study. Front Cell Neurosci 2016; 10:143. [PMID: 27252625 PMCID: PMC4879130 DOI: 10.3389/fncel.2016.00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The corticospinal excitability indexed by motor evoked potentials (MEPs) following transcranial magnetic stimulation (TMS) of the sensorimotor cortex is characterized by large variability. The instantaneous phase of cortical oscillations at the time of the stimulation has been suggested as a possible source of this variability. To explore this hypothesis, a specific phase needs to be targeted by TMS pulses with high temporal precision. OBJECTIVE The aim of this feasibility study was to introduce a methodology capable of exploring the effects of phase-dependent stimulation by the concurrent application of alternating current stimulation (tACS) and TMS. METHOD We applied online calibration and closed-loop TMS to target four specific phases (0°, 90°, 180° and 270°) of simultaneous 20 Hz tACS over the primary motor cortex (M1) of seven healthy subjects. RESULT The integrated stimulation system was capable of hitting the target phase with high precision (SD ± 2.05 ms, i.e., ± 14.45°) inducing phase-dependent MEP modulation with a phase lag (CI95% = -40.37° to -99.61°) which was stable across subjects (p = 0.001). CONCLUSION The combination of different neuromodulation techniques facilitates highly specific brain state-dependent stimulation, and may constitute a valuable tool for exploring the physiological and therapeutic effect of phase-dependent stimulation, e.g., in the context of neurorehabilitation.
Collapse
Affiliation(s)
- Valerio Raco
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tübingen Baden-Württemberg, Germany
| | - Robert Bauer
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tübingen Baden-Württemberg, Germany
| | - Srikandarajah Tharsan
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tübingen Baden-Württemberg, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tübingen Baden-Württemberg, Germany
| |
Collapse
|
35
|
Electrical stimulation of the frontal cortex enhances slow-frequency EEG activity and sleepiness. Neuroscience 2016; 324:119-30. [PMID: 26964682 DOI: 10.1016/j.neuroscience.2016.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/17/2016] [Accepted: 03/03/2016] [Indexed: 02/08/2023]
Abstract
Our aim was to enhance the spontaneous slow-frequency EEG activity during the resting state using oscillating transcranial direct currents (tDCS) with a stimulation frequency that resembles the spontaneous oscillations of sleep onset. Accordingly, in this preliminary study, we assessed EEG after-effects of a frontal oscillatory tDCS with different frequency (0.8 vs. 5 Hz) and polarity (anodal, cathodal, and sham). Two single-blind experiments compared the after effects on the resting EEG of oscillatory tDCS [Exp. 1=0.8 Hz, 10 subjects (26.2 ± 2.5 years); Exp. 2=5 Hz, 10 subjects (27.4 ± 2.4 years)] by manipulating its polarity. EEG signals recorded (28 scalp derivations) before and after stimulation [slow oscillations (0.5-1 Hz), delta (1-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta 1 (13-15 Hz) and beta 2 (16-24 Hz)] were compared between conditions as a function of polarity (anodal vs. cathodal vs. sham) and frequency of stimulation (0.8 vs. 5 Hz). We found a significant relative enhancement of the delta activity after the anodal tDCS at 5 Hz compared to that at 0.8 Hz. This increase, even though not reaching the statistical significance compared to sham, is concomitant to a significant increase of subjective sleepiness, as assessed by a visual analog scale. These two phenomena are linearly related with a regional specificity, correlations being restricted to cortical areas perifocal to the stimulation site. We have shown that a frontal oscillating anodal tDCS at 5 Hz results in an effective change of both subjective sleepiness and spontaneous slow-frequency EEG activity. These changes are critically associated to both stimulation polarity (anodal) and frequency (5 Hz). However, evidence of frequency-dependence seems more unequivocal than evidence of polarity-dependence.
Collapse
|
36
|
Strüber D, Rach S, Neuling T, Herrmann CS. On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation. Front Cell Neurosci 2015; 9:311. [PMID: 26321912 PMCID: PMC4530587 DOI: 10.3389/fncel.2015.00311] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Transcranial alternating current stimulation is a novel method that allows application of sinusoidal currents to modulate brain oscillations and cognitive processes. Studies in humans have demonstrated transcranial alternating current stimulation (tACS) after-effects following stimulation durations in the range of minutes. However, such after-effects are absent in animal studies using much shorter stimulation protocols in the range of seconds. Thus, stimulation duration might be a critical parameter for after-effects to occur. To test this hypothesis, we repeated a recent human tACS experiment with a short duration. We applied alpha tACS intermittently for 1 s duration while keeping other parameters identical. The results demonstrate that this very short intermittent protocol did not produce after-effects on amplitude or phase of the electroencephalogram. Since synaptic plasticity has been suggested as a possible mechanism for after-effects, our results indicate that a stimulation duration of 1 s is too short to induce synaptic plasticity. Future studies in animals are required that use extended stimulation durations to reveal the neuronal underpinnings. A better understanding of the mechanisms of tACS after-effects is crucial for potential clinical applications.
Collapse
Affiliation(s)
- Daniel Strüber
- Experimental Psychology Laboratory, Department of Psychology, Center for Excellence 'Hearing4all', European Medical School, Carl von Ossietzky University Oldenburg, Germany ; Research Center Neurosensory Science, University of Oldenburg Oldenburg, Germany
| | - Stefan Rach
- Department of Epidemiological Methods and Etiologic Research, Leibniz Institute for Prevention Research and Epidemiology - BIPS Bremen, Germany
| | - Toralf Neuling
- Center for Mind/Brain Sciences (CIMeC), University of Trento Rovereto, Italy
| | - Christoph S Herrmann
- Experimental Psychology Laboratory, Department of Psychology, Center for Excellence 'Hearing4all', European Medical School, Carl von Ossietzky University Oldenburg, Germany ; Research Center Neurosensory Science, University of Oldenburg Oldenburg, Germany
| |
Collapse
|
37
|
Jaberzadeh S, Bastani A, Zoghi M, Morgan P, Fitzgerald PB. Anodal Transcranial Pulsed Current Stimulation: The Effects of Pulse Duration on Corticospinal Excitability. PLoS One 2015; 10:e0131779. [PMID: 26177541 PMCID: PMC4503737 DOI: 10.1371/journal.pone.0131779] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
The aim is to investigate the effects of pulse duration (PD) on the modulatory effects of transcranial pulsed current (tPCS) on corticospinal excitability (CSE). CSE of the dominant primary motor cortex (M1) of right first dorsal interosseous muscle was assessed by motor evoked potentials, before, immediately, 10, 20 and 30 minutes after application of five experimental conditions: 1) anodal transcranial direct current stimulation (a-tDCS), 2) a-tPCS with 125 ms pulse duartion (a-tPCSPD = 125), 3) a-tPCS with 250 ms pulse duration (a-tPCSPD = 250), 4) a-tPCS with 500 ms pulse duration (a-tPCSPD = 500) and 5) sham a-tPCS. The total charges were kept constant in all experimental conditions except sham condition. Post-hoc comparisons indicated that a-tPCSPD = 500 produced larger CSE compared to a-tPCSPD = 125 (P<0.0001), a-tPCSPD = 250 (P = 0.009) and a-tDCS (P = 0.008). Also, there was no significant difference between a-tPCSPD = 250 and a-tDCS on CSE changes (P>0.05). All conditions except a-tPCSPD = 125 showed a significant difference to the sham group (P<0.006). All participants tolerated the applied currents. It could be concluded that a-tPCS with a PD of 500ms induces largest CSE changes, however further studies are required to identify optimal values.
Collapse
Affiliation(s)
- Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- * E-mail:
| | - Andisheh Bastani
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Maryam Zoghi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Prue Morgan
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Paul B. Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| |
Collapse
|
38
|
Slow-oscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool. Brain Stimul 2015; 8:567-73. [DOI: 10.1016/j.brs.2015.01.410] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 11/23/2022] Open
|
39
|
Garside P, Arizpe J, Lau CI, Goh C, Walsh V. Cross-hemispheric Alternating Current Stimulation During a Nap Disrupts Slow Wave Activity and Associated Memory Consolidation. Brain Stimul 2014; 8:520-7. [PMID: 25697588 PMCID: PMC4464303 DOI: 10.1016/j.brs.2014.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/24/2014] [Accepted: 12/26/2014] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Slow Wave Activity (SWA), the low frequency (<4 Hz) oscillations that characterize Slow Wave Sleep (SWS) are thought to relate causally to declarative memory consolidation during nocturnal sleep. Evidence is conflicting relating SWA to memory consolidation during nap however. OBJECTIVE/HYPOTHESIS We applied transcranial alternating current stimulation (tACS) - which, with a cross-hemispheric electrode montage (F3 and F4 - International 10:20 EEG system), is able to disrupt brain oscillations-to determine if disruption of low frequency oscillation generation during afternoon nap is causally related to disruption in declarative memory consolidation. METHODS Eight human subjects each participated in stimulation and sham nap sessions. A verbal paired associate learning (PAL) task measured memory changes. During each nap period, five 5-min stimulation (0.75 Hz cross-hemispheric frontal tACS) or sham intervals were applied with 1-min post-stimulation intervals (PSI's). Spectral EEG power for Slow (0.7-0.8 Hz), Delta (1.0-4.0 Hz), Theta (4.0-8.0 Hz), Alpha (8.0-12.0 Hz), and Spindle-range (12.0-14.0) frequencies was analyzed during the 1-min preceding the onset of stimulation and the 1-min PSI's. RESULTS As hypothesized, power reduction due to stimulation positively correlated with reduction in word-pair recall post-nap specifically for Slow (P < 0.0022) and Delta (P < 0.037) frequency bands. CONCLUSIONS These results provide preliminary evidence suggesting a causal and specific role of SWA in declarative memory consolidation during nap.
Collapse
Affiliation(s)
- Peter Garside
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK; University College London Medical School, Gower Street, London WC1E 6BT, UK
| | - Joseph Arizpe
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK; National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Chi-Ieong Lau
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK; Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Crystal Goh
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK
| |
Collapse
|
40
|
Jaberzadeh S, Bastani A, Zoghi M. Anodal transcranial pulsed current stimulation: A novel technique to enhance corticospinal excitability. Clin Neurophysiol 2013; 125:344-51. [PMID: 24074626 DOI: 10.1016/j.clinph.2013.08.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/20/2013] [Accepted: 08/31/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We aimed to compare the effects of anodal-transcranial pulsed current stimulation (a-tPCS) with conventional anodal transcranial direct current stimulation (a-tDCS) on corticospinal excitability (CSE) in healthy individuals. METHODS CSE of the dominant primary motor cortex of the resting right extensor carpi radialis muscle was assessed before, immediately, 10, 20 and 30min after application of four experimental conditions: (1) a-tDCS, (2) a-tPCS with short inter-pulse interval (a-tPCSSIPI, 50ms), (3) a-tPCS with long inter-pulse interval (a-tPCSLIPI., 650ms) and (4) sham a-tPCS. The total charges were kept constant in all experimental conditions except sham condition. The outcome measure in this study was motor evoked potentials. RESULTS Only a-tDCS and a-tPCSSIPI (P<0.05) induced significant increases in CSE, lasted for at least 30min. Post-hoc tests indicated that this increase was larger in a-tPCSSIPI (P<0.05). There were no significant changes following application of a-tPCSLIPI and sham a-tPCS. All participants tolerated the applied currents in all experimental conditions very well. CONCLUSIONS Compared to a-tDCS, a-tPCSSIPI is a better technique for enhancement of CSE. There were no sham effects for application of a-tPCS. However, unlike a-tDCS which modifies neuronal excitability by tonic depolarization of the resting membrane potential, a-tPCS modifies neuronal excitability by a combination of tonic and phasic effects. SIGNIFICANCE a-tPCS could be considered as a promising neuromodulatory tool in basic neuroscience and as a therapeutic technique in neurorehabilitation.
Collapse
Affiliation(s)
- Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Andisheh Bastani
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Maryam Zoghi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
41
|
Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci 2013; 7:317. [PMID: 23825454 PMCID: PMC3695369 DOI: 10.3389/fnhum.2013.00317] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/10/2013] [Indexed: 11/13/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency) or desynchronize (e.g., by the application of several frequencies) cortical oscillations. If applied long enough it may cause neuroplastic effects. In the theta range it may improve cognition when applied in phase. Alpha rhythms could improve motor performance, whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere with attention. Stimulation in the “ripple” range induces intensity dependent inhibition or excitation in the motor cortex (M1) most likely by entrainment of neuronal networks, whereas stimulation in the low kHz range induces excitation by neuronal membrane interference. TACS in the 200 kHz range may have a potential in oncology.
Collapse
Affiliation(s)
- Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University of Göttingen Göttingen, Germany
| | | |
Collapse
|
42
|
Eggert T, Dorn H, Sauter C, Nitsche MA, Bajbouj M, Danker-Hopfe H. No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects. Brain Stimul 2013; 6:938-45. [PMID: 23810208 DOI: 10.1016/j.brs.2013.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/19/2013] [Accepted: 05/23/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Studies in young healthy volunteers provided evidence of a beneficial impact of an anodal time-varied transcranial direct current stimulation (tDCS) during early slow wave rich sleep on declarative memory but not on procedural memory. OBJECTIVE/HYPOTHESIS The present study investigated whether sleep-dependent memory consolidation can also be affected by slow oscillating tDCS in a population of elderly subjects. METHODS 26 subjects (69.1 years ± 7.7 years) received bi-frontal anodal stimulation (max. current density: 0.331 mA/cm(2)) during early NREM sleep in a double-blind placebo-controlled randomized crossover study. Stimulation effects on offline consolidation were tested by using a declarative and a procedural memory task. Furthermore, sleep stages were scored, EEG power was analyzed and spindle densities were assessed. RESULTS Independently from stimulation condition, performance in both memory tasks significantly decreased overnight. Stimulation revealed no significant effect on sleep-dependent memory consolidation. Verum tDCS was accompanied by significantly more time awake and significantly less NREM stage 3 sleep during five 1-min stimulation free intervals. CONCLUSIONS The results of the present study are in line with other studies showing that offline consolidation during sleep varies with age and is less pronounced in the elderly than in young or middle-aged subjects. Contrary to an almost identical positive study in young adults, slow oscillatory tDCS applied to the elderly failed to show a beneficial effect on memory consolidation in the present study.
Collapse
Affiliation(s)
- Torsten Eggert
- Competence Centre of Sleep Medicine, Charité - University Medicine, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Herrmann CS, Rach S, Neuling T, Strüber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci 2013; 7:279. [PMID: 23785325 PMCID: PMC3682121 DOI: 10.3389/fnhum.2013.00279] [Citation(s) in RCA: 487] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/28/2013] [Indexed: 11/22/2022] Open
Abstract
Brain oscillations of different frequencies have been associated with a variety of cognitive functions. Convincing evidence supporting those associations has been provided by studies using intracranial stimulation, pharmacological interventions and lesion studies. The emergence of novel non-invasive brain stimulation techniques like repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) now allows to modulate brain oscillations directly. Particularly, tACS offers the unique opportunity to causally link brain oscillations of a specific frequency range to cognitive processes, because it uses sinusoidal currents that are bound to one frequency only. Using tACS allows to modulate brain oscillations and in turn to influence cognitive processes, thereby demonstrating the causal link between the two. Here, we review findings about the physiological mechanism of tACS and studies that have used tACS to modulate basic motor and sensory processes as well as higher cognitive processes like memory, ambiguous perception, and decision making.
Collapse
Affiliation(s)
- Christoph S Herrmann
- Experimental Psychology Lab, Center of excellence Hearing4all, Department for Psychology, Faculty for Medicine and Health Sciences, Carl von Ossietzky Universität, Ammerländer Heerstr Oldenburg, Germany ; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany
| | | | | | | |
Collapse
|
44
|
Neuling T, Rach S, Herrmann CS. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci 2013; 7:161. [PMID: 23641206 PMCID: PMC3639376 DOI: 10.3389/fnhum.2013.00161] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/11/2013] [Indexed: 11/28/2022] Open
Abstract
The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the after-effects of tACS depend on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 min with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 min with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 min after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations.
Collapse
Affiliation(s)
- Toralf Neuling
- Experimental Psychology Lab, University of Oldenburg Oldenburg, Germany
| | | | | |
Collapse
|
45
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
46
|
Mastroeni C, Bergmann TO, Rizzo V, Ritter C, Klein C, Pohlmann I, Brueggemann N, Quartarone A, Siebner HR. Brain-derived neurotrophic factor--a major player in stimulation-induced homeostatic metaplasticity of human motor cortex? PLoS One 2013; 8:e57957. [PMID: 23469118 PMCID: PMC3585283 DOI: 10.1371/journal.pone.0057957] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/29/2013] [Indexed: 01/24/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) of the human motor hand area (M1HAND) can induce lasting changes in corticospinal excitability as indexed by a change in amplitude of the motor-evoked potential. The plasticity-inducing effects of rTMS in M1HAND show substantial inter-individual variability which has been partially attributed to the val66met polymorphism in the brain-derived neurotrophic factor (BDNF) gene. Here we used theta burst stimulation (TBS) to examine whether the BDNF val66met genotype can be used to predict the expression of TBS-induced homeostatic metaplasticity in human M1HAND. TBS is a patterned rTMS protocol with intermittent TBS (iTBS) usually inducing a lasting increase and continuous TBS (cTBS) a lasting decrease in corticospinal excitability. In three separate sessions, healthy val66met (n = 12) and val66val (n = 17) carriers received neuronavigated cTBS followed by cTBS (n = 27), cTBS followed by iTBS (n = 29), and iTBS followed by iTBS (n = 28). Participants and examiner were blinded to the genotype at the time of examination. As expected, the first TBS intervention induced a decrease (cTBS) and increase (iTBS) in corticospinal excitability, respectively, at the same time priming the after effects caused by the second TBS intervention in a homeostatic fashion. Critically, val66met carriers and val66val carriers showed very similar response patterns to cTBS and iTBS regardless of the order of TBS interventions. Since none of the observed TBS effects was modulated by the BDNF val66met polymorphism, our results do not support the notion that the BDNF val66met genotype is a major player with regard to TBS-induced plasticity and metaplasticity in the human M1HAND.
Collapse
Affiliation(s)
- Claudia Mastroeni
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Doeltgen SH, McAllister SM, Ridding MC. Simultaneous application of slow-oscillation transcranial direct current stimulation and theta burst stimulation prolongs continuous theta burst stimulation-induced suppression of corticomotor excitability in humans. Eur J Neurosci 2012; 36:2661-8. [DOI: 10.1111/j.1460-9568.2012.08181.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Borich MR, Kimberley TJ. Both sleep and wakefulness support consolidation of continuous, goal-directed, visuomotor skill. Exp Brain Res 2011; 214:619-30. [PMID: 21912927 PMCID: PMC6309914 DOI: 10.1007/s00221-011-2863-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/01/2011] [Indexed: 11/26/2022]
Abstract
Sleep has been shown to benefit memory consolidation for certain motor skills, but it remains unclear if this relationship exists for motor skills with direct rehabilitation applications. We aimed to determine the neurobehavioral relationship between finger-tracking skill development and sleep following skill training in young, healthy subjects. Forty subjects received tracking training in the morning (n = 20) or the evening (n = 20). Measures of tracking skill and cortical excitability were collected before and after training. Following training, tracking skill and measures of cortical excitability were assessed at two additional follow-up visits (12 and 24 h post-training) for each subject following an episode of sleep or waking activity. Two-way repeated-measures ANOVAs with Bonferroni-adjusted post hoc tests were conducted for tracking accuracy and measures of cortical excitability. Skill performance improved after training and continued to develop offline during the first post-training interval (12 h). This development was not further enhanced by sleep during this interval. Level of skill improvement was maintained for at least one day in both training groups. Cortical excitability was reduced following training and was related to level of skill performance at follow-up assessment. These data suggest offline memory consolidation of a continuous, visuospatial, finger-tracking skill is not dependent on sleep. These findings are in agreement with recent literature, indicating characteristics of a motor skill may be sensitive to the beneficial effect of sleep on post-training information processing.
Collapse
Affiliation(s)
- Michael R Borich
- Department of Physical Medicine and Rehabilitation, Program in Physical Therapy/Rehabilitation Science, University of Minnesota, Minneapolis, MN, USA.
| | | |
Collapse
|
49
|
Siebner HR, Ziemann U. Rippling the cortex with high-frequency (>100 Hz) alternating current stimulation. J Physiol 2011; 588:4851-2. [PMID: 21173085 DOI: 10.1113/jphysiol.2010.200857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | | |
Collapse
|
50
|
Thut G, Schyns PG, Gross J. Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol 2011; 2:170. [PMID: 21811485 PMCID: PMC3142861 DOI: 10.3389/fpsyg.2011.00170] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/06/2011] [Indexed: 11/29/2022] Open
Abstract
The notion of driving brain oscillations by directly stimulating neuronal elements with rhythmic stimulation protocols has become increasingly popular in research on brain rhythms. Induction of brain oscillations in a controlled and functionally meaningful way would likely prove highly beneficial for the study of brain oscillations, and their therapeutic control. We here review conventional and new non-invasive brain stimulation protocols as to their suitability for controlled intervention into human brain oscillations. We focus on one such type of intervention, the direct entrainment of brain oscillations by a periodic external drive. We review highlights of the literature on entraining brain rhythms linked to perception and attention, and point out controversies. Behaviourally, such entrainment seems to alter specific aspects of perception depending on the frequency of stimulation, informing models on the functional role of oscillatory activity. This indicates that human brain oscillations and function may be promoted in a controlled way by focal entrainment, with great potential for probing into brain oscillations and their causal role.
Collapse
Affiliation(s)
- Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | | | | |
Collapse
|