1
|
Singh V, Auerbach DS. Neurocardiac pathologies associated with potassium channelopathies. Epilepsia 2024; 65:2537-2552. [PMID: 39087855 DOI: 10.1111/epi.18066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Voltage-gated potassium channels are expressed throughout the human body and are essential for physiological functions. These include delayed rectifiers, A-type channels, outward rectifiers, and inward rectifiers. They impact electrical function in the heart (repolarization) and brain (repolarization and stabilization of the resting membrane potential). KCNQx and KCNHx encode Kv7.x and Kv11.x proteins, which form delayed rectifier potassium channels. KCNQx and KCNHx channelopathies are associated with both cardiac and neuronal pathologies. These include electrocardiographic abnormalities, cardiac arrhythmias, sudden cardiac death (SCD), epileptiform discharges, seizures, bipolar disorder, and sudden unexpected death in epilepsy (SUDEP). Due to the ubiquitous expression of KCNQx and KCNHx channels, abnormalities in their function can be particularly harmful, increasing the risk of sudden death. For example, KCNH2 variants have a dual role in both cardiac and neuronal pathologies, whereas KCNQ2 and KCNQ3 variants are associated with severe and refractory epilepsy. Recurrent and uncontrolled seizures lead to secondary abnormalities, which include autonomics, cardiac electrical function, respiratory drive, and neuronal electrical activity. Even with a wide array of anti-seizure therapies available on the market, one-third of the more than 70 million people worldwide with epilepsy have uncontrolled seizures (i.e., intractable/drug-resistant epilepsy), which negatively impact neurodevelopment and quality of life. To capture the current state of the field, this review examines KCNQx and KCNHx expression patterns and electrical function in the brain and heart. In addition, it discusses several KCNQx and KCNHx variants that have been clinically and electrophysiologically characterized. Because these channel variants are associated with multi-system pathologies, such as epileptogenesis, Kv7 channel modulators provide a potential anti-seizure therapy, particularly for people with intractable epilepsy. Ultimately an increased understanding of the role of Kv channels throughout the body will fuel the development of innovative, safe, and effective therapies for people at a high risk of sudden death (SCD and SUDEP).
Collapse
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Xu P, Swain S, Novorolsky RJ, Garcia E, Huang Z, Snutch TP, Wilson JJ, Robertson GS, Renden RB. The mitochondrial calcium uniporter inhibitor Ru265 increases neuronal excitability and reduces neurotransmission via off-target effects. Br J Pharmacol 2024; 181:3503-3526. [PMID: 38779706 PMCID: PMC11309911 DOI: 10.1111/bph.16425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Excitotoxicity due to mitochondrial calcium (Ca2+) overloading can trigger neuronal cell death in a variety of pathologies. Inhibiting the mitochondrial calcium uniporter (MCU) has been proposed as a therapeutic avenue to prevent calcium overloading. Ru265 (ClRu(NH3)4(μ-N)Ru(NH3)4Cl]Cl3) is a cell-permeable inhibitor of the mitochondrial calcium uniporter (MCU) with nanomolar affinity. Ru265 reduces sensorimotor deficits and neuronal death in models of ischemic stroke. However, the therapeutic use of Ru265 is limited by the induction of seizure-like behaviours. EXPERIMENTAL APPROACH We examined the effect of Ru265 on synaptic and neuronal function in acute brain slices and hippocampal neuron cultures derived from mice, in control and where MCU expression was genetically abrogated. KEY RESULTS Ru265 decreased evoked responses from calyx terminals and induced spontaneous action potential firing of both the terminal and postsynaptic principal cell. Recordings of presynaptic Ca2+ currents suggested that Ru265 blocks the P/Q type channel, confirmed by the inhibition of currents in cells exogenously expressing the P/Q type channel. Measurements of presynaptic K+ currents further revealed that Ru265 blocked a KCNQ current, leading to increased membrane excitability, underlying spontaneous spiking. Ca2+ imaging of hippocampal neurons showed that Ru265 increased synchronized, high-amplitude events, recapitulating seizure-like activity seen in vivo. Importantly, MCU ablation did not suppress Ru265-induced increases in neuronal activity and seizures. CONCLUSIONS AND IMPLICATIONS Our findings provide a mechanistic explanation for the pro-convulsant effects of Ru265 and suggest counter screening assays based on the measurement of P/Q and KCNQ channel currents to identify safe MCU inhibitors.
Collapse
Affiliation(s)
- Peng Xu
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
| | - Sarpras Swain
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
| | - Robyn J Novorolsky
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Esperanza Garcia
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhouyang Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health University of British Columbia, Vancouver, British Columbia, Canada
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - George S Robertson
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert B Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
3
|
Krüger J, Lerche H. Retigabine and gabapentin restore channel function and neuronal firing in a cellular model of an epilepsy-associated dominant-negative KCNQ5 variant. Neuropharmacology 2024; 250:109892. [PMID: 38428481 DOI: 10.1016/j.neuropharm.2024.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
KCNQ5 encodes the voltage-gated potassium channel KV7.5, a member of the KV7 channel family, which conducts the M-current. This current is a potent regulator of neuronal excitability by regulating membrane potential in the subthreshold range of action potentials and mediating the medium and slow afterhyperpolarization. Recently, we have identified five loss-of-function variants in KCNQ5 in patients with genetic generalized epilepsy. Using the most severe dominant-negative variant (R359C), we set out to investigate pharmacological therapeutic intervention by KV7 channel openers on channel function and neuronal firing. Retigabine and gabapentin increased R359C-derived M-current amplitudes in HEK cells expressing homomeric or heteromeric mutant KV7.5 channels. Retigabine was most effective in restoring K+ currents. Ten μM retigabine was sufficient to reach the level of WT currents without retigabine, whereas 100 μM of gabapentin showed less than half of this effect and application of 50 μM ZnCl2 only significantly increased M-current amplitude in heteromeric channels. Overexpression of KV7.5-WT potently inhibited neuronal firing by increasing the M-current, whereas R359C overexpression had the opposite effect and additionally decreased the medium afterhyperpolarization current. Both aforementioned drugs and Zn2+ reversed the effect of R359C expression by reducing firing to nearly normal levels at high current injections. Our study shows that a dominant-negative variant with a complete loss-of-function in KV7.5 leads to largely increased neuronal firing which may explain a neuronal hyperexcitability in patients. KV7 channel openers, such as retigabine or gabapentin, could be treatment options for patients currently displaying pharmacoresistant epilepsy and carrying loss-of-function variants in KCNQ5.
Collapse
Affiliation(s)
- Johanna Krüger
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076, Tübingen, Germany.
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Sun H, Undem BJ. Selective KCNQ2/3 Potassium Channel Opener ICA-069673 Inhibits Excitability in Mouse Vagal Sensory Neurons. J Pharmacol Exp Ther 2024; 389:118-127. [PMID: 38290975 PMCID: PMC10949160 DOI: 10.1124/jpet.123.001959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024] Open
Abstract
Heightened excitability of vagal sensory neurons in inflammatory visceral diseases contributes to unproductive and difficult-to-treat neuronally based symptoms such as visceral pain and dysfunction. Identification of targets and modulators capable of regulating the excitability of vagal sensory neurons may lead to novel therapeutic options. KCNQ1-KCNQ5 genes encode KV7.1-7.5 potassium channel α-subunits. Homotetrameric or heterotetrameric KV7.2-7.5 channels can generate the so-called M-current (IM) known to decrease the excitability of neurons including visceral sensory neurons. This study aimed to address the hypothesis that KV7.2/7.3 channels are key regulators of vagal sensory neuron excitability by evaluating the effects of KCNQ2/3-selective activator, ICA-069673, on IM in mouse nodose neurons and determining its effects on excitability and action potential firings using patch clamp technique. The results showed that ICA-069673 enhanced IM density, accelerated the activation, and delayed the deactivation of M-channels in a concentration-dependent manner. ICA-069673 negatively shifted the voltage-dependent activation of IM and increased the maximal conductance. Consistent with its effects on IM, ICA-069673 induced a marked hyperpolarization of resting potential and reduced the input resistance. The hyperpolarizing effect was more pronounced in partially depolarized neurons. Moreover, ICA-069673 caused a 3-fold increase in the minimal amount of depolarizing current needed to evoke an action potential, and significantly limited the action potential firings in response to sustained suprathreshold stimulations. ICA-069673 had no effect on membrane currents when Kcnq2 and Kcnq3 were deleted. These results indicate that opening KCNQ2/3-mediated M-channels is sufficient to suppress the excitability and enhance spike accommodation in vagal visceral sensory neurons. SIGNIFICANCE STATEMENT: This study supports the hypothesis that selectively activating KCNQ2/3-mediated M-channels is sufficient to suppress the excitability and action potential firings in vagal sensory neurons. These results provide evidence in support of further investigations into the treatment of various visceral disorders that involve nociceptor hyperexcitability with selective KCNQ2/3 M-channel openers.
Collapse
Affiliation(s)
- Hui Sun
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bradley J Undem
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Soto-Perez J, Cleary CM, Sobrinho CR, Mulkey SB, Carroll JL, Tzingounis AV, Mulkey DK. Phox2b-expressing neurons contribute to breathing problems in Kcnq2 loss- and gain-of-function encephalopathy models. Nat Commun 2023; 14:8059. [PMID: 38052789 PMCID: PMC10698053 DOI: 10.1038/s41467-023-43834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Loss- and gain-of-function variants in the gene encoding KCNQ2 channels are a common cause of developmental and epileptic encephalopathy, a condition characterized by seizures, developmental delays, breathing problems, and early mortality. To understand how KCNQ2 dysfunction impacts behavior in a mouse model, we focus on the control of breathing by neurons expressing the transcription factor Phox2b which includes respiratory neurons in the ventral parafacial region. We find Phox2b-expressing ventral parafacial neurons express Kcnq2 in the absence of other Kcnq isoforms, thus clarifying why disruption of Kcnq2 but not other channel isoforms results in breathing problems. We also find that Kcnq2 deletion or expression of a recurrent gain-of-function variant R201C in Phox2b-expressing neurons increases baseline breathing or decreases the central chemoreflex, respectively, in mice during the light/inactive state. These results uncover mechanisms underlying breathing abnormalities in KCNQ2 encephalopathy and highlight an unappreciated vulnerability of Phox2b-expressing ventral parafacial neurons to KCNQ2 pathogenic variants.
Collapse
Affiliation(s)
- J Soto-Perez
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - C M Cleary
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - C R Sobrinho
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - S B Mulkey
- Prenatal Pediatrics Institute, Children's National Hospital, Departments of Neurology and Pediatrics, The George Washington Univ. School of Medicine and Health Sciences, Washington, DC, USA
| | - J L Carroll
- Dept. of Pediatrics, Univ. Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A V Tzingounis
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| | - D K Mulkey
- Dept of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
6
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
7
|
Newell AJ, Jima D, Reading B, Patisaul HB. Machine learning reveals common transcriptomic signatures across rat brain and placenta following developmental organophosphate ester exposure. Toxicol Sci 2023; 195:103-122. [PMID: 37399109 PMCID: PMC10695431 DOI: 10.1093/toxsci/kfad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Abstract
Toxicogenomics is a critical area of inquiry for hazard identification and to identify both mechanisms of action and potential markers of exposure to toxic compounds. However, data generated by these experiments are highly dimensional and present challenges to standard statistical approaches, requiring strict correction for multiple comparisons. This stringency often fails to detect meaningful changes to low expression genes and/or eliminate genes with small but consistent changes particularly in tissues where slight changes in expression can have important functional differences, such as brain. Machine learning offers an alternative analytical approach for "omics" data that effectively sidesteps the challenges of analyzing highly dimensional data. Using 3 rat RNA transcriptome sets, we utilized an ensemble machine learning approach to predict developmental exposure to a mixture of organophosphate esters (OPEs) in brain (newborn cortex and day 10 hippocampus) and late gestation placenta of male and female rats, and identified genes that informed predictor performance. OPE exposure had sex specific effects on hippocampal transcriptome, and significantly impacted genes associated with mitochondrial transcriptional regulation and cation transport in females, including voltage-gated potassium and calcium channels and subunits. To establish if this holds for other tissues, RNAseq data from cortex and placenta, both previously published and analyzed via a more traditional pipeline, were reanalyzed with the ensemble machine learning methodology. Significant enrichment for pathways of oxidative phosphorylation and electron transport chain was found, suggesting a transcriptomic signature of OPE exposure impacting mitochondrial metabolism across tissue types and developmental epoch. Here we show how machine learning can complement more traditional analytical approaches to identify vulnerable "signature" pathways disrupted by chemical exposures and biomarkers of exposure.
Collapse
Affiliation(s)
- Andrew J Newell
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Dereje Jima
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Benjamin Reading
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
8
|
Krüger J, Schubert J, Kegele J, Labalme A, Mao M, Heighway J, Seebohm G, Yan P, Koko M, Aslan-Kara K, Caglayan H, Steinhoff BJ, Weber YG, Keo-Kosal P, Berkovic SF, Hildebrand MS, Petrou S, Krause R, May P, Lesca G, Maljevic S, Lerche H. Loss-of-function variants in the KCNQ5 gene are implicated in genetic generalized epilepsies. EBioMedicine 2022; 84:104244. [PMID: 36088682 PMCID: PMC9471468 DOI: 10.1016/j.ebiom.2022.104244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background De novo missense variants in KCNQ5, encoding the voltage-gated K+ channel KV7.5, have been described to cause developmental and epileptic encephalopathy (DEE) or intellectual disability (ID). We set out to identify disease-related KCNQ5 variants in genetic generalized epilepsy (GGE) and their underlying mechanisms. Methods 1292 families with GGE were studied by next-generation sequencing. Whole-cell patch-clamp recordings, biotinylation and phospholipid overlay assays were performed in mammalian cells combined with homology modelling. Findings We identified three deleterious heterozygous missense variants, one truncation and one splice site alteration in five independent families with GGE with predominant absence seizures; two variants were also associated with mild to moderate ID. All missense variants displayed a strongly decreased current density indicating a loss-of-function (LOF). When mutant channels were co-expressed with wild-type (WT) KV7.5 or KV7.5 and KV7.3 channels, three variants also revealed a significant dominant-negative effect on WT channels. Other gating parameters were unchanged. Biotinylation assays indicated a normal surface expression of the variants. The R359C variant altered PI(4,5)P2-interaction. Interpretation Our study identified deleterious KCNQ5 variants in GGE, partially combined with mild to moderate ID. The disease mechanism is a LOF partially with dominant-negative effects through functional deficits. LOF of KV7.5 channels will reduce the M-current, likely resulting in increased excitability of KV7.5-expressing neurons. Further studies on network level are necessary to understand which circuits are affected and how this induces generalized seizures. Funding DFG/FNR Research Unit FOR-2715 (Germany/Luxemburg), BMBF rare disease network Treat-ION (Germany), foundation ‘no epilep’ (Germany).
Collapse
|
9
|
Bauer CK, Holling T, Horn D, Laço MN, Abdalla E, Omar OM, Alawi M, Kutsche K. Clinically Relevant KCNQ1 Variants Causing KCNQ1-KCNE2 Gain-of-Function Affect the Ca2+ Sensitivity of the Channel. Int J Mol Sci 2022; 23:ijms23179690. [PMID: 36077086 PMCID: PMC9456291 DOI: 10.3390/ijms23179690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dominant KCNQ1 variants are well-known for underlying cardiac arrhythmia syndromes. The two heterozygous KCNQ1 missense variants, R116L and P369L, cause an allelic disorder characterized by pituitary hormone deficiency and maternally inherited gingival fibromatosis. Increased K+ conductance upon co-expression of KCNQ1 mutant channels with the beta subunit KCNE2 is suggested to underlie the phenotype; however, the reason for KCNQ1-KCNE2 (Q1E2) channel gain-of-function is unknown. We aimed to discover the genetic defect in a single individual and three family members with gingival overgrowth and identified the KCNQ1 variants P369L and V185M, respectively. Patch-clamp experiments demonstrated increased constitutive K+ conductance of V185M-Q1E2 channels, confirming the pathogenicity of the novel variant. To gain insight into the pathomechanism, we examined all three disease-causing KCNQ1 mutants. Manipulation of the intracellular Ca2+ concentration prior to and during whole-cell recordings identified an impaired Ca2+ sensitivity of the mutant KCNQ1 channels. With low Ca2+, wild-type KCNQ1 currents were efficiently reduced and exhibited a pre-pulse-dependent cross-over of current traces and a high-voltage-activated component. These features were absent in mutant KCNQ1 channels and in wild-type channels co-expressed with calmodulin and exposed to high intracellular Ca2+. Moreover, co-expression of calmodulin with wild-type Q1E2 channels and loading the cells with high Ca2+ drastically increased Q1E2 current amplitudes, suggesting that KCNE2 normally limits the resting Q1E2 conductance by an increased demand for calcified calmodulin to achieve effective channel opening. Our data link impaired Ca2+ sensitivity of the KCNQ1 mutants R116L, V185M and P369L to Q1E2 gain-of-function that is associated with a particular KCNQ1 channelopathy.
Collapse
Affiliation(s)
- Christiane K. Bauer
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Correspondence:
| | - Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Denise Horn
- Department of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany
| | - Mário Nôro Laço
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria 5422031, Egypt
- Genetics Department, Armed Forces College of Medicine (AFCM), Cairo 4460015, Egypt
| | - Omneya Magdy Omar
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria 5422031, Egypt
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|