1
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Sandouka D, Heeh M, Idais TI. AMPA receptor neurotransmission and therapeutic applications: A comprehensive review of their multifaceted modulation. Eur J Med Chem 2024; 266:116151. [PMID: 38237342 DOI: 10.1016/j.ejmech.2024.116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The neuropharmacological community has shown a strong interest in AMPA receptors as critical components of excitatory synaptic transmission during the last fifteen years. AMPA receptors, members of the ionotropic glutamate receptor family, allow rapid excitatory neurotransmission in the brain. AMPA receptors, which are permeable to sodium and potassium ions, manage the bulk of the brain's rapid synaptic communications. This study thoroughly examines the recent developments in AMPA receptor regulation, focusing on a shift from single chemical illustrations to a more extensive investigation of underlying processes. The complex interplay of these modulators in modifying the function and structure of AMPA receptors is the main focus, providing insight into their influence on the speed of excitatory neurotransmission. This research emphasizes the potential of AMPA receptor modulation as a therapy for various neurological disorders such as epilepsy and Alzheimer's disease. Analyzing these regulators' sophisticated molecular details enhances our comprehension of neuropharmacology, representing a significant advancement in using AMPA receptors for treating intricate neurological conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Tala Iyad Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
2
|
Gudasheva TA, Koliasnikova KN, Alyaeva AG, Nikolaev SV, Antipova TA, Seredenin SB. Neuroprotective Effect of the Neuropeptide Cycloprolylglycine Depends on AMPA- and TrkB-Receptor Activation. DOKL BIOCHEM BIOPHYS 2022; 507:264-267. [PMID: 36786983 DOI: 10.1134/s1607672922060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/15/2023]
Abstract
Previously, we have shown that the endogenous neuropeptide cycloprolylglycine (CPG) is the positive modulator of AMPA receptors and revealed the dependence of its anxiolytic and antihypoxic action on BDNF/Trk signaling. In the present work, we for the first time conducted in vitro experiments using the AMPA receptor blockers DNQX and GYKI 52466 and the Trk receptor blocker K252a. It is shown that the neuroprotective effect of CPG depends on the activation of both AMPA and Trk receptors.
Collapse
Affiliation(s)
- T A Gudasheva
- Zakusov Research Institute of Pharmacology, Moscow, Russia.
| | | | - A G Alyaeva
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - S V Nikolaev
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - T A Antipova
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - S B Seredenin
- Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
3
|
Beloozerova IN. Neuronal activity reorganization in motor cortex for successful locomotion after a lesion in the ventrolateral thalamus. J Neurophysiol 2022; 127:56-85. [PMID: 34731070 PMCID: PMC8742732 DOI: 10.1152/jn.00191.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Thalamic stroke leads to ataxia if the cerebellum-receiving ventrolateral thalamus (VL) is affected. The compensation mechanisms for this deficit are not well understood, particularly the roles that single neurons and specific neuronal subpopulations outside the thalamus play in recovery. The goal of this study was to clarify neuronal mechanisms of the motor cortex involved in mitigation of ataxia during locomotion when part of the VL is inactivated or lesioned. In freely ambulating cats, we recorded the activity of neurons in layer V of the motor cortex as the cats walked on a flat surface and horizontally placed ladder. We first reversibly inactivated ∼10% of the VL unilaterally using glutamatergic transmission antagonist CNQX and analyzed how the activity of motor cortex reorganized to support successful locomotion. We next lesioned 50%-75% of the VL bilaterally using kainic acid and analyzed how the activity of motor cortex reorganized when locomotion recovered. When a small part of the VL was inactivated, the discharge rates of motor cortex neurons decreased, but otherwise the activity was near normal, and the cats walked fairly well. Individual neurons retained their ability to respond to the demand for accuracy during ladder locomotion; however, most changed their response. When the VL was lesioned, the cat walked normally on the flat surface but was ataxic on the ladder for several days after lesion. When ladder locomotion normalized, neuronal discharge rates on the ladder were normal, and the shoulder-related group was preferentially active during the stride's swing phase.NEW & NOTEWORTHY This is the first analysis of reorganization of the activity of single neurons and subpopulations of neurons related to the shoulder, elbow, or wrist, as well as fast- and slow-conducting pyramidal tract neurons in the motor cortex of animals walking before and after inactivation or lesion in the thalamus. The results offer unique insights into the mechanisms of spontaneous recovery after thalamic stroke, potentially providing guidance for new strategies to alleviate locomotor deficits after stroke.
Collapse
Affiliation(s)
- Irina N. Beloozerova
- 1School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia,2Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
4
|
Ibrahim BA, Murphy CA, Yudintsev G, Shinagawa Y, Banks MI, Llano DA. Corticothalamic gating of population auditory thalamocortical transmission in mouse. eLife 2021; 10:e56645. [PMID: 34028350 PMCID: PMC8186908 DOI: 10.7554/elife.56645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that govern thalamocortical transmission are poorly understood. Recent data have shown that sensory stimuli elicit activity in ensembles of cortical neurons that recapitulate stereotyped spontaneous activity patterns. Here, we elucidate a possible mechanism by which gating of patterned population cortical activity occurs. In this study, sensory-evoked all-or-none cortical population responses were observed in the mouse auditory cortex in vivo and similar stochastic cortical responses were observed in a colliculo-thalamocortical brain slice preparation. Cortical responses were associated with decreases in auditory thalamic synaptic inhibition and increases in thalamic synchrony. Silencing of corticothalamic neurons in layer 6 (but not layer 5) or the thalamic reticular nucleus linearized the cortical responses, suggesting that layer 6 corticothalamic feedback via the thalamic reticular nucleus was responsible for gating stochastic cortical population responses. These data implicate a corticothalamic-thalamic reticular nucleus circuit that modifies thalamic neuronal synchronization to recruit populations of cortical neurons for sensory representations.
Collapse
Affiliation(s)
- Baher A Ibrahim
- Department of Molecular and Integrative Physiology, University of IllinoisUrbana-ChampaignUnited States
- Beckman Institute for Advanced Science and Technology, University of IllinoisUrbana-ChampaignUnited States
| | - Caitlin A Murphy
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-MadisonWisconsin-MadisonUnited States
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-MadisonWisconsin-MadisonUnited States
| | - Georgiy Yudintsev
- Neuroscience Program, University of IllinoisUrbana-ChampaignUnited States
| | - Yoshitaka Shinagawa
- Department of Molecular and Integrative Physiology, University of IllinoisUrbana-ChampaignUnited States
| | - Matthew I Banks
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-MadisonWisconsin-MadisonUnited States
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-MadisonWisconsin-MadisonUnited States
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of IllinoisUrbana-ChampaignUnited States
- Beckman Institute for Advanced Science and Technology, University of IllinoisUrbana-ChampaignUnited States
- Neuroscience Program, University of IllinoisUrbana-ChampaignUnited States
- College of Medicine, University of IllinoisUrbana-ChampaignUnited States
| |
Collapse
|
5
|
Transcriptomic expression of AMPA receptor subunits and their auxiliary proteins in the human brain. Neurosci Lett 2021; 755:135938. [PMID: 33915226 DOI: 10.1016/j.neulet.2021.135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022]
Abstract
Receptors to glutamate of the AMPA type (AMPARs) serve as the major gates of excitation in the human brain, where they participate in fundamental processes underlying perception, cognition and movement. Due to their central role in brain function, dysregulation of these receptors has been implicated in neuropathological states associated with a large variety of diseases that manifest with abnormal behaviors. The participation of functional abnormalities of AMPARs in brain disorders is strongly supported by genomic, transcriptomic and proteomic studies. Most of these studies have focused on the expression and function of the subunits that make up the channel and define AMPARs (GRIA1-GRIA4), as well of some accessory proteins. However, it is increasingly evident that native AMPARs are composed of a complex array of accessory proteins that regulate their trafficking, localization, kinetics and pharmacology, and a better understanding of the diversity and regional expression of these accessory proteins is largely needed. In this review we will provide an update on the state of current knowledge of AMPA receptors subunits in the context of their accessory proteins at the transcriptome level. We also summarize the regional expression in the human brain and its correlation with the channel forming subunits. Finally, we discuss some of the current limitations of transcriptomic analysis and propose potential ways to overcome them.
Collapse
|
6
|
Martínez-García I, Hernández-Soto R, Villasana-Salazar B, Ordaz B, Peña-Ortega F. Alterations in Piriform and Bulbar Activity/Excitability/Coupling Upon Amyloid-β Administration in vivo Related to Olfactory Dysfunction. J Alzheimers Dis 2021; 82:S19-S35. [PMID: 33459655 DOI: 10.3233/jad-201392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Deficits in odor detection and discrimination are premature symptoms of Alzheimer's disease (AD) that correlate with pathological signs in the olfactory bulb (OB) and piriform cortex (PCx). Similar olfactory dysfunction has been characterized in AD transgenic mice that overproduce amyloid-β peptide (Aβ), which can be prevented by reducing Aβ levels by immunological and pharmacological means, suggesting that olfactory dysfunction depends on Aβ accumulation and Aβ-driven alterations in the OB and/or PCx, as well as on their activation. However, this possibility needs further exploration. OBJECTIVE To characterize the effects of Aβ on OB and PCx excitability/coupling and on olfaction. METHODS Aβ oligomerized solution (containing oligomers, monomers, and protofibrils) or its vehicle were intracerebroventricularlly injected two weeks before OB and PCx excitability and synchrony were evaluated through field recordings in vivo and in brain slices. Synaptic transmission from the OB to the PCx was also evaluated in slices. Olfaction was assessed through the habituation/dishabituation test. RESULTS Aβ did not affect lateral olfactory tract transmission into the PCx but reduced odor habituation and cross-habituation. This olfactory dysfunction was related to a reduction of PCx and OB network activity power in vivo. Moreover, the coherence between PCx-OB activities was also reduced by Aβ. Finally, Aβ treatment exacerbated the 4-aminopyridine-induced excitation in the PCx in slices. CONCLUSION Our results show that Aβ-induced olfactory dysfunction involves a complex set of pathological changes at different levels of the olfactory pathway including alterations in PCx excitability and its coupling with the OB. These pathological changes might contribute to hyposmia in AD.
Collapse
Affiliation(s)
- Ignacio Martínez-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
7
|
Beloozerova IN, Marlinski V. Contribution of the ventrolateral thalamus to the locomotion-related activity of motor cortex. J Neurophysiol 2020; 124:1480-1504. [PMID: 32783584 DOI: 10.1152/jn.00253.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of motor cortex is necessary for accurate stepping on a complex terrain. How this activity is generated remains unclear. The goal of this study was to clarify the contribution of signals from the ventrolateral thalamus (VL) to formation of locomotion-related activity of motor cortex during vision-independent and vision-dependent locomotion. In two cats, we recorded the activity of neurons in layer V of motor cortex as cats walked on a flat surface and a horizontal ladder. We reversibly inactivated ~10% of the VL unilaterally with the glutamatergic transmission antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and analyzed how this affected the activity of motor cortex neurons. We examined neuronal subpopulations with somatosensory receptive fields on different segments of the forelimb and pyramidal tract projecting neurons (PTNs). We found that the VL contribution to the locomotion-related activity of motor cortex is very powerful and has both excitatory and inhibitory components. The magnitudes of both the excitatory and inhibitory contributions fluctuate over the step cycle and depend on locomotion task. On a flat surface, the VL contributes more excitation to the shoulder- and elbow-related neurons than the wrist/paw-related cells. The VL excites the shoulder-related group the most during the transition from stance to swing phase, while most intensively exciting the elbow-related group during the transition from swing to stance. The VL contributes more excitation for the fast- than slow-conducting PTNs. Upon transition to vision-dependent locomotion on the ladder, the VL contribution increases more for the wrist/paw-related neurons and slow-conducting PTNs.NEW & NOTEWORTHY How the activity of motor cortex is generated and the roles that different inputs to motor cortex play in formation of response properties of motor cortex neurons during movements remain unclear. This is the first study to characterize the contribution of the input from the ventrolateral thalamus (VL), the main subcortical input to motor cortex, to the activity of motor cortex neurons during vision-independent and vision-dependent locomotion.
Collapse
Affiliation(s)
- Irina N Beloozerova
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.,Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Vladimir Marlinski
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
8
|
Baumgartner HM, Cole SL, Olney JJ, Berridge KC. Desire or Dread from Nucleus Accumbens Inhibitions: Reversed by Same-Site Optogenetic Excitations. J Neurosci 2020; 40:2737-2752. [PMID: 32075899 PMCID: PMC7096140 DOI: 10.1523/jneurosci.2902-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 01/22/2023] Open
Abstract
Microinjections of a glutamate AMPA antagonist (DNQX) in medial shell of nucleus accumbens (NAc) can cause either intense appetitive motivation (i.e., 'desire') or intense defensive motivation (i.e., 'dread'), depending on site along a flexible rostrocaudal gradient and on environmental ambience. DNQX, by blocking excitatory AMPA glutamate inputs, is hypothesized to produce relative inhibitions of NAc neurons. However, given potential alternative explanations, it is not known whether neuronal inhibition is in fact necessary for NAc DNQX microinjections to generate motivations. Here we provide a direct test of whether local neuronal inhibition in NAc is necessary for DNQX microinjections to produce either desire or dread. We used optogenetic channelrhodopsin (ChR2) excitations at the same local sites in NAc as DNQX microinjections to oppose relative neuronal inhibitions induced by DNQX in female and male rats. We found that same-site ChR2 excitation effectively reversed the ability of NAc DNQX microinjections to generate appetitive motivation, and similarly reversed ability of DNQX microinjections to generate defensive motivation. Same-site NAc optogenetic excitations also attenuated recruitment of Fos expression in other limbic structures throughout the brain, which was otherwise elevated by NAc DNQX microinjections that generated motivation. However, to successfully reverse motivation generation, an optic fiber tip for ChR2 illumination needed to be located within <1 mm of the corresponding DNQX microinjector tip; that is, both truly at the same NAc site. Thus, we confirm that localized NAc neuronal inhibition is required for AMPA-blocking microinjections in medial shell to induce either positively-valenced 'desire' or negatively-valenced 'dread'.SIGNIFICANCE STATEMENT A major hypothesis posits neuronal inhibitions in nucleus accumbens generate intense motivation. Microinjections in nucleus accumbens of glutamate antagonist, DNQX, which might suppress local neuronal firing, generate either appetitive or defensive motivation, depending on site and environmental factors. Is neuronal inhibition in nucleus accumbens required for such pharmacologically-induced motivations? Here we demonstrate that neuronal inhibition is necessary to generate appetitive or defensive motivations, using local optogenetic excitations to oppose putative DNQX-induced inhibitions. We show that excitation at the same site prevents DNQX microinjections from recruiting downstream limbic structures into neurobiological activation, and simultaneously prevents generation of either appetitive or defensive motivated behaviors. These results may be relevant to roles of nucleus accumbens mechanisms in pathological motivations, including addiction and paranoia.
Collapse
Affiliation(s)
- Hannah M Baumgartner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Shannon L Cole
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jeffrey J Olney
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| |
Collapse
|
9
|
Sirenko O, Parham F, Dea S, Sodhi N, Biesmans S, Mora-Castilla S, Ryan K, Behl M, Chandy G, Crittenden C, Vargas-Hurlston S, Guicherit O, Gordon R, Zanella F, Carromeu C. Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures. Toxicol Sci 2019; 167:58-76. [PMID: 30169818 DOI: 10.1093/toxsci/kfy218] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurological disorders affect millions of people worldwide and appear to be on the rise. Whereas the reason for this increase remains unknown, environmental factors are a suspected contributor. Hence, there is an urgent need to develop more complex, biologically relevant, and predictive in vitro assays to screen larger sets of compounds with the potential for neurotoxicity. Here, we employed a human induced pluripotent stem cell (iPSC)-based 3D neural platform composed of mature cortical neurons and astrocytes as a model for this purpose. The iPSC-derived human 3D cortical neuron/astrocyte co-cultures (3D neural cultures) present spontaneous synchronized, readily detectable calcium oscillations. This advanced neural platform was optimized for high-throughput screening in 384-well plates and displays highly consistent, functional performance across different wells and plates. Characterization of oscillation profiles in 3D neural cultures was performed through multi-parametric analysis that included the calcium oscillation rate and peak width, amplitude, and waveform irregularities. Cellular and mitochondrial toxicity were assessed by high-content imaging. For assay characterization, we used a set of neuromodulators with known mechanisms of action. We then explored the neurotoxic profile of a library of 87 compounds that included pharmaceutical drugs, pesticides, flame retardants, and other chemicals. Our results demonstrated that 57% of the tested compounds exhibited effects in the assay. The compounds were then ranked according to their effective concentrations based on in vitro activity. Our results show that a human iPSC-derived 3D neural culture assay platform is a promising biologically relevant tool to assess the neurotoxic potential of drugs and environmental toxicants.
Collapse
Affiliation(s)
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven Dea
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | - Neha Sodhi
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | | | | | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Freitag FB, Ahemaiti A, Jakobsson JET, Weman HM, Lagerström MC. Spinal gastrin releasing peptide receptor expressing interneurons are controlled by local phasic and tonic inhibition. Sci Rep 2019; 9:16573. [PMID: 31719558 PMCID: PMC6851355 DOI: 10.1038/s41598-019-52642-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022] Open
Abstract
Dorsal horn gastrin-releasing peptide receptor (GRPR) neurons have a central role in itch transmission. Itch signaling has been suggested to be controlled by an inhibitory network in the spinal dorsal horn, as increased scratching behavior can be induced by pharmacological disinhibition or ablation of inhibitory interneurons, but the direct influence of the inhibitory tone on the GRPR neurons in the itch pathway have not been explored. Here we have investigated spinal GRPR neurons through in vitro and bioinformatical analysis. Electrophysiological recordings revealed that GRPR neurons receive local spontaneous excitatory inputs transmitted by glutamate and inhibitory inputs by glycine and GABA, which were transmitted either by separate glycinergic and GABAergic synapses or by glycine and GABA co-releasing synapses. Additionally, all GRPR neurons received both glycine- and GABA-induced tonic currents. The findings show a complex inhibitory network, composed of synaptic and tonic currents that gates the excitability of GRPR neurons, which provides direct evidence for the existence of an inhibitory tone controlling spontaneous discharge in an itch-related neuronal network in the spinal cord. Finally, calcium imaging revealed increased levels of neuronal activity in Grpr-Cre neurons upon application of somatostatin, which provides direct in vitro evidence for disinhibition of these dorsal horn interneurons.
Collapse
Affiliation(s)
- Fabio B Freitag
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Hannah M Weman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
11
|
TARP mediation of accelerated and more regular locus coeruleus network bursting in neonatal rat brain slices. Neuropharmacology 2019; 148:169-177. [PMID: 30629989 DOI: 10.1016/j.neuropharm.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Transmembrane AMPA receptor (AMPAR) regulatory proteins (TARP) increase neuronal excitability. However, it is unknown how TARP affect rhythmic neural network activity. Here we studied TARP effects on local field potential (LFP) bursting, membrane potential and cytosolic Ca2+ (Cai) in locus coeruleus neurons of newborn rat brain slices. LFP bursting was not affected by the unselective competitive ionotropic glutamate receptor antagonist kynurenic acid (2.5 mM). TARP-AMPAR complex activation with 25 μM CNQX accelerated LFP rhythm 2.2-fold and decreased its irregularity score from 63 to 9. Neuronal spiking was correspondingly 2.3-fold accelerated in association with a 2-5 mV depolarization and a modest Cai rise whereas Cai was unchanged in neighboring astrocytes. After blocking rhythmic activities with tetrodotoxin (1 μM), CNQX caused a 5-8 mV depolarization and also the Cai rise persisted. In tetrodotoxin, both responses were abolished by the non-competitive AMPAR antagonist GYKI 53655 (25 μM) which also reversed stimulatory CNQX effects in control solution. The CNQX-evoked Cai rise was blocked by the L-type voltage-activated Ca2+ channel inhibitor nifedipine (100 μM). The findings show that ionotropic glutamate receptor-independent neonatal locus coeruleus network bursting is accelerated and becomes more regular by activating a TARP-AMPAR complex. The associated depolarization-evoked L-type Ca2+ channel-mediated neuronal Cai rise may be pivotal to regulate locus coeruleus activity in cooperation with SK-type K+ channels. In summary, this is the first demonstration of TARP-mediated stimulation of neural network bursting. We hypothesize that TARP-AMPAR stimulation of rhythmic locus coeruleus output serves to fine-tune its control of multiple brain functions thus comprising a target for drug discovery.
Collapse
|
12
|
Du ZJ, Bi GQ, Cui XT. Electrically Controlled Neurochemical Release from Dual-Layer Conducting Polymer Films for Precise Modulation of Neural Network Activity in Rat Barrel Cortex. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1703988. [PMID: 30467460 PMCID: PMC6242295 DOI: 10.1002/adfm.201703988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Implantable microelectrode arrays (MEAs) are important tools for investigating functional neural circuits and treating neurological diseases. Precise modulation of neural activity may be achieved by controlled delivery of neurochemicals directly from coatings on MEA electrode sites. In this study, a novel dual-layer conductive polymer/acid functionalized carbon nanotube (fCNT) microelectrode coating is developed to better facilitate the loading and controlled delivery of the neurochemical 6,7-dinitroquinoxaline-2,3-dione (DNQX). The base layer coating is consisted of poly(3,4-ethylenedioxythiophene/fCNT and the top layer is consisted of polypyrrole/fCNT/DNQX. The dual-layer coating is capable of both loading and electrically releasing DNQX and the release dynamic is characterized with fluorescence microscopy and mathematical modeling. In vivo DNQX release is demonstrated in rat somatosensory cortex. Sensory-evoked neural activity is immediately (<1s) and locally (<446 µm) suppressed by electrically triggered DNQX release. Furthermore, a single DNQX-loaded, dual-layer coating is capable of inducing effective neural inhibition for at least 26 times without observable degradation in efficacy. Incorporation of the novel drug releasing coating onto individual MEA electrodes offers many advantages over alternative methods by increasing spatial-temporal precision and improving drug selection flexibility without increasing the device's size.
Collapse
Affiliation(s)
- Zhanhong Jeff Du
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Brain Science and Intelligence, Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
13
|
Arama J, Abitbol K, Goffin D, Fuchs C, Sihra TS, Thomson AM, Jovanovic JN. GABAA receptor activity shapes the formation of inhibitory synapses between developing medium spiny neurons. Front Cell Neurosci 2015; 9:290. [PMID: 26300728 PMCID: PMC4526800 DOI: 10.3389/fncel.2015.00290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022] Open
Abstract
Basal ganglia play an essential role in motor coordination and cognitive functions. The GABAergic medium spiny neurons (MSNs) account for ~95% of all the neurons in this brain region. Central to the normal functioning of MSNs is integration of synaptic activity arriving from the glutamatergic corticostriatal and thalamostriatal afferents, with synaptic inhibition mediated by local interneurons and MSN axon collaterals. In this study we have investigated how the specific types of GABAergic synapses between the MSNs develop over time, and how the activity of GABAA receptors (GABAARs) influences this development. Isolated embryonic (E17) MSNs form a homogenous population in vitro and display spontaneous synaptic activity and functional properties similar to their in vivo counterparts. In dual whole-cell recordings of synaptically connected pairs of MSNs, action potential (AP)-activated synaptic events were detected between 7 and 14 days in vitro (DIV), which coincided with the shift in GABAAR operation from depolarization to hyperpolarization, as detected indirectly by intracellular calcium imaging. In parallel, the predominant subtypes of inhibitory synapses, which innervate dendrites of MSNs and contain GABAAR α1 or α2 subunits, underwent distinct changes in the size of postsynaptic clusters, with α1 becoming smaller and α2 larger over time, while both the percentage and the size of mixed α1/α2-postsynaptic clusters were increased. When activity of GABAARs was under chronic blockade between 4–7 DIV, the structural properties of these synapses remained unchanged. In contrast, chronic inhibition of GABAARs between 7–14 DIV led to reduction in size of α1- and α1/α2-postsynaptic clusters and a concomitant increase in number and size of α2-postsynaptic clusters. Thus, the main subtypes of GABAergic synapses formed by MSNs are regulated by GABAAR activity, but in opposite directions, and thus appear to be driven by different molecular mechanisms.
Collapse
Affiliation(s)
- Jessica Arama
- UCL School of Pharmacy, University College London London, UK
| | - Karine Abitbol
- UCL School of Pharmacy, University College London London, UK
| | - Darren Goffin
- UCL School of Pharmacy, University College London London, UK
| | - Celine Fuchs
- UCL School of Pharmacy, University College London London, UK
| | - Talvinder S Sihra
- Neuroscience, Physiology and Pharmacology, UCL Division of Biosciences, University College London London, UK
| | - Alex M Thomson
- UCL School of Pharmacy, University College London London, UK
| | | |
Collapse
|
14
|
Straub C, Tomita S. The regulation of glutamate receptor trafficking and function by TARPs and other transmembrane auxiliary subunits. Curr Opin Neurobiol 2011; 22:488-95. [PMID: 21993243 DOI: 10.1016/j.conb.2011.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 02/06/2023]
Abstract
At excitatory synapses in the brain, glutamate released from nerve terminals binds to glutamate receptors to mediate signaling between neurons. Glutamate receptors expressed in heterologous cells show ion channel activity. Recently, native glutamate receptors were shown to contain auxiliary subunits that modulate the trafficking and/or channel properties. The AMPA receptor (AMPAR) can contain TARP and CNIHs as the auxiliary subunits, whereas kainate receptor (KAR) can contain the Neto auxiliary subunit. Each of these auxiliary subunits uniquely modulates the glutamate receptors, and determines properties of native glutamate receptors. A thorough elucidation of the properties of native glutamate receptor complexes is indispensable for the understanding of the molecular machinery that regulates glutamate receptors and excitatory synaptic transmission in the brain.
Collapse
Affiliation(s)
- Christoph Straub
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States
| | | |
Collapse
|
15
|
Drago A, Crisafulli C, Sidoti A, Serretti A. The molecular interaction between the glutamatergic, noradrenergic, dopaminergic and serotoninergic systems informs a detailed genetic perspective on depressive phenotypes. Prog Neurobiol 2011; 94:418-60. [DOI: 10.1016/j.pneurobio.2011.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 12/12/2022]
|
16
|
Jackson AC, Nicoll RA. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron 2011; 70:178-99. [PMID: 21521608 DOI: 10.1016/j.neuron.2011.04.007] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2011] [Indexed: 12/25/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) underlie rapid, excitatory synaptic signaling throughout the CNS. After years of intense research, our picture of iGluRs has evolved from them being companionless in the postsynaptic membrane to them being the hub of dynamic supramolecular signaling complexes, interacting with an ever-expanding litany of other proteins that regulate their trafficking, scaffolding, stability, signaling, and turnover. In particular, the discovery that transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that are critical determinants of their trafficking, gating, and pharmacology has changed the way we think about iGluR function. Recently, a number of novel transmembrane proteins have been uncovered that may also serve as iGluR auxiliary proteins. Here we review pivotal developments in our understanding of the role of TARPs in AMPA receptor trafficking and gating, and provide an overview of how newly discovered transmembrane proteins expand our view of iGluR function in the CNS.
Collapse
Affiliation(s)
- Alexander C Jackson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
17
|
Alfaro JM, Ripoll-Gómez J, Burgos JS. Kainate administered to adult zebrafish causes seizures similar to those in rodent models. Eur J Neurosci 2011; 33:1252-5. [PMID: 21375600 DOI: 10.1111/j.1460-9568.2011.07622.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutamate is the major excitatory neurotransmitter of the central nervous system in vertebrates. Excitotoxicity, caused by over-stimulation of the glutamate receptors, is a major cause of neuron death in several brain diseases, including epilepsy. We describe here how behavioural seizures can be triggered in adult zebrafish by the administration of kainate and are very similar to those observed in rodent models. Kainate induced a dose-dependent sequence of behavioural changes culminating in clonus-like convulsions. Behavioural seizures were suppressed by DNQX (6,7-dinitroquinoxaline-2,3-dione) dose-dependently, whilst MK-801 (a non-competitive NMDA receptor antagonist) had a lesser effect. Kainate triggers seizures in adult zebrafish, and thus this species can be considered as a new model for studying seizures and subsequent excitotoxic brain injury.
Collapse
Affiliation(s)
- Juan M Alfaro
- NEURON BPh, BioPharma Division, Parque Tecnológico de Ciencias de la Salud, Edif. BIC-Granada, Av. Innovación 1, Armilla 18100, Granada, Spain
| | | | | |
Collapse
|