1
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
2
|
Kim MG, Kamimura HAS, Konofagou EE. Neurogenic Flare Response following Image-Guided Focused Ultrasound in the Mouse Peripheral Nervous System in Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2759-2767. [PMID: 34176702 PMCID: PMC8355117 DOI: 10.1016/j.ultrasmedbio.2021.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 05/14/2023]
Abstract
Focused ultrasound (FUS) has been used to non-invasively elicit or inhibit motor neuronal activity in the mouse peripheral nervous system in vivo. However, less is known about whether FUS elicits immune system responses associated with peripheral sensory neuronal activity. In this study, we sought to determine that non-invasive ultrasound image-guided FUS can elicit the neurogenic axon reflex of peripheral nerves in the mouse sciatic nerve. The local vasodilation in the plantar view of the hind paw detected with a high-resolution laser Doppler imager indicated neurogenic flare responses after FUS stimulation. The effects of FUS were compared with control groups, where a distinct pattern of blood flow changes was observed only in FUS-elicited neurogenic flare responses. The findings indicate that image-guided FUS elicits local axon reflexes in vivo with a high degree of specificity and penetration depth.
Collapse
Affiliation(s)
- Min Gon Kim
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University, New York, New York, USA.
| |
Collapse
|
3
|
Tripathi R, Agarwal S, Rizvi SI, Mishra N*. The Antioxidant Efficacy of Wheatgrass (Triticum Aestivum) on Mercuric Chloride (HgCl2) - Induced Oxidative Stress in Rat Model. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2021. [DOI: 10.12944/crnfsj.9.2.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mercury is a harmful toxic pollutant, which has hepato-nephrotoxic, hematotoxic, genotoxic and neurotoxic, effects. The aim of the study was to evaluate the protective efficacy of wheatgrass on mercuric chloride (HgCl2) induced oxidative stress and associated complications in rat model. Albino rats were divided into four groups (three rats per group). Group I normal control group. Group II oxidative stressed group received mercuric chloride (0.5 mg/kg/day). Group III only received wheatgrass extract (100 mg/kg/day), whereas Group IV received wheatgrass (100 mg/kg/day) after one hour, followed by mercuric chloride (0.5 mg/kg/day) for 30 days. The results of the study showed that wheatgrass supplementation significantly decreased the HgCl2 induced elevated oxidative stress parameters Plasma Malondialdehyde (MDA) content, Plasma membrane redox system (PMRS), Advanced oxidation protein products (AOPP), simultaneously elevated lipid profile (Total Cholesterol, Triglycerides, Low-density lipoprotein (LDL), liver enzymes as, Plasma Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), and Alanine aminotransferase (ALT), Serum Urea, and Creatinine levels in rats. In addition, wheatgrass treatment improved the antioxidant status in terms of intracellular Reduced Glutathione (GSH), Ferric reducing antioxidant power (FRAP) and 2, 2- diphenyl -1- picrylhydrazyl (DPPH). Therefore it can be concluded that wheatgrass has great potential to diminish the stress-mediated complications and improve the antioxidant status.
Collapse
Affiliation(s)
- Renu Tripathi
- 1Department of Home Science, Government Kamla Devi Rathi Girls P.G College, Rajnandgaon, Chhattisgarh, India
| | - Swati Agarwal
- 2Department of Home Science, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Syed Ibrahim Rizvi
- 3Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Neetu * Mishra
- 4Department of Home Science, University of Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
4
|
The neuropathic phenotype of the K/BxN transgenic mouse with spontaneous arthritis: pain, nerve sprouting and joint remodeling. Sci Rep 2020; 10:15596. [PMID: 32973194 PMCID: PMC7515905 DOI: 10.1038/s41598-020-72441-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/13/2020] [Indexed: 01/11/2023] Open
Abstract
The adult K/BxN transgenic mouse develops spontaneous autoimmune arthritis with joint remodeling and profound bone loss. We report that both males and females display a severe sustained tactile allodynia which is reduced by gabapentin but not the potent cyclooxygenase inhibitor ketorolac. In dorsal horn, males and females show increased GFAP+ astrocytic cells; however, only males demonstrate an increase in Iba1+ microglia. In dorsal root ganglia (DRG), there is an increase in CGRP+, TH+, and Iba1+ (macrophage) labeling, but no increase in ATF3+ cells. At the ankle there is increased CGRP+, TH+, and GAP-43+ fiber synovial innervation. Thus, based on the changes in dorsal horn, DRG and peripheral innervation, we suggest that the adult K/BxN transgenic arthritic mice display a neuropathic phenotype, an assertion consistent with the analgesic pharmacology seen in this animal. These results indicate the relevance of this model to our understanding of the nociceptive processing which underlies the chronic pain state that evolves secondary to persistent joint inflammation.
Collapse
|
5
|
Zhang T, Niu J, Wang Y, Yan J, Hu W, Mi D. The role of C-afferents in mediating neurogenic vasodilatation in plantar skin after acute sciatic nerve injury in rats. BMC Neurosci 2020; 21:15. [PMID: 32299361 PMCID: PMC7161243 DOI: 10.1186/s12868-020-00564-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Background Vasomotor regulation of dermal blood vessels, which are critical in the function of the skin in thermoregulatory control, involves both neural and non-neural mechanisms. Whereas the role of sympathetic nerves in regulating vasomotor activities is comprehensively studied and well recognized, that of sensory nerves is underappreciated. Studies in rodents have shown that severance of the sciatic nerve leads to vasodilatation in the foot, but whether sympathetic or sensory nerve fibers or both are responsible for the neurogenic vasodilatation remains unknown. Results In adult Sprague–Dawley rats, vasodilatation after transection of the sciatic nerve gradually diminished to normal within 3–4 days. The neurotmesis-induced neurogenic vasodilatation was not detectable when the sciatic nerve was chronically deafferentated by selective resection of the dorsal root ganglia (DRGs) that supply the nerve. Specific activation of C-afferents by intra-neural injection of capsaicin resulted in neurogenic vasodilatation to a magnitude comparable to that by neurotmesis, and transection of the sciatic nerve pre-injected with capsaicin did not induce further vasodilatation. Conclusions Our results collectively indicate that vasodilatation after traumatic nerve injury in rats is predominantly mediated by C-fiber afferents.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Radiology, The Third People's Hospital of Nantong City and The Third Nantong Hospital Affiliated to Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiahui Niu
- Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yaxian Wang
- Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, 226001, Jiangsu, China
| | - Junying Yan
- School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Wen Hu
- Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, 226001, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| | - Daguo Mi
- Department of Orthopedics, Nantong City Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
6
|
Complex regional pain syndrome: a focus on the autonomic nervous system. Clin Auton Res 2019; 29:457-467. [PMID: 31104164 DOI: 10.1007/s10286-019-00612-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Although autonomic features are part of the diagnostic criteria for complex regional pain syndrome (CRPS), the role of the autonomic nervous system in CRPS pathophysiology has been downplayed in recent years. The purpose of this review is to redress this imbalance. METHODS We focus in this review on the contribution of the autonomic nervous system to CRPS pathophysiology. In particular, we discuss regional sympathetic and systemic autonomic disturbances in CRPS and the mechanisms which may underlie them, and consider links between these mechanisms, immune disturbances and pain. RESULTS The focused literature research revealed that immune reactions, alterations in receptor populations (e.g., upregulation of adrenoceptors and reduced cutaneous nerve fiber density) and central changes in autonomic drive seem to contribute to regional and systemic disturbances in sympathetic activity and to sympathetically maintained pain in CRPS. CONCLUSIONS We conclude that alterations in the sympathetic nervous system contribute to CRPS pathology. Understanding these alterations may be an important step towards providing appropriate treatments for CRPS.
Collapse
|
7
|
Grigore O, Mihailescu AI, Solomon I, Boda D, Caruntu C. Role of stress in modulation of skin neurogenic inflammation. Exp Ther Med 2019; 17:997-1003. [PMID: 30679965 PMCID: PMC6327627 DOI: 10.3892/etm.2018.7058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
There are complex interconnections between the nervous system and the skin highlighted by the impact of stress and neuroendocrine factors on various dermatological conditions. We investigated the influence of stress on skin neurogenic inflammation induced by capsaicin. A total of 31 healthy subjects were randomized into two groups: subjects in the stress group underwent a stress-inducing protocol and those in the control group were exposed to indifferent conditions. Subsequently, topical capsaicin cream was administered on the non-dominant anterior forearm of each subject from the two groups. The assessment of the local inflammatory reaction induced by capsaicin was performed by thermography at 25 and 40 min post-application. In both groups the inflammatory reaction induced by capsaicin was evidenced at 25 min and was maintained at 40 min post-application. However, at 40 min post-application the hyperthermal area was larger in subjects from the stress group, suggesting that stress exposure is associated with an amplification of the mechanisms involved in capsaicin-induced skin neurogenic inflammation.
Collapse
Affiliation(s)
- Ovidiu Grigore
- Department of Applied Electronics and Information Engineering, Polytechnic University of Bucharest, 061071 Bucharest, Romania
| | - Alexandra Ioana Mihailescu
- Department of Medical Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Iulia Solomon
- Department of Dermatology and Allergology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Constantin Caruntu
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
8
|
Drummond PD. Involvement of the Sympathetic Nervous System in Complex Regional Pain Syndrome. INT J LOW EXTR WOUND 2016; 3:35-42. [PMID: 15866786 DOI: 10.1177/1534734604263365] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex regional pain syndrome (CRPS) occasionally develops as a complication of limb trauma. Sympathetic neurotransmitter release is compromised in the affected limb of at least a subgroup of patients throughout the course of the disorder, whereas signs of sympathetic deficit (a warm flushed limb) often evolve into signs of sympathetic overactivity (a cool moist limb) due to the development of adrenergic supersensitivity. Cross-talk between sympathetic neurotransmitters and the sensory neurons that signal pain appears to contribute to CRPS in a subgroup of patients. In addition, sympathetic activity may retard normal healing by aggravating the vascular disturbances associated with inflammation. Sympathetic dysfunction seems to originate from within the central nervous system in patients without peripheral nerve injury, possibly in association with chronic activation of the “defeat” response associated with inhibitory opioid-mediated pain modulation. Fatigue of this inhibitory process may unmask a facilitatory influence of arousal on nociceptive transmission in the thalamus and cortex that contributes to stress-induced pain.
Collapse
|
9
|
Li XQ, Li M, Zhou ZH, Liu BJ, Chen HS. Chronic restraint stress exacerbates nociception and inflammatory response induced by bee venom in rats: the role of the P2X7 receptors. Neurol Res 2016; 38:158-65. [PMID: 26900997 DOI: 10.1080/01616412.2015.1135571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Chronic restraint stress exacerbates pain and inflammation. The present study was designed to evaluate the effect of chronic restraint stress on inflammatory pain induced by subcutaneous injection of bee venom (BV). METHODS First, we investigated: (1) the effect of two-week restraint stress with daily 2 or 8 h on the baseline paw withdrawal mechanical threshold (PWMT), paw withdrawal thermal latency (PWTL) and paw circumference (PC); (2) the effect of chronic stress on the spontaneous paw-flinching reflex (SPFR), decrease in PWM, PWTL and increase in PC of the injected paw induced by BV. RESULTS The results showed that (1) chronic restraint decreased significantly the PWMT and inhibited significantly the increase in PC, but had no effect on PWTL, compared with control group; (2) chronic restraint enhanced significantly BV-induced SPFR and inflammatory swelling of the injected paw. In a second series of experiments, the role of P2X7 receptor (P2X7R) in the enhancement of BV-induced inflammatory pain produced by chronic restraint stress was determined. Systemic pretreatment with P2X7R antagonist completely reversed the decrease in PWMT produced by chronic restraint, inhibited significantly the enhancement of BV-induced inflammatory pain produced by chronic restraint stress. CONCLUSION Taken together, our data indicate that chronic restraint stress-enhanced nociception and inflammation in the BV pain model, possibly involving the P2X7R.
Collapse
Affiliation(s)
- Xiao-Qiu Li
- a Department of Neurology , General Hospital of Shen-Yang Military Area Command , Shen Yang , China
| | - Man Li
- a Department of Neurology , General Hospital of Shen-Yang Military Area Command , Shen Yang , China
| | - Zhong-He Zhou
- a Department of Neurology , General Hospital of Shen-Yang Military Area Command , Shen Yang , China
| | - Bao-Jun Liu
- b Department of Medical Administration , General Hospital of Shen-Yang Military Area Command , Shen Yang , China
| | - Hui-Sheng Chen
- a Department of Neurology , General Hospital of Shen-Yang Military Area Command , Shen Yang , China
| |
Collapse
|
10
|
Magnussen C, Hung SP, Ribeiro-da-Silva A. Novel expression pattern of neuropeptide Y immunoreactivity in the peripheral nervous system in a rat model of neuropathic pain. Mol Pain 2015; 11:31. [PMID: 26012590 PMCID: PMC4449610 DOI: 10.1186/s12990-015-0029-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/20/2015] [Indexed: 12/26/2022] Open
Abstract
Background Neuropeptide Y (NPY) has been implicated in the modulation of pain. Under normal conditions, NPY is found in interneurons in the dorsal horn of the spinal cord and in sympathetic postganglionic neurons but is absent from the cell bodies of sensory neurons. Following peripheral nerve injury NPY is dramatically upregulated in the sensory ganglia. How NPY expression is altered in the peripheral nervous system, distal to a site of nerve lesion, remains unknown. To address this question, NPY expression was investigated using immunohistochemistry at the level of the trigeminal ganglion, the mental nerve and in the skin of the lower lip in relation to markers of sensory and sympathetic fibers in a rat model of trigeminal neuropathic pain. Results At 2 and 6 weeks after chronic constriction injury (CCI) of the mental nerve, de novo expression of NPY was seen in the trigeminal ganglia, in axons in the mental nerve, and in fibers in the upper dermis of the skin. In lesioned animals, NPY immunoreactivity was expressed primarily by large diameter mental nerve sensory neurons retrogradely labelled with Fluorogold. Many axons transported this de novo NPY to the periphery as NPY-immunoreactive (IR) fibers were seen in the mental nerve both proximal and distal to the CCI. Some of these NPY-IR axons co-expressed Neurofilament 200 (NF200), a marker for myelinated sensory fibers, and occasionally colocalization was seen in their terminals in the skin. Peptidergic and non-peptidergic C fibers expressing calcitonin gene-related peptide (CGRP) or binding isolectin B4 (IB4), respectively, never expressed NPY. CCI caused a significant de novo sprouting of sympathetic fibers into the upper dermis of the skin, and most, but not all of these fibers, expressed NPY. Conclusions This is the first study to provide a comprehensive description of changes in NPY expression in the periphery after nerve injury. Novel expression of NPY in the skin comes mostly from sprouted sympathetic fibers. This information is fundamental in order to understand where endogenous NPY is expressed, and how it might be acting to modulate pain in the periphery.
Collapse
Affiliation(s)
- Claire Magnussen
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, Quebec, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, H3A 0G1, Canada.
| | - Shih-Ping Hung
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, Quebec, H3G 1Y6, Canada.
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, Quebec, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, H3A 0G1, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada.
| |
Collapse
|
11
|
Finch PM, Drummond ES, Dawson LF, Phillips JK, Drummond PD. Up-regulation of cutaneous α1 -adrenoceptors in complex regional pain syndrome type I. PAIN MEDICINE 2014; 15:1945-56. [PMID: 25220453 DOI: 10.1111/pme.12548] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND In a small radioligand-binding study of cutaneous α1 -adrenoceptors in complex regional pain syndrome (CRPS), signal intensity was greater in the CRPS-affected limb than in controls. However, it was not possible to localize heightened expression of α1 -adrenoceptors to nerves, sweat glands, blood vessels, or keratinocytes using this technique. METHODS To explore this in the present study, skin biopsies were obtained from 31 patients with CRPS type I and 23 healthy controls of similar age and sex distribution. Expression of α1 -adrenoceptors on keratinocytes and on dermal blood vessels, sweat glands, and nerves was assessed using immunohistochemistry. RESULTS α1 -Adrenoceptors were expressed more strongly in dermal nerve bundles and the epidermis both on the affected and contralateral unaffected side in patients than in controls (P<0.05). However, expression of α1 -adrenoceptors in sweat glands and blood vessels was similar in patients and controls. α1 -Adrenoceptor staining intensity in the CRPS-affected epidermis was associated with pain intensity (P < 0.05), but a similar trend for nerve bundles did not achieve statistical significance. DISCUSSION Epidermal cells influence nociception by releasing ligands that act on sensory nerve fibers. Moreover, an increased expression of α1 -adrenoceptors on nociceptive afferents has been shown to aggravate neuropathic pain. Thus, the heightened expression of α1 -adrenoceptors in dermal nerves and epidermal cells might augment pain and neuroinflammatory disturbances after tissue injury in patients with CRPS type I.
Collapse
Affiliation(s)
- Philip M Finch
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia
| | | | | | | | | |
Collapse
|
12
|
Schlereth T, Drummond PD, Birklein F. Inflammation in CRPS: role of the sympathetic supply. Auton Neurosci 2013; 182:102-7. [PMID: 24411269 DOI: 10.1016/j.autneu.2013.12.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/11/2013] [Indexed: 12/21/2022]
Abstract
Acute Complex Regional Pain Syndrome (CRPS) is associated with signs of inflammation such as increased skin temperature, oedema, skin colour changes and pain. Pro-inflammatory cytokines (tumour necrosis factor-α (TNF-α), interleukin-2 (IL-2), IL-1beta, IL-6) are up-regulated, whereas anti-inflammatory cytokines (IL-4, IL-10) are diminished. Adaptive immunity seems to be involved in CRPS pathophysiology as many patients have autoantibodies directed against β2 adrenergic and muscarinic-2 receptors. In an animal tibial fracture model changes in the innate immune response such as up-regulation of keratinocytes are also found. Additionally, CRPS is accompanied by increased neurogenic inflammation which depends mainly on neuropeptides such as CGRP and Substance P. Besides inflammatory signs, sympathetic nervous system involvement in CRPS results in cool skin, increased sweating and sympathetically-maintained pain. The norepinephrine level is lower in the CRPS-affected than contralateral limb, but sympathetic sprouting and up-regulation of alpha-adrenoceptors may result in an adrenergic supersensitivity. The sympathetic nervous system and inflammation interact: norepinephrine influences the immune system and the production of cytokines. There is substantial evidence that this interaction contributes to the pathophysiology and clinical presentation of CRPS, but this interaction is not straightforward. How inflammation in CRPS might be exaggerated by sympathetic transmitters requires further elucidation.
Collapse
Affiliation(s)
- Tanja Schlereth
- Department of Neurology, Langenbeckstr, 1, D-55131 Mainz, Germany.
| | - Peter D Drummond
- School of Psychology and Exercise Science, Murdoch University, 6150 Western Australia, Australia
| | - Frank Birklein
- Department of Neurology, Langenbeckstr, 1, D-55131 Mainz, Germany
| |
Collapse
|
13
|
Muir WW. Stress and pain: Their relationship to health related quality of life (HRQL) for horses. Equine Vet J 2013; 45:653-5. [DOI: 10.1111/evj.12152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Chen HS, Li FP, Li XQ, Liu BJ, Qu F, Wen WW, Wang Y, Lin Q. Acute stress regulates nociception and inflammatory response induced by bee venom in rats: possible mechanisms. Stress 2013; 16:557-63. [PMID: 23574036 DOI: 10.3109/10253890.2013.794336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Restraint stress modulates pain and inflammation. The present study was designed to evaluate the effect of acute restraint stress on inflammatory pain induced by subcutaneous injection of bee venom (BV). First, we investigated the effect of 1 h restraint on the spontaneous paw-flinching reflex (SPFR), decrease in paw withdrawal mechanical threshold (PWMT) and increase in paw volume (PV) of the injected paw induced by BV. SPFR was measured immediately after BV injection, and PWMT and PV were measured 2 h before BV and 2-8 h after BV. The results showed that acute restraint inhibited significantly the SPFR but failed to affect mechanical hyperalgesia. In contrast, stress enhanced significantly inflammatory swelling of the injected paw. In a second series of experiments, the effects of pretreatment with capsaicin locally applied to the sciatic nerve, systemic 6-hydroxydopamine (6-OHDA), and systemic naloxone were examined on the antinociception and proinflammation produced by acute restraint stress. Local capsaicin pretreatment inhibited BV-induced nociception and inflammatory edema, and had additive effects with stress on nociception but reduced stress enhancement of edema. Systemic 6-OHDA treatment attenuated the proinflammatory effect of stress, but did not affect the antinociceptive effect. Systemic naloxone pretreatment eliminated the antinociceptive effect of stress, but did not affect proinflammation. Taken together, our data indicate that acute restraint stress contributes to antinociception via activating an endogenous opioid system, while sympathetic postganglionic fibers may contribute to enhanced inflammation in the BV pain model.
Collapse
Affiliation(s)
- Hui-Sheng Chen
- Department of Neurology, General Hospital of Shen-Yang Military Region, Shen Yang 110840, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Rosenkranz MA, Davidson RJ, Maccoon DG, Sheridan JF, Kalin NH, Lutz A. A comparison of mindfulness-based stress reduction and an active control in modulation of neurogenic inflammation. Brain Behav Immun 2013; 27:174-84. [PMID: 23092711 PMCID: PMC3518553 DOI: 10.1016/j.bbi.2012.10.013] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 12/27/2022] Open
Abstract
Psychological stress is a major provocative factor of symptoms in chronic inflammatory conditions. In recent years, interest in addressing stress responsivity through meditation training in health-related domains has increased astoundingly, despite a paucity of evidence that reported benefits are specific to meditation practice. We designed the present study to rigorously compare an 8-week Mindfulness-Based Stress Reduction (MBSR) intervention to a well-matched active control intervention, the Health Enhancement Program (HEP) in ability to reduce psychological stress and experimentally-induced inflammation. The Trier Social Stress Test (TSST) was used to induce psychological stress and inflammation was produced using topical application of capsaicin cream to forearm skin. Immune and endocrine measures of inflammation and stress were collected both before and after MBSR training. Results show those randomized to MBSR and HEP training had comparable post-training stress-evoked cortisol responses, as well as equivalent reductions in self-reported psychological distress and physical symptoms. However, MBSR training resulted in a significantly smaller post-stress inflammatory response compared to HEP, despite equivalent levels of stress hormones. These results suggest behavioral interventions designed to reduce emotional reactivity may be of therapeutic benefit in chronic inflammatory conditions. Moreover, mindfulness practice, in particular, may be more efficacious in symptom relief than the well-being promoting activities cultivated in the HEP program.
Collapse
Affiliation(s)
- Melissa A Rosenkranz
- Waisman Laboratory for Brain Imaging & Behavior and Center for Investigating Healthy Minds, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, United States.
| | | | | | | | | | | |
Collapse
|
17
|
A peripheral adrenoceptor-mediated sympathetic mechanism can transform stress-induced analgesia into hyperalgesia. Anesthesiology 2011; 114:1403-16. [PMID: 21540738 DOI: 10.1097/aln.0b013e31821c3878] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stress has paradoxical effects on pain, causing stress-induced analgesia but also exacerbating pain via poorly understood mechanisms. Adrenergic neurotransmission is integral in pathways that regulate the response to both pain and stress. Hyperalgesia is often associated with enhanced adrenergic sensitivity of primary afferents, but sympathetic nervous system outflow has not been demonstrated to exacerbate pain perception after stress. METHODS Rats or C57/BL6 wild-type mice treated with α-2 receptor antagonists or α-2A receptor knockout mice were exposed to ultrasonic noise stress or footshock stress and subsequently tested for hotplate paw withdrawal latencies. The sensory sensitivity of α-2A knockout mice to electrical and chemical stimuli was tested neurophysiologically and behaviorally. The effects of sympatholytic treatments were investigated. RESULTS Noise and footshock stressors induced thermal hyperalgesia in rats pretreated systemically with α-2 antagonists. Wild-type mice pretreated with α-2 antagonists and α-2A knockout mice also exhibited thermal hyperalgesia induced by noise stress. Local spinal or intraplantar injection of an α-2 antagonist counteracted stress-induced analgesia without causing hyperalgesia. The α-2A knockout mice had decreased thresholds for peripheral sensitization with sulprostone and for windup of the dorsal horn neuronal response to repetitive electrical stimuli. Stress-induced hyperalgesia was abolished and the sensitization was attenuated by sympathectomy or systemic administration of an α-1-adrenergic antagonist. CONCLUSIONS Sympathetic postganglionic nerves can enhance pain sensation via a peripheral α-1-adrenoceptor mechanism when sympathetic outflow is disinhibited. The net effect of stress on pain sensation reflects a balance between descending spinal inhibition and sympathetic outflow that can shift toward pain facilitation when central and peripheral α-2-adrenoceptor inhibitory mechanisms are attenuated.
Collapse
|
18
|
He JW, Kashyap D, Trevino LA, Liu H, Peng YB. Simultaneous absolute measures of glabrous skin hemodynamic and light-scattering change in response to formalin injection in rats. Neurosci Lett 2011; 492:59-63. [PMID: 21281696 DOI: 10.1016/j.neulet.2011.01.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/21/2011] [Accepted: 01/23/2011] [Indexed: 12/20/2022]
Abstract
Subcutaneous injection of formalin is a well-known model to study the nature of inflammatory pain. One of the cardinal signs of inflammation is redness, as a result of increased blood perfusion. We used an optical technology, light reflectance spectroscopy, to noninvasively obtain absolute measures of cutaneous hemodynamic components, including the concentrations of oxy- ([HbO]), deoxy- ([Hb]), total-hemoglobin ([HbT]), oxygen saturation (SO(2)), and the reduced light-scattering coefficient (μs'). The objective is to assess the effect of formalin-induced skin inflammation on the aforementioned parameters. Six rats were injected with formalin (50 μl, 3%) into left hind paw under pentobarbital anesthesia. Our results indicate prolonged increases in [HbO], [HbT], and SO(2) post injection only in the ipsilateral side. No statistically significant changes in [Hb] and μ(s)' occurred in either side. The arterial blood influx tends to be the major attribute of local hyperemia during inflammation. Thereby, [HbO] appears to be superior to [Hb] in measuring inflammation. In conclusion, the needle-probe-based light reflectance can be a feasible means to obtaining absolute measures of skin hemodynamic and light-scattering parameters when studying inflammatory pain.
Collapse
Affiliation(s)
- Ji-Wei He
- Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX 76019-0528, USA
| | | | | | | | | |
Collapse
|
19
|
Drummond PD. Inflammation contributes to axon reflex vasodilatation evoked by iontophoresis of an alpha-1 adrenoceptor agonist. Auton Neurosci 2011; 159:90-7. [DOI: 10.1016/j.autneu.2010.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/18/2010] [Accepted: 07/12/2010] [Indexed: 12/29/2022]
|
20
|
Dawson LF, Phillips JK, Finch PM, Inglis JJ, Drummond PD. Expression of α1-adrenoceptors on peripheral nociceptive neurons. Neuroscience 2010; 175:300-14. [PMID: 21182905 DOI: 10.1016/j.neuroscience.2010.11.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to determine whether α(1)-adrenoceptors are expressed on primary nociceptive afferents that innervate healthy skin. Skin and dorsal root ganglia were collected from adult male Wistar rats and assessed using fluorescence immunohistochemistry with antibodies directed against α(1)-adrenoceptors alone or in combination with specific labels including myelin basic protein and neurofilament 200 (markers of myelinated nerve fibres), protein gene product 9.5 (a pan-neuronal marker), tyrosine hydroxylase (sympathetic neurons), isolectin B(4) (IB(4): non-peptidergic sensory neurons), calcitonin gene related peptide (CGRP) and transient receptor potential vanilloid receptor 1 (TRPV1) (peptidergic sensory neurons). Double labelling in dorsal root ganglia confirmed the expression of α(1)-adrenoceptors within sub-populations of CGRP, IB(4) and TRPV1 immunoreactive neurons. Myelinated and unmyelinated sensory nerve fibres in the skin expressed α(1)-adrenoceptors whereas sympathetic nerve fibres did not. The expression of α(1)-adrenoceptors on C- and A-delta nociceptive afferent fibres provides a histochemical substrate for direct excitation of these fibres by adrenergic agonists. This may help to explain the mechanism of sensory-sympathetic coupling that sometimes develops on surviving primary nociceptive afferents in neuropathic pain states.
Collapse
Affiliation(s)
- L F Dawson
- Faculty of Health Sciences, Murdoch University, Perth, Western Australia
| | | | | | | | | |
Collapse
|
21
|
Hagains CE, Trevino LA, He JW, Liu H, Peng YB. Contributions of dorsal root reflex and axonal reflex to formalin-induced inflammation. Brain Res 2010; 1359:90-7. [PMID: 20816764 DOI: 10.1016/j.brainres.2010.08.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/25/2010] [Accepted: 08/28/2010] [Indexed: 02/06/2023]
Abstract
The dorsal root reflex (DRR) and the axonal reflex (AR) are antidromic activities in primary afferents and are involved in neurogenic inflammation. DRRs and/or ARs lead to release of neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). CGRP causes blood vessels to dilate leading to an increase in blood perfusion, whereas SP causes plasma extravasation, leading to edema. Both DRR and AR can be evoked by noxious stimuli. The goal of this study was to determine the role of DRR and AR in neurogenic inflammation by examining the blood perfusion (BP) change in hindpaws in response to formalin injection (an acute inflammatory agent). Laser Doppler images were collected simultaneously in both hindpaws in anesthetized rats to determine the level of BP. Local lidocaine was applied to the left sciatic nerve to block both orthodromic signals and antidromic DRRs without affecting ARs. All rats then received a subcutaneous formalin injection to the left hindpaw. Our results showed that (1) the mean BP of the left paw increased significantly following formalin injection, with or without lidocaine; (2) application of lidocaine in the left sciatic nerve alone significantly increased BP ipsilaterally; (3) formalin injection following lidocaine application significantly increased BP more than the group without lidocaine; and (4) there was delayed significant BP increase in the right (contralateral) hindpaw following formalin injection with or without lidocaine. It is concluded that ARs play a more important role than DRRs in formalin-induced neurogenic inflammation.
Collapse
|
22
|
Chen HS, Qu F, He X, Wang Y, Wen WW. Chemical or surgical sympathectomy prevents mechanical hyperalgesia induced by intraplantar injection of bee venom in rats. Brain Res 2010; 1353:86-93. [DOI: 10.1016/j.brainres.2010.07.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 07/18/2010] [Accepted: 07/19/2010] [Indexed: 11/15/2022]
|
23
|
The effects of sympathetic outflow on upregulation of vanilloid receptors TRPV(1) in primary afferent neurons evoked by intradermal capsaicin. Exp Neurol 2009; 222:93-107. [PMID: 20036240 DOI: 10.1016/j.expneurol.2009.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 12/17/2022]
Abstract
The vanilloid receptor TRPV(1) is a key nociceptive molecule located in primary afferent nociceptive neurons in dorsal root ganglia (DRG) for initiating neurogenic inflammation and pain. Our recent study demonstrates that up-regulation of TRPV(1) receptors by intradermal injection of capsaicin is modulated by activation of the protein kinase C (PKC) cascade. Neurogenic inflammation and pain resulting from capsaicin injection are sympathetically dependent, responding to norepinephrine, adenosine 5'-triphosphate (ATP) and/or neuropeptide Y released from sympathetic efferents. In a rat model of acute neurogenic inflammatory pain produced by capsaicin injection, we used immunofluorescence and Western blots combined with pharmacology and surgical sympathectomies to analyze whether the capsaicin-evoked up-regulation of TRPV(1) in DRG neurons is affected by sympathetic outflow by way of activating the PKC cascade. Sympathetic denervation reduced significantly the capsaicin-evoked expressions of TRPV(1), calcitonin gene-related peptide and/or phosphorylated PKC and their co-expression. These reductions could be restored by exogenous pretreatment with an analog of ATP, alpha,beta-methylene ATP. Inhibition of PKC with chelerythrine chloride prevented the ATP effect. Consistent results were obtained from experiments in which capsaicin-evoked changes in cutaneous inflammation (vasodilation and edema) were examined after sympathetic denervation, and the effects of the above pharmacological manipulations were evaluated. Our findings suggest that the capsaicin-evoked up-regulation of TRPV(1) receptors in DRG neurons is modulated sympathetically by the action of ATP released from sympathetic efferents to activate the PKC cascade. Thus, this study proposes a potential new mechanism of sympathetic modulation of neurogenic inflammation.
Collapse
|
24
|
Song B, Jiang C, Wang Y, Lu Y, Li L. Newly Found Prostate-bladder Neural Reflex in Rats—Possible Mechanism for Voiding Dysfunction Associated With Prostatitis/Pelvic Pain. Urology 2009; 74:1365-9. [DOI: 10.1016/j.urology.2009.02.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 01/28/2009] [Accepted: 02/26/2009] [Indexed: 11/30/2022]
|
25
|
Drummond PD. Alpha-1 adrenoceptor stimulation triggers axon-reflex vasodilatation in human skin. Auton Neurosci 2009; 151:159-63. [PMID: 19656742 DOI: 10.1016/j.autneu.2009.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/22/2009] [Accepted: 07/14/2009] [Indexed: 12/23/2022]
Abstract
The aim of this study was to determine whether pre-treatment of human skin with the alpha(1)-adrenoceptor antagonist terazosin would block vasoconstrictor responses and axon-reflex vasodilatation to the alpha(1)-adrenoceptor agonist methoxamine. Drugs were administered by iontophoresis into the skin of the forearm of 15 healthy participants, and skin blood flow was monitored with a laser Doppler flow probe at the site of methoxamine iontophoresis (to monitor direct vasoconstrictor responses) or 5-10 mm from the site of methoxamine iontophoresis (to monitor axon-reflex vasodilatation). Experimental sites were pre-treated with terazosin (administered by iontophoresis for 10 min at 200 microA), and the same current intensity was passed through 0.9% saline to control for the nonspecific effects of iontophoresis. Pre-treatment with terazosin blocked vasoconstrictor responses to increasing doses of methoxamine, and also blocked vasodilatation several mm from the site of terazosin and methoxamine administration. These findings support the view that alpha(1)-adrenoceptors play a role in generating axon-reflex vasodilatation, and thus might contribute to local vascular disturbances in acute and chronic inflammation.
Collapse
Affiliation(s)
- Peter D Drummond
- School of Psychology, Murdoch University, Perth, 6150 Western Australia, Australia.
| |
Collapse
|
26
|
Terkelsen AJ, Bach FW, Jensen TS. Experimental forearm immobilization in humans reduces capsaicin-induced pain and flare. Brain Res 2009; 1263:43-9. [DOI: 10.1016/j.brainres.2009.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/21/2008] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
|
27
|
Yuan WX, Chen SR, Chen H, Pan HL. Stimulation of alpha(1)-adrenoceptors reduces glutamatergic synaptic input from primary afferents through GABA(A) receptors and T-type Ca(2+) channels. Neuroscience 2008; 158:1616-24. [PMID: 19068225 DOI: 10.1016/j.neuroscience.2008.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 11/20/2022]
Abstract
Activation of the descending noradrenergic system inhibits nociceptive transmission in the spinal cord. Although both alpha(1)- and alpha(2)-adrenoceptors in the spinal cord are involved in the modulation of nociceptive transmission, it is not clear how alpha(1)-adrenoceptors regulate excitatory and inhibitory synaptic transmission at the spinal level. In this study, inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs, respectively) were recorded from lamina II neurons in rat spinal cord slices. The specific alpha(1)-adrenoceptor agonist phenylephrine significantly increased the frequency of GABAergic spontaneous IPSCs in a concentration dependent manner, and this effect was abolished by the alpha(1)-adrenoceptor antagonist 2-(2,6-dimethoxyphenoxy)ethylaminomethyl-1,4-benzodioxane (WB4101). Phenylephrine also significantly reduced the amplitude of monosynaptic and polysynaptic EPSCs evoked from primary afferents. The inhibitory effect of phenylephrine on evoked monosynaptic glutamatergic EPSCs was largely blocked by the GABA(A) receptor antagonist picrotoxin and, to a lesser extent, by the GABA(B) receptor antagonist CGP55845. Furthermore, blocking T-type Ca(2+) channels with amiloride or mibefradil diminished the inhibitory effect produced by phenylephrine or the GABA(A) receptor agonist muscimol on monosynaptic EPSCs evoked from primary afferents. Collectively, these findings suggest that activation of alpha(1)-adrenoceptors in the spinal cord increases synaptic GABA release, which attenuates glutamatergic input from primary afferents mainly through GABA(A) receptors and T-type Ca(2+) channels. This mechanism of presynaptic inhibition in the spinal cord may be involved in the regulation of nociception by the descending noradrenergic system.
Collapse
Affiliation(s)
- W-X Yuan
- Department of Anesthesiology and Pain Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
28
|
Meisner JG, Reid AR, Sawynok J. Adrenergic regulation of P2X3 and TRPV1 receptors: differential effects of spared nerve injury. Neurosci Lett 2008; 444:172-5. [PMID: 18722504 DOI: 10.1016/j.neulet.2008.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 02/01/2023]
Abstract
Local application of alphabetaMeATP (ligand for P2X3 receptors) and capsaicin (ligand for TRPV1 receptors) to the rat hindpaw produces pain behaviors (flinching) which are enhanced by noradrenaline (NA). In this study, we have examined the effect of nerve injury on adrenergic regulation of P2X3 and TRPV1 receptors by administering alphabetaMeATP and capsaicin, alone and in combination with NA, into the lateral and medial hindpaw in the spared nerve injury (SNI) model; this allows for an exploration of the role of injured and uninjured afferents in their effects on nociceptive signaling using a behavioral model. Following lateral hindpaw injections (sural sensory field), effects of NA and alphabetaMeATP, both alone and in combination, were increased following SNI, but no such effects were seen following medial hindpaw injections (saphenous sensory field). Following lateral hindpaw injections, the effect of capsaicin alone was unaltered following SNI, but the effect of NA/capsaicin was reduced; this latter effect was not seen following medial hindpaw injections. At the lateral site, prazosin (alpha1-adrenergic receptor antagonist) inhibited the effect of NA/alphabetaMeATP following SNI, but neither prazosin nor GF109203X (protein kinase C inhibitor) inhibited the effect of NA/capsaicin following SNI. These results demonstrate: (a) an enhanced adrenergic regulation of P2X3 receptor activity at lateral sites following SNI where signaling afferents are directly influenced by injured neurons; (b) differential effects on adrenergic regulation of TRPV1 receptors under the same conditions; (c) lack of such changes when agents are administered into medial sites following SNI.
Collapse
Affiliation(s)
- Jason G Meisner
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
29
|
Geppetti P, Nassini R, Materazzi S, Benemei S. The concept of neurogenic inflammation. BJU Int 2008; 101 Suppl 3:2-6. [PMID: 18307678 DOI: 10.1111/j.1464-410x.2008.07493.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurogenic inflammatory responses have recently been linked to both acute and chronic pathological conditions in the urinary tract. Neurogenic inflammation encompasses a series of vascular and non-vascular inflammatory responses, triggered by the activation of primary sensory neurons and the subsequent release of inflammatory neuropeptides, including substance P and calcitonin gene-related peptide. The reduction of neurogenic inflammatory responses may be key in the mode of action of the adrenergic alpha(1)-adrenoceptor antagonists used to treat lower urinary tract symptoms (LUTS). Indeed, the alpha(1)-adrenoceptor antagonist alfuzosin inhibits expression of the oncogene c-fos- a marker of nociceptive pathway activation - evoked by cyclophosphamide in rats. Capsaicin ameliorates urinary bladder symptoms through its stimulatory action on the transient receptor potential vanilloid 1 (TRPV1) calcium channel, resulting in desensitization of bladder sensory nerve terminals. Involvement of the TRP cation channel, subfamily A, member 1 (TRPA1) has also been reported in models of neurogenic inflammation and nociception promoted by the cyclophosphamide metabolite, acrolein. Blockade by alfuzosin demonstrates the beneficial effects of alpha(1)-adrenoceptor antagonists on neurogenic inflammation via the transient receptor potential family of ionic channels. Consequently, these drugs may have an important role in reducing LUTS.
Collapse
Affiliation(s)
- Pierangelo Geppetti
- Department of Critical Care Medicine and Surgery, Clinical Pharmacology Unit, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
30
|
Carmichael NME, Dostrovsky JO, Charlton MP. Enhanced vascular permeability in rat skin induced by sensory nerve stimulation: evaluation of the time course and appropriate stimulation parameters. Neuroscience 2008; 153:832-41. [PMID: 18420352 DOI: 10.1016/j.neuroscience.2008.02.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/25/2008] [Accepted: 02/29/2008] [Indexed: 11/29/2022]
Abstract
Activation of nociceptors causes them to secrete neuropeptides. The binding of these peptides to receptors on blood vessels causes vasodilation and increased vascular permeability that allows loss of proteins and fluid (plasma extravasation, PE); this contributes to inflammation. This study defines the relationship between electrical activation of nociceptors and PE and evaluates the time course of this response in the skin of rats. We measured the time course and extent of PE by digital imaging of changes in skin reflectance caused by leakage of Evans Blue (EB) dye infused in the circulatory system before stimulation. Stimulation of the exclusively sensory saphenous nerve caused the skin to become dark blue within 2 min due to accumulation of EB. While PE is usually measured after 5-15 min of electrical stimulation, we found that stimulation for only 1 min at 4 Hz produced maximum PE. This response was dependent on the number of electrical stimuli at least for 4 Hz and 8 Hz stimulation rates. Since accumulation of EB in the skin is only slowly reversible, to determine the duration of enhanced vascular permeability we administered EB at various times after electrical stimulation of the saphenous nerve. PE was only observed when EB was infused within 5 min of electrical stimulation but could still be observed 50 min after capsaicin (1%, 25 microl) injection into the hind paw. These findings indicate that enhanced vascular permeability evoked by electrical stimulation persists only briefly after release of neuropeptides from nociceptors in the skin. Therefore, treatment of inflammation by blockade of neuropeptide release and receptors may be more effective than treatments aimed at epithelial gaps. We propose, in models of stimulation-induced inflammation, the use of a short stimulus train.
Collapse
Affiliation(s)
- N M E Carmichael
- University of Toronto, Department of Physiology, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
31
|
Gibbs GF, Drummond PD, Finch PM, Phillips JK. Unravelling the pathophysiology of complex regional pain syndrome: focus on sympathetically maintained pain. Clin Exp Pharmacol Physiol 2008; 35:717-24. [PMID: 18215185 DOI: 10.1111/j.1440-1681.2007.04862.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. In diseases such as complex regional pain syndrome (CRPS), where neuropathic pain is the primary concern, traditional pain classifications and lesion descriptors are of limited value. To obtain better treatment outcomes for patients, the underlying pathophysiological mechanisms of neuropathic pain need to be elucidated and analysed so that therapeutic targets can be identified and specific treatments developed. 2. In the present review, we examine the current literature on sympathetically maintained pain (SMP), a subset of neuropathic pain, within the context of CRPS. Evidence from both human and animal studies is presented and discussed in terms of its support for the existence of SMP and the mechanistic information it provides. 3. We discuss three current hypotheses that propose both a site and method for sympathetic-sensory coupling: (i) direct coupling between sympathetic and sensory neurons in the dorsal root ganglion; (ii) chemical coupling between sympathetic and nociceptive neuron terminals in skin; and (iii) the development of a-adrenoceptor-mediated supersensitivity in nociceptive fibres in skin in association with the release of inflammatory mediators. 4. Finally, we propose a new hypothesis that integrates the mechanisms of chemical coupling and a-adrenoceptor-mediated supersensitivity. This hypothesis is based on previously unpublished data from our laboratory showing that a histological substrate suitable for sympathetic-sensory coupling exists in normal subjects. In the diseased state, the nociceptive fibres implicated in this substrate may be activated by both endogenous and exogenous noradrenaline. The mediating a-adrenoceptors may be expressed on the nociceptive fibres or on closely associated support cells.
Collapse
Affiliation(s)
- Gael F Gibbs
- Division of Health Sciences, Murdoch University, Murdoch, WA, Australia
| | | | | | | |
Collapse
|
32
|
Lin Q, Li D, Xu X, Zou X, Fang L. Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin. Mol Pain 2007; 3:30. [PMID: 17961222 PMCID: PMC2174436 DOI: 10.1186/1744-8069-3-30] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Accepted: 10/25/2007] [Indexed: 05/25/2023] Open
Abstract
Background Acute cutaneous neurogenic inflammation initiated by activation of transient receptor potential vanilloid-1 (TRPV1) receptors following intradermal injection of capsaicin is mediated mainly by dorsal root reflexes (DRRs). Inflammatory neuropeptides are suggested to be released from primary afferent nociceptors participating in inflammation. However, no direct evidence demonstrates that the release of inflammatory substances is due to the triggering of DRRs and how activation of TRPV1 receptors initiates neurogenic inflammation via triggering DRRs. Results Here we used pharmacological manipulations to analyze the roles of TRPV1 and neuropeptidergic receptors in the DRR-mediated neurogenic inflammation induced by intradermal injection of capsaicin. The degree of cutaneous inflammation in the hindpaw that followed capsaicin injection was assessed by measurements of local blood flow (vasodilation) and paw-thickness (edema) of the foot skin in anesthetized rats. Local injection of capsaicin, calcitonin gene-related peptide (CGRP) or substance P (SP) resulted in cutaneous vasodilation and edema. Removal of DRRs by either spinal dorsal rhizotomy or intrathecal administration of the GABAA receptor antagonist, bicuculline, reduced dramatically the capsaicin-induced vasodilation and edema. In contrast, CGRP- or SP-induced inflammation was not significantly affected after DRR removal. Dose-response analysis of the antagonistic effect of the TRPV1 receptor antagonist, capsazepine administered peripherally, shows that the capsaicin-evoked inflammation was inhibited in a dose-dependent manner, and nearly completely abolished by capsazepine at doses between 30–150 μg. In contrast, pretreatment of the periphery with different doses of CGRP8–37 (a CGRP receptor antagonist) or spantide I (a neurokinin 1 receptor antagonist) only reduced the inflammation. If both CGRP and NK1 receptors were blocked by co-administration of CGRP8–37 and spantide I, a stronger reduction in the capsaicin-initiated inflammation was produced. Conclusion Our data suggest that 1) the generation of DRRs is critical for driving the release of neuropeptides antidromically from primary afferent nociceptors; 2) activation of TRPV1 receptors in primary afferent nociceptors following intradermal capsaicin injection initiates this process; 3) the released CGRP and SP participate in neurogenic inflammation.
Collapse
Affiliation(s)
- Qing Lin
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA.
| | | | | | | | | |
Collapse
|
33
|
Trevisani M, Campi B, Gatti R, André E, Materazzi S, Nicoletti P, Gazzieri D, Geppetti P. The Influence of Alpha1-Adrenoreceptors on Neuropeptide Release from Primary Sensory Neurons of the Lower Urinary Tract. Eur Urol 2007; 52:901-8. [PMID: 17240043 DOI: 10.1016/j.eururo.2007.01.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/04/2007] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Adrenergic alpha(1)-receptors agonists and antagonists have been reported to increase and reduce, respectively, neurogenic inflammatory responses mediated by capsaicin-sensitive sensory neurons. However, the precise role and localization of the alpha(1)-adrenoceptors involved in these effects are not known. METHODS We have studied in the rat whether functional alpha(1)-adrenoreceptors are expressed in primary sensory neurons, and whether they regulate neurogenic inflammation and nociceptive responses in the urinary bladder. RESULTS The alpha(1)-adrenoreceptor agonist phenylephrine (1 micromol/l) (1) mobilized intracellular Ca(2+) in cultured lumbar and sacral dorsal root ganglia neurons, (2) caused the release of substance P (SP) from terminals of capsaicin-sensitive sensory neurons from the lumbar enlargement of the dorsal spinal cord and urinary bladder, and (3) increased plasma protein extravasation in the urinary bladder. All these effects were abolished by the alpha(1)-adrenoceptor antagonist alfuzosin (10 micromol/l). Furthermore, alfuzosin (30 microg/kg, i.v.) partially, but significantly, inhibited cyclophosphamide-induced plasma protein extravasation in the rat urinary bladder. Phenylephrine-induced Ca(2+) mobilization in cultured dorsal root ganglia neurons was exaggerated by pretreating the rats in vivo with cyclophosphamide. Finally, cyclophosphamide increased c-fos expression in the rat lumbar spinal cord. Also these in vitro and in vivo effects were inhibited by pretreatment with alfuzosin. CONCLUSIONS Alpha(1)-adrenoceptors are functionally expressed by capsaicin-sensitive, nociceptive, primary sensory neurons of the rat urinary tract, and their activation may contribute to signal irritative and nociceptive responses arising from the urinary tract. It is possible that, at least, part of the beneficial effects of alpha(1)-adrenoceptor antagonists in the amelioration of storage symptoms in the lower urinary tract derives from their inhibitory effect on neurogenic inflammatory responses.
Collapse
Affiliation(s)
- Marcello Trevisani
- Interdisciplinary Centre of Excellence for the Study of Inflammation, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Meisner JG, Waldron JB, Sawynok J. Alpha1-adrenergic receptors augment P2X3 receptor-mediated nociceptive responses in the uninjured state. THE JOURNAL OF PAIN 2007; 8:556-62. [PMID: 17512257 DOI: 10.1016/j.jpain.2007.02.434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 01/19/2007] [Accepted: 02/25/2007] [Indexed: 12/18/2022]
Abstract
UNLABELLED In the present study, the adrenergic receptor (AR) subtype mediating adrenergic augmentation of P2X(3) receptor-mediated nociceptive responses on sensory nerve endings was examined by using selective AR receptor agonists and antagonists in Sprague Dawley rats in the uninjured state. Local administration of alphabeta-methyleneATP (ligand for P2X3/P2X2/3 receptors) into the plantar hind paw produced few pain behaviors when given alone in this strain of rats; combination with adrenaline (alpha1- and alpha2-AR agonist) and phenylephrine (alpha1-AR agonist) but not clonidine or UK 14,304 (alpha2-AR agonists) increased flinching behaviors. Flinching produced by noradrenaline (NA)/alphabeta-methyleneATP was suppressed by low doses of prazosin (alpha1-AR antagonist), and this reduction was selective compared with yohimbine (alpha2-AR antagonist). Prazosin also reduced flinching produced by phenylephrine/alphabeta-methyleneATP. Using thermal threshold determinations, adrenaline and phenylephrine but not clonidine or UK 14,304, mimicked the action of NA in augmenting reductions in thermal thresholds produced by alphabeta-methyleneATP. Terazosin (another alpha1-AR antagonist) inhibited hyperalgesia produced by NA/alphabeta-methyleneATP. These results provide evidence for alpha1-AR involvement in adrenergic augmentation of P2X3/P2X2/3 receptor-mediated responses on sensory nerve endings in the uninjured state in Sprague Dawley rats. PERSPECTIVE This study indicates the alpha1-adrenergic receptor subtype mediates adrenergic augmentation of the activation of sensory nerves by purinergic P2X3 receptors (respond to ATP) in the periphery. Observations are potentially relevant to chronic pain conditions in which sympathetic nerves influence sensory nerves.
Collapse
Affiliation(s)
- Jason G Meisner
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
35
|
Tugnoli V, Capone JG, Eleopra R, Quatrale R, Sensi M, Gastaldo E, Tola MR, Geppetti P. Botulinum toxin type A reduces capsaicin-evoked pain and neurogenic vasodilatation in human skin. Pain 2006; 130:76-83. [PMID: 17194546 DOI: 10.1016/j.pain.2006.10.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 10/19/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
The effect of Botulinum Toxin type A (BoNT/A) on pain and neurogenic vasodilatation induced by application to the human skin of thermal stimuli and capsaicin was evaluated in a double blind study. A capsaicin cream (0.5 ml of a 0.075%) was applied to the skin of both forearms of eighteen subjects randomly pretreated with either BoNT/A (Botox) or 0.9% saline (NS). Capsaicin was applied to a skin area either inside (protocol A) or adjacent to the BoNT/A treated area (protocol B). Pre-treatment with BoNT/A did not affect thermal-specific and thermal-pain thresholds (by quantitative sensory testing). However, capsaicin-induced pain sensation (by a visual analogue scale), flare area (by acetate sheet) and changes in cutaneous blood flow (CBF, by laser Doppler flowmetry) were reduced when capsaicin was administered inside (protocol A) the BoNT/A treated area. In Protocol B, capsaicin-induced pain was unchanged, and capsaicin-induced flare/increase in CBF were reduced only in the area treated with BoNT/A, but not in the BoNT/A untreated area. Results indicate that (i) BoNT/A reduces capsaicin-induced pain and neurogenic vasodilatation without affecting the transmission of thermal and thermal-pain modalities; (ii) reduction in capsaicin-induced pain occurs only if capsaicin is administered into the BoNT/A pretreated area; (iii) reduction in neurogenic vasodilatation by BoNT/A does not contribute to its analgesic action. BoNT/A could be tested for the treatment of conditions characterised by neurogenic inflammation and inflammatory pain.
Collapse
Affiliation(s)
- Valeria Tugnoli
- Department of Clinical Neuroscience, S.Anna University Hospital of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ren Y, Zou X, Fang L, Lin Q. Involvement of peripheral purinoceptors in sympathetic modulation of capsaicin-induced sensitization of primary afferent fibers. J Neurophysiol 2006; 96:2207-16. [PMID: 16885522 DOI: 10.1152/jn.00502.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purinoceptors are distributed in primary afferent terminals, where transmission of nociceptive information is modulated by these receptors. In the present study, we evaluated whether the activation or blockade of purinoceptors of subtypes P2X and P2Y in the periphery affected the sensitization of primary afferents induced by intradermal injection of capsaicin (CAP) and examined their role in sympathetic modulation of sensitization of primary nociceptive afferents. Afferent activity was recorded from single Adelta- and C-primary afferent fibers in the tibial nerve in anesthetized rats. Peripheral pretreatment with alpha,beta-methylene adenosine 5'-triphosphate (alpha,beta-meATP), a P2X-selective receptor agonist, could potentiate the CAP-induced enhancement of responses of Adelta- and C-primary afferent nociceptive fibers to mechanical stimuli in sympathetically intact rats. After sympathetic denervation, the enhanced responses of both Adelta- and C-fibers after CAP injection were dramatically reduced. However, this reduction could be restored when P2X receptors were activated by alpha,beta-meATP. A blockade of P2X receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid could significantly reduce the CAP-induced sensitization of Adelta- and C-fibers. Pretreatment with uridine 5'-triphosphate, a P2Y-selective receptor agonist, did not significantly affect or restore the CAP-induced sensitization of Adelta- and C-fibers under sympathetically intact or sympathectomized conditions. Our study supports the view that ATP plays a role in modulation of primary afferent nociceptor sensitivity mainly by P2X receptors. Combined with our previous study, our data also provide further evidence that the sensitization of primary afferent nociceptors is subject to sympathetic modulation by activation of P2X as well as alpha(1)-adrenergic receptors.
Collapse
Affiliation(s)
- Yong Ren
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1069, USA
| | | | | | | |
Collapse
|
37
|
Chen HS, Lei J, He X, Wang Y, Wen WW, Wei XZ, Graven-Nielsen T, You HJ, Arendt-Nielsen L. Pivotal involvement of neurogenic mechanism in subcutaneous bee venom-induced inflammation and allodynia in unanesthetized conscious rats. Exp Neurol 2006; 200:386-91. [PMID: 16624301 DOI: 10.1016/j.expneurol.2006.02.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/16/2006] [Accepted: 02/22/2006] [Indexed: 11/21/2022]
Abstract
The bee venom (BV) model is a valid inflammatory pain model in animals and has been extended to human studies using its principle protein, mellitin. After subcutaneous (s.c.) injection of BV, long-lasting spontaneous nociception followed by thermal hyperalgesia, static allodynia, and local inflammatory response (edema) can be observed in rats. We hypothesize that (1) neurogenic components may contribute to the BV-induced inflammatory response and (2) static and dynamic mechanical allodynia may exist simultaneously in the BV model. Using different approaches including sciatic nerve transection (SCT), L4-L6 dorsal rhizotomy (DRT) and local treatment of the sciatic nerve with capsaicin, we found that SCT, DRT, and local capsaicin onto the sciatic nerve produced a significant inhibition of the BV-induced increase in volume of the injected paw, with a stronger effect of the SCT and the local capsaicin treatments than that of the DRT treatment. Static and dynamic mechanical allodynia in the BV test was assessed by measuring the paw withdrawal mechanical threshold and the paw withdrawal latency before and after the BV injection, respectively. Local capsaicin onto the sciatic nerve produced a significant inhibition of the BV-induced decrease in the paw withdrawal mechanical threshold, but not the paw withdrawal latency, of the injected paw. These findings suggest that neurogenic components, via dorsal root reflex and axon reflex mechanisms, are probably involved in the maintenance and the development of the BV-induced inflammation. In addition, the capsaicin-sensitive primary afferents may play differential roles in the development of the BV-induced static and dynamic mechanical allodynia.
Collapse
Affiliation(s)
- Hui-Sheng Chen
- Department of Neurology, General Hospital of Shen-Yang Military Region, Shen Yang 110016, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Valencia-de Ita S, Lawand NB, Lin Q, Castañeda-Hernandez G, Willis WD. Role of the Na+-K+-2Cl- cotransporter in the development of capsaicin-induced neurogenic inflammation. J Neurophysiol 2006; 95:3553-61. [PMID: 16709721 DOI: 10.1152/jn.01091.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent behavioral and electrophysiological studies have attributed an important role to dorsal root reflexes (DRRs) in the initiation and development of neurogenic inflammation produced by intradermal capsaicin (CAP). The DRRs can occur in peptidergic fibers, resulting in peripheral release of neuromediators that produce vasodilation, plasma extravasation and subsequently hyperalgesia and allodynia. In this study, we have evaluated the effect of spinal administration of bumetanide (a blocker of the Na+-K+-2Cl- cotransporter, NKCC) on DRR activity, changes in cutaneous blood flow (vasodilation), hindpaw edema, mechanical allodynia, and hyperalgesia induced by intradermal injection of 1% CAP in Sprague-Dawley rats. Vasodilation was monitored using laser Doppler flowmetry, neurogenic edema was evaluated by measurements of hindpaw volume, and secondary mechanical allodynia and hyperalesia were tested using von Frey filaments (10 and 200 mN) applied to the plantar surface of the paw. Changes in the blood flow were blocked significantly by intrathecal bumetanide at 10 and 100 microM in both pre- and posttreatment studies. Spinal bumetanide at 10 and 100 microM blocked neurogenic edema when it was administered before CAP injection, but only bumetanide at 100 microM administered after CAP injection reduced the paw edema significantly. Furthermore, the administration of bumetanide onto the spinal cord reduced the increment in DRR activity produced by CAP. Finally, both secondary mechanical allodynia and hyperalesia were reduced by bumetanide at 1, 10, and 100 microM. Taken together these results suggest that NKCC is involved in the increases in DRR activity, neurogenic inflammation and hyperalgesia and allodynia induced by intradermal CAP.
Collapse
Affiliation(s)
- Sandra Valencia-de Ita
- Seccion Externa de Farmacologia, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico, DF Mexico
| | | | | | | | | |
Collapse
|
39
|
Scanlon GC, Wallace MS, Ispirescu JS, Schulteis G. Intradermal Capsaicin Causes Dose-Dependent Pain, Allodynia, and Hyperalgesia in Humans. J Investig Med 2006; 54:238-44. [PMID: 16984796 DOI: 10.2310/6650.2006.05046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Intradermal capsaicin is a human pain model that produces reliable pain and sensitization. This model facilitates controlled testing of analgesic efficacy via a crossover design while minimizing confounding variables in clinical pain states and retaining sufficient power with small samples. METHODS To determine the lowest dose of capsaicin that produces consistent neurosensory measures, we administered 0.1, 1, 10, or 100 microg to healthy volunteers in a blinded manner (N = 19). Pain scores were recorded at 0, 5, 10, 15, and 60 minutes on a visual analog scale from 0 to 100. Areas and intensities of mechanical allodynia (foam brush stimulus) and pinprick hyperalgesia (von Frey test) were quantified at 15 and 60 minutes, as were flare areas. RESULTS Capsaicin produced dose-dependent increases in spontaneous pain (p = .013), the area and intensity of mechanical allodynia (p = .006 and p < .001, respectively), the area and intensity of pinprick hyperalgesia (p = .010 and p = .014, respectively), and the flare area (p = .010). The 10 microg dose produced greater spontaneous pain than the 1 microg dose (p = .017). The 100 microg dose produced greater spontaneous pain than the 10 microg, but the difference was not statistically significant. CONCLUSION The 10 and 100 microg capsaicin doses produced robust pain measures across a range of modalities, and lower doses produced minimal effects. Whereas most studies use 100 microg, using a lower dose is reasonable and may facilitate detection of subtle analgesic effects--particularly with nonopioid analgesics--and drugs can be tested in lower doses, minimizing adverse side effects.
Collapse
Affiliation(s)
- Graham C Scanlon
- Department of Anesthesiology and the Center for Pain and Palliative Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093-0924, USA
| | | | | | | |
Collapse
|
40
|
Sawynok J, Reid A, Meisner J. Pain behaviors produced by capsaicin: influence of inflammatory mediators and nerve injury. THE JOURNAL OF PAIN 2006; 7:134-41. [PMID: 16459279 DOI: 10.1016/j.jpain.2005.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/13/2005] [Accepted: 09/19/2005] [Indexed: 01/26/2023]
Abstract
UNLABELLED The present study was undertaken to characterize spontaneous (ie, nonevoked) pain behaviors (flinching, biting/licking) produced by local injections of capsaicin into the rat hindpaw as a model of chemogenic pain, and to determine effects of inflammatory mediators and nerve injury on such behaviors. Capsaicin antagonists are a potential class of novel topical analgesics, and this model may be of value for preclinical screening of novel compounds. Local injections of capsaicin (0.1-30 microg) into the hindpaw produced flinching and biting/licking behaviors over 5 min, and these were reduced by capsazepine, a competitive antagonist for capsaicin at the TRPV1 receptor. Coadministration of noradrenaline (NA), prostaglandin E(2) (PGE(2)), and 5-hydroxytryptamine (5-HT) augmented capsaicin-evoked responses primarily by extending the duration of behaviors. Partial sciatic nerve ligation decreased flinching produced by capsaicin alone, by capsaicin in combination with each of NA, PGE(2), and 5-HT, and by formalin. Tibial nerve injury also reduced capsaicin-evoked flinching, and responses to formalin, but spinal nerve ligation did not affect either. These results indicate that (1) spontaneous pain behaviors occur as a result of TRPV1 receptor activation with a different time course than evoked responses, (2) inflammatory mediators augment capsaicin-evoked pain behaviors, and (3) various forms of nerve injury produce different effects on capsaicin-evoked pain behaviors. PERSPECTIVE The VR1 receptor is a potential target for development of novel topical analgesics. This study characterized pain behaviors produced by local injections of capsaicin in the presence of inflammatory mediators and following various forms of nerve injury. Results are of interest for the preclinical screening of novel VR1 receptor antagonists.
Collapse
Affiliation(s)
- Jana Sawynok
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | |
Collapse
|
41
|
Shepherd AJ, Beresford LJ, Bell EB, Miyan JA. Mobilisation of specific T cells from lymph nodes in contact sensitivity requires substance P. J Neuroimmunol 2005; 164:115-23. [PMID: 15899523 DOI: 10.1016/j.jneuroim.2005.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 04/18/2005] [Indexed: 12/11/2022]
Abstract
Capsaicin-mediated depletion of neuropeptides in the skin was previously shown to abolish a dinitrocholorobenzene (DNCB)-induced contact sensitivity (CS) response. To understand the basis for this disruption, we explored whether nerve fibres innervating the draining lymph node (LN) could be involved. As expected, removal of the draining LN after DNCB sensitisation abolished the CS response. Furthermore, the CS response could be abolished by destroying the nerve fibres in the draining LN and could be restored by providing the LN with the neuropeptide substance P. The size of the CS response restored by substance P was dose dependent. The response was also inhibited by exposing the lymph node to a neurokinin-1 receptor antagonist which blocks binding of substance P. The results suggest that an afferent signal from the skin via the sympathetic arm of the central nervous system evokes an efferent signal to the LN which combines to regulate the CS response. The efferent signal may serve to control or release from the LN primed effector lymphocytes into the circulation.
Collapse
Affiliation(s)
- Andrew J Shepherd
- Faculty of Life Sciences, Division of Neurosciences, The University of Manchester, Jackson's Mill, Sackville Street, PO Box 88 Manchester, M60 1QD, UK
| | | | | | | |
Collapse
|
42
|
Cassuto J, Tarnow P, Yregård L, Lindblom L, Räntfors J. Adrenoceptor subtypes in the control of burn-induced plasma extravasation. Burns 2005; 31:123-9. [PMID: 15683681 DOI: 10.1016/j.burns.2004.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2004] [Indexed: 12/14/2022]
Abstract
Burn trauma is known to induce a significant rise in circulating catecholamine levels and despite catecholamines being potent endogenous vasoactive agents with known actions on microvascular permeability, their effect on burn edema has been poorly investigated. The present study in rats investigated the role and importance of adrenergic receptor subtypes in the regulation of basal capillary permeability in normal skin and hyperpermeability in partial- and full-thickness skin burns. Edema was quantified by spectrophotometric analysis of extravasated Evans blue-albumin. Evaluation was based on intravenous administration of the following adrenergic agonists and antagonists: l-phenylephrine (alpha(1)-receptor agonist), prazosin (alpha(1)-receptor antagonist), clonidine (alpha(2)-receptor agonist), yohimbine (alpha(2)-receptor antagonist), prenalterol (beta(1)-receptor agonist), terbutaline (beta(2)-receptor agonist), or propranolol (beta(1)- and beta(2)-receptor antagonist). Results showed increased capillary permeability in normal skin following administration of terbutaline (p<0.01) and yohimbine (p<0.01). In partial-thickness burns, clonidine significantly (p<0.05) reduced edema formation, whereas in full-thickness burns edema was significantly reduced by clonidine (p<0.05) and l-phenylephrine (p<0.01). In conclusion, the inhibition of postburn edema induced by stimulation of alpha(1)-receptors (l-phylephrine) and alpha(2)-receptors (clonidine) could be secondary to increased vascular resistance and reduced tissue perfusion pressure and/or suppressed inflammatory reaction in the burn injury. In the treatment of burn patients, clonidine is particularly interesting since the agent has previously been proven to induce potent analgesia in thermally injured.
Collapse
Affiliation(s)
- Jean Cassuto
- Department of Anaesthesia and Intensive Care and Institution of Surgical Specialties, Sahlgrenska University Hospital, Mölndal, Sweden.
| | | | | | | | | |
Collapse
|
43
|
Ren Y, Zou X, Fang L, Lin Q. Sympathetic modulation of activity in Adelta- and C-primary nociceptive afferents after intradermal injection of capsaicin in rats. J Neurophysiol 2004; 93:365-77. [PMID: 15371497 DOI: 10.1152/jn.00804.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropathic and inflammatory pain can be modulated by the sympathetic nervous system. In some pain models, sympathetic postganglionic efferents are involved in the modulation of nociceptive transmission in the periphery. The purpose of this study is to examine the sensitization of Adelta- and C-primary afferent nociceptors induced by intradermal injection of capsaicin (CAP) to see whether the presence of sympathetic efferents is essential for the sensitization. Single primary afferent discharges were recorded from the tibial nerve after the fiber types were identified by conduction velocity in anesthetized rats. An enhanced response of some Adelta- and most C-primary afferent fibers to mechanical stimuli was seen in sham-sympathectomized rats after CAP (1%, 15 mul) injection, but the enhanced responses of both Adelta- and C-fibers were reduced after sympathetic postganglionic efferents were removed. Peripheral pretreatment with norepinephrine by intraarterial injection could restore and prolong the CAP-induced enhancement of responses under sympathectomized conditions. In sympathetically intact rats, pretreatment with an alpha(1)-adrenergic receptor antagonist (terazosin) blocked completely the enhanced responses of C-fibers after CAP injection in sympathetically intact rats without significantly affecting the enhanced responses of Adelta-fibers. In contrast, a blockade of alpha(2)-adrenergic receptors by yohimbine only slightly reduced the CAP-evoked enhancement of responses. We conclude that the presence of sympathetic efferents is essential for the CAP-induced sensitization of Adelta- and C-primary afferent fibers to mechanical stimuli and that alpha(1)-adrenergic receptors play a major role in the sympathetic modulation of C-nociceptor sensitivity in the periphery.
Collapse
Affiliation(s)
- Yong Ren
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1069, USA
| | | | | | | |
Collapse
|
44
|
Li KC, Chen J. Altered pain-related behaviors and spinal neuronal responses produced by s.c. injection of melittin in rats. Neuroscience 2004; 126:753-62. [PMID: 15183523 DOI: 10.1016/j.neuroscience.2004.03.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2004] [Indexed: 01/02/2023]
Abstract
Recently, we have reported that following s.c. injection of a solution containing the whole bee-venom (BV; Apis mellifera), into one hind paw of a rat, the experimentally produced honeybee's sting, the animal shows altered pain-related behaviors and inflammation relevant to pathological pain state. To see whether melittin, the major (over 50%) toxic component of the BV, is responsible for the above abnormal pain behavioral changes, the present study was designed to investigate the effects of s.c. melittin on either nociceptive behaviors in conscious rats or spinal dorsal horn neuronal responses in anesthetized rats. In the behavioral surveys, s.c. injection of three doses of both melittin (5, 25 and 50 microg) and BV (10, 50 and 100 microg) into the posterior surface of one hind paw of rats produced an immediate tonic nociceptive response displaying as persistent spontaneous paw flinching reflex. Similar to the BV test, the melittin response was also monophasic and dose-dependent in terms of both intensity and time course. As an accompanied consequence, both heat and mechanical hypersensitivity (hyperalgesia and allodynia) and inflammatory responses (paw swelling and plasma extravasation) were induced by s.c. melittin injections. In the electrophysiological recordings, s.c. injection of the same three doses of melittin into the cutaneous receptive field produced an immediate, dose-dependent increase in spontaneous spike discharges of spinal dorsal horn wide-dynamic-range (WDR) neurons which are believed to be responsible for the spinally-organized nociceptive flexion reflex. The melittin-induced ongoing spike responses are similar to the behavioral flinching reflex in terms of both duration and frequency. Furthermore, the responsiveness of the WDR neurons to both heat (42 degrees C, 45 degrees C, 47 degrees C and 49 degrees C) and mechanical (brush, pressure and pinch) stimuli was significantly enhanced by s.c. injection of melittin shown as a leftward shift of the stimulus-response functional curves. Taken together, the present results suggest that melittin, the major toxin of the whole BV, is likely to be responsible for production of the long-term spinal neuronal changes as well as persistent spontaneous nociception, heat/mechanical hypersensitivity and inflammatory responses that are produced by experimental honeybee's sting.
Collapse
Affiliation(s)
- K-C Li
- Pain Research Center, Institute of Neuroscience, Fourth Military Medical University, 17 West Chang-le Road, Xi'an 710032, P.R. People's Republic of China
| | | |
Collapse
|
45
|
Wang J, Ren Y, Zou X, Fang L, Willis WD, Lin Q. Sympathetic influence on capsaicin-evoked enhancement of dorsal root reflexes in rats. J Neurophysiol 2004; 92:2017-26. [PMID: 15163667 DOI: 10.1152/jn.00145.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A series of experiments by our group suggest that the initiation and development of neurogenic inflammation in rats are mainly mediated by dorsal root reflexes (DRRs), which are conducted centrifugally from the spinal dorsal horn in primary afferent nocieptors. In this study, DRRs were recorded in anesthetized rats from single afferent fibers in the proximal ends of cut dorsal root filaments at the L4-L6 level and tested for responses to intradermal injection of capsaicin. Sympathectomy combined with pharmacological manipulations were employed to determine if the capsaicin-evoked enhancement of DRRs was subject to sympathetic modulation. DRRs could be recorded from both myelinated (Abeta and Adelta) and unmyelinated (C) afferent fibers. After capsaicin was injected intradermally into the plantar foot, a significant enhancement of DRRs was seen in C- and Adelta-fibers but not in Abeta-fibers. This enhancement of DRRs evoked by capsaicin injection was almost completely prevented by sympathectomy. However, if peripheral alpha1-adrenoceptors were activated by intra-arterial injection of phenylephrine, the enhancement of DRRs evoked by capsaicin could be restored, whereas no such restoration was seen following pretreatment with an alpha2-adrenoceptor agonist, UK14,304. Under sympathetically intact conditions, the enhanced DRRs following capsaicin injection could be blocked by administration of terazosin, an alpha1-adrenoceptor antagonist, but not by administration of yohimbine, an alpha2-adrenoceptor antagonist. These results provide further evidence that the DRR-mediated neurogenic inflammation depends in part on intact sympathetic efferents acting on peripheral alpha1-adrenoceptors, which augment the sensitization of primary afferent nociceptors induced by capsaicin injection, helping trigger DRRs that produce vasodilation.
Collapse
Affiliation(s)
- Jing Wang
- Dept. of Anatomy and Neuroscience, The Univ. of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1069, USA
| | | | | | | | | | | |
Collapse
|
46
|
Lin Q, Zou X, Ren Y, Wang J, Fang L, Willis WD. Involvement of peripheral neuropeptide y receptors in sympathetic modulation of acute cutaneous flare induced by intradermal capsaicin. Neuroscience 2004; 123:337-47. [PMID: 14698742 DOI: 10.1016/j.neuroscience.2003.09.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In a recent study, we have demonstrated that the dorsal root reflex (DRR)-mediated acute cutaneous neurogenic inflammation following intradermal injection of capsaicin (CAP) is sympathetically dependent and subject to modulation by peripheral alpha(1)-adrenoceptors. Postganglionic sympathetic neurons contain not only adrenergic neurotransmitters, but also non-adrenergic substances, including neuropeptide Y (NPY). In this study, we examined if peripheral NPY receptors participate in the flare following CAP injection. Different NPY receptor subtypes were studied by using relatively specific agonists and antagonists for the Y(1) and Y(2) subtypes. Changes in cutaneous blood flow on the plantar surface of the foot were measured using a laser Doppler flowmeter. Following CAP injection, cutaneous flare spread more than 20 mm away from the site of CAP injection. Removal of the postganglionic sympathetic nerves by surgical sympathectomy reduced dramatically the CAP-evoked flare. If the foot of sympathectomized rats was pretreated with either NPY or Y(2) receptor agonists by intra-arterial injection, the spread of flare induced by CAP injection could be restored and prolonged. However, if the spinal cord was pretreated with a GABA(A) receptor antagonist, bicuculline, to prevent DRRs, NPY or an Y(2) receptor agonist no longer restored the CAP-evoked flare. A Y(1) receptor agonist did not affect the CAP-evoked flare in sympathectomized rats. In sympathetically intact rats, blockade of either peripheral NPY or Y(2) receptors with [D-Trp(32)]-NPY or BIIE0246 markedly reduced the flare induced by CAP injection, whereas blockade of peripheral Y(1) receptors by BIBP3226 did not obviously affect the flare. It is suggested that NPY is co-released with NE from the postganglionic sympathetic terminals to activate NPY Y(2) and alpha(1) receptors following CAP injection. Both substances are involved, at least in part, in modulation of the responses of CAP sensitive afferents thereby affecting their ability to evoke the release of inflammatory agents from primary afferents.
Collapse
Affiliation(s)
- Q Lin
- Department of Anatomy and Neuroscience, Marine Biomedical Institute, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Beresford L, Orange O, Bell EB, Miyan JA. Nerve fibres are required to evoke a contact sensitivity response in mice. Immunology 2004; 111:118-25. [PMID: 14678206 PMCID: PMC1782395 DOI: 10.1111/j.1365-2567.2004.01786.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Previous work has indicated that the dermis and epidermis of skin contains abundant nerve fibres closely associated with Langerhans' cells. We have investigated whether these nerve endings are necessary for inducing and evoking a contact sensitivity (CS) response. Topical application of a general or a peptide (calcitonin gene-related peptide and substance P)-specific neurotoxin was employed to destroy the nerve fibres at skin sites subsequently used to induce or evoke the CS response. Elimination of nerve fibres abolished both induction and effector stages of the specific CS response. Denervation did not destroy the local Langerhans' cells, which were observed in increased numbers, or prevent them from migrating to lymph nodes. The local CS response was also abolished by systemic deletion of capsaicin-sensitive nerve fibres, suggesting that the loss of response was not non-specific but associated with the loss of specific nerve fibres. The results indicate that peptidergic nerve fibres are required to elicit a CS response and may be vital to the normal function of the immune system.
Collapse
Affiliation(s)
- Lorna Beresford
- Department of Biomolecular Sciences, University of Manchester Institute of Science & Technology, Manchester, UK
| | | | | | | |
Collapse
|