1
|
Qiu H, Miraucourt LS, Petitjean H, Xu M, Theriault C, Davidova A, Soubeyre V, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Levesque-Damphousse P, Estall JL, Bourinet E, Sharif-Naeini R. Parvalbumin gates chronic pain through the modulation of firing patterns in inhibitory neurons. Proc Natl Acad Sci U S A 2024; 121:e2403777121. [PMID: 38916998 PMCID: PMC11228497 DOI: 10.1073/pnas.2403777121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.
Collapse
Affiliation(s)
- Haoyi Qiu
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Loïs S. Miraucourt
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Hugues Petitjean
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Mengyi Xu
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Catherine Theriault
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Albena Davidova
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Vanessa Soubeyre
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier34000, France
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | - Nicolas Lonjon
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | - Florence Vachiery-Lahaye
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | - Luc Bauchet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier34000, France
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | | | - Jennifer L. Estall
- Institut de Recherches Cliniques de Montréal, Montreal, QCH2W 1R7, Canada
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier34000, France
| | - Reza Sharif-Naeini
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| |
Collapse
|
2
|
Yi Y, Zhang Y, Song Y, Lu Y. Treadmill Running Regulates Adult Neurogenesis, Spatial and Non-spatial Learning, Parvalbumin Neuron Activity by ErbB4 Signaling. Cell Mol Neurobiol 2024; 44:17. [PMID: 38285192 DOI: 10.1007/s10571-023-01439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 01/30/2024]
Abstract
Exercise can promote adult neurogenesis and improve symptoms associated with schizophrenia and other mental disorders via parvalbumin (PV)-positive GABAergic interneurons in the dentate gyrus ErbB4 is the receptor of neurotrophic factor neuregulin 1, expressed mostly in PV-positive interneurons. Whether ErbB4 in PV-positive neurons mediates the beneficial effect of exercise and adult neurogenesis on mental disorder needs to be further investigation. Here, we first conducted a four-week study on the effects of AG1478, an ErbB4 inhibitor, on memory and neurogenesis. AG1478 significantly impaired the performance in several memory tasks, including the T-maze, Morris water maze, and contextual fear conditioning, downregulated the expression of total ErbB4 (T-ErbB4) and the ratio of phosphate-ErbB4 (p-ErbB4) to T-ErbB4, and associated with neurogenesis impairment. Interestingly, AG1478 also appeared to decrease intracellular calcium levels in PV neurons, which could be reversed by exercise. These results suggest exercise may regulate adult neurogenesis and PV neuron activity through ErbB4 signaling. Overall, these findings provide further evidence of the importance of exercise for neurogenesis and suggest that targeting ErbB4 may be a promising strategy for improving memory and other cognitive functions in individuals with mental disorders.
Collapse
Affiliation(s)
- Yandong Yi
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanlong Song
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Zhang Y, Chu G, Leng Y, Lin X, Zhou H, Lu Y, Liu B. Parvalbumin-positive neurons in the medial vestibular nucleus contribute to vestibular compensation through commissural inhibition. Front Cell Neurosci 2023; 17:1260243. [PMID: 38026699 PMCID: PMC10663245 DOI: 10.3389/fncel.2023.1260243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background The commissural inhibitory system between the bilateral medial vestibular nucleus (MVN) plays a key role in vestibular compensation. Calcium-binding protein parvalbumin (PV) is expressed in MVN GABAergic neurons. Whether these neurons are involved in vestibular compensation is still unknown. Methods After unilateral labyrinthectomy (UL), we measured the activity of MVN PV neurons by in vivo calcium imaging, and observed the projection of MVN PV neurons by retrograde neural tracing. After regulating PV neurons' activity by chemogenetic technique, the effects on vestibular compensation were evaluated by behavior analysis. Results We found PV expression and the activity of PV neurons in contralateral but not ipsilateral MVN increased 6 h following UL. ErbB4 is required to maintain GABA release for PV neurons, conditional knockout ErbB4 from PV neurons promoted vestibular compensation. Further investigation showed that vestibular compensation could be promoted by chemogenetic inhibition of contralateral MVN or activation of ipsilateral MVN PV neurons. Additional neural tracing study revealed that considerable MVN PV neurons were projecting to the opposite side of MVN, and that activating the ipsilateral MVN PV neurons projecting to contralateral MVN can promote vestibular compensation. Conclusion Contralateral MVN PV neuron activation after UL is detrimental to vestibular compensation, and rebalancing bilateral MVN PV neuron activity can promote vestibular compensation, via commissural inhibition from the ipsilateral MVN PV neurons. Our findings provide a new understanding of vestibular compensation at the neural circuitry level and a novel potential therapeutic target for vestibular disorders.
Collapse
Affiliation(s)
- Yuejin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangpin Chu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangming Leng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueling Lin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Liu L, Zhang Y, Men S, Li X, Hou ST, Ju J. Elimination of perineuronal nets in CA1 disrupts GABA release and long-term contextual fear memory retention. Hippocampus 2023; 33:862-871. [PMID: 36709413 DOI: 10.1002/hipo.23503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Perineuronal nets (PNNs) which mostly surround the parvalbumin (PV) neurons, have been shown to play critical roles in neural plasticity. Recently, PNNs have been shown to regulate fear-associated memory, but the molecular mechanism is still unclear. In this study, we found that removal of PNNs in vivo using chondroitinase ABC (ChABC) injection resulted in reduced firing rate of PV neurons and decreased inhibitory synaptic transmission in both PV neurons and excitatory neurons in the CA1 hippocampus. Interestingly, altered synaptic transmission appears to be mediated by presynaptic changes. Furthermore, ChABC treatment disrupts long-term contextual fear memory retention. These results suggest PNNs might alter fear memory by reducing the presynaptic GABA release.
Collapse
Affiliation(s)
- Luping Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yujie Zhang
- The Pediatric Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Siqi Men
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xuanyi Li
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Sheng-Tao Hou
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ju
- Brain Research Centre and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
What Is Parvalbumin for? Biomolecules 2022; 12:biom12050656. [PMID: 35625584 PMCID: PMC9138604 DOI: 10.3390/biom12050656] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
Parvalbumin (PA) is a small, acidic, mostly cytosolic Ca2+-binding protein of the EF-hand superfamily. Structural and physical properties of PA are well studied but recently two highly conserved structural motifs consisting of three amino acids each (clusters I and II), which contribute to the hydrophobic core of the EF-hand domains, have been revealed. Despite several decades of studies, physiological functions of PA are still poorly known. Since no target proteins have been revealed for PA so far, it is believed that PA acts as a slow calcium buffer. Numerous experiments on various muscle systems have shown that PA accelerates the relaxation of fast skeletal muscles. It has been found that oxidation of PA by reactive oxygen species (ROS) is conformation-dependent and one more physiological function of PA in fast muscles could be a protection of these cells from ROS. PA is thought to regulate calcium-dependent metabolic and electric processes within the population of gamma-aminobutyric acid (GABA) neurons. Genetic elimination of PA results in changes in GABAergic synaptic transmission. Mammalian oncomodulin (OM), the β isoform of PA, is expressed mostly in cochlear outer hair cells and in vestibular hair cells. OM knockout mice lose their hearing after 3–4 months. It was suggested that, in sensory cells, OM maintains auditory function, most likely affecting outer hair cells’ motility mechanisms.
Collapse
|
6
|
Neklyudova A, Smirnov K, Rebreikina A, Martynova O, Sysoeva O. Electrophysiological and Behavioral Evidence for Hyper- and Hyposensitivity in Rare Genetic Syndromes Associated with Autism. Genes (Basel) 2022; 13:671. [PMID: 35456477 PMCID: PMC9027402 DOI: 10.3390/genes13040671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
Our study reviewed abnormalities in spontaneous, as well as event-related, brain activity in syndromes with a known genetic underpinning that are associated with autistic symptomatology. Based on behavioral and neurophysiological evidence, we tentatively subdivided the syndromes on primarily hyper-sensitive (Fragile X, Angelman) and hypo-sensitive (Phelan-McDermid, Rett, Tuberous Sclerosis, Neurofibromatosis 1), pointing to the way of segregation of heterogeneous idiopathic ASD, that includes both hyper-sensitive and hypo-sensitive individuals. This segmentation links abnormalities in different genes, such as FMR1, UBE3A, GABRB3, GABRA5, GABRG3, SHANK3, MECP2, TSC1, TSC2, and NF1, that are causative to the above-mentioned syndromes and associated with synaptic transmission and cell growth, as well as with translational and transcriptional regulation and with sensory sensitivity. Excitation/inhibition imbalance related to GABAergic signaling, and the interplay of tonic and phasic inhibition in different brain regions might underlie this relationship. However, more research is needed. As most genetic syndromes are very rare, future investigations in this field will benefit from multi-site collaboration with a common protocol for electrophysiological and event-related potential (EEG/ERP) research that should include an investigation into all modalities and stages of sensory processing, as well as potential biomarkers of GABAergic signaling (such as 40-Hz ASSR).
Collapse
Affiliation(s)
- Anastasia Neklyudova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Kirill Smirnov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Anna Rebreikina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
- Sirius Center for Cognitive Research, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga Martynova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Olga Sysoeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
- Sirius Center for Cognitive Research, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
7
|
Zhang C, Wang M, Lin S, Xie R. Calretinin-Expressing Synapses Show Improved Synaptic Efficacy with Reduced Asynchronous Release during High-Rate Activity. J Neurosci 2022; 42:2729-2742. [PMID: 35165172 PMCID: PMC8973423 DOI: 10.1523/jneurosci.1773-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Calretinin (CR) is a major calcium binding protein widely expressed in the CNS. However, its synaptic function remains largely elusive. At the auditory synapse of the endbulb of Held, CR is selectively expressed in different subtypes. Combining electrophysiology with immunohistochemistry, we investigated the synaptic transmission at the endbulb of Held synapses with and without endogenous CR expression in mature CBA/CAJ mice of either sex. Two synapse subtypes showed similar basal synaptic transmission, except a larger quantal size in CR-expressing synapses. During high-rate stimulus trains, CR-expressing synapses showed improved synaptic efficacy with significantly less depression and lower asynchronous release, suggesting more efficient exocytosis than non-CR-expressing synapses. Conversely, CR-expressing synapses had a smaller readily releasable pool size, which was countered by higher release probability and faster synaptic recovery to support sustained release during high-rate activity. EGTA-AM treatment did not change the synaptic transmission of CR-expressing synapses, but reduced synaptic depression and decreased asynchronous release at non-CR-expressing synapses, suggesting that CR helps to minimize calcium accumulation during high-rate activity. Both synapses express parvalbumin, another calcium-binding protein with slower kinetics and higher affinity than CR, but not calbindin. Furthermore, CR-expressing synapses only express the fast isoform of vesicular glutamate transporter 1 (VGluT1), while most non-CR-expressing synapses express both VGluT1 and the slower VGluT2, which may underlie their lagged synaptic recovery. The findings suggest that, paired with associated synaptic machinery, differential CR expression regulates synaptic efficacy among different subtypes of auditory nerve synapses to accomplish distinctive physiological functions in transmitting auditory information at high rates.SIGNIFICANCE STATEMENT CR is a major calcium-binding protein in the brain. It remains unclear how endogenous CR impacts synaptic transmission. We investigated the question at the large endbulb of Held synapses with selective CR expression and found that CR-expressing and non-CR-expressing synapses had similar release properties under basal synaptic transmission. During high-rate activity, however, CR-expressing synapses showed improved synaptic efficacy with less depression, lower asynchronous release, and faster recovery. Furthermore, CR-expressing synapses use exclusive VGluT1 to refill synaptic vesicles, while non-CR-expressing synapses use both VGluT1 and the slower isoform of VGluT2. Our findings suggest that CR may play significant roles in promoting synaptic efficacy during high-rate activity, and selective CR expression can differentially impact signal processing among different synapses.
Collapse
Affiliation(s)
- Chuangeng Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio 43210
| | - Meijian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio 43210
| | - Shengyin Lin
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio 43210
| | - Ruili Xie
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
8
|
Yu S, Park M, Kang J, Lee E, Jung J, Kim T. Aberrant Gamma-Band Oscillations in Mice with Vitamin D Deficiency: Implications on Schizophrenia and Its Cognitive Symptoms. J Pers Med 2022; 12:jpm12020318. [PMID: 35207806 PMCID: PMC8879176 DOI: 10.3390/jpm12020318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D plays an essential role in cognitive functions as well as regulating calcium homeostasis and the immune system. Many epidemiological studies have also shown the close relationship between vitamin D deficiency (VDD) and the risk of schizophrenia. Cortical gamma-band oscillations (GBO) are associated with cognitive functions, such as attention and memory. Patients with schizophrenia show abnormal GBO with increased spontaneous GBO and decreased evoked GBO. However, the direct effect of VDD on GBO remains unknown. Parvalbumin interneurons, which predominantly contribute to the generation of GBO, are surrounded by perineuronal nets (PNN). We sought to investigate the associations among VDD, PNN, and GBO. Here, we injected a viral vector (AAV5-DIO-ChR2-eYFP) into the basal forebrain stereotaxically and implanted electrodes for electroencephalogram (EEG). At baseline, the evoked and spontaneous EEG power at the gamma frequency band was measured in 4-month-old male PV-Cre mice. After six and twenty weeks of vitamin D deficient food administration, the power of GBO was measured in the VDD condition. Next, we injected the chondroitinase ABC (ChABC) enzyme into the frontal cortex to eliminate PNN. We found that the VDD group showed decreased power of both optogenetically- and auditory-evoked GBO, whereas the spontaneous GBO increased. Enzymatic digestion of PNN showed similar changes in GBO. Taken together, we suggest that VDD could result in decreased PNN and, consequently, increase the spontaneous GBO and decrease the evoked GBO, reminiscent of the aberrant GBO in schizophrenia. These results show that VDD might increase the risk of schizophrenia and aggravate the cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | - Tae Kim
- Correspondence: ; Tel.: +82-62-715-5363
| |
Collapse
|
9
|
Godoy LD, Prizon T, Rossignoli MT, Leite JP, Liberato JL. Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Front Integr Neurosci 2022; 16:765324. [PMID: 35250498 PMCID: PMC8891758 DOI: 10.3389/fnint.2022.765324] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin is a calcium-binding protein present in inhibitory interneurons that play an essential role in regulating many physiological processes, such as intracellular signaling and synaptic transmission. Changes in parvalbumin expression are deeply related to epilepsy, which is considered one of the most disabling neuropathologies. Epilepsy is a complex multi-factor group of disorders characterized by periods of hypersynchronous activity and hyperexcitability within brain networks. In this scenario, inhibitory neurotransmission dysfunction in modulating excitatory transmission related to the loss of subsets of parvalbumin-expressing inhibitory interneuron may have a prominent role in disrupted excitability. Some studies also reported that parvalbumin-positive interneurons altered function might contribute to psychiatric comorbidities associated with epilepsy, such as depression, anxiety, and psychosis. Understanding the epileptogenic process and comorbidities associated with epilepsy have significantly advanced through preclinical and clinical investigation. In this review, evidence from parvalbumin altered function in epilepsy and associated psychiatric comorbidities were explored with a translational perspective. Some advances in potential therapeutic interventions are highlighted, from current antiepileptic and neuroprotective drugs to cutting edge modulation of parvalbumin subpopulations using optogenetics, designer receptors exclusively activated by designer drugs (DREADD) techniques, transcranial magnetic stimulation, genome engineering, and cell grafting. Creating new perspectives on mechanisms and therapeutic strategies is valuable for understanding the pathophysiology of epilepsy and its psychiatric comorbidities and improving efficiency in clinical intervention.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- João Pereira Leite,
| | - José Luiz Liberato
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: José Luiz Liberato,
| |
Collapse
|
10
|
McMeekin LJ, Joyce KL, Jenkins LM, Bohannon BM, Patel KD, Bohannon AS, Patel A, Fox SN, Simmons MS, Day JJ, Kralli A, Crossman DK, Cowell RM. Estrogen-related Receptor Alpha (ERRα) is Required for PGC-1α-dependent Gene Expression in the Mouse Brain. Neuroscience 2021; 479:70-90. [PMID: 34648866 PMCID: PMC9124582 DOI: 10.1016/j.neuroscience.2021.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
Deficiency in peroxisome proliferator-activated receptor gamma coactivator 1-alpha. (PGC-1α) expression or function is implicated in numerous neurological and psychiatric disorders. PGC-1α is required for the expression of genes involved in synchronous neurotransmitter release, axonal integrity, and metabolism, especially in parvalbumin-positive interneurons. As a transcriptional coactivator, PGC-1α requires transcription factors to specify cell-type-specific gene programs; while much is known about these factors in peripheral tissues, it is unclear if PGC-1α utilizes these same factors in neurons. Here, we identified putative transcription factors controlling PGC-1α-dependent gene expression in the brain using bioinformatics and then validated the role of the top candidate in a knockout mouse model. We transcriptionally profiled cells overexpressing PGC-1α and searched for over-represented binding motifs in the promoters of upregulated genes. Binding sites of the estrogen-related receptor (ERR) family of transcription factors were enriched, and blockade of ERRα attenuated PGC-1α-mediated induction of mitochondrial and synaptic genes in cell culture. Localization in the mouse brain revealed enrichment of ERRα expression in parvalbumin-expressing neurons with tight correlation of expression with PGC-1α across brain regions. In ERRα null mice, PGC-1α-dependent genes were reduced in multiple regions, including neocortex, hippocampus, and cerebellum, though not to the extent observed in PGC-1α null mice. Behavioral assessment revealed ambulatory hyperactivity in response to amphetamine and impairments in sensorimotor gating without the overt motor impairment characteristic of PGC-1α null mice. These data suggest that ERRα is required for normal levels of expression of PGC-1α-dependent genes in neurons but that additional factors may be involved in their regulation.
Collapse
Affiliation(s)
- L J McMeekin
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - K L Joyce
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - L M Jenkins
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - B M Bohannon
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - K D Patel
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA
| | - A S Bohannon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - A Patel
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - S N Fox
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - M S Simmons
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - J J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - A Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - R M Cowell
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Correlation of Electrophysiological and Gene Transcriptional Dysfunctions in Single Cortical Parvalbumin Neurons After Noise Trauma. Neuroscience 2021; 482:87-99. [PMID: 34902495 DOI: 10.1016/j.neuroscience.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022]
Abstract
Parvalbumin-expressing (PV+) interneurons in the sensory cortex form powerful inhibitory synapses on the perisomatic compartments and axon initial segments of excitatory principal neurons (PNs), and perform diverse computational functions. Impaired PV+ interneuron functions have been reported in neural developmental and degenerative disorders. Expression of the unique marker parvalbumin (PV) is often used as a proxy of PV+ interneuron functions. However, it is not entirely clear how PV expression is correlated with PV+ interneuron properties such as spike firing and synaptic transmission. To address this question, we characterized electrophysiological properties of PV+ interneurons in the primary auditory cortex (AI) using whole-cell patch clamp recording, and analyzed the expression of several genes in samples collected from single neurons using the patch pipettes. We found that, after noise induced hearing loss (NIHL), the spike frequency adaptation increased, and the expression of PV, glutamate decarboxylase 67 (GAD67) and Shaw-like potassium channel (KV3.1) decreased in PV+ neurons. In samples prepared from the auditory cortical tissue, the mRNA levels of the target genes were all pairwise correlated. At the single neuron level, however, the expression of PV was significantly correlated with the expression of GAD67, but not KV3.1, maximal spike frequency, or spike frequency adaptation. The expression of KV3.1 was correlated with spike frequency adaptation, but not with the expression of GAD67. These results suggest separate transcriptional regulations of PV/GAD67 vs. KV3.1, both of which are modulated by NIHL.
Collapse
|
12
|
Pirbhoy PS, Jonak CR, Syed R, Argueta DA, Perez PA, Wiley MB, Hessamian K, Lovelace JW, Razak KA, DiPatrizio NV, Ethell IM, Binder DK. Increased 2-arachidonoyl-sn-glycerol levels normalize cortical responses to sound and improve behaviors in Fmr1 KO mice. J Neurodev Disord 2021; 13:47. [PMID: 34645383 PMCID: PMC8513313 DOI: 10.1186/s11689-021-09394-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background Individuals with Fragile X syndrome (FXS) and autism spectrum disorder (ASD) exhibit an array of symptoms, including sociability deficits, increased anxiety, hyperactivity, and sensory hyperexcitability. It is unclear how endocannabinoid (eCB) modulation can be targeted to alleviate neurophysiological abnormalities in FXS as behavioral research reveals benefits to inhibiting cannabinoid (CB) receptor activation and increasing endocannabinoid ligand levels. Here, we hypothesize that enhancement of 2-arachidonoyl-sn-glycerol (2-AG) in Fragile X mental retardation 1 gene knock-out (Fmr1 KO) mice may reduce cortical hyperexcitability and behavioral abnormalities observed in FXS. Methods To test whether an increase in 2-AG levels normalized cortical responses in a mouse model of FXS, animals were subjected to electroencephalography (EEG) recording and behavioral assessment following treatment with JZL-184, an irreversible inhibitor of monoacylglycerol lipase (MAGL). Assessment of 2-AG was performed using lipidomic analysis in conjunction with various doses and time points post-administration of JZL-184. Baseline electrocortical activity and evoked responses to sound stimuli were measured using a 30-channel multielectrode array (MEA) in adult male mice before, 4 h, and 1 day post-intraperitoneal injection of JZL-184 or vehicle. Behavior assessment was done using the open field and elevated plus maze 4 h post-treatment. Results Lipidomic analysis showed that 8 mg/kg JZL-184 significantly increased the levels of 2-AG in the auditory cortex of both Fmr1 KO and WT mice 4 h post-treatment compared to vehicle controls. EEG recordings revealed a reduction in the abnormally enhanced baseline gamma-band power in Fmr1 KO mice and significantly improved evoked synchronization to auditory stimuli in the gamma-band range post-JZL-184 treatment. JZL-184 treatment also ameliorated anxiety-like and hyperactivity phenotypes in Fmr1 KO mice. Conclusions Overall, these results indicate that increasing 2-AG levels may serve as a potential therapeutic approach to normalize cortical responses and improve behavioral outcomes in FXS and possibly other ASDs. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09394-x.
Collapse
Affiliation(s)
- Patricia S Pirbhoy
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Rashid Syed
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Mark B Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Keon Hessamian
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
13
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
14
|
Villa C, Legato M, Umbach A, Riganti C, Jones R, Martini B, Boido M, Medana C, Facchinetti I, Barni D, Pinto M, Arguello T, Belicchi M, Fagiolari G, Liaci C, Moggio M, Ruffo R, Moraes CT, Monguzzi A, Merlo GR, Torrente Y. Treatment with ROS detoxifying gold quantum clusters alleviates the functional decline in a mouse model of Friedreich ataxia. Sci Transl Med 2021; 13:13/607/eabe1633. [PMID: 34408077 DOI: 10.1126/scitranslmed.abe1633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Friedreich ataxia (FRDA) is caused by the reduced expression of the mitochondrial protein frataxin (FXN) due to an intronic GAA trinucleotide repeat expansion in the FXN gene. Although FRDA has no cure and few treatment options, there is research dedicated to finding an agent that can curb disease progression and address symptoms as neurobehavioral deficits, muscle endurance, and heart contractile dysfunctions. Because oxidative stress and mitochondrial dysfunctions are implicated in FRDA, we demonstrated the systemic delivery of catalysts activity of gold cluster superstructures (Au8-pXs) to improve cell response to mitochondrial reactive oxygen species and thereby alleviate FRDA-related pathology in mesenchymal stem cells from patients with FRDA. We also found that systemic injection of Au8-pXs ameliorated motor function and cardiac contractility of YG8sR mouse model that recapitulates the FRDA phenotype. These effects were associated to long-term improvement of mitochondrial functions and antioxidant cell responses. We related these events to an increased expression of frataxin, which was sustained by reduced autophagy. Overall, these results encourage further optimization of Au8-pXs in experimental clinical strategies for the treatment of FRDA.
Collapse
Affiliation(s)
- Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Via F. Sforza 35, 20122 Milano, Italy
| | - Mariella Legato
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Via F. Sforza 35, 20122 Milano, Italy
| | - Alessandro Umbach
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza, 52 10126 Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Torino, Italy
| | - Rebecca Jones
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza, 52 10126 Torino, Italy
| | - Beatrice Martini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Via F. Sforza 35, 20122 Milano, Italy
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Regione Gonzole 10, Orbassano,10043 Torino, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza, 52 10126 Torino, Italy
| | - Irene Facchinetti
- Department of Material Science, University of Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Dario Barni
- Department of Material Science, University of Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tania Arguello
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marzia Belicchi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Via F. Sforza 35, 20122 Milano, Italy
| | - Gigliola Fagiolari
- Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Carla Liaci
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza, 52 10126 Torino, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Riccardo Ruffo
- Department of Material Science, University of Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angelo Monguzzi
- Department of Material Science, University of Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Giorgio R Merlo
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza, 52 10126 Torino, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Via F. Sforza 35, 20122 Milano, Italy.
| |
Collapse
|
15
|
Deemyad T, Puig S, Papale AE, Qi H, LaRocca GM, Aravind D, LaNoce E, Urban NN. Lateralized Decrease of Parvalbumin+ Cells in the Somatosensory Cortex of ASD Models Is Correlated with Unilateral Tactile Hypersensitivity. Cereb Cortex 2021; 32:554-568. [PMID: 34347040 DOI: 10.1093/cercor/bhab233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 12/27/2022] Open
Abstract
Inhibitory control of excitatory networks contributes to cortical functions. Increasing evidence indicates that parvalbumin (PV+)-expressing basket cells (BCs) are a major player in maintaining the balance between excitation (E) and inhibition (I). Disruption of E/I balance in cortical networks is believed to be a hallmark of autism spectrum disorder (ASD). Here, we report a lateralized decrease in the number of PV+ BCs in L2/3 of the somatosensory cortex in the dominant hemisphere of Shank3-/- and Cntnap2-/- mouse models of ASD. The dominant hemisphere was identified during a reaching task to establish each animal's dominant forepaw. Double labeling with anti-PV antibody and a biotinylated lectin (Vicia villosa lectin [VVA]) showed that the number of BCs was not different but rather, some BCs did not express PV (PV-), resulting in an elevated number of PV- VVA+ BCs. Finally, we showed that dominant hindpaws had higher mechanical sensitivity when compared with the other hindpaws. This mechanical hypersensitivity in the dominant paw strongly correlated with the decrease in the number of PV+ interneurons and reduced PV expression in the corresponding cortex. Together, these results suggest that the hypersensitivity in ASD patients could be due to decreased inhibitory inputs to the dominant somatosensory cortex.
Collapse
Affiliation(s)
- Tara Deemyad
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Stephanie Puig
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Andrew E Papale
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hang Qi
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gregory M LaRocca
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Deepthi Aravind
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Emma LaNoce
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nathaniel N Urban
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Kontou G, Antonoudiou P, Podpolny M, Szulc BR, Arancibia-Carcamo IL, Higgs NF, Lopez-Domenech G, Salinas PC, Mann EO, Kittler JT. Miro1-dependent mitochondrial dynamics in parvalbumin interneurons. eLife 2021; 10:65215. [PMID: 34190042 PMCID: PMC8294849 DOI: 10.7554/elife.65215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/25/2021] [Indexed: 12/22/2022] Open
Abstract
The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²+-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in PV+ interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization, while PV+ interneuron-mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30–80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.
Collapse
Affiliation(s)
- Georgina Kontou
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Pantelis Antonoudiou
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Marina Podpolny
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Blanka R Szulc
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - I Lorena Arancibia-Carcamo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Nathalie F Higgs
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Guillermo Lopez-Domenech
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Ion Channel Initiative, University of Oxford, Oxford, United Kingdom
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Bucher EA, Collins JM, King AE, Vickers JC, Kirkcaldie MTK. Coherence and cognition in the cortex: the fundamental role of parvalbumin, myelin, and the perineuronal net. Brain Struct Funct 2021; 226:2041-2055. [PMID: 34175994 DOI: 10.1007/s00429-021-02327-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
The calcium binding protein parvalbumin is expressed in interneurons of two main morphologies, the basket and chandelier cells, which target perisomatic domains on principal cells and are extensively interconnected in laminar networks by synapses and gap junctions. Beyond its utility as a convenient cellular marker, parvalbumin is an unambiguous identifier of the key role that these interneurons play in the fundamental functions of the cortex. They provide a temporal framework for principal cell activity by propagating gamma oscillation, providing coherence for cortical information processing and the basis for timing-dependent plasticity processes. As these parvalbumin networks mature, they are physically and functionally stabilised by axonal myelination and development of the extracellular matrix structure termed the perineuronal net. This maturation correlates with the emergence of high-speed, highly energetic activity and provides a coherent foundation for the unique ability of the cortex to cross-correlate activity across sensory modes and internal representations.
Collapse
Affiliation(s)
- Ellie A Bucher
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - Matthew T K Kirkcaldie
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia.
| |
Collapse
|
18
|
Amina S, Falcone C, Hong T, Wolf-Ochoa MW, Vakilzadeh G, Allen E, Perez-Castro R, Kargar M, Noctor S, Martínez-Cerdeño V. Chandelier Cartridge Density Is Reduced in the Prefrontal Cortex in Autism. Cereb Cortex 2021; 31:2944-2951. [PMID: 33527113 DOI: 10.1093/cercor/bhaa402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
An alteration in the balance of excitation-inhibition has been proposed as a common characteristic of the cerebral cortex in autism, which may be due to an alteration in the number and/or function of the excitatory and/or inhibitory cells that form the cortical circuitry. We previously found a decreased number of the parvalbumin (PV)+ interneuron known as Chandelier (Ch) cell in the prefrontal cortex in autism. This decrease could result from a decreased number of Ch cells, but also from decreased PV protein expression by Ch cells. To further determine if Ch cell number is altered in autism, we quantified the number of Ch cells following a different approach and different patient cohort than in our previous studies. We quantified the number of Ch cell cartridges-rather than Ch cell somata-that expressed GAT1-rather than PV. Specifically, we quantified GAT1+ cartridges in prefrontal areas BA9, BA46, and BA47 of 11 cases with autism and 11 control cases. We found that the density of GAT1+ cartridges was decreased in autism in all areas and layers. Whether this alteration is cause or effect remains unclear but could result from alterations that take place during cortical prenatal and/or postnatal development.
Collapse
Affiliation(s)
- Sarwat Amina
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Carmen Falcone
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Tiffany Hong
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Marisol Wendy Wolf-Ochoa
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Gelareh Vakilzadeh
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Erik Allen
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Rosalia Perez-Castro
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Maryam Kargar
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Stephen Noctor
- MIND Institute, UC Davis Medical Center, UC Davis School of Medicine, Sacramento, CA 95817, USA.,Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children, Sacramento, CA 95817, USA.,MIND Institute, UC Davis Medical Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
19
|
Nahar L, Delacroix BM, Nam HW. The Role of Parvalbumin Interneurons in Neurotransmitter Balance and Neurological Disease. Front Psychiatry 2021; 12:679960. [PMID: 34220586 PMCID: PMC8249927 DOI: 10.3389/fpsyt.2021.679960] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
While great progress has been made in the understanding of neurological illnesses, the pathologies, and etiologies that give rise to these diseases still remain an enigma, thus, also making treatments for them more challenging. For effective and individualized treatment, it is beneficial to identify the underlying mechanisms that govern the associated cognitive and behavioral processes that go awry in neurological disorders. Parvalbumin fast-spiking interneurons (Pv-FSI) are GABAergic cells that are only a small fraction of the brain's neuronal network, but manifest unique cellular and molecular properties that drastically influence the downstream effects on signaling and ultimately change cognitive behaviors. Proper brain functioning relies heavily on neuronal communication which Pv-FSI regulates, excitatory-inhibitory balances and GABAergic disinhibition between circuitries. This review highlights the depth of Pv-FSI involvement in the cortex, hippocampus, and striatum, as it pertains to expression, neurotransmission, role in neurological disorders, and dysfunction, as well as cognitive behavior and reward-seeking. Recent research has indicated that Pv-FSI play pivotal roles in the molecular pathophysiology and cognitive-behavioral deficits that are core features of many psychiatric disorders, such as schizophrenia, autism spectrum disorders, Alzheimer's disease, and drug addiction. This suggests that Pv-FSI could be viable targets for treatment of these disorders and thus calls for further examination of the undeniable impact Pv-FSI have on the brain and cognitive behavior.
Collapse
Affiliation(s)
- Lailun Nahar
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Blake M Delacroix
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
20
|
Filice F, Janickova L, Henzi T, Bilella A, Schwaller B. The Parvalbumin Hypothesis of Autism Spectrum Disorder. Front Cell Neurosci 2020; 14:577525. [PMID: 33390904 PMCID: PMC7775315 DOI: 10.3389/fncel.2020.577525] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD)-a type of neurodevelopmental disorder-is increasing and is around 2% in North America, Asia, and Europe. Besides the known genetic link, environmental, epigenetic, and metabolic factors have been implicated in ASD etiology. Although highly heterogeneous at the behavioral level, ASD comprises a set of core symptoms including impaired communication and social interaction skills as well as stereotyped and repetitive behaviors. This has led to the suggestion that a large part of the ASD phenotype is caused by changes in a few and common set of signaling pathways, the identification of which is a fundamental aim of autism research. Using advanced bioinformatics tools and the abundantly available genetic data, it is possible to classify the large number of ASD-associated genes according to cellular function and pathways. Cellular processes known to be impaired in ASD include gene regulation, synaptic transmission affecting the excitation/inhibition balance, neuronal Ca2+ signaling, development of short-/long-range connectivity (circuits and networks), and mitochondrial function. Such alterations often occur during early postnatal neurodevelopment. Among the neurons most affected in ASD as well as in schizophrenia are those expressing the Ca2+-binding protein parvalbumin (PV). These mainly inhibitory interneurons present in many different brain regions in humans and rodents are characterized by rapid, non-adaptive firing and have a high energy requirement. PV expression is often reduced at both messenger RNA (mRNA) and protein levels in human ASD brain samples and mouse ASD (and schizophrenia) models. Although the human PVALB gene is not a high-ranking susceptibility/risk gene for either disorder and is currently only listed in the SFARI Gene Archive, we propose and present supporting evidence for the Parvalbumin Hypothesis, which posits that decreased PV level is causally related to the etiology of ASD (and possibly schizophrenia).
Collapse
Affiliation(s)
| | | | | | | | - Beat Schwaller
- Section of Medicine, Anatomy, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
21
|
Janickova L, Schwaller B. Parvalbumin-Deficiency Accelerates the Age-Dependent ROS Production in Pvalb Neurons in vivo: Link to Neurodevelopmental Disorders. Front Cell Neurosci 2020; 14:571216. [PMID: 33132847 PMCID: PMC7549402 DOI: 10.3389/fncel.2020.571216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
In neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD) and schizophrenia, impairment/malfunctioning of a subpopulation of interneurons expressing the calcium-binding protein parvalbumin (PV) -here termed Pvalb neurons- has gradually emerged as a possible cause. These neurons may represent a hub or point-of-convergence in the etiology of NDD. Increased oxidative stress associated with mitochondria impairment in Pvalb neurons is discussed as an essential step in schizophrenia etiology. Since PV downregulation is a common finding in ASD and schizophrenia individuals and PV-deficient (PV-/-) mice show a strong ASD-like behavior phenotype, we investigated the putative link between PV expression, alterations in mitochondria and oxidative stress. In a longitudinal study with 1, 3, and 6-months old PV-/- and wild type mice, oxidative stress was investigated in 9 Pvalb neuron subpopulations in the hippocampus, striatum, somatosensory cortex, medial prefrontal cortex, thalamic reticular nucleus (TRN) and cerebellum. In Pvalb neuron somata in the striatum and TRN, we additionally determined mitochondria volume and distribution at these three time points. In all Pvalb neuron subpopulations, we observed an age-dependent increase in oxidative stress and the increase strongly correlated with PV expression levels, but not with mitochondria density in these Pvalb neurons. Moreover, oxidative stress was elevated in Pvalb neurons of PV-/- mice and the magnitude of the effect was again correlated with PV expression levels in the corresponding wild type Pvalb neuron subpopulations. The PV-dependent effect was insignificant at 1 month and relative differences between WT and PV-/- Pvalb neurons were largest at 3 months. Besides the increase in mitochondria volume in PV's absence in TRN and striatal PV-/- Pvalb neurons fully present already at 1 month, we observed a redistribution of mitochondria from the perinuclear region toward the plasma membrane at all time points. We suggest that in absence of PV, slow Ca2+ buffering normally exerted by PV is compensated by a (mal)adaptive, mostly sub-plasmalemmal increase in mitochondria resulting in increased oxidative stress observed in 3- and 6-months old mice. Since PV-/- mice display core ASD-like symptoms already at 1 month, oxidative stress in Pvalb neurons is not a likely cause for their ASD-related behavior observed at this age.
Collapse
Affiliation(s)
| | - Beat Schwaller
- Department of Neurosciences amd Movement Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
22
|
Downregulation of parvalbumin expression in the prefrontal cortex during adolescence causes enduring prefrontal disinhibition in adulthood. Neuropsychopharmacology 2020; 45:1527-1535. [PMID: 32403119 PMCID: PMC7360578 DOI: 10.1038/s41386-020-0709-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 01/10/2023]
Abstract
The expression of the calcium binding protein parvalbumin (PV) has been observed in several cortical regions during development in a temporal pattern consistent with increased afferent-dependent activity. In the prefrontal cortex (PFC), PV expression appears last and continues to substantially increase throughout adolescence, yet the significance of this increase remains unclear. Because of the expression of PV in fast-spiking GABAergic interneurons, we hypothesized that PV upregulation during adolescence is necessary to sustain the increase in GABAergic activity observed in the PFC during this period. To test this hypothesis, we utilized an RNAi strategy to directly downregulate PV levels in the PFC during adolescence and examined its impact on prefrontal GABAergic function, plasticity, and associated behaviors during adulthood. The data indicate that a mere 25% reduction of adult PV levels in the PFC was sufficient to reduce local GABAergic transmission onto pyramidal neurons, disrupt prefrontal excitatory-inhibitory balance, and alter processing of afferent information from the ventral hippocampus. Accordingly, these animals displayed an impairment in the level of extinction learning of a trace fear conditioning response, a behavioral paradigm that requires intact PFC-ventral hippocampus connectivity. These results indicate the PV upregulation observed in the PFC during adolescence is necessary for refinement of prefrontal GABAergic function, the absence of which results in immature afferent processing and a hypofunctional state. Importantly, these results suggest there is a critical window of plasticity during which PV upregulation supports the acquisition of mature GABAergic phenotype necessary to sustain adult PFC functions.
Collapse
|
23
|
Bartholome O, de la Brassinne Bonardeaux O, Neirinckx V, Rogister B. A Composite Sketch of Fast-Spiking Parvalbumin-Positive Neurons. Cereb Cortex Commun 2020; 1:tgaa026. [PMID: 34296100 PMCID: PMC8153048 DOI: 10.1093/texcom/tgaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/28/2023] Open
Abstract
Parvalbumin-positive neurons are inhibitory neurons that release GABA and are mostly represented by fast-spiking basket or chandelier cells. They constitute a minor neuronal population, yet their peculiar profiles allow them to react quickly to any event in the brain under normal or pathological conditions. In this review, we will summarize the current knowledge about the fundamentals of fast-spiking parvalbumin-positive neurons, focusing on their morphology and specific channel/protein content. Next, we will explore their development, maturation, and migration in the brain. Finally, we will unravel their potential contribution to the physiopathology of epilepsy.
Collapse
Affiliation(s)
| | | | | | - Bernard Rogister
- GIGA-Neurosciences, University of Liege, 4000 Liège, Belgium
- Neurology Department, CHU, Academic Hospital, University of Liege, 4000 Liège, Belgium
| |
Collapse
|
24
|
Janickova L, Rechberger KF, Wey L, Schwaller B. Absence of parvalbumin increases mitochondria volume and branching of dendrites in inhibitory Pvalb neurons in vivo: a point of convergence of autism spectrum disorder (ASD) risk gene phenotypes. Mol Autism 2020; 11:47. [PMID: 32517751 PMCID: PMC7285523 DOI: 10.1186/s13229-020-00323-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/27/2020] [Indexed: 01/01/2023] Open
Abstract
Background In fast firing, parvalbumin (PV)-expressing (Pvalb) interneurons, PV acts as an intracellular Ca2+ signal modulator with slow-onset kinetics. In Purkinje cells of PV−/− mice, adaptive/homeostatic mechanisms lead to an increase in mitochondria, organelles equally capable of delayed Ca2+ sequestering/buffering. An inverse regulation of PV and mitochondria likewise operates in cell model systems in vitro including myotubes, epithelial cells, and oligodendrocyte-like cells overexpressing PV. Whether such opposite regulation pertains to all Pvalb neurons is currently unknown. In oligodendrocyte-like cells, PV additionally decreases growth and branching of processes in a cell-autonomous manner. Methods The in vivo effects of absence of PV were investigated in inhibitory Pvalb neurons expressing EGFP, present in the somatosensory and medial prefrontal cortex, striatum, thalamic reticular nucleus, hippocampal regions DG, CA3, and CA1 and cerebellum of mice either wild-type or knockout (PV−/−) for the Pvalb gene. Changes in Pvalb neuron morphology and PV concentrations were determined using immunofluorescence, followed by 3D-reconstruction and quantitative image analyses. Results PV deficiency led to an increase in mitochondria volume and density in the soma; the magnitude of the effect was positively correlated with the estimated PV concentrations in the various Pvalb neuron subpopulations in wild-type neurons. The increase in dendrite length and branching, as well as thickness of proximal dendrites of selected PV−/− Pvalb neurons is likely the result of the observed increased density and length of mitochondria in these PV−/− Pvalb neuron dendrites. The increased branching and soma size directly linked to the absence of PV is assumed to contribute to the increased volume of the neocortex present in juvenile PV−/− mice. The extended dendritic branching is in line with the hypothesis of local hyperconnectivity in autism spectrum disorder (ASD) and ASD mouse models including PV−/− mice, which display all ASD core symptoms and several comorbidities including cortical macrocephaly at juvenile age. Conclusion PV is involved in most proposed mechanisms implicated in ASD etiology: alterations in Ca2+ signaling affecting E/I balance, changes in mitochondria structure/function, and increased dendritic length and branching, possibly resulting in local hyperconnectivity, all in a likely cell autonomous way.
Collapse
Affiliation(s)
- Lucia Janickova
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Karin Farah Rechberger
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Lucas Wey
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Beat Schwaller
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland.
| |
Collapse
|
25
|
Pirbhoy PS, Rais M, Lovelace JW, Woodard W, Razak KA, Binder DK, Ethell IM. Acute pharmacological inhibition of matrix metalloproteinase-9 activity during development restores perineuronal net formation and normalizes auditory processing in Fmr1 KO mice. J Neurochem 2020; 155:538-558. [PMID: 32374912 DOI: 10.1111/jnc.15037] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Individuals with Fragile X Syndrome (FXS) and autism spectrum disorder (ASD) exhibit cognitive impairments, social deficits, increased anxiety, and sensory hyperexcitability. Previously, we showed that elevated levels of matrix metalloproteinase-9 (MMP-9) may contribute to abnormal development of parvalbumin (PV) interneurons and perineuronal nets (PNNs) in the developing auditory cortex (AC) of Fmr1 knock-out (KO) mice, which likely underlie auditory hypersensitivity. Thus, MMP-9 may serve as a potential target for treatment of auditory hypersensitivity in FXS. Here, we used the MMP-2/9 inhibitor, SB-3CT, to pharmacologically inhibit MMP-9 activity during a specific developmental period and to test whether inhibition of MMP-9 activity reverses neural oscillation deficits and behavioral impairments by enhancing PNN formation around PV cells in Fmr1 KO mice. Electroencephalography (EEG) was used to measure resting state and sound-evoked electrocortical activity in auditory and frontal cortices of postnatal day (P)22-23 male mice before and one-day after treatment with SB-3CT (25 mg/kg) or vehicle. At P27-28, animal behaviors were tested to measure the effects of the treatment on anxiety and hyperactivity. Results show that acute inhibition of MMP-9 activity improved evoked synchronization to auditory stimuli and ameliorated mouse behavioral deficits. MMP-9 inhibition enhanced PNN formation, increased PV levels and TrkB phosphorylation yet reduced Akt phosphorylation in the AC of Fmr1 KO mice. Our results show that MMP-9 inhibition during early postnatal development is beneficial in reducing some auditory processing deficits in the FXS mouse model and may serve as a candidate therapeutic for reversing sensory hypersensitivity in FXS and possibly other ASDs.
Collapse
Affiliation(s)
- Patricia S Pirbhoy
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jonathan W Lovelace
- Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Walker Woodard
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Khaleel A Razak
- Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| |
Collapse
|
26
|
Early-stage dysfunction of hippocampal theta and gamma oscillations and its modulation of neural network in a transgenic 5xFAD mouse model. Neurobiol Aging 2020; 94:121-129. [PMID: 32619873 DOI: 10.1016/j.neurobiolaging.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is pathologically characterized by amyloid-β (Aβ) accumulation, which induces Aβ-dependent neuronal dysfunctions. We focused on the early-stage disease progression and examined the neuronal network functioning in the 5xFAD mice. The simultaneous intracranial recordings were obtained from the hippocampal perforant path (PP) and the dentate gyrus (DG). Concomitant to Aβ accumulation, theta power was strongly attenuated in the PP and DG regions of 5xFAD mice compared to those in nontransgenic littermates. For either theta rhythm or gamma oscillation, the phase synchronization on the PP-DG pathway was impaired, evidenced by decreased phase locking value and diminished coherency index. To alleviate the neural oscillatory deficits in early-stage AD, a neural modulation approach (rTMS) was used to activate gamma oscillations and strengthen the synchronicity of neuronal activity on the PP-DG pathway. In brief, there was a significant neuronal network dysfunction at an early-stage AD-like pathology, which preceded the onset of cognitive deficits and was likely driven by Aβ accumulation, suggesting that the neural oscillation analysis played an important role in early AD diagnosis.
Collapse
|
27
|
McDonald AJ. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:1-38. [PMID: 34220399 PMCID: PMC8248694 DOI: 10.1016/b978-0-12-815134-1.00001-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
28
|
Schwaller B. Cytosolic Ca 2+ Buffers Are Inherently Ca 2+ Signal Modulators. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035543. [PMID: 31308146 DOI: 10.1101/cshperspect.a035543] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For precisely regulating intracellular Ca2+ signals in a time- and space-dependent manner, cells make use of various components of the "Ca2+ signaling toolkit," including Ca2+ entry and Ca2+ extrusion systems. A class of cytosolic Ca2+-binding proteins termed Ca2+ buffers serves as modulators of such, mostly short-lived Ca2+ signals. Prototypical Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Although initially considered to function as pure Ca2+ buffers, that is, as intracellular Ca2+ signal modulators controlling the shape (amplitude, decay, spread) of Ca2+ signals, evidence has accumulated that calbindin-D28k and calretinin have additional Ca2+ sensor functions. These other functions are brought about by direct interactions with target proteins, thereby modulating their targets' function/activity. Dysregulation of Ca2+ buffer expression is associated with several neurologic/neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. In some cases, the presence of these proteins is presumed to confer a neuroprotective effect, as evidenced in animal models of Parkinson's or Alzheimer's disease.
Collapse
Affiliation(s)
- Beat Schwaller
- Department of Anatomy, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
29
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
30
|
Perez SM, Boley A, Lodge DJ. Region specific knockdown of Parvalbumin or Somatostatin produces neuronal and behavioral deficits consistent with those observed in schizophrenia. Transl Psychiatry 2019; 9:264. [PMID: 31636253 PMCID: PMC6803626 DOI: 10.1038/s41398-019-0603-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/18/2019] [Accepted: 08/11/2019] [Indexed: 12/20/2022] Open
Abstract
The anterior hippocampus and prefrontal cortex are regions linked to symptoms of schizophrenia. The anterior hippocampus is believed to be a key regulator of the mesolimbic dopamine system and is thought to be the driving force contributing to positive symptoms, while the prefrontal cortex is involved in cognitive flexibility and negative symptoms. Aberrant activity in these regions is associated with decreases in GABAergic markers, indicative of an interneuron dysfunction. Specifically, selective decreases are observed in interneurons that contain parvalbumin (PV) or somatostatin (SST). Here, we used viral knockdown in rodents to recapitulate this finding and examine the region-specific roles of PV and SST on neuronal activity and behaviors associated with positive, negative and cognitive symptoms. We found that PV and SST had differential effects on neuronal activity and behavior when knocked down in the ventral hippocampus (vHipp) or medial prefrontal cortex (mPFC). Specifically, SST or PV knockdown in the vHipp increased pyramidal cell activity of the region and produced downstream effects on dopamine neuron activity in the ventral tegmental area (VTA). In contrast, mPFC knockdown did not affect the activity of VTA dopamine neuron activity; however, it did produce deficits in negative (social interaction) and cognitive (reversal learning) domains. Taken together, decreases in PV and/or SST were sufficient to produce schizophrenia-like deficits that were dependent on the region targeted.
Collapse
Affiliation(s)
- Stephanie M Perez
- UT Health San Antonio, Department of Pharmacology, Center for Biomedical Neuroscience, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX, 78229, USA.
| | - Angela Boley
- UT Health San Antonio, Department of Pharmacology, Center for Biomedical Neuroscience, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX, 78229, USA
| | - Daniel J Lodge
- UT Health San Antonio, Department of Pharmacology, Center for Biomedical Neuroscience, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX, 78229, USA
| |
Collapse
|
31
|
Panthi S, Leitch B. The impact of silencing feed-forward parvalbumin-expressing inhibitory interneurons in the cortico-thalamocortical network on seizure generation and behaviour. Neurobiol Dis 2019; 132:104610. [PMID: 31494287 DOI: 10.1016/j.nbd.2019.104610] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Feed-forward inhibition (FFI) is an essential mechanism within the brain, to regulate neuronal firing and prevent runaway excitation. In the cortico-thalamocortical (CTC) network, fast spiking parvalbumin-expressing (PV+) inhibitory interneurons regulate the firing of pyramidal cells in the cortex and relay neurons in the thalamus. PV+ interneuron dysfunction has been implicated in several neurological disorders, including epilepsy. Previously, we demonstrated that loss of excitatory AMPA-receptors, specifically at synapses on PV+ interneurons in CTC feedforward microcircuits, occurs in the stargazer mouse model of absence epilepsy. These mice present with absence seizures characterized by spike and wave discharges (SWDs) on electroencephalogram (EEG) and concomitant behavioural arrest, similar to childhood absence epilepsy. The aim of the current study was to investigate the impact of loss of FFI within the CTC on absence seizure generation and behaviour using new Designer Receptor Exclusively Activated by Designer Drug (DREADD) technology. We crossed PV-Cre mice with Cre-dependent hM4Di DREADD strains of mice, which allowed Cre-recombinase-mediated restricted expression of inhibitory Gi-DREADDs in PV+ interneurons. We then tested the impact of global and focal (within the CTC network) silencing of PV+ interneurons. CNO mediated silencing of all PV+ interneurons by intraperitoneal injection caused the impairment of motor control, decreased locomotion and increased anxiety in a dose-dependent manner. Such silencing generated pathological oscillations similar to absence-like seizures. Focal silencing of PV+ interneurons within cortical or thalamic feedforward microcircuits, induced SWD-like oscillations and associated behavioural arrest. Epileptiform activity on EEG appeared significantly sooner after focal injection compared to peripheral injection of CNO. However, the mean duration of each oscillatory burst and spike frequency was similar, irrespective of mode of CNO delivery. No significant changes were observed in vehicle-treated or non-DREADD wild-type control animals. These data suggest that dysfunctional feed-forward inhibition in CTC microcircuits may be an important target for future therapy strategies for some patients with absence seizures. Additionally, silencing of PV+ interneurons in other brain regions may contribute to anxiety related neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Sandesh Panthi
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
32
|
Orefice LL, Mosko JR, Morency DT, Wells MF, Tasnim A, Mozeika SM, Ye M, Chirila AM, Emanuel AJ, Rankin G, Fame RM, Lehtinen MK, Feng G, Ginty DD. Targeting Peripheral Somatosensory Neurons to Improve Tactile-Related Phenotypes in ASD Models. Cell 2019; 178:867-886.e24. [PMID: 31398341 PMCID: PMC6704376 DOI: 10.1016/j.cell.2019.07.024] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 12/23/2022]
Abstract
Somatosensory over-reactivity is common among patients with autism spectrum disorders (ASDs) and is hypothesized to contribute to core ASD behaviors. However, effective treatments for sensory over-reactivity and ASDs are lacking. We found distinct somatosensory neuron pathophysiological mechanisms underlie tactile abnormalities in different ASD mouse models and contribute to some ASD-related behaviors. Developmental loss of ASD-associated genes Shank3 or Mecp2 in peripheral mechanosensory neurons leads to region-specific brain abnormalities, revealing links between developmental somatosensory over-reactivity and the genesis of aberrant behaviors. Moreover, acute treatment with a peripherally restricted GABAA receptor agonist that acts directly on mechanosensory neurons reduced tactile over-reactivity in six distinct ASD models. Chronic treatment of Mecp2 and Shank3 mutant mice improved body condition, some brain abnormalities, anxiety-like behaviors, and some social impairments but not memory impairments, motor deficits, or overgrooming. Our findings reveal a potential therapeutic strategy targeting peripheral mechanosensory neurons to treat tactile over-reactivity and select ASD-related behaviors.
Collapse
Affiliation(s)
- Lauren L Orefice
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jacqueline R Mosko
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Danielle T Morency
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael F Wells
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Shawn M Mozeika
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Mengchen Ye
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Anda M Chirila
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Genelle Rankin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Kloosterboer E, Funke K. Repetitive transcranial magnetic stimulation recovers cortical map plasticity induced by sensory deprivation due to deafferentiation. J Physiol 2019; 597:4025-4051. [PMID: 31145483 PMCID: PMC6852264 DOI: 10.1113/jp277507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Partial sensory deprivation (deafferentation) by removing whiskers from the rat snout resulted in a reduced responsiveness of related cortical representations. Repetitive transcranial magnetic stimulation (three blocks of intermittent theta-burst) applied for 5 days in combination with sensory exploration restored the normal responsiveness level of the deafferented barrel cortex. However, intracortical inhibition (lateral and recurrent) appeared to be reduced after repetitive transcranial magnetic stimulation, probably as the cause of improved responsiveness. Repetitive transcranial magnetic stimulation also reduced the asymmetry of the lateral spread of sensory activity. ABSTRACT Repetitive transcranial magnetic stimulation (rTMS) modulates human cortical excitability. It has the potential to support recovery to normal cortical function when the excitation-inhibition balance is altered (e.g. after a stroke or loss of sensory input). We tested cortical map plasticity on the basis of sensory responses (local field potentials, LFPs) and expression of neuronal activity marker proteins within the barrel cortex of rats receiving either active or sham rTMS after selective unilateral deafferentation by whiskers plucking. Rats received daily rTMS [intermittent theta-burst (iTBS), active or sham] for 5 days before exploring an enriched environment. Our previous studies indicated a disinhibitory effect of iTBS on cortical activity. Therefore, we also expected disinhibitory effects if deafferentation causes depression of sensory responses. Deafferentation resulted in an acute general reduction of sensory responsiveness and enhanced expression of inhibitory activity markers (GAD67, parvalbumin) in the deafferented hemisphere. Active but not sham-iTBS-rTMS normalized these measures. The stronger caudal-to-frontal horizontal spread of activity across barrels was reduced after deafferentation but not restored after active iTBS, despite generally increased responses. Fitting the LFP data with a computational model of different strengths and types of excitatory and inhibitory connections further revealed an iTBS-induced reduction of lateral and recurrent inhibition as the most probable scenario. Whether the disinhibitory effect of iTBS for the restoration of normal cortical function in the acute phase of depression after deafferentiation is also beneficial in humans remains to be demonstrated. As recently discussed, disinhibition appears to be required to open a window for neuronal plasticity.
Collapse
Affiliation(s)
- Ellen Kloosterboer
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
34
|
Ast T, Meisel JD, Patra S, Wang H, Grange RMH, Kim SH, Calvo SE, Orefice LL, Nagashima F, Ichinose F, Zapol WM, Ruvkun G, Barondeau DP, Mootha VK. Hypoxia Rescues Frataxin Loss by Restoring Iron Sulfur Cluster Biogenesis. Cell 2019; 177:1507-1521.e16. [PMID: 31031004 PMCID: PMC6911770 DOI: 10.1016/j.cell.2019.03.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/11/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022]
Abstract
Friedreich's ataxia (FRDA) is a devastating, multisystemic disorder caused by recessive mutations in the mitochondrial protein frataxin (FXN). FXN participates in the biosynthesis of Fe-S clusters and is considered to be essential for viability. Here we report that when grown in 1% ambient O2, FXN null yeast, human cells, and nematodes are fully viable. In human cells, hypoxia restores steady-state levels of Fe-S clusters and normalizes ATF4, NRF2, and IRP2 signaling events associated with FRDA. Cellular studies and in vitro reconstitution indicate that hypoxia acts through HIF-independent mechanisms that increase bioavailable iron as well as directly activate Fe-S synthesis. In a mouse model of FRDA, breathing 11% O2 attenuates the progression of ataxia, whereas breathing 55% O2 hastens it. Our work identifies oxygen as a key environmental variable in the pathogenesis associated with FXN depletion, with important mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Tslil Ast
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joshua D Meisel
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Shachin Patra
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Hong Wang
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Robert M H Grange
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sharon H Kim
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Calvo
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Lauren L Orefice
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Fumiaki Nagashima
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Warren M Zapol
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Lee S, Liu A, Wang ZJ, McKeown MJ. Abnormal Phase Coupling in Parkinson's Disease and Normalization Effects of Subthreshold Vestibular Stimulation. Front Hum Neurosci 2019; 13:118. [PMID: 31001099 PMCID: PMC6456700 DOI: 10.3389/fnhum.2019.00118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
The human brain is a highly dynamic structure requiring dynamic coordination between different neural systems to perform numerous cognitive and behavioral tasks. Emerging perspectives on basal ganglia (BG) and thalamic functions have highlighted their role in facilitating and mediating information transmission among cortical regions. Thus, changes in BG and thalamic structures can induce aberrant modulation of cortico-cortical interactions. Recent work in deep brain stimulation (DBS) has demonstrated that externally applied electrical current to BG structures can have multiple downstream effects in large-scale brain networks. In this work, we identified EEG-based altered resting-state cortical functional connectivity in Parkinson's disease (PD) and examined effects of dopaminergic medication and electrical vestibular stimulation (EVS), a non-invasive brain stimulation (NIBS) technique capable of stimulating the BG and thalamus through vestibular pathways. Resting EEG was collected from 16 PD subjects and 18 age-matched, healthy controls (HC) in four conditions: sham (no stimulation), EVS1 (4-8 Hz multisine), EVS2 (50-100 Hz multisine) and EVS3 (100-150 Hz multisine). The mean, variability, and entropy were extracted from time-varying phase locking value (PLV), a non-linear measure of pairwise functional connectivity, to probe abnormal cortical couplings in the PD subjects. We found the mean PLV of Cz and C3 electrodes were important for discrimination between PD and HC subjects. In addition, the PD subjects exhibited lower variability and entropy of PLV (mostly in theta and alpha bands) compared to the controls, which were correlated with their clinical characteristics. While levodopa medication was effective in normalizing the mean PLV only, all EVS stimuli normalized the mean, variability and entropy of PLV in the PD subject, with the exact extent and duration of improvement a function of stimulus type. These findings provide evidence demonstrating both low- and high-frequency EVS exert widespread influences on cortico-cortical connectivity, likely via subcortical activation. The improvement observed in PD in a stimulus-dependent manner suggests that EVS with optimized parameters may provide a new non-invasive means for neuromodulation of functional brain networks.
Collapse
Affiliation(s)
- Soojin Lee
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Pacific Parkinson's Research Centre, Vancouver, BC, Canada
| | - Aiping Liu
- Pacific Parkinson's Research Centre, Vancouver, BC, Canada.,Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Z Jane Wang
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, Vancouver, BC, Canada.,Department of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Atypical Auditory Brainstem Response and Protein Expression Aberrations Related to ASD and Hearing Loss in the Adnp Haploinsufficient Mouse Brain. Neurochem Res 2019; 44:1494-1507. [PMID: 30659505 DOI: 10.1007/s11064-019-02723-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/23/2022]
Abstract
Autism is a wide spread neurodevelopmental disorder with growing morbidity rates, affecting more boys than girls worldwide. Activity-dependent neuroprotective protein (ADNP) was recently recognized as a leading gene accounted for 0.17% of autism spectrum disorder (ASD) cases globally. Respectively, mutations in the human ADNP gene (ADNP syndrome), cause multi-system body dysfunctions with apparent ASD-related traits, commencing as early as childhood. The Adnp haploinsufficient (Adnp+/-) mouse model was researched before in relations to Alzheimer's disease and autism. Adnp+/- mice suffer from deficient social memory, vocal and motor impediments, irregular tooth eruption and short stature, all of which corresponds with reported phenotypes in patients with the ADNP syndrome. Recently, a more elaborated description of the ADNP syndrome was published, presenting impediments such as hearing disabilities in > 10% of the studied children. Irregular auditory brainstem response (ABR) has been connected to ASD-related cases and has been suggested as a potential hallmark for autism, allowing diagnosis of ASD risk and early intervention. Herein, we present detriment hearing in the Adnp+/- mice with atypical ABR and significant protein expression irregularities that coincides with ASD and hearing loss studies in the brain.
Collapse
|
37
|
Bygrave AM, Kilonzo K, Kullmann DM, Bannerman DM, Kätzel D. Can N-Methyl-D-Aspartate Receptor Hypofunction in Schizophrenia Be Localized to an Individual Cell Type? Front Psychiatry 2019; 10:835. [PMID: 31824347 PMCID: PMC6881463 DOI: 10.3389/fpsyt.2019.00835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/21/2019] [Indexed: 01/07/2023] Open
Abstract
Hypofunction of N-methyl-D-aspartate glutamate receptors (NMDARs), whether caused by endogenous factors like auto-antibodies or mutations, or by pharmacological or genetic manipulations, produces a wide variety of deficits which overlap with-but do not precisely match-the symptom spectrum of schizophrenia. In order to understand how NMDAR hypofunction leads to different components of the syndrome, it is necessary to take into account which neuronal subtypes are particularly affected by it in terms of detrimental functional alterations. We provide a comprehensive overview detailing findings in rodent models with cell type-specific knockout of NMDARs. Regarding inhibitory cortical cells, an emerging model suggests that NMDAR hypofunction in parvalbumin (PV) positive interneurons is a potential risk factor for this disease. PV interneurons display a selective vulnerability resulting from a combination of genetic, cellular, and environmental factors that produce pathological multi-level positive feedback loops. Central to this are two antioxidant mechanisms-NMDAR activity and perineuronal nets-which are themselves impaired by oxidative stress, amplifying disinhibition. However, NMDAR hypofunction in excitatory pyramidal cells also produces a range of schizophrenia-related deficits, in particular maladaptive learning and memory recall. Furthermore, NMDAR blockade in the thalamus disturbs thalamocortical communication, and NMDAR ablation in dopaminergic neurons may provoke over-generalization in associative learning, which could relate to the positive symptom domain. Therefore, NMDAR hypofunction can produce schizophrenia-related effects through an action on various different circuits and cell types.
Collapse
Affiliation(s)
- Alexei M Bygrave
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - Kasyoka Kilonzo
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Dimitri M Kullmann
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
38
|
van Lier B, Hierlemann A, Knoflach F. Parvalbumin expression and gamma oscillation occurrence increase over time in a neurodevelopmental model of NMDA receptor dysfunction. PeerJ 2018; 6:e5543. [PMID: 30258707 PMCID: PMC6151115 DOI: 10.7717/peerj.5543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
Dysfunction of the N-methyl-d-aspartate receptor (NMDAR) is thought to play a role in the pathophysiology of neurodevelopmental diseases like schizophrenia. To study the effects of NMDAR dysfunction on synaptic transmission and network oscillations, we used hippocampal tissue of NMDAR subunit GluN2A knockout (KO) mice. Field excitatory postsynaptic potentials were recorded in acute hippocampal slices of adult animals. Synaptic transmission was impaired in GluN2A KO slices compared to wild-type (WT) slices. Further, to investigate whether NMDAR dysfunction would alter neurodevelopment in vitro, we used organotypic hippocampal slice cultures of WT and GluN2A KO mice. Immunostaining performed with cultures kept two, seven, 14, 25 days in vitro (DIV) revealed an increasing expression of parvalbumin (PV) over time. As a functional readout, oscillatory activity induced by the cholinergic agonist carbachol was recorded in cultures kept seven, 13, and 26 DIV using microelectrode arrays. Initial analysis focused on the occurrence of delta, theta, beta and gamma oscillations over genotype, DIV and hippocampal area (CA1, CA3, dentate gyrus (DG)). In a follow-up analysis, we studied the peak frequency and the peak power of each of the four oscillation bands per condition. The occurrence of gamma oscillations displayed an increase by DIV similar to the PV immunostaining. Unlike gamma occurrence, delta, theta, and beta occurrence did not change over time in culture. The peak frequency and peak power in the different bands of the oscillations were not different in slices of WT and GluN2A KO mice. However, the level of PV expression was lower in GluN2A KO compared to WT mice. Given the role of PV-containing fast-spiking basket cells in generation of oscillations and the decreased PV expression in subjects with schizophrenia, the study of gamma oscillations in organotypic hippocampal slices represents a potentially valuable tool for the characterization of novel therapeutic drugs.
Collapse
Affiliation(s)
- Ben van Lier
- Neuroscience Discovery, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Frédéric Knoflach
- Neuroscience Discovery, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
39
|
He T, Nitabach MN, Lnenicka GA. Parvalbumin expression affects synaptic development and physiology at the Drosophila larval NMJ. J Neurogenet 2018; 32:209-220. [PMID: 30175644 DOI: 10.1080/01677063.2018.1498496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Presynaptic Ca2+ appears to play multiple roles in synaptic development and physiology. We examined the effect of buffering presynaptic Ca2+ by expressing parvalbumin (PV) in Drosophila neurons, which do not normally express PV. The studies were performed on the identified Ib terminal that innervates muscle fiber 5. The volume-averaged, residual Ca2+ resulting from single action potentials (APs) and AP trains was measured using the fluorescent Ca2+ indicator, OGB-1. PV reduced the amplitude and decay time constant (τ) for single-AP Ca2+ transients. For AP trains, there was a reduction in the rate of rise and decay of [Ca2+]i but the plateau [Ca2+]i was not affected. Electrophysiological recordings from muscle fiber 5 showed a reduction in paired-pulse facilitation, particularly the F1 component; this was likely due to the reduction in residual Ca2+. These synapses also showed reduced synaptic enhancement during AP trains, presumably due to less buildup of synaptic facilitation. The transmitter release for single APs was increased for the PV-expressing terminals and this may have been a homeostatic response to the decrease in facilitation. Confocal microscopy was used to examine the structure of the motor terminals and PV expression resulted in smaller motor terminals with fewer synaptic boutons and active zones. This result supports earlier proposals that increased AP activity promotes motor terminal growth through increases in presynaptic [Ca2+]i.
Collapse
Affiliation(s)
- Tao He
- a Division of Pulmonary and Critical Care Medicine , David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | - Michael N Nitabach
- b Department of Cellular and Molecular Physiology , Yale School of Medicine , New Haven , CT , USA
| | - Gregory A Lnenicka
- c Department of Biological Sciences , University at Albany , Albany , NY , USA
| |
Collapse
|
40
|
Neuropathic Pain Creates an Enduring Prefrontal Cortex Dysfunction Corrected by the Type II Diabetic Drug Metformin But Not by Gabapentin. J Neurosci 2018; 38:7337-7350. [PMID: 30030404 DOI: 10.1523/jneurosci.0713-18.2018] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic pain patients suffer from pain-related cognitive deficits, even when taking commonly prescribed analgesics. These deficits are likely related to pain-related maladaptive plasticity in the frontal cortex. We sought to model cognitive deficits in mice with neuropathic pain to examine maladaptive morphological plasticity in the mPFC and to assess the effects of several therapeutics. We used an attentional set-shifting task in mice with spared nerve injury (SNI) who received either a single intrathecal injection of an analgesic dose of clonidine, 7 d of 100 mg/kg gabapentin, or 7 d of 200 mg/kg metformin. Male SNI mice were significantly more impaired in the set-shifting task than females. This deficit correlated with a loss of parvalbumin (PV) and reductions in axon initial segment (AIS) length in layers 5/6 of the infralimbic (IL) cortex. Acute pain relief with clonidine had no effect on set-shifting performance, whereas pain relief via 7 day treatment with gabapentin worsened the impairment in both SNI and sham mice. Gabapentin reversed the PV loss in the IL but had no effect on AIS length. Treatment with the AMPK-activator metformin completely reversed the pain-related cognitive impairment and restored AIS length in the IL but had little effect on PV expression. Our findings reveal that neuropathic pain-related cognitive impairments in male mice are correlated to bilateral morphological changes in PV interneurons and layer 5/6 IL pyramidal neuron AIS. Pain relief with metformin can reverse some of the functional and anatomical changes.SIGNIFICANCE STATEMENT Cognitive impairments are a comorbidity of neuropathic pain but are inadequately addressed by existing therapeutics. We used a neuropathic pain model in mice to demonstrate that male (but not female) mice show a robust pain-related deficit in attentional set-shifting, which is associated with structural plasticity in axon initial segments in the infralimbic cortex. These deficits were completely reversed by 7 day treatment with the antidiabetic drug metformin, suggesting that this drug can be repurposed for the treatment of neuropathic pain and its cognitive comorbidities. Our findings have implications for our understanding of how neuropathic pain causes structural plasticity in the brain, and they point to a marked sexual dimorphism in neuropathic pain mechanisms in mice.
Collapse
|
41
|
Wang X, Kery R, Xiong Q. Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:398-415. [PMID: 28986278 DOI: 10.1016/j.pnpbp.2017.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Xinxing Wang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rachel Kery
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
42
|
Ariza J, Rogers H, Hashemi E, Noctor SC, Martínez-Cerdeño V. The Number of Chandelier and Basket Cells Are Differentially Decreased in Prefrontal Cortex in Autism. Cereb Cortex 2018; 28:411-420. [PMID: 28122807 PMCID: PMC6676950 DOI: 10.1093/cercor/bhw349] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/28/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
An interneuron alteration has been proposed as a source for the modified balance of excitation / inhibition in the cerebral cortex in autism. We previously demonstrated a decreased number of parvalbumin (PV)-expressing interneurons in prefrontal cortex in autism. PV-expressing interneurons include chandelier (Ch) and basket (Bsk) cells. We asked whether the decreased PV+ interneurons affected both Ch cells and Bsk cells in autism. The lack of single markers to specifically label Ch cells or Bsk cells presented an obstacle for addressing this question. We devised a method to discern between PV-Ch and PV-Bsk cells based on the differential expression of Vicia villosa lectin (VVA). VVA binds to N-acetylgalactosamine, that is present in the perineuronal net surrounding some cell types where it plays a role in intercellular communication. N-acetylgalactosamine is present in the perineuronal net surrounding Bsk but not Ch cells. We found that the number of Ch cells is consistently decreased in the prefrontal cortex of autistic (n = 10) when compared with control (n = 10) cases, while the number of Bsk cells is not as severely affected. This finding expand our understanding of GABAergic system functioning in the human cerebral cortex in autism, which will impact translational research directed towards providing better treatment paradigms for individuals with autism.
Collapse
Affiliation(s)
- Jeanelle Ariza
- Department of Pathology and Laboratory Medicine, UC Davis; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, USA
| | - Haille Rogers
- Department of Pathology and Laboratory Medicine, UC Davis; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, USA
| | - Ezzat Hashemi
- Department of Pathology and Laboratory Medicine, UC Davis; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, USA
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, UC Davis, Sacramento, USA
- MIND Institute, UC Davis Medical Center, Sacramento, USA
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, USA
- MIND Institute, UC Davis Medical Center, Sacramento, USA
| |
Collapse
|
43
|
Crabtree GW, Park AJ, Gordon JA, Gogos JA. Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade. Cell Rep 2017; 17:570-582. [PMID: 27705802 DOI: 10.1016/j.celrep.2016.09.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/08/2016] [Accepted: 09/09/2016] [Indexed: 10/20/2022] Open
Abstract
Proline dehydrogenase (PRODH), which degrades L-proline, resides within the schizophrenia-linked 22q11.2 deletion suggesting a role in disease. Supporting this, elevated L-proline levels have been shown to increase risk for psychotic disorders. Despite the strength of data linking PRODH and L-proline to neuropsychiatric diseases, targets of disease-relevant concentrations of L-proline have not been convincingly described. Here, we show that Prodh-deficient mice with elevated CNS L-proline display specific deficits in high-frequency GABA-ergic transmission and gamma-band oscillations. We find that L-proline is a GABA-mimetic and can act at multiple GABA-ergic targets. However, at disease-relevant concentrations, GABA-mimesis is limited to competitive blockade of glutamate decarboxylase leading to reduced GABA production. Significantly, deficits in GABA-ergic transmission are reversed by enhancing net GABA production with the clinically relevant compound vigabatrin. These findings indicate that accumulation of a neuroactive metabolite can lead to molecular and synaptic dysfunction and help to understand mechanisms underlying neuropsychiatric disease.
Collapse
Affiliation(s)
- Gregg W Crabtree
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.
| | - Alan J Park
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Joshua A Gordon
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA; Department of Neuroscience, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
44
|
Soghomonian JJ, Zhang K, Reprakash S, Blatt GJ. Decreased parvalbumin mRNA levels in cerebellar Purkinje cells in autism. Autism Res 2017; 10:1787-1796. [PMID: 28707805 DOI: 10.1002/aur.1835] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 01/06/2023]
Abstract
Recent neuropathology studies in human brains indicate that several areas of the prefrontal cortex have decreased numbers of parvalbumin interneurons or decreased parvalbumin expression in Autism Spectrum disorders (ASD) [Hashemi, Ariza, Rogers, Noctor, & Martinez-Cerdeno, 2017; Zikopoulos & Barbas, ]. These data suggest that a deficit in parvalbumin may be a key neuropathology of ASD and contribute to altered GABAergic inhibition. However, it is unclear if a deficit in parvalbumin is a phenomenon that occurs in regions other than the cerebral cortex. The cerebellum is a major region where neuropathology was first detected in ASD over three decades ago [Bauman & Kemper, ]. In view of the documented association between parvalbumin-expressing neurons and autism, the objective of the present study was to determine if parvalbumin gene expression is also altered in Purkinje neurons of the cerebellum. Radioisotopic in situ hybridization histochemistry was used on human tissue sections from control and ASD brains in order to detect and measure parvalbumin mRNA levels at the single cell level in Purkinje cells of Crus II of the lateral cerebellar hemispheres. Results indicate that parvalbumin mRNA levels are significantly lower in Purkinje cells in ASD compared to control brains. This decrease was not influenced by post-mortem interval or age at death. This result indicates that decreased parvalbumin expression is a more widespread feature of ASD. We discuss how this decrease may be implicated in altered cerebellar output to the cerebral cortex and in key ASD symptoms. Autism Res 2017, 10: 1787-1796. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY The cerebellum of the brain controls movement and cognition, including memory and language. This study investigated mechanisms of cerebellar function in Autism. Our hypothesis is that parvalbumin, a molecule that controls and coordinate many cellular brain functions, contributes to the excitatory/inhibitory imbalance in Autism. We report that parvalbumin expression is depressed in Purkinje cells of the cerebellum in autism. This finding contributes to elucidate the cellular and molecular underpinings of autism and should provide a direction for future therapies.
Collapse
Affiliation(s)
- Jean-Jacques Soghomonian
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Kunzhong Zhang
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Sujithra Reprakash
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Gene J Blatt
- Hussman Institute for Autism, Program in Neuroscience, Baltimore, Maryland
| |
Collapse
|
45
|
Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci 2017; 47:534-548. [PMID: 28452083 DOI: 10.1111/ejn.13595] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/18/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASD) and epilepsy are common neurological diseases of childhood, with an estimated incidence of approximately 0.5-1% of the worldwide population. Several genetic, neuroimaging and neuropathological studies clearly showed that both ASD and epilepsy have developmental origins and a substantial degree of heritability. Most importantly, ASD and epilepsy frequently coexist in the same individual, suggesting a common neurodevelopmental basis for these disorders. Genome-wide association studies recently allowed for the identification of a substantial number of genes involved in ASD and epilepsy, some of which are mutated in syndromes presenting both ASD and epilepsy clinical features. At the cellular level, both preclinical and clinical studies indicate that the different genetic causes of ASD and epilepsy may converge to perturb the excitation/inhibition (E/I) balance, due to the dysfunction of excitatory and inhibitory circuits in various brain regions. Metabolic and immune dysfunctions, as well as environmental causes also contribute to ASD pathogenesis. Thus, an E/I imbalance resulting from neurodevelopmental deficits of multiple origins might represent a common pathogenic mechanism for both diseases. Here, we will review the most significant studies supporting these hypotheses. A deeper understanding of the molecular and cellular determinants of autism-epilepsy comorbidity will pave the way to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuri Bozzi
- Neurodevelopmental Disorders Research Group, Centre for Mind/Brain Sciences, University of Trento, via Sommarive 9, 38123, Povo, Trento, Italy.,CNR Neuroscience Institute, Pisa, Italy
| | - Giovanni Provenzano
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Simona Casarosa
- CNR Neuroscience Institute, Pisa, Italy.,Laboratory of Neural Development and Regeneration, Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
46
|
Sugarcoated Perineuronal Nets Regulate “GABAergic” Transmission: Bittersweet Hypothesis in Autism Spectrum Disorder. Clin Neuropharmacol 2017; 40:120-130. [DOI: 10.1097/wnf.0000000000000209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Lauber E, Filice F, Schwaller B. Prenatal Valproate Exposure Differentially Affects Parvalbumin-Expressing Neurons and Related Circuits in the Cortex and Striatum of Mice. Front Mol Neurosci 2016; 9:150. [PMID: 28066177 PMCID: PMC5174119 DOI: 10.3389/fnmol.2016.00150] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASD) comprise a number of heterogeneous neurodevelopmental diseases characterized by core behavioral symptoms in the domains of social interaction, language/communication and repetitive or stereotyped patterns of behavior. In utero exposure to valproic acid (VPA) has evolved as a highly recognized rodent ASD model due to the robust behavioral phenotype observed in the offspring and the proven construct-, face- and predictive validity of the model. The number of parvalbumin-immunoreactive (PV+) GABAergic interneurons has been consistently reported to be decreased in human ASD subjects and in ASD animal models. The presumed loss of this neuron subpopulation hereafter termed Pvalb neurons and/or PV deficits were proposed to result in an excitation/inhibition imbalance often observed in ASD. Importantly, loss of Pvalb neurons and decreased/absent PV protein levels have two fundamentally different consequences. Thus, Pvalb neurons were investigated in in utero VPA-exposed male ("VPA") mice in the striatum, medial prefrontal cortex (mPFC) and somatosensory cortex (SSC), three ASD-associated brain regions. Unbiased stereology of PV+ neurons and Vicia Villosa Agglutinin-positive (VVA+) perineuronal nets, which specifically enwrap Pvalb neurons, was carried out. Analyses of PV protein expression and mRNA levels for Pvalb, Gad67, Kcnc1, Kcnc2, Kcns3, Hcn1, Hcn2, and Hcn4 were performed. We found a ∼15% reduction in the number of PV+ cells and decreased Pvalb mRNA and PV protein levels in the striatum of VPA mice compared to controls, while the number of VVA+ cells was unchanged, indicating that Pvalb neurons were affected at the level of the transcriptome. In selected cortical regions (mPFC, SSC) of VPA mice, no quantitative loss/decrease of PV+ cells was observed. However, expression of Kcnc1, coding for the voltage-gated potassium channel Kv3.1 specifically expressed in Pvalb neurons, was decreased by ∼40% in forebrain lysates of VPA mice. Moreover, hyperpolarization-activated cyclic nucleotide-gated channel (HCN) 1 expression was increased by ∼40% in the same samples from VPA mice. We conclude that VPA leads to alterations that are brain region- and gene-specific including Pvalb, Kcnc1, and Hcn1 possibly linked to homeostatic mechanisms. Striatal PV down-regulation appears as a common feature in a subset of genetic (Shank3B-/-) and environmental ASD models.
Collapse
Affiliation(s)
| | | | - Beat Schwaller
- Anatomy, Department of Medicine, University of FribourgFribourg, Switzerland
| |
Collapse
|
48
|
The NMDA receptor GluN2C subunit controls cortical excitatory-inhibitory balance, neuronal oscillations and cognitive function. Sci Rep 2016; 6:38321. [PMID: 27922130 PMCID: PMC5138829 DOI: 10.1038/srep38321] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 11/09/2016] [Indexed: 01/11/2023] Open
Abstract
Despite strong evidence for NMDA receptor (NMDAR) hypofunction as an underlying factor for cognitive disorders, the precise roles of various NMDAR subtypes remains unknown. The GluN2C-containing NMDARs exhibit unique biophysical properties and expression pattern, and lower expression of GluN2C subunit has been reported in postmortem brains from schizophrenia patients. We found that loss of GluN2C subunit leads to a shift in cortical excitatory-inhibitory balance towards greater inhibition. Specifically, pyramidal neurons in the medial prefrontal cortex (mPFC) of GluN2C knockout mice have reduced mEPSC frequency and dendritic spine density and a contrasting higher frequency of mIPSCs. In addition a greater number of perisomatic GAD67 puncta was observed suggesting a potential increase in parvalbumin interneuron inputs. At a network level the GluN2C knockout mice were found to have a more robust increase in power of oscillations in response to NMDAR blocker MK-801. Furthermore, GluN2C heterozygous and knockout mice exhibited abnormalities in cognition and sensorimotor gating. Our results demonstrate that loss of GluN2C subunit leads to cortical excitatory-inhibitory imbalance and abnormal neuronal oscillations associated with neurodevelopmental disorders.
Collapse
|
49
|
Brady LJ, Bartley AF, Li Q, McMeekin LJ, Hablitz JJ, Cowell RM, Dobrunz LE. Transcriptional dysregulation causes altered modulation of inhibition by haloperidol. Neuropharmacology 2016; 111:304-313. [PMID: 27480797 PMCID: PMC5207497 DOI: 10.1016/j.neuropharm.2016.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue. Our lab has previously shown that PGC-1α-/- mice have enhanced GABAergic inhibition onto CA1 pyramidal cells, which increases the inhibition/excitation (I/E) ratio, alters hippocampal circuit function, and impairs hippocampal dependent behavior. The typical antipsychotic haloperidol, a dopamine receptor antagonist with selectivity for D2-like receptors, has previously been shown to increase excitation in the CA1 region of hippocampus. We therefore tested whether haloperidol could normalize the I/E balance in CA1 of PGC-1α-/- mice, potentially improving circuit function and behavior. Surprisingly, we discovered instead that interneuron transcriptional dysregulation caused by loss of PGC-1α alters the effects of haloperidol on hippocampal synaptic transmission and circuit function. Acute administration of haloperidol causes disinhibition in CA1 and decreases the I/E ratio onto CA1 pyramidal cells in slices from PGC-1α+/+ mice, but not PGC-1α-/- mice. The spread of activity in CA1, assessed by voltage sensitive dye imaging, is increased by haloperidol in slices from PGC-1α+/+ mice; however haloperidol decreases the spread of activity in slices from PGC-1α-/- mice. Haloperidol increased the power of hippocampal gamma oscillation in slices from PGC-1α+/+ mice but reduced the power of gamma oscillations in slices from PGC-1α-/- mice. Nest construction, an innate hippocampal-dependent behavior, is inhibited by haloperidol in PGC-1α+/+ mice, but not in PGC-1α-/- mice, which already have impaired nest building. The effects of haloperidol are mimicked and occluded by a D2 receptor antagonist in slices from PGC-1α+/+ mice, and the effects of blocking D2 receptors are lost in slices from PGC-1α-/- mice, although there is no change in D2 receptor transcript levels. Together, our results show that hippocampal inhibitory synaptic transmission, CA1 circuit function, and hippocampal dependent behavior are modulated by the antipsychotic haloperidol, and that these effects of haloperidol are lost in PGC-1α-/- mice. These results have implications for the treatment of individuals with conditions involving PGC-1α deficiency.
Collapse
Affiliation(s)
- Lillian J Brady
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Aundrea F Bartley
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Qin Li
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Laura J McMeekin
- Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Ave. S., Birmingham, AL, USA.
| | - John J Hablitz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Rita M Cowell
- Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Ave. S., Birmingham, AL, USA.
| | - Lynn E Dobrunz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| |
Collapse
|
50
|
Csabai D, Seress L, Varga Z, Ábrahám H, Miseta A, Wiborg O, Czéh B. Electron Microscopic Analysis of Hippocampal Axo-Somatic Synapses in a Chronic Stress Model for Depression. Hippocampus 2016; 27:17-27. [PMID: 27571571 PMCID: PMC5215622 DOI: 10.1002/hipo.22650] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 01/01/2023]
Abstract
Stress can alter the number and morphology of excitatory synapses in the hippocampus, but nothing is known about the effect of stress on inhibitory synapses. Here, we used an animal model for depression, the chronic mild stress model, and quantified the number of perisomatic inhibitory neurons and their synapses. We found reduced density of parvalbumin‐positive (PV+) neurons in response to stress, while the density of cholecystokinin‐immunoreactive (CCK+) neurons was unaffected. We did a detailed electron microscopic analysis to quantify the frequency and morphology of perisomatic inhibitory synapses in the hippocampal CA1 area. We analyzed 1100 CA1 pyramidal neurons and 4800 perisomatic terminals in five control and four chronically stressed rats. In the control animals we observed the following parameters: Number of terminals/soma = 57; Number of terminals/100 µm cell perimeter = 10; Synapse/terminal ratio = 32%; Synapse number/100 terminal = 120; Average terminal length = 920nm. None of these parameters were affected by the stress exposure. Overall, these data indicate that despite the depressive‐like behavior and the decrease in the number of perisomatic PV+ neurons in the light microscopic preparations, the number of perisomatic inhibitory synapses on CA1 pyramidal cells was not affected by stress. In the electron microscope, PV+ neurons and the axon terminals appeared to be normal and we did not find any apoptotic or necrotic cells. This data is in sharp contrast to the remarkable remodeling of the excitatory synapses on spines that has been reported in response to stress and depressive‐like behavior. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dávid Csabai
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, Pécs, 7624, Hungary
| | - László Seress
- Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, 7624, Hungary
| | - Zsófia Varga
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, Pécs, 7624, Hungary
| | - Hajnalka Ábrahám
- Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, 7624, Hungary.,Department of Medical Biology, University of Pécs, Medical School, Pécs, 7624, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, 7624, Hungary
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Boldizsár Czéh
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, Pécs, 7624, Hungary.,Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, 7624, Hungary.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| |
Collapse
|