1
|
Shenoy P, M VSK. Task demands modulate distal limb handedness: A comparative analysis of prehensile synergies of the dominant and non-dominant hand. Sci Rep 2024; 14:25565. [PMID: 39462144 PMCID: PMC11514032 DOI: 10.1038/s41598-024-75001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The dynamic dominance hypothesis of handedness suggests a distinct control strategy for the dominant and the non-dominant limb. The hypothesis demonstrated that the dominant proximal limb is tuned for optimal trajectory control while the non-dominant limb is tuned for a stable grasp. Whether the hypothesis can be extended to distal segments like fingers, especially during a five-fingered grasp, has been studied little. To examine this, an attempt was made to compare the prehensile synergies and force magnitudes of the dominant (DOM) and non-dominant hands (NDOM) during a 5-fingered prehension task. Participants traced a trapezoidal and inverse trapezoidal path with their thumbs on a sliding platform while holding a handle in static equilibrium. The DOM hand performed better only in the inverse trapezoid condition, exhibiting a reduced grip force and increased synergy index aligning with the dynamic dominance hypothesis. No differences were observed for the trapezoid condition, likely due to reduced task demands. The study also explored changes in anticipatory synergy adjustments between the DOM and NDOM hands, but the differences were non-significant. Overall, the DOM hand demonstrated better force coordination than the NDOM hand in challenging conditions. Applications of the study in the objective assessment of handedness were proposed.
Collapse
Affiliation(s)
- Prajwal Shenoy
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - Varadhan S K M
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
2
|
Xu J, Mawase F, Schieber MH. Evolution, biomechanics, and neurobiology converge to explain selective finger motor control. Physiol Rev 2024; 104:983-1020. [PMID: 38385888 PMCID: PMC11380997 DOI: 10.1152/physrev.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Humans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements. We consider their evolutionary origins, the extent to which finger movements are in fact individuated, and the evolved features of neuromuscular control that both enable and limit individuation. We go on to discuss other features of motor control that combine with individuation to create dexterity, the impairment of individuation by disease, and the broad extent of capabilities that individuation confers on humans. We comment on the challenges facing the development of a truly dexterous bionic hand. We conclude by identifying topics for future investigation that will advance our understanding of how neural networks interact across multiple regions of the central nervous system to create individuated movements for the skills humans use to express their cognitive activity.
Collapse
Affiliation(s)
- Jing Xu
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States
| | - Firas Mawase
- Department of Biomedical Engineering, Israel Institute of Technology, Haifa, Israel
| | - Marc H Schieber
- Departments of Neurology and Neuroscience, University of Rochester, Rochester, New York, United States
| |
Collapse
|
3
|
Shemmell J, Falling C, MacKinnon CD, Stapley PJ, Ribeiro DC, Stinear JW. Different descending pathways mediate early and late portions of lower limb responses to transcranial magnetic stimulation. J Neurophysiol 2024; 131:1299-1310. [PMID: 38691532 DOI: 10.1152/jn.00153.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Although recent studies in nonhuman primates have provided evidence that transcranial magnetic stimulation (TMS) activates cells within the reticular formation, it remains unclear whether descending brain stem projections contribute to the generation of TMS-induced motor evoked potentials (MEPs) in skeletal muscles. We compared MEPs in muscles with extensive direct corticomotoneuronal input (first dorsal interosseous) versus a prominent role in postural control (gastrocnemius) to determine whether the amplitudes of early and late MEPs were differentially modulated by cortical suppression. Suprathreshold TMS was applied with and without a preceding suprathreshold TMS pulse at two interstimulus intervals (50 and 80 ms). H reflexes in target muscles were also tested with and without TMS conditioning. Early and late gastrocnemius MEPs were differentially modulated by cortical inhibition, the amplitude of the early MEP being significantly reduced by cortical suppression and the late MEP facilitated. The amplitude of H reflexes in the gastrocnemius was reduced within the cortical silent period. Early MEPs in the first dorsal interosseous were also reduced during the silent period, but late MEPs were unaffected. Independent modulation of early and late MEPs in the gastrocnemius muscle supports the idea that the MEP is generated by multiple descending pathways. Suppression of the early MEP is consistent with transmission along the fast-conducting corticospinal tract, whereas facilitation of the late MEP suggests transmission along a corticofugal, potentially cortico-reticulospinal, pathway. Accordingly, differences in late MEP modulation between the first dorsal interosseous and gastrocnemius reflect an increased role of corticofugal pathways in the control of postural muscles.NEW & NOTEWORTHY Early and late portions of the response to transcranial magnetic stimulation (TMS) in a lower limb postural muscle are modulated independently by cortical suppression, late motor evoked potentials (MEPs) being facilitated during cortical inhibition. These results suggest a cortico-brain stem transmission pathway for late portions of the TMS-induced MEP.
Collapse
Affiliation(s)
- Jonathan Shemmell
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Carrie Falling
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
- School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Paul J Stapley
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - James W Stinear
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2024. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies agrees more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Rouiller EM. Adaptation of the layer V supraspinal motor corticofugal projections from the primary (M1) and premotor (PM) cortices after CNS motor disorders in non-human primates: A survey. Transl Neurosci 2024; 15:20220342. [PMID: 38860225 PMCID: PMC11163158 DOI: 10.1515/tnsci-2022-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
Motor commands are transmitted from the motor cortical areas to effectors mostly via the corticospinal (CS) projection. Several subcortical motor nuclei also play an important role in motor control, the subthalamic nucleus, the red nucleus, the reticular nucleus and the superior colliculus. These nuclei are influenced by motor cortical areas via respective corticofugal projections, which undergo complex adaptations after motor trauma (spinal cord/motor cortex injury) or motor disease (Parkinson), both in the absence or presence of putative treatments, as observed in adult macaque monkeys. A dominant effect was a nearly complete suppression of the corticorubral projection density and a strong downregulation of the corticoreticular projection density, with the noticeable exception in the latter case of a considerable increase of projection density following spinal cord injury, even enhanced when an anti-NogoA antibody treatment was administered. The effects were diverse and less prominent on the corticotectal and corticosubthalamic projections. The CS projection may still be the major efferent pathway through which motor adaptations can take place after motor trauma or disease. However, the parallel supraspinal motor corticofugal projections may also participate in connectional adaptations supporting the functional recovery of motor abilities, representing potential targets for future clinical strategies, such as selective electrical neurostimulations.
Collapse
Affiliation(s)
- Eric M. Rouiller
- Department of Neurosciences and Movement sciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, Ch. du Musée 5, CH-1700Fribourg, Switzerland
| |
Collapse
|
6
|
Mulla DM, Keir PJ. Neuromuscular control: from a biomechanist's perspective. Front Sports Act Living 2023; 5:1217009. [PMID: 37476161 PMCID: PMC10355330 DOI: 10.3389/fspor.2023.1217009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Understanding neural control of movement necessitates a collaborative approach between many disciplines, including biomechanics, neuroscience, and motor control. Biomechanics grounds us to the laws of physics that our musculoskeletal system must obey. Neuroscience reveals the inner workings of our nervous system that functions to control our body. Motor control investigates the coordinated motor behaviours we display when interacting with our environment. The combined efforts across the many disciplines aimed at understanding human movement has resulted in a rich and rapidly growing body of literature overflowing with theories, models, and experimental paradigms. As a result, gathering knowledge and drawing connections between the overlapping but seemingly disparate fields can be an overwhelming endeavour. This review paper evolved as a need for us to learn of the diverse perspectives underlying current understanding of neuromuscular control. The purpose of our review paper is to integrate ideas from biomechanics, neuroscience, and motor control to better understand how we voluntarily control our muscles. As biomechanists, we approach this paper starting from a biomechanical modelling framework. We first define the theoretical solutions (i.e., muscle activity patterns) that an individual could feasibly use to complete a motor task. The theoretical solutions will be compared to experimental findings and reveal that individuals display structured muscle activity patterns that do not span the entire theoretical solution space. Prevalent neuromuscular control theories will be discussed in length, highlighting optimality, probabilistic principles, and neuromechanical constraints, that may guide individuals to families of muscle activity solutions within what is theoretically possible. Our intention is for this paper to serve as a primer for the neuromuscular control scientific community by introducing and integrating many of the ideas common across disciplines today, as well as inspire future work to improve the representation of neural control in biomechanical models.
Collapse
|
7
|
Akalu Y, Frazer AK, Howatson G, Pearce AJ, Siddique U, Rostami M, Tallent J, Kidgell DJ. Identifying the role of the reticulospinal tract for strength and motor recovery: A scoping review of nonhuman and human studies. Physiol Rep 2023; 11:e15765. [PMID: 37474275 PMCID: PMC10359156 DOI: 10.14814/phy2.15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
In addition to the established postural control role of the reticulospinal tract (RST), there has been an increasing interest on its involvement in strength, motor recovery, and other gross motor functions. However, there are no reviews that have systematically assessed the overall motor function of the RST. Therefore, we aimed to determine the role of the RST underpinning motor function and recovery. We performed a literature search using Ovid Medline, Embase, CINAHL Plus, and Scopus to retrieve papers using key words for RST, strength, and motor recovery. Human and animal studies which assessed the role of RST were included. Studies were screened and 32 eligible studies were included for the final analysis. Of these, 21 of them were human studies while the remaining were on monkeys and rats. Seven experimental animal studies and four human studies provided evidence for the involvement of the RST in motor recovery, while two experimental animal studies and eight human studies provided evidence for strength gain. The RST influenced gross motor function in two experimental animal studies and five human studies. Overall, the RST has an important role for motor recovery, gross motor function and at least in part, underpins strength gain. The role of RST for strength gain in healthy people and its involvement in spasticity in a clinical population has been limitedly described. Further studies are required to ascertain the role of the RST's role in enhancing strength and its contribution to the development of spasticity.
Collapse
Affiliation(s)
- Yonas Akalu
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
- Department of Human PhysiologySchool of MedicineUniversity of GondarGondarEthiopia
| | - Ashlyn K. Frazer
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| | - Glyn Howatson
- Department of Sport, Exercise and RehabilitationNorthumbria UniversityNewcastleUK
- Water Research GroupNorth West UniversityPotchefstroomSouth Africa
| | - Alan J. Pearce
- College of Science, Health and EngineeringLa Trobe UniversityMelbourneVictoriaAustralia
| | - Ummatul Siddique
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| | - Mohamad Rostami
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| | - Jamie Tallent
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
- School of Sport, Rehabilitation and Exercise SciencesUniversity of EssexColchesterUK
| | - Dawson J. Kidgell
- Monash Exercise Neuroplasticity Research UnitDepartment of PhysiotherapySchool of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Lafe CW, Liu F, Simpson TW, Moon CH, Collinger JL, Wittenberg GF, Urbin MA. Force oscillations underlying precision grip in humans with lesioned corticospinal tracts. Neuroimage Clin 2023; 38:103398. [PMID: 37086647 PMCID: PMC10173012 DOI: 10.1016/j.nicl.2023.103398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/24/2023]
Abstract
Stability of precision grip depends on the ability to regulate forces applied by the digits. Increased frequency composition and temporal irregularity of oscillations in the force signal are associated with enhanced force stability, which is thought to result from increased voluntary drive along the corticospinal tract (CST). There is limited knowledge of how these oscillations in force output are regulated in the context of dexterous hand movements like precision grip, which are often impaired by CST damage due to stroke. The extent of residual CST volume descending from primary motor cortex may help explain the ability to modulate force oscillations at higher frequencies. Here, stroke survivors with longstanding hand impairment (n = 17) and neurologically-intact controls (n = 14) performed a precision grip task requiring dynamic and isometric muscle contractions to scale and stabilize forces exerted on a sensor by the index finger and thumb. Diffusion spectrum imaging was used to quantify total white matter volume within the residual and intact CSTs of stroke survivors (n = 12) and CSTs of controls (n = 14). White matter volumes within the infarct region and an analogous portion of overlap with the CST, mirrored onto the intact side, were also quantified in stroke survivors. We found reduced ability to stabilize force and more restricted frequency ranges in force oscillations of stroke survivors relative to controls; though, more broadband, irregular output was strongly related to force-stabilizing ability in both groups. The frequency composition and temporal irregularity of force oscillations observed in stroke survivors did not correlate with maximal precision grip force, suggesting that it is not directly related to impaired force-generating capacity. The ratio of residual to intact CST volumes contained within infarct and mirrored compartments was associated with more broadband, irregular force oscillations in stroke survivors. Our findings provide insight into granular aspects of dexterity altered by corticospinal damage and supply preliminary evidence to support that the ability to modulate force oscillations at higher frequencies is explained, at least in part, by residual CST volume in stroke survivors.
Collapse
Affiliation(s)
- Charley W Lafe
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA
| | - Fang Liu
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tyler W Simpson
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer L Collinger
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - George F Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
9
|
Beltrame G, Scano A, Marino G, Peccati A, Molinari Tosatti L, Portinaro N. Recent developments in muscle synergy analysis in young people with neurodevelopmental diseases: A Systematic Review. Front Bioeng Biotechnol 2023; 11:1145937. [PMID: 37180039 PMCID: PMC10174248 DOI: 10.3389/fbioe.2023.1145937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
The central nervous system simplifies motor control by sending motor commands activating groups of muscles, known as synergies. Physiological locomotion can be described as a coordinated recruitment of four to five muscle synergies. The first studies on muscle synergies in patients affected by neurological diseases were on stroke survivors. They showed that synergies can be used as biomarkers for motor impairment as they vary in patients with respect to healthy people. Likewise, muscle synergy analysis has been applied to developmental diseases (DD). The need for a comprehensive view of the present findings is crucial for comparing results achieved so far and promote future directions in the field. In the present review, we screened three scientific databases and selected thirty-six papers investigating muscle synergies extracted from locomotion in children affected by DD. Thirty-one articles investigate how cerebral palsy (CP) influences motor control, the currently exploited method in studying motor control in CP and finally the effects of treatments in these patients in terms of synergies and biomechanics; two articles investigate how muscle synergies vary in Duchenne muscular dystrophy (DMD), and three other articles assess other developmental pathologies, such as chronic and acute neuropathic pain. For CP, most of the studies demonstrate that the number of synergies is lower and that the synergy composition varies in the affected children with respect to normal controls. Still, the predictability of treatment's effects and the etiology of muscle synergy variation are open questions, as it has been reported that treatments minimally modify synergies, even if they improve biomechanics. The application of different algorithms in extracting synergies might bring about more subtle differences. Considering DMD, no correlation was found between non-neural muscle weakness and muscle modules' variation, while in chronic pain a decreased number of synergies was observed as a possible consequence of plastic adaptations. Even if the potential of the synergistic approach for clinical and rehabilitation practices is recognized, there is not full consensus on protocols nor widely accepted guidelines for the systematic clinical adoption of the method in DD. We critically commented on the current findings, on the methodological issues and the relative open points, and on the clinical impact of muscle synergies in neurodevelopmental diseases to fill the gap for applying the method in clinical practice.
Collapse
Affiliation(s)
- Giulia Beltrame
- Residency Program in Orthopedics and Traumatology, Universitá degli Studi di Milano, Milan, Italy
| | - Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Milan, Italy
- *Correspondence: Alessandro Scano,
| | - Giorgia Marino
- Physiotherapy Unit, Humanitas Clinical and Research Center—IRCCS, Milan, Italy
| | - Andrea Peccati
- Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Milan, Italy
| | - Nicola Portinaro
- Residency Program in Orthopedics and Traumatology, Universitá degli Studi di Milano, Milan, Italy
- Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Srivastava S, Seamon BA, Marebwa BK, Wilmskoetter J, Bowden MG, Gregory CM, Seo NJ, Hanlon CA, Bonilha L, Brown TR, Neptune RR, Kautz SA. The relationship between motor pathway damage and flexion-extension patterns of muscle co-excitation during walking. Front Neurol 2022; 13:968385. [PMID: 36388195 PMCID: PMC9650203 DOI: 10.3389/fneur.2022.968385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 01/16/2023] Open
Abstract
Background Mass flexion-extension co-excitation patterns during walking are often seen as a consequence of stroke, but there is limited understanding of the specific contributions of different descending motor pathways toward their control. The corticospinal tract is a major descending motor pathway influencing the production of normal sequential muscle coactivation patterns for skilled movements. However, control of walking is also influenced by non-corticospinal pathways such as the corticoreticulospinal pathway that possibly contribute toward mass flexion-extension co-excitation patterns during walking. The current study sought to investigate the associations between damage to corticospinal (CST) and corticoreticular (CRP) motor pathways following stroke and the presence of mass flexion-extension patterns during walking as evaluated using module analysis. Methods Seventeen healthy controls and 44 stroke survivors were included in the study. We used non-negative matrix factorization for module analysis of paretic leg electromyographic activity. We typically have observed four modules during walking in healthy individuals. Stroke survivors often have less independently timed modules, for example two-modules presented as mass flexion-extension pattern. We used diffusion tensor imaging-based analysis where streamlines connecting regions of interest between the cortex and brainstem were computed to evaluate CST and CRP integrity. We also used a coarse classification tree analysis to evaluate the relative CST and CRP contribution toward module control. Results Interhemispheric CST asymmetry was associated with worse lower extremity Fugl-Meyer score (p = 0.023), propulsion symmetry (p = 0.016), and fewer modules (p = 0.028). Interhemispheric CRP asymmetry was associated with worse lower extremity Fugl-Meyer score (p = 0.009), Dynamic gait index (p = 0.035), Six-minute walk test (p = 0.020), Berg balance scale (p = 0.048), self-selected walking speed (p = 0.041), and propulsion symmetry (p = 0.001). The classification tree model reveled that substantial ipsilesional CRP or CST damage leads to a two-module pattern and poor walking ability with a trend toward increased compensatory contralesional CRP based control. Conclusion Both CST and CRP are involved with control of modules during walking and damage to both may lead to greater reliance on the contralesional CRP, which may contribute to a two-module pattern and be associated with worse walking performance.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Shraddha Srivastava
| | - Bryant A. Seamon
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Barbara K. Marebwa
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Janina Wilmskoetter
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Mark G. Bowden
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Chris M. Gregory
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Na Jin Seo
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Occupational Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Colleen A. Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Leonardo Bonilha
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Truman R. Brown
- Department of Radiology and Radiological Science, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Neptune
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Steven A. Kautz
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States,Division of Physical Therapy, Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
11
|
Phylogenetic view of the compensatory mechanisms in motor and sensory systems after neuronal injury. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100058. [PMID: 36304591 PMCID: PMC9593282 DOI: 10.1016/j.crneur.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Through phylogeny, novel neural circuits are added on top of ancient circuits. Upon injury of a novel circuit which enabled fine control, the ancient circuits can sometimes take over its function for recovery; however, the recovered function is limited according to the capacity of the ancient circuits. In this review, we discuss two examples of functional recovery after neural injury in nonhuman primate models. The first is the recovery of dexterous hand movements following damage to the corticospinal tract. The second is the recovery of visual function after injury to the primary visual cortex (V1). In the former case, the functions of the direct cortico-motoneuronal pathway, which specifically developed in higher primates for the control of fractionated digit movements, can be partly compensated for by other descending motor pathways mediated by rubrospinal, reticulospinal, and propriospinal neurons. However, the extent of recovery depends on the location of the damage and which motor systems take over its function. In the latter case, after damage to V1, which is highly developed in primates, either the direct pathway from the lateral geniculate nucleus to extrastriate visual cortices or that from the midbrain superior colliculus-pulvinar-extrastriate/parietal cortices partly takes over the function of V1. However, the state of visual awareness is no longer the same as in the intact state, which might reflect the limited capacity of the compensatory pathways in visual recognition. Such information is valuable for determining the targets of neuromodulatory therapies and setting treatment goals after brain and spinal cord injuries.
Collapse
|
12
|
Tapia JA, Tohyama T, Poll A, Baker SN. The Existence of the StartReact Effect Implies Reticulospinal, Not Corticospinal, Inputs Dominate Drive to Motoneurons during Voluntary Movement. J Neurosci 2022; 42:7634-7647. [PMID: 36658461 PMCID: PMC9546468 DOI: 10.1523/jneurosci.2473-21.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 02/02/2023] Open
Abstract
Reaction time is accelerated if a loud (startling) sound accompanies the cue-the "StartReact" effect. Animal studies revealed a reticulospinal substrate for the startle reflex; StartReact may similarly involve the reticulospinal tract, but this is currently uncertain. Here we trained two female macaque monkeys to perform elbow flexion/extension movements following a visual cue. The cue was sometimes accompanied by a loud sound, generating a StartReact effect in electromyogram response latency, as seen in humans. Extracellular recordings were made from antidromically identified corticospinal neurons in primary motor cortex (M1), from the reticular formation (RF), and from the spinal cord (SC; C5-C8 segments). After loud sound, task-related activity was suppressed in M1 (latency, 70-200 ms after cue), but was initially enhanced (70-80 ms) and then suppressed (140-210 ms) in RF. SC activity was unchanged. In a computational model, we simulated a motoneuron pool receiving input from different proportions of the average M1 and RF activity recorded experimentally. Motoneuron firing generated simulated electromyogram, allowing reaction time measurements. Only if ≥60% of motoneuron drive came from RF (≤40% from M1) did loud sound shorten reaction time. The extent of shortening increased as more drive came from RF. If RF provided <60% of drive, loud sound lengthened the reaction time-the opposite of experimental findings. The majority of the drive for voluntary movements is thus likely to originate from the brainstem, not the cortex; changes in the magnitude of the StartReact effect can measure a shift in the relative importance of descending systems.SIGNIFICANCE STATEMENT Our results reveal that a loud sound has opposite effects on neural spiking in corticospinal cells from primary motor cortex, and in the reticular formation. We show that this fortuitously allows changes in reaction time produced by a loud sound to be used to assess the relative importance of reticulospinal versus corticospinal control of movement, validating previous noninvasive measurements in humans. Our findings suggest that the majority of the descending drive to motoneurons producing voluntary movement in primates comes from the reticulospinal tract, not the corticospinal tract.
Collapse
Affiliation(s)
- Jesus A Tapia
- Facultad de Ciencias Biologicas, Benemérita Universidad Autónoma de Puebla, C.P. 72000 Puebla, Mexico
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Takamichi Tohyama
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Aichi 470-1192, Japan
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Annie Poll
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stuart N Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
13
|
Yarossi M, Brooks DH, Erdoğmuş D, Tunik E. Similarity of hand muscle synergies elicited by transcranial magnetic stimulation and those found during voluntary movement. J Neurophysiol 2022; 128:994-1010. [PMID: 36001748 PMCID: PMC9550575 DOI: 10.1152/jn.00537.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022] Open
Abstract
Converging evidence in human and animal models suggests that exogenous stimulation of the motor cortex (M1) elicits responses in the hand with similar modular structure to that found during voluntary grasping movements. The aim of this study was to establish the extent to which modularity in muscle responses to transcranial magnetic stimulation (TMS) to M1 resembles modularity in muscle activation during voluntary hand movements involving finger fractionation. Electromyography (EMG) was recorded from eight hand-forearm muscles in eight healthy individuals. Modularity was defined using non-negative matrix factorization to identify low-rank approximations (spatial muscle synergies) of the complex activation patterns of EMG data recorded during high-density TMS mapping of M1 and voluntary formation of gestures in the American Sign Language alphabet. Analysis of synergies revealed greater than chance similarity between those derived from TMS and those derived from voluntary movement. Both data sets included synergies dominated by single intrinsic hand muscles presumably to meet the demand for highly fractionated finger movement. These results suggest that corticospinal connectivity to individual intrinsic hand muscles may be combined with modular multimuscle activation via synergies in the formation of hand postures.NEW & NOTEWORTHY This is the first work to examine the similarity of modularity in hand muscle responses to transcranial magnetic stimulation (TMS) of the motor cortex and that derived from voluntary hand movement. We show that TMS-elicited muscle synergies of the hand, measured at rest, reflect those found in voluntary behavior involving finger fractionation. This work provides a basis for future work using TMS to investigate muscle activation modularity in the human motor system.
Collapse
Affiliation(s)
- Mathew Yarossi
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, Massachusetts
- SPIRAL Center, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| | - Dana H Brooks
- SPIRAL Center, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| | - Deniz Erdoğmuş
- SPIRAL Center, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| | - Eugene Tunik
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, Massachusetts
- SPIRAL Center, Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts
| |
Collapse
|
14
|
The effects of slow breathing on postural muscles during standing perturbations in young adults. Exp Brain Res 2022; 240:2623-2631. [PMID: 35962803 DOI: 10.1007/s00221-022-06437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/04/2022] [Indexed: 11/04/2022]
Abstract
Maintaining standing balance is vital to completing activities in daily living. Recent findings suggest an interaction between cardiovascular and postural control systems. Volitional slow breathing can modulate the cardiovascular response and affect postural control during quiet standing. However, the effects of slow breathing during threats to standing balance have not been studied. The study examined the effect of slow breathing on the latency and amplitude of postural muscle responses to perturbations of the base of support in healthy, young adults. Twenty-seven participants completed two balance perturbation tasks in standing on an instrumented split-belt treadmill while breathing spontaneously and breathing at 6 breaths per minute. Each perturbation task consisted of 25 posteriorly directed translations of the treadmill belts every 8-12 s. Muscle latency and muscle burst amplitude were measured using surface electromyography from the right limb for the quadriceps (QUADS), medial hamstring (MH), gastrocnemii (GASTROC), soleus (SOL), and tibialis anterior (TA) muscle groups, while a respiratory belt was used to record respiratory rate. Results indicated that during the slow breathing task both muscle latency (p = 0.022) and muscle burst amplitude (p = 0.011) decreased compared to spontaneous breathing. The EMG pre-perturbation activation was not significantly different in any muscle group between conditions (p > 0.167). The study found that reducing respiratory rate to approximately 6 breaths per minute affects the neuromuscular responses in the lower limb muscles to perturbations.
Collapse
|
15
|
Huang Y, Zhang Y, He Z, Manyande A, Wu D, Feng M, Xiang H. The connectome from the cerebral cortex to skeletal muscle using viral transneuronal tracers: a review. Am J Transl Res 2022; 14:4864-4879. [PMID: 35958450 PMCID: PMC9360884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Connectomics has developed from an initial observation under an electron microscope to the present well-known medical imaging research approach. The emergence of the most popular transneuronal tracers has further advanced connectomics research. Researchers use the virus trans-nerve tracing method to trace the whole brain, mark the brain nerve circuit and nerve connection structure, and construct a complete nerve conduction pathway. This review assesses current methods of studying cortical to muscle connections using viral neuronal tracers and demonstrates their application in disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Yan Huang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, P. R. China
| | - Yunhua Zhang
- Hubei Provincial Hospital of Traditional Chinese MedicineWuhan 430061, Hubei, P. R. China
- Clinical Medical College of Hubei University of Chinese MedicineWuhan 430061, Hubei, P. R. China
- Hubei Province Academy of Traditional Chinese MedicineWuhan 430061, Hubei, P. R. China
| | - Zhigang He
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Anne Manyande
- School of Human and Social Sciences, University of West LondonLondon, UK
| | - Duozhi Wu
- Department of Anesthesiology, Hainan General HospitalHaikou 570311, Hainan, P. R. China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study CenterWuhan 430071, Hubei, P. R. China
| | - Hongbing Xiang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| |
Collapse
|
16
|
Atkinson E, Škarabot J, Ansdell P, Goodall S, Howatson G, Thomas K. Does the reticulospinal tract mediate adaptation to resistance training in humans? J Appl Physiol (1985) 2022; 133:689-696. [PMID: 35834623 PMCID: PMC9467470 DOI: 10.1152/japplphysiol.00264.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Resistance training increases volitional force-producing capacity, and it is widely accepted that such an increase is partly underpinned by adaptations in the central nervous system, particularly in the early phases of training. Despite this, the neural substrate(s) responsible for mediating adaptation remains largely unknown. Most studies have focused on the corticospinal tract, the main descending pathway controlling movement in humans, with equivocal findings. It is possible that neural adaptation to resistance training is mediated by other structures; one such candidate is the reticulospinal tract. The aim of this narrative mini-review is to articulate the potential of the reticulospinal tract to underpin adaptations in muscle strength. Specifically, we 1) discuss why the structure and function of the reticulospinal tract implicate it as a potential site for adaptation; 2) review the animal and human literature that supports the idea of the reticulospinal tract as an important neural substrate underpinning adaptation to resistance training; and 3) examine the potential methodological options to assess the reticulospinal tract in humans.
Collapse
Affiliation(s)
- Elliott Atkinson
- Department of Sport, Exercise and Rehabilitation, grid.42629.3bNorthumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, grid.6571.5Loughborough University, Loughborough, United Kingdom
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, grid.42629.3bNorthumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, grid.42629.3bNorthumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, grid.42629.3bNorthumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, grid.42629.3bNorthumbria University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
17
|
Škarabot J, Folland JP, Holobar A, Baker SN, Del Vecchio A. Startling stimuli increase maximal motor unit discharge rate and rate of force development in humans. J Neurophysiol 2022; 128:455-469. [PMID: 35829632 PMCID: PMC9423775 DOI: 10.1152/jn.00115.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maximal rate of force development in adult humans is determined by the maximal motor unit discharge rate, however the origin of the underlying synaptic inputs remains unclear. Here, we tested a hypothesis that the maximal motor unit discharge rate will increase in response to a startling cue, a stimulus that purportedly activates the pontomedullary reticular formation neurons that make mono- and disynaptic connections to motoneurons via fast-conducting axons. Twenty-two men were required to produce isometric knee extensor forces "as fast and as hard" as possible from rest to 75% of maximal voluntary force, in response to visual (VC), visual-auditory (VAC; 80 dB), or visual-startling cue (VSC; 110 dB). Motoneuron activity was estimated via decomposition of high-density surface electromyogram recordings over the vastus lateralis and medialis muscles. Reaction time was significantly shorter in response to VSC compared to VAC and VC. The VSC further elicited faster neuromechanical responses including a greater number of discharges per motor unit per second and greater maximal rate of force development, with no differences between VAC and VC. We provide evidence, for the first time, that the synaptic input to motoneurons increases in response to a startling cue, suggesting a contribution of subcortical pathways to maximal motoneuron output in humans.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, grid.6571.5Loughborough University, Loughborough, United Kingdom
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, grid.6571.5Loughborough University, Loughborough, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, United Kingdom
| | - Ales Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Stuart N Baker
- Medical Faculty, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| |
Collapse
|
18
|
Lear A, Baker SN, Clarke HF, Roberts AC, Schmid MC, Jarrett W. Understanding them to understand ourselves: The importance of NHP research for translational neuroscience. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100049. [PMID: 36518342 PMCID: PMC9743051 DOI: 10.1016/j.crneur.2022.100049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/20/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022] Open
Abstract
Studying higher brain function presents fundamental scientific challenges but has great potential for impactful translation to the clinic, supporting the needs of many patients suffering from conditions that relate to neuronal dysfunction. For many key questions relevant to human neurological conditions and clinical interventions, non-human primates (NHPs) remain the only suitable model organism and the only effective way to study the relationship between brain structure and function with the knowledge and tools currently available. Here we present three exemplary studies of current research yielding important findings that are directly translational to human clinical patients but which would be impossible without NHP studies. Our first example shows how studies of the NHP prefrontal cortex are leading to clinically relevant advances and potential new treatments for human neuropsychiatric disorders such as depression and anxiety. Our second example looks at the relevance of NHP research to our understanding of visual pathways and the visual cortex, leading to visual prostheses that offer treatments for otherwise blind patients. Finally, we consider recent advances in treatments leading to improved recovery of movement and motor control in stroke patients, resulting from our improved understanding of brain stem parallel pathways involved in movement in NHPs. The case for using NHPs in neuroscience research, and the direct benefits to human patients, is strong but has rarely been set out directly. This paper reviews three very different areas of neuroscience research, expressly highlighting the unique insights offered to each by NHP studies and their direct applicability to human clinical conditions.
Collapse
Affiliation(s)
- Annabella Lear
- Understanding Animal Research, Abbey House, 74-76 St John Street, London, EC1M 4DZ, United Kingdom
| | - Stuart N Baker
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Hannah F Clarke
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY, Cambridge, United Kingdom.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, Cambridge, United Kingdom
| | - Angela C Roberts
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY, Cambridge, United Kingdom.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, Cambridge, United Kingdom
| | - Michael C Schmid
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, NE2 4HH, United Kingdom
| | - Wendy Jarrett
- Understanding Animal Research, Abbey House, 74-76 St John Street, London, EC1M 4DZ, United Kingdom
| |
Collapse
|
19
|
Chopek JW, Zhang Y, Brownstone RM. Intrinsic brainstem circuits comprised of Chx10-expressing neurons contribute to reticulospinal output in mice. J Neurophysiol 2021; 126:1978-1990. [PMID: 34669520 PMCID: PMC8715053 DOI: 10.1152/jn.00322.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glutamatergic reticulospinal neurons in the gigantocellular reticular nucleus (GRN) of the medullary reticular formation can function as command neurons, transmitting motor commands to spinal cord circuits to instruct movement. Recent advances in our understanding of this neuron-dense region have been facilitated by the discovery of expression of the transcriptional regulator, Chx10, in excitatory reticulospinal neurons. Here, we address the capacity of local circuitry in the GRN to contribute to reticulospinal output. We define two subpopulations of Chx10-expressing neurons in this region, based on distinct electrophysiological properties and soma size (small and large), and show that these populations correspond to local interneurons and reticulospinal neurons, respectively. Using focal release of caged glutamate combined with patch clamp recordings, we demonstrated that Chx10 neurons form microcircuits in which the Chx10 local interneurons project to and facilitate the firing of Chx10 reticulospinal neurons. We discuss the implications of these microcircuits in terms of movement selection. NEW & NOTEWORTHY Reticulospinal neurons in the medullary reticular formation integrate inputs from higher regions to effectively instruct spinal motor circuits. Using photoactivation of neurons in brainstem slices, we studied connectivity of reticular formation neurons that express the transcriptional regulator, Chx10. We show that a subpopulation of these neurons functions as local interneurons that affect descending commands. The results shed light on the internal organization and microcircuit formation of reticular formation neurons.
Collapse
Affiliation(s)
- Jeremy W Chopek
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ying Zhang
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert M Brownstone
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
20
|
A cortical injury model in a non-human primate to assess execution of reach and grasp actions: implications for recovery after traumatic brain injury. J Neurosci Methods 2021; 361:109283. [PMID: 34237383 PMCID: PMC9969347 DOI: 10.1016/j.jneumeth.2021.109283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Technological advances in developing experimentally controlled models of traumatic brain injury (TBI) are prevalent in rodent models and these models have proven invaluable in characterizing temporal changes in brain and behavior after trauma. To date no long-term studies in non-human primates (NHPs) have been published using an experimentally controlled impact device to follow behavioral performance over time. NEW METHOD We have employed a controlled cortical impact (CCI) device to create a focal contusion to the hand area in primary motor cortex (M1) of three New World monkeys to characterize changes in reach and grasp function assessed for 3 months after the injury. RESULTS The CCI destroyed most of M1 hand representation reducing grey matter by 9.6 mm3, 12.9 mm3, and 15.5 mm3 and underlying corona radiata by 7.4 mm3, 6.9 mm3, and 5.6 mm3 respectively. Impaired motor function was confined to the hand contralateral to the injury. Gross hand-use was only mildly affected during the first few days of observation after injury while activity requiring skilled use of the hand was impaired over three months. COMPARISON WITH EXISTING METHOD(S) This study is unique in establishing a CCI model of TBI in an NHP resulting in persistent impairments in motor function evident in volitional use of the hand. CONCLUSIONS Establishing an NHP model of TBI is essential to extend current rodent models to the complex neural architecture of the primate brain. Moving forward this model can be used to investigate novel therapeutic interventions to improve or restore impaired motor function after trauma.
Collapse
|
21
|
Nazarova M, Novikov P, Ivanina E, Kozlova K, Dobrynina L, Nikulin VV. Mapping of multiple muscles with transcranial magnetic stimulation: absolute and relative test-retest reliability. Hum Brain Mapp 2021; 42:2508-2528. [PMID: 33682975 PMCID: PMC8090785 DOI: 10.1002/hbm.25383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial accuracy of transcranial magnetic stimulation (TMS) may be as small as a few millimeters. Despite such great potential, navigated TMS (nTMS) mapping is still underused for the assessment of motor plasticity, particularly in clinical settings. Here, we investigate the within-limb somatotopy gradient as well as absolute and relative reliability of three hand muscle cortical representations (MCRs) using a comprehensive grid-based sulcus-informed nTMS motor mapping. We enrolled 22 young healthy male volunteers. Two nTMS mapping sessions were separated by 5-10 days. Motor evoked potentials were obtained from abductor pollicis brevis (APB), abductor digiti minimi, and extensor digitorum communis. In addition to individual MRI-based analysis, we studied normalized MNI MCRs. For the reliability assessment, we calculated intraclass correlation and the smallest detectable change. Our results revealed a somatotopy gradient reflected by APB MCR having the most lateral location. Reliability analysis showed that the commonly used metrics of MCRs, such as areas, volumes, centers of gravity (COGs), and hotspots had a high relative and low absolute reliability for all three muscles. For within-limb TMS somatotopy, the most common metrics such as the shifts between MCR COGs and hotspots had poor relative reliability. However, overlaps between different muscle MCRs were highly reliable. We, thus, provide novel evidence that inter-muscle MCR interaction can be reliably traced using MCR overlaps while shifts between the COGs and hotspots of different MCRs are not suitable for this purpose. Our results have implications for the interpretation of nTMS motor mapping results in healthy subjects and patients with neurological conditions.
Collapse
Affiliation(s)
- Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Federal State Budgetary Institution «Federal center of brain research and neurotechnologies» of the Federal Medical Biological AgencyMoscowRussian Federation
| | - Pavel Novikov
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ekaterina Ivanina
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ksenia Kozlova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | | | - Vadim V. Nikulin
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
22
|
Maitland S, Baker SN. Ipsilateral Motor Evoked Potentials as a Measure of the Reticulospinal Tract in Age-Related Strength Changes. Front Aging Neurosci 2021; 13:612352. [PMID: 33746734 PMCID: PMC7966512 DOI: 10.3389/fnagi.2021.612352] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The reticulospinal tract (RST) is essential for balance, posture, and strength, all functions which falter with age. We hypothesized that age-related strength reductions might relate to differential changes in corticospinal and reticulospinal connectivity. Methods: We divided 83 participants (age 20-84) into age groups <50 (n = 29) and ≥50 (n = 54) years; five of which had probable sarcopenia. Transcranial Magnetic Stimulation (TMS) was applied to the left cortex, inducing motor evoked potentials (MEPs) in the biceps muscles bilaterally. Contralateral (right, cMEPs) and ipsilateral (left, iMEPs) MEPs are carried by mainly corticospinal and reticulospinal pathways respectively; the iMEP/cMEP amplitude ratio (ICAR) therefore measured the relative importance of the two descending tracts. Grip strength was measured with a dynamometer and normalized for age and sex. Results: We found valid iMEPs in 74 individuals (n = 44 aged ≥50, n = 29 < 50). Younger adults had a significant negative correlation between normalized grip strength and ICAR (r = -0.37, p = 0.045); surprisingly, in older adults, the correlation was also significant, but positive (r = 0.43, p = 0.0037). Discussion: Older individuals who maintain or strengthen their RST are stronger than their peers. We speculate that reduced RST connectivity could predict those at risk of age-related muscle weakness; interventions that reinforce the RST could be a candidate for treatment or prevention of sarcopenia.
Collapse
Affiliation(s)
- Stuart Maitland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
23
|
Extensive Cortical Convergence to Primate Reticulospinal Pathways. J Neurosci 2021; 41:1005-1018. [PMID: 33268548 PMCID: PMC7880280 DOI: 10.1523/jneurosci.1379-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022] Open
Abstract
Early evolution of the motor cortex included development of connections to brainstem reticulospinal neurons; these projections persist in primates. In this study, we examined the organization of corticoreticular connections in five macaque monkeys (one male) using both intracellular and extracellular recordings from reticular formation neurons, including identified reticulospinal cells. Synaptic responses to stimulation of different parts of primary motor cortex (M1) and supplementary motor area (SMA) bilaterally were assessed. Widespread short latency excitation, compatible with monosynaptic transmission over fast-conducting pathways, was observed, as well as longer latency responses likely reflecting a mixture of slower monosynaptic and oligosynaptic pathways. There was a high degree of convergence: 56% of reticulospinal cells with input from M1 received projections from M1 in both hemispheres; for SMA, the equivalent figure was even higher (70%). Of reticulospinal neurons with input from the cortex, 78% received projections from both M1 and SMA (regardless of hemisphere); 83% of reticulospinal cells with input from M1 received projections from more than one of the tested M1 sites. This convergence at the single cell level allows reticulospinal neurons to integrate information from across the motor areas of the cortex, taking account of the bilateral motor context. Reticulospinal connections are known to strengthen following damage to the corticospinal tract, such as after stroke, partially contributing to functional recovery. Extensive corticoreticular convergence provides redundancy of control, which may allow the cortex to continue to exploit this descending pathway even after damage to one area.SIGNIFICANCE STATEMENT The reticulospinal tract (RST) provides a parallel pathway for motor control in primates, alongside the more sophisticated corticospinal system. We found extensive convergent inputs to primate reticulospinal cells from primary and supplementary motor cortex bilaterally. These redundant connections could maintain transmission of voluntary commands to the spinal cord after damage (e.g., after stroke or spinal cord injury), possibly assisting recovery of function.
Collapse
|
24
|
Synergistic Activation Patterns of Hand Muscles in Left-and Right-Hand Dominant Individuals. J Hum Kinet 2021; 76:89-100. [PMID: 33603927 PMCID: PMC7877284 DOI: 10.2478/hukin-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Handedness has been associated with behavioral asymmetries between limbs that suggest specialized function of dominant and non-dominant hand. Whether patterns of muscle co-activation, representing muscle synergies, also differ between the limbs remains an open question. Previous investigations of proximal upper limb muscle synergies have reported little evidence of limb asymmetry; however, whether the same is true of the distal upper limb and hand remains unknown. This study compared forearm and hand muscle synergies between the dominant and non-dominant limb of left-handed and right-handed participants. Participants formed their hands into the postures of the American Sign Language (ASL) alphabet, while EMG was recorded from hand and forearm muscles. Muscle synergies were extracted for each limb individually by applying non-negative-matrix-factorization (NMF). Extracted synergies were compared between limbs for each individual, and between individuals to assess within and across participant differences. Results indicate no difference between the limbs for individuals, but differences in limb synergies at the population level. Left limb synergies were found to be more similar than right limb synergies across left- and right-handed individuals. Synergies of the left hand of left dominant individuals were found to have greater population level similarity than the other limbs tested. Results are interpreted with respect to known differences in the neuroanatomy and neurophysiology of proximal and distal upper limb motor control. Implications for skill training in sports requiring dexterous control of the hand are discussed.
Collapse
|
25
|
Škarabot J, Brownstein CG, Casolo A, Del Vecchio A, Ansdell P. The knowns and unknowns of neural adaptations to resistance training. Eur J Appl Physiol 2020; 121:675-685. [PMID: 33355714 PMCID: PMC7892509 DOI: 10.1007/s00421-020-04567-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
The initial increases in force production with resistance training are thought to be primarily underpinned by neural adaptations. This notion is firmly supported by evidence displaying motor unit adaptations following resistance training; however, the precise locus of neural adaptation remains elusive. The purpose of this review is to clarify and critically discuss the literature concerning the site(s) of putative neural adaptations to short-term resistance training. The proliferation of studies employing non-invasive stimulation techniques to investigate evoked responses have yielded variable results, but generally support the notion that resistance training alters intracortical inhibition. Nevertheless, methodological inconsistencies and the limitations of techniques, e.g. limited relation to behavioural outcomes and the inability to measure volitional muscle activity, preclude firm conclusions. Much of the literature has focused on the corticospinal tract; however, preliminary research in non-human primates suggests reticulospinal tract is a potential substrate for neural adaptations to resistance training, though human data is lacking due to methodological constraints. Recent advances in technology have provided substantial evidence of adaptations within a large motor unit population following resistance training. However, their activity represents the transformation of afferent and efferent inputs, making it challenging to establish the source of adaptation. Whilst much has been learned about the nature of neural adaptations to resistance training, the puzzle remains to be solved. Additional analyses of motoneuron firing during different training regimes or coupling with other methodologies (e.g., electroencephalography) may facilitate the estimation of the site(s) of neural adaptations to resistance training in the future.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Callum G Brownstein
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Université Lyon, Saint-Étienne, France
| | - Andrea Casolo
- Department of Bioengineering, Imperial College London, London, UK.,Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence and Biomedical Engineering, Faculty of Engineering, Friedrich-Alexander University, Erlangen-Nurnberg, 91052, Erlangen, Germany
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
26
|
Habekost B, Germann M, Baker SN. Plastic changes in primate motor cortex following paired peripheral nerve stimulation. J Neurophysiol 2020; 125:458-475. [PMID: 33427573 PMCID: PMC8476207 DOI: 10.1152/jn.00288.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Repeated paired stimulation of two peripheral nerves can produce lasting changes in motor cortical excitability, but little is known of the underlying neuronal basis. Here, we trained two macaque monkeys to perform selective thumb and index finger abduction movements. Neural activity was recorded from the contralateral primary motor cortex during task performance, and following stimulation of the ulnar and median nerves, and the nerve supplying the extensor digitorum communis (EDC) muscle. Responses were compared before and after 1 h of synchronous or asynchronous paired ulnar/median nerve stimulation. Task performance was significantly enhanced after asynchronous and impaired after synchronous stimulation. The amplitude of short latency neural responses to median and ulnar nerve stimulation was increased after asynchronous stimulation; later components were reduced after synchronous stimulation. Synchronous stimulation increased neural activity during thumb movement and decreased it during index finger movement; asynchronous stimulation decreased activity during both movements. To assess how well neural activity could separate behavioral or sensory conditions, linear discriminant analysis was used to decode which nerve was stimulated, or which digit moved. Decoding accuracy for nerve stimulation was decreased after synchronous and increased after asynchronous paired stimulation. Decoding accuracy for task performance was decreased after synchronous but was unchanged after asynchronous paired stimulation. Paired stimulation produces changes in motor cortical circuits that outlast the stimulation. Some of these changes depend on precise stimulus timing. NEW & NOTEWORTHY Paired stimulation of peripheral nerves for 1 h induced lasting changes in neural responses within the motor cortex to nerve stimulation and to performance of a behavioral task. These changes were sufficient to alter the efficiency with which activity could encode stimulus type. Stimuli that can be easily applied noninvasively in human subjects can alter central motor circuits.
Collapse
Affiliation(s)
- Bonne Habekost
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Germann
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
27
|
Cortical, Corticospinal, and Reticulospinal Contributions to Strength Training. J Neurosci 2020; 40:5820-5832. [PMID: 32601242 PMCID: PMC7380966 DOI: 10.1523/jneurosci.1923-19.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/27/2020] [Accepted: 03/20/2020] [Indexed: 11/23/2022] Open
Abstract
Following a program of resistance training, there are neural and muscular contributions to the gain in strength. Here, we measured changes in important central motor pathways during strength training in 2 female macaque monkeys. Animals were trained to pull a handle with one arm; weights could be added to increase load. On each day, motor-evoked potentials in upper limb muscles were first measured after stimulation of the primary motor cortex (M1), corticospinal tract (CST), and reticulospinal tract (RST). Monkeys then completed 50 trials with weights progressively increased over 8-9 weeks (final weight ∼6 kg, close to the animal's body weight). Muscle responses to M1 and RST stimulation increased during strength training; there were no increases in CST responses. Changes persisted during a 2 week washout period without weights. After a further 3 months of strength training, an experiment under anesthesia mapped potential responses to CST and RST stimulation in the cervical enlargement of the spinal cord. We distinguished the early axonal volley and later spinal synaptic field potentials, and used the slope of the relationship between these at different stimulus intensities as a measure of spinal input-output gain. Spinal gain was increased on the trained compared with the untrained side of the cord within the intermediate zone and motor nuclei for RST, but not CST, stimulation. We conclude that neural adaptations to strength training involve adaptations in the RST, as well as intracortical circuits within M1. By contrast, there appears to be little contribution from the CST. SIGNIFICANCE STATEMENT We provide the first report of a strength training intervention in nonhuman primates. Our results indicate that strength training is associated with neural adaptations in intracortical and reticulospinal circuits, whereas corticospinal and motoneuronal adaptations are not dominant factors.
Collapse
|
28
|
Byrne A, Kokmotou K, Roberts H, Soto V, Tyson-Carr J, Hewitt D, Giesbrecht T, Stancak A. The cortical oscillatory patterns associated with varying levels of reward during an effortful vigilance task. Exp Brain Res 2020; 238:1839-1859. [PMID: 32507992 PMCID: PMC7438383 DOI: 10.1007/s00221-020-05825-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/28/2020] [Indexed: 11/29/2022]
Abstract
We explored how reward and value of effort shapes performance in a sustained vigilance, reaction time (RT) task. It was posited that reward and value would hasten RTs and increase cognitive effort by boosting activation in the sensorimotor cortex and inhibition in the frontal cortex, similar to the horse-race model of motor actions. Participants performed a series of speeded responses while expecting differing monetary rewards (0 pence (p), 1 p, and 10 p) if they responded faster than their median RT. Amplitudes of cortical alpha, beta, and theta oscillations were analysed using the event-related desynchronization method. In experiment 1 (N = 29, with 12 females), reward was consistent within block, while in experiment 2 (N = 17, with 12 females), reward amount was displayed before each trial. Each experiment evaluated the baseline amplitude of cortical oscillations differently. The value of effort was evaluated using a cognitive effort discounting task (COGED). In both experiments, RTs decreased significantly with higher rewards. Reward level sharpened the increased amplitudes of beta oscillations during fast responses in experiment 1. In experiment 2, reward decreased the amplitudes of beta oscillations in the ipsilateral sensorimotor cortex. Individual effort values did not significantly correlate with oscillatory changes in either experiment. Results suggest that reward level and response speed interacted with the task- and baseline-dependent patterns of cortical inhibition in the frontal cortex and with activation in the sensorimotor cortex during the period of motor preparation in a sustained vigilance task. However, neither the shortening of RT with increasing reward nor the value of effort correlated with oscillatory changes. This implies that amplitudes of cortical oscillations may shape upcoming motor responses but do not translate higher-order motivational factors into motor performance.
Collapse
Affiliation(s)
- Adam Byrne
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK. .,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK.
| | - Katerina Kokmotou
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK.,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| | - Hannah Roberts
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Vicente Soto
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK.,Centre for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - John Tyson-Carr
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Danielle Hewitt
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | | | - Andrej Stancak
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK.,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| |
Collapse
|
29
|
Choudhury S, Singh R, Shobhana A, Sen D, Anand SS, Shubham S, Gangopadhyay S, Baker MR, Kumar H, Baker SN. A Novel Wearable Device for Motor Recovery of Hand Function in Chronic Stroke Survivors. Neurorehabil Neural Repair 2020; 34:600-608. [PMID: 32452275 PMCID: PMC8207486 DOI: 10.1177/1545968320926162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. In monkey, reticulospinal connections to hand and forearm muscles are spontaneously strengthened following corticospinal lesions, likely contributing to recovery of function. In healthy humans, pairing auditory clicks with electrical stimulation of a muscle induces plastic changes in motor pathways (probably including the reticulospinal tract), with features reminiscent of spike-timing dependent plasticity. In this study, we tested whether pairing clicks with muscle stimulation could improve hand function in chronic stroke survivors. Methods. Clicks were delivered via a miniature earpiece; transcutaneous electrical stimuli at motor threshold targeted forearm extensor muscles. A wearable electronic device (WD) allowed patients to receive stimulation at home while performing normal daily activities. A total of 95 patients >6 months poststroke were randomized to 3 groups: WD with shock paired 12 ms before click; WD with clicks and shocks delivered independently; standard care. Those allocated to the device used it for at least 4 h/d, every day for 4 weeks. Upper-limb function was assessed at baseline and weeks 2, 4, and 8 using the Action Research Arm Test (ARAT), which has 4 subdomains (Grasp, Grip, Pinch, and Gross). Results. Severity across the 3 groups was comparable at baseline. Only the paired stimulation group showed significant improvement in total ARAT (median baseline: 7.5; week 8: 11.5; P = .019) and the Grasp subscore (median baseline: 1; week 8: 4; P = .004). Conclusion. A wearable device delivering paired clicks and shocks over 4 weeks can produce a small but significant improvement in upper-limb function in stroke survivors.
Collapse
Affiliation(s)
| | - Ravi Singh
- Institute of Neurosciences, Kolkata, West Bengal, India
| | - A Shobhana
- Institute of Neurosciences, Kolkata, West Bengal, India
| | - Dwaipayan Sen
- Institute of Neurosciences, Kolkata, West Bengal, India
| | | | | | | | - Mark R Baker
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK.,Royal Victoria Infirmary, Newcastle upon Tyne, Tyne and Wear, UK
| | | | - Stuart N Baker
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
30
|
Foysal KMR, Baker SN. Induction of plasticity in the human motor system by motor imagery and transcranial magnetic stimulation. J Physiol 2020; 598:2385-2396. [PMID: 32266976 DOI: 10.1113/jp279794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Delivering transcranial magnetic brain stimulation over the motor cortex during motor imagination leads to enhanced motor output, which is selective for the muscles primarily involved in the imagined movement. This novel protocol may be useful to enhance function after damage to the motor system, such as after stroke. ABSTRACT Several paired stimulation paradigms are known to induce plasticity in the motor cortex, reflected by changes in the motor evoked potential (MEP) following the paired stimulation. Motor imagery (MI) is capable of activating the motor system and affecting cortical excitability. We hypothesized that it might be possible to use MI in conjunction with transcranial magnetic stimulation (TMS) to induce plasticity in the human motor system. TMS was delivered to the motor cortex of healthy human subjects, and baseline MEPs recorded from forearm flexor, forearm extensor and intrinsic hand muscles. Subjects were then asked to imagine either wrist flexion or extension movements during TMS delivery (n = 90 trials). Immediately after this intervention, MEP measurement was repeated. Control protocols tested the impact of imagination or TMS alone. Flexion imagination with TMS increased MEPs in flexors and an intrinsic hand muscle. Extensor imagination with TMS increased MEPs in extensor muscles only. The control paradigms did not produce significant changes. We conclude that delivering TMS during MI is capable of inducing plastic changes in the motor system. This new protocol may find utility to enhance functional rehabilitation after brain injury.
Collapse
Affiliation(s)
- K M Riashad Foysal
- Institute of Neurosciences, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Stuart N Baker
- Institute of Neurosciences, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
31
|
Harrington RM, Chan E, Rounds AK, Wutzke CJ, Dromerick AW, Turkeltaub PE, Harris-Love ML. Roles of Lesioned and Nonlesioned Hemispheres in Reaching Performance Poststroke. Neurorehabil Neural Repair 2020; 34:61-71. [PMID: 31858870 PMCID: PMC6954952 DOI: 10.1177/1545968319876253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background. Severe poststroke arm impairment is associated with greater activation of the nonlesioned hemisphere during movement of the affected arm. The circumstances under which this activation may be adaptive or maladaptive remain unclear. Objective. To identify the functional relevance of key lesioned and nonlesioned hemisphere motor areas to reaching performance in patients with mild versus severe arm impairment. Methods. A total of 20 participants with chronic stroke performed a reaching response time task with their affected arm. During the reaction time period, a transient magnetic stimulus was applied over the primary (M1) or dorsal premotor cortex (PMd) of either hemisphere, and the effect of the perturbation on movement time (MT) was calculated. Results. For perturbation of the nonlesioned hemisphere, there was a significant interaction effect of Site of perturbation (PMd vs M1) by Group (mild vs severe; P < .001). Perturbation of PMd had a greater effect on MT in the severe versus the mild group. This effect was not observed with perturbation of M1. For perturbation of the lesioned hemisphere, there was a main effect of site of perturbation (P < .05), with perturbation of M1 having a greater effect on MT than PMd. Conclusions. These results demonstrate that, in the context of reaching movements, the role of the nonlesioned hemisphere depends on both impairment severity and the specific site that is targeted. A deeper understanding of these individual-, task-, and site-specific factors is essential for advancing the potential usefulness of neuromodulation to enhance poststroke motor recovery.
Collapse
Affiliation(s)
- Rachael M. Harrington
- Georgetown University, Interdisciplinary Program in Neuroscience
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- George Mason University, Department of Bioengineering
- Georgia State University, Center for Research on the Acquisition of Language and Literacy
| | - Evan Chan
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- MedStar Health Research Institute
| | - Amanda K. Rounds
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- MedStar Health Research Institute
- George Mason University, Department of Rehabilitation Science
| | | | - Alexander W. Dromerick
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- Georgetown University Medical Center, Department of Neurology
- Georgetown University Medical Center, Department of Rehabilitation Medicine
| | - Peter E. Turkeltaub
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- Georgetown University Medical Center, Department of Neurology
| | - Michelle L. Harris-Love
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- George Mason University, Department of Bioengineering
| |
Collapse
|
32
|
Fregosi M, Contestabile A, Badoud S, Borgognon S, Cottet J, Brunet JF, Bloch J, Schwab ME, Rouiller EM. Corticotectal Projections From the Premotor or Primary Motor Cortex After Cortical Lesion or Parkinsonian Symptoms in Adult Macaque Monkeys: A Pilot Tracing Study. Front Neuroanat 2019; 13:50. [PMID: 31191260 PMCID: PMC6540615 DOI: 10.3389/fnana.2019.00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/07/2019] [Indexed: 01/13/2023] Open
Abstract
The corticotectal projections, together with the corticobulbar (corticoreticular) projections, work in parallel with the corticospinal tract (CST) to influence motoneurons in the spinal cord both directly and indirectly via the brainstem descending pathways. The tectospinal tract (TST) originates in the deep layers of the superior colliculus. In the present study, we analyzed the corticotectal projections from two motor cortical areas, namely the premotor cortex (PM) and the primary motor cortex (M1) in eight macaque monkeys subjected to either a cortical lesion of the hand area in M1 (n = 4) or Parkinson's disease-like symptoms PD (n = 4). A subgroup of monkeys with cortical lesion was subjected to anti-Nogo-A antibody treatment whereas all PD monkeys were transplanted with Autologous Neural Cell Ecosystems (ANCEs). The anterograde tracer BDA was used to label the axonal boutons both en passant and terminaux in the ipsilateral superior colliculus. Individual axonal boutons were charted in the different layers of the superior colliculus. In intact animals, we previously observed that corticotectal projections were denser when originating from PM than from M1. In the present M1 lesioned monkeys, as compared to intact ones the corticotectal projection originating from PM was decreased when treated with anti-Nogo-A antibody but not in untreated monkeys. In PD-like symptoms' monkeys, on the other hand, there was no consistent change affecting the corticotectal projection as compared to intact monkeys. The present pilot study overall suggests that the corticotectal projection is less affected by M1 lesion or PD symptoms than the corticoreticular projection previously reported in the same animals.
Collapse
Affiliation(s)
- Michela Fregosi
- Section of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Fribourg Cognition Center, Fribourg, Switzerland
- Platform of Translational Neurosciences, Fribourg, Switzerland
- Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Alessandro Contestabile
- Section of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Fribourg Cognition Center, Fribourg, Switzerland
- Platform of Translational Neurosciences, Fribourg, Switzerland
- Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Simon Badoud
- Section of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Fribourg Cognition Center, Fribourg, Switzerland
- Platform of Translational Neurosciences, Fribourg, Switzerland
- Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Simon Borgognon
- Section of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Fribourg Cognition Center, Fribourg, Switzerland
- Platform of Translational Neurosciences, Fribourg, Switzerland
- Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Jérôme Cottet
- Section of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Fribourg Cognition Center, Fribourg, Switzerland
- Platform of Translational Neurosciences, Fribourg, Switzerland
- Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Jean-François Brunet
- Cell Production Center (CPC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jocelyne Bloch
- Department of Neurosurgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Eric M. Rouiller
- Section of Medicine, Department of Neurosciences and Movement Sciences, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
33
|
Abstract
Hand dexterity has uniquely developed in higher primates and is thought to rely on the direct corticomotoneuronal (CM) pathway. Recent studies have shown that rodents and carnivores lack the direct CM pathway but can control certain levels of dexterous hand movements through various indirect CM pathways. Some homologous pathways also exist in higher primates, and among them, propriospinal (PrS) neurons in the mid-cervical segments (C3-C4) are significantly involved in hand dexterity. When the direct CM pathway was lesioned caudal to the PrS and transmission of cortical commands to hand motoneurons via the PrS neurons remained intact, dexterous hand movements could be significantly recovered. This recovery model was intensively studied, and it was found that, in addition to the compensation by the PrS neurons, a large-scale reorganization in the bilateral cortical motor-related areas and mesolimbic structures contributed to recovery. Future therapeutic strategies should target these multihierarchical areas.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience and Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
34
|
Ovadia-Caro S, Khalil AA, Sehm B, Villringer A, Nikulin VV, Nazarova M. Predicting the Response to Non-invasive Brain Stimulation in Stroke. Front Neurol 2019; 10:302. [PMID: 31001190 PMCID: PMC6454031 DOI: 10.3389/fneur.2019.00302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/11/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Smadar Ovadia-Caro
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed A. Khalil
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, The Ministry of Healthcare of the Russian Federation, Federal State Budget Institution, Moscow, Russia
| |
Collapse
|
35
|
Choudhury S, Shobhana A, Singh R, Sen D, Anand SS, Shubham S, Baker MR, Kumar H, Baker SN. The Relationship Between Enhanced Reticulospinal Outflow and Upper Limb Function in Chronic Stroke Patients. Neurorehabil Neural Repair 2019; 33:375-383. [DOI: 10.1177/1545968319836233] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background. Recent evidence from both monkey and human studies suggests that the reticulospinal tract may contribute to recovery of arm and hand function after stroke. In this study, we evaluated a marker of reticulospinal output in stroke survivors with varying degrees of motor recovery. Methods. We recruited 95 consecutive stroke patients presenting 6 months to 12 years after their index stroke, and 19 heathy control subjects. Subjects were asked to respond to a light flash with a rapid wrist flexion; at random, the flash was paired with either a quiet or loud (startling) sound. The mean difference in electromyogram response time after flash with quiet sound compared with flash with loud sound measured the StartReact effect. Upper limb function was assessed by the Action Research Arm Test (ARAT), spasticity was graded using the Modified Ashworth Scale (MAS) and active wrist angular movement using an electrogoniometer. Results. StartReact was significantly larger in stroke patients than healthy participants (78.4 vs 45.0 ms, P < .005). StartReact showed a significant negative correlation with the ARAT score and degree of active wrist movement. The StartReact effect was significantly larger in patients with higher spasticity scores. Conclusion. We speculate that in some patients with severe damage to their corticospinal tract, recovery led to strengthening of reticulospinal connections and an enhanced StartReact effect, but this did not occur for patients with milder impairment who could use surviving corticospinal connections to mediate recovery.
Collapse
Affiliation(s)
| | | | - Ravi Singh
- Institute of Neurosciences, Kolkata, India
| | | | | | | | - Mark R. Baker
- Department of Clinical Neurophysiology and Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | | | - Stuart N. Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Jo HJ, Perez MA. Changes in motor-evoked potential latency during grasping after tetraplegia. J Neurophysiol 2019; 122:1675-1684. [PMID: 30673355 DOI: 10.1152/jn.00671.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The corticospinal pathway contributes to the control of grasping in intact humans. After spinal cord injury (SCI), there is an extensive reorganization in the corticospinal pathway; however, its contribution to the control of grasping after the injury remains poorly understood. We addressed this question by using transcranial magnetic stimulation (TMS) over the hand representation of the motor cortex to elicit motor-evoked potentials (MEPs) in an intrinsic finger muscle during precision grip and power grip with the TMS coil oriented to induce currents in the brain in the latero-medial (LM) direction to activate corticospinal axons directly and in the posterior-anterior (PA) and anterior-posterior (AP) directions to activate the axon indirectly through synaptic inputs in humans with and without cervical incomplete SCI. We found prolonged MEP latencies in all coil orientations in both tasks in SCI compared with control subjects. The latencies of MEPs elicited by AP relative to LM stimuli were consistently longer during power compared with precision grip in controls and SCI subjects. In contrast, PA relative to LM MEP latencies were similar between tasks across groups. Central conduction time of AP MEPs was prolonged during power compared with precision grip in controls and SCI participants. Our results support evidence indicating that inputs activated by AP and PA currents are engaged to a different extent during fine and gross grasping in humans with and without SCI.NEW & NOTEWORTHY The mechanisms contributing to the control of hand function in humans with spinal cord injury (SCI) remain poorly understood. Here, we demonstrate for the first time that the latency of corticospinal responses elicited by transcranial magnetic stimulation anterior-posterior induced currents, relative to latero-medial currents, was prolonged during power compared with precision grip in humans with and without SCI. Gross grasping might represent a stragegy to engage networks activated by anterior-posterior currents after SCI.
Collapse
Affiliation(s)
- Hang Jin Jo
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| |
Collapse
|
37
|
Chopek JW, Nascimento F, Beato M, Brownstone RM, Zhang Y. Sub-populations of Spinal V3 Interneurons Form Focal Modules of Layered Pre-motor Microcircuits. Cell Rep 2018; 25:146-156.e3. [PMID: 30282024 PMCID: PMC6180347 DOI: 10.1016/j.celrep.2018.08.095] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/25/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022] Open
Abstract
Layering of neural circuits facilitates the separation of neurons with high spatial sensitivity from those that play integrative temporal roles. Although anatomical layers are readily identifiable in the brain, layering is not structurally obvious in the spinal cord. But computational studies of motor behaviors have led to the concept of layered processing in the spinal cord. It has been postulated that spinal V3 interneurons (INs) play multiple roles in locomotion, leading us to investigate whether they form layered microcircuits. Using patch-clamp recordings in combination with holographic glutamate uncaging, we demonstrate focal, layered modules, in which ventromedial V3 INs form synapses with one another and with ventrolateral V3 INs, which in turn form synapses with ipsilateral motoneurons. Motoneurons, in turn, provide recurrent excitatory, glutamatergic input to V3 INs. Thus, ventral V3 interneurons form layered microcircuits that could function to ensure well-timed, spatially specific movements.
Collapse
Affiliation(s)
- Jeremy W Chopek
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; Sobell Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Filipe Nascimento
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Marco Beato
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Robert M Brownstone
- Sobell Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - Ying Zhang
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
38
|
Fregosi M, Contestabile A, Badoud S, Borgognon S, Cottet J, Brunet JF, Bloch J, Schwab ME, Rouiller EM. Changes of motor corticobulbar projections following different lesion types affecting the central nervous system in adult macaque monkeys. Eur J Neurosci 2018; 48:2050-2070. [PMID: 30019432 PMCID: PMC6175012 DOI: 10.1111/ejn.14074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 01/03/2023]
Abstract
Functional recovery from central nervous system injury is likely to be partly due to a rearrangement of neural circuits. In this context, the corticobulbar (corticoreticular) motor projections onto different nuclei of the ponto-medullary reticular formation (PMRF) were investigated in 13 adult macaque monkeys after either, primary motor cortex injury (MCI) in the hand area, or spinal cord injury (SCI) or Parkinson's disease-like lesions of the nigro-striatal dopaminergic system (PD). A subgroup of animals in both MCI and SCI groups was treated with neurite growth promoting anti-Nogo-A antibodies, whereas all PD animals were treated with autologous neural cell ecosystems (ANCE). The anterograde tracer BDA was injected either in the premotor cortex (PM) or in the primary motor cortex (M1) to label and quantify corticobulbar axonal boutons terminaux and en passant in PMRF. As compared to intact animals, after MCI the density of corticobulbar projections from PM was strongly reduced but maintained their laterality dominance (ipsilateral), both in the presence or absence of anti-Nogo-A antibody treatment. In contrast, the density of corticobulbar projections from M1 was increased following opposite hemi-section of the cervical cord (at C7 level) and anti-Nogo-A antibody treatment, with maintenance of contralateral laterality bias. In PD monkeys, the density of corticobulbar projections from PM was strongly reduced, as well as that from M1, but to a lesser extent. In conclusion, the densities of corticobulbar projections from PM or M1 were affected in a variable manner, depending on the type of lesion/pathology and the treatment aimed to enhance functional recovery.
Collapse
Affiliation(s)
- Michela Fregosi
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Alessandro Contestabile
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Simon Badoud
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Simon Borgognon
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Jérôme Cottet
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| | - Jean-François Brunet
- Cell production center (CPC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jocelyne Bloch
- Department of Neurosurgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Eric M Rouiller
- Faculty of Science and Medicine, Section of Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.,Fribourg Cognition Center, Fribourg, Switzerland.,Platform of Translational Neurosciences, Fribourg, Switzerland.,Swiss Primate Competence Center for Research (SPCCR), Fribourg, Switzerland
| |
Collapse
|
39
|
Aguiar SA, Baker SN, Gant K, Bohorquez J, Thomas CK. Spasms after spinal cord injury show low-frequency intermuscular coherence. J Neurophysiol 2018; 120:1765-1771. [PMID: 30067124 PMCID: PMC6230810 DOI: 10.1152/jn.00112.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intermuscular coherence allows the investigation of common input to muscle groups. Although beta-band (15–30 Hz) intermuscular coherence is well understood as originating from the cortex, the source of intermuscular coherence at lower frequencies is still unclear. We used a wearable device that recorded electromyographic (EMG) signals during a 24-h period in four lower limb muscles of seven spinal cord injury patients (American Spinal Cord Injury Association impairment scale: A, 6 subjects; B, 1 subject) while they went about their normal daily life activities. We detected natural spasms occurring during these long-lasting recordings and calculated intermuscular coherence between all six possible combinations of muscle pairs. There was significant intermuscular coherence at low frequencies, between 2 and 13 Hz. The most likely source for this was the spinal cord and its peripheral feedback loops, because the spinal lesions in these patients had interrupted connections to supraspinal structures. This is the first report to demonstrate that the spinal cord is capable of producing low-frequency intermuscular coherence with severely reduced or abolished descending drive. NEW & NOTEWORTHY This is the first report to demonstrate that intermuscular coherence between lower limb muscles at low frequencies can be produced by the spinal cord with severely reduced or abolished descending drive.
Collapse
Affiliation(s)
- Stefane A Aguiar
- Institute of Neuroscience, Newcastle University , Newcastle Upon Tyne , United Kingdom
| | - Stuart N Baker
- Institute of Neuroscience, Newcastle University , Newcastle Upon Tyne , United Kingdom
| | - Katie Gant
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Jorge Bohorquez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,Department of Biomedical Engineering, University of Miami Miller School of Medicine , Miami, Florida
| | - Christine K Thomas
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
40
|
Castellote JM, Kofler M. StartReact effects in first dorsal interosseous muscle are absent in a pinch task, but present when combined with elbow flexion. PLoS One 2018; 13:e0201301. [PMID: 30048503 PMCID: PMC6062078 DOI: 10.1371/journal.pone.0201301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022] Open
Abstract
Objective To provide a neurophysiological tool for assessing sensorimotor pathways, which may differ for those involving distal muscles in simple tasks from those involving distal muscles in a kinetic chain task, or proximal muscles in both. Methods We compared latencies and magnitudes of motor responses in a reaction time paradigm in a proximal (biceps brachii, BB) and a distal (first dorsal interosseous, FDI) muscle following electrical stimuli used as imperative signal (IS) delivered to the index finger. These stimuli were applied during different motor tasks: simple tasks involving either one muscle, e.g. flexing the elbow for BB (FLEX), or pinching a pen for FDI (PINCH); combined tasks engaging both muscles by pinching and flexing simultaneously (PINCH-FLEX). Stimuli were of varying intensity and occasionally elicited a startle response, and a StartReact effect. Results In BB, response latencies decreased gradually and response amplitudes increased progressively with increasing IS intensities for non-startling trials, while for trials containing startle responses, latencies were uniformly shortened and response amplitudes similarly augmented across all IS intensities in both FLEX and PINCH-FLEX. In FDI, response latencies decreased gradually and response amplitudes increased progressively with increasing IS intensities in both PINCH and PINCH-FLEX for non-startling trials, but, unlike in BB for the simple task, in PINCH for trials containing startle responses as well. In PINCH-FLEX, FDI latencies were uniformly shortened and amplitudes similarly increased across all stimulus intensities whenever startle signs were present. Conclusions Our results suggest the presence of different sensorimotor pathways supporting a dissociation between simple tasks that involve distal upper limb muscles (FDI in PINCH) from simple tasks involving proximal muscles (BB in FLEX), and combined tasks that engage both muscles (FDI and BB in PINCH-FLEX), all in accordance with differential importance in the control of movements by cortical and subcortical structures. Significance Simple assessment tools may provide useful information regarding the differential involvement of sensorimotor pathways in the control of both simple and combined tasks that engage proximal and distal muscles.
Collapse
Affiliation(s)
- Juan M. Castellote
- National School of Occupational Medicine, Carlos III Institute of Health, Madrid, Spain
- Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, Madrid, Spain
- * E-mail:
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| |
Collapse
|
41
|
Classification of Neurons in the Primate Reticular Formation and Changes after Recovery from Pyramidal Tract Lesion. J Neurosci 2018; 38:6190-6206. [PMID: 29793974 PMCID: PMC6031583 DOI: 10.1523/jneurosci.3371-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 12/27/2022] Open
Abstract
The reticular formation is important in primate motor control, both in health and during recovery after brain damage. Little is known about the different neurons present in the reticular nuclei. Here we recorded extracellular spikes from the reticular formation in five healthy female awake behaving monkeys (193 cells), and in two female monkeys 1 year after recovery from a unilateral pyramidal tract lesion (125 cells). Analysis of spike shape and four measures derived from the interspike interval distribution identified four clusters of neurons in control animals. Cluster 1 cells had a slow firing rate. Cluster 2 cells had narrow spikes and irregular firing, which often included high-frequency bursts. Cluster 3 cells were highly rhythmic and fast firing. Cluster 4 cells showed negative spikes. A separate population of 42 cells was antidromically identified as reticulospinal neurons in five anesthetized female monkeys. The distribution of spike width in these cells closely overlaid the distribution for cluster 2, leading us tentatively to suggest that cluster 2 included neurons with reticulospinal projections. In animals after corticospinal lesion, cells could be identified in all four clusters. The firing rate of cells in clusters 1 and 2 was increased in lesioned animals relative to control animals (by 52% and 60%, respectively); cells in cluster 2 were also more regular and more bursting in the lesioned animals. We suggest that changes in both membrane properties and local circuits within the reticular formation occur following lesioning, potentially increasing reticulospinal output to help compensate for lost corticospinal descending drive. SIGNIFICANCE STATEMENT This work is the first to subclassify neurons in the reticular formation, providing insights into the local circuitry of this important but little understood structure. The approach developed can be applied to any extracellular recording from this region, allowing future studies to place their data within our current framework of four neural types. Changes in reticular neurons may be important to subserve functional recovery after damage in human patients, such as after stroke or spinal cord injury.
Collapse
|
42
|
Yoshida Y, Isa T. Neural and genetic basis of dexterous hand movements. Curr Opin Neurobiol 2018; 52:25-32. [PMID: 29698882 DOI: 10.1016/j.conb.2018.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/11/2018] [Accepted: 04/07/2018] [Indexed: 01/05/2023]
Abstract
An ability to control dexterous hand movements is considered to parallel the evolutionary development of the corticospinal tract and the appearance of direct connections between corticospinal neurons and motoneurons (the corticomotoneuronal (CM) pathway), which developed uniquely in higher primates. However, recent studies have revealed that some non-primate animal species have higher levels of dexterity than previously supposed, and in higher primates, various indirect non-CM descending pathways have been shown to participate in the control of dexterous movements. More recently, the CM pathway was shown to exist in rodents during early development, suggesting that rodents and primates diverged in their reliance on the CM pathway at some point in evolution, thus challenging the traditional view of the sequential development of hand control from rodents to primates.
Collapse
Affiliation(s)
- Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|