1
|
Mohamed N, Al-Amin M, Meredith FL, Kalmanson O, Dondzillo A, Cass S, Gubbels S, Rennie KJ. Electrophysiological properties of vestibular hair cells isolated from human crista. Front Neurol 2025; 15:1501914. [PMID: 39911744 PMCID: PMC11794080 DOI: 10.3389/fneur.2024.1501914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction The vast majority of cellular studies on mammalian vestibular hair cells have been carried out in rodent models due in part to the inaccessibility of human inner ear organs and reports describing electrophysiological recordings from human inner ear sensory hair cells are scarce. Here, we obtained freshly harvested vestibular neuroepithelia from adult translabyrinthine surgical patients to obtain electrophysiological recordings from human hair cells. Methods Whole cell patch clamp recordings were performed on hair cells mechanically isolated from human cristae to characterize voltage-dependent and pharmacological properties of membrane currents. Hair cells were classified as type I or type II according to morphological characteristics and/or their electrophysiological properties. Results Type I hair cells exhibited low voltage-activated K+ currents (IKLV) at membrane potentials around the mean resting membrane potential (-63 mV) and large slowly activating outward K+ currents in response to depolarizing voltage steps. Recordings from type II hair cells revealed delayed rectifier type outward K+ currents that activated above the average resting potential of -55 mV and often showed some inactivation at more depolarized potentials. Perfusion with the K+ channel blocker 4-aminopyridine (1 mM) substantially reduced outward current in both hair cell types. Additionally, extracellular application of 8-bromo-cGMP inhibited IKLV in human crista type I hair cells suggesting modulation via a nitric oxide/cGMP mechanism. A slow hyperpolarization-activated current (Ih) was observed in some hair cells in response to membrane hyperpolarization below -100 mV. Discussion In summary, whole cell recordings from isolated human hair cells revealed ionic currents that strongly resemble mature current phenotypes previously described in hair cells from rodent vestibular epithelia. Rapid access to surgically obtained adult human vestibular neuroepithelia allows translational studies crucial for improved understanding of human peripheral vestibular function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Katherine J. Rennie
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
2
|
Martin HR, Lysakowski A, Eatock RA. The potassium channel subunit K V1.8 ( Kcna10) is essential for the distinctive outwardly rectifying conductances of type I and II vestibular hair cells. eLife 2024; 13:RP94342. [PMID: 39625061 PMCID: PMC11614384 DOI: 10.7554/elife.94342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.
Collapse
Affiliation(s)
- Hannah R Martin
- Department of Neurobiology, University of ChicagoChicagoUnited States
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at ChicagoChicagoUnited States
| | - Ruth Anne Eatock
- Department of Neurobiology, University of ChicagoChicagoUnited States
| |
Collapse
|
3
|
Regalado Núñez K, Bronson D, Chang R, Kalluri R. Vestibular afferent neurons develop normally in the absence of quantal/glutamatergic input. Front Neurol 2024; 15:1441964. [PMID: 39655160 PMCID: PMC11625666 DOI: 10.3389/fneur.2024.1441964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The vestibular nerve is comprised of neuron sub-groups with diverse functions related to their intrinsic biophysical properties. This diversity is partly due to differences in the types and numbers of low-voltage-gated potassium channels found in the neurons' membranes. Expression for some low-voltage gated ion channels like KCNQ4 is upregulated during early post-natal development; suggesting that ion channel composition and neuronal diversity may be shaped by hair cell activity. This idea is consistent with recent work showing that glutamatergic input from hair cells is necessary for the normal diversification auditory neurons. Methods To test if biophysical diversity is similarly dependent on glutamatergic input in vestibular neurons, we examined vestibular function and the maturation of the vestibular epithelium and ganglion neurons by immunohistochemistry and patch-clamp electrophysiology in Vglut3-ko mice whose hair cell synapses lack glutamate. Results The knockout mice showed no obvious balance deficits and crossed challenging balance beams with little difficulty. Immunolabeling of the Vglut3-ko vestibular epithelia showed normal development as indicated by an identifiable striolar zone with calyceal terminals labeled by molecular marker calretinin, and normal expression of KCNQ4 by the end of the second post-natal week. We found similar numbers of Type I and Type II hair cells in the knockout and wild-type animals, regardless of epithelial zone. Thus, the presumably quiescent Type II hair cells are not cleared from the epithelium. Patch-clamp recordings showed that biophysical diversity of vestibular ganglion neurons in the Vglut3-ko mice is comparable to that found in wild-type controls, with a similar range firing patterns at both immature and juvenile ages. However, our results suggest a subtle biophysical alteration to the largest ganglion cells (putative somata of central zone afferents); those in the knockout had smaller net conductance and were more excitable than those in the wild type. Discussion Thus, unlike in the auditory nerve, glutamatergic signaling is unnecessary for producing biophysical diversity in vestibular ganglion neurons. And yet, because the input signals from vestibular hair cells are complex and not solely reliant on quantal release of glutamate, whether diversity of vestibular ganglion neurons is simply hardwired or regulated by a more complex set of input signals remains to be determined.
Collapse
Affiliation(s)
- Katherine Regalado Núñez
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daniel Bronson
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Zilkha Neurogenetic Institute, Department of Otolaryngology, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chang
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Radha Kalluri
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Zilkha Neurogenetic Institute, Department of Otolaryngology, University of Southern California, Los Angeles, CA, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Wang T, Yang T, Kedaigle A, Pregernig G, McCarthy R, Holmes B, Wu X, Becker L, Pan N, So K, Chen L, He J, Mahmoudi A, Negi S, Kowalczyk M, Gibson T, Druckenbrod N, Cheng AG, Burns J. Precise genetic control of ATOH1 enhances maturation of regenerated hair cells in the mature mouse utricle. Nat Commun 2024; 15:9166. [PMID: 39448563 PMCID: PMC11502789 DOI: 10.1038/s41467-024-53153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Vestibular hair cells are mechanoreceptors critical for detecting head position and motion. In mammals, hair cell loss causes vestibular dysfunction as spontaneous regeneration is nearly absent. Constitutive expression of exogenous ATOH1, a hair cell transcription factor, increases hair cell regeneration, however, these cells fail to fully mature. Here, we profiled mouse utricles at 14 time points, and defined transcriptomes of developing and mature vestibular hair cells. To mimic native hair cells which downregulate endogenous ATOH1 as they mature, we engineered viral vectors carrying the supporting cell promoters GFAP and RLBP1. In utricles damaged ex vivo, both CMV-ATOH1 and GFAP-ATOH1 increased regeneration more effectively than RLBP1-ATOH1, while GFAP-ATOH1 and RLBP1-ATOH1 induced hair cells with more mature transcriptomes. In utricles damaged in vivo, GFAP-ATOH1 induced regeneration of hair cells expressing genes indicative of maturing type II hair cells, and more hair cells with bundles and synapses than untreated organs. Together our results demonstrate the efficacy of spatiotemporal control of ATOH1 overexpression in inner ear hair cell regeneration.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Yang
- Decibel Therapeutics, Boston, MA, 02215, USA
| | | | - Gabriela Pregernig
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ryan McCarthy
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ben Holmes
- Decibel Therapeutics, Boston, MA, 02215, USA
| | - Xudong Wu
- Decibel Therapeutics, Boston, MA, 02215, USA
| | - Lars Becker
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ning Pan
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Kathy So
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Leon Chen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Jun He
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ahmad Mahmoudi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Soumya Negi
- Decibel Therapeutics, Boston, MA, 02215, USA
| | | | | | | | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA.
| | | |
Collapse
|
5
|
Lahlou H, Zhu H, Zhou W, Edge AS. Pharmacological regeneration of sensory hair cells restores afferent innervation and vestibular function. J Clin Invest 2024; 134:e181201. [PMID: 39316439 PMCID: PMC11563683 DOI: 10.1172/jci181201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
The sensory cells that transduce the signals for hearing and balance are highly specialized mechanoreceptors called hair cells that together with supporting cells comprise the sensory epithelia of the inner ear. Loss of hair cells from toxin exposure and age can cause balance disorders and is essentially irreversible due to the inability of mammalian vestibular organs to regenerate physiologically active hair cells. Here, we show substantial regeneration of hair cells in a mouse model of vestibular damage by treatment with a combination of glycogen synthase kinase 3β and histone deacetylase inhibitors. The drugs stimulated supporting cell proliferation and differentiation into hair cells. The new hair cells were reinnervated by vestibular afferent neurons, rescuing otolith function by restoring head translation-evoked otolith afferent responses and vestibuloocular reflexes. Drugs that regenerate hair cells thus represent a potential therapeutic approach to the treatment of balance disorders.
Collapse
Affiliation(s)
- Hanae Lahlou
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Hong Zhu
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Wu Zhou
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Albert S.B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Harvard Stem Cell Institute; Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Martin HR, Lysakowski A, Eatock RA. The potassium channel subunit K V1.8 ( Kcna10) is essential for the distinctive outwardly rectifying conductances of type I and II vestibular hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.563853. [PMID: 38045305 PMCID: PMC10690164 DOI: 10.1101/2023.11.21.563853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (KCNA10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular hair cells of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (KCNQ) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.
Collapse
Affiliation(s)
| | - Anna Lysakowski
- University of Illinois at Chicago, Department of Anatomy and Cell Biology
| | | |
Collapse
|
7
|
Lipovsek M. Comparative biology of the amniote vestibular utricle. Hear Res 2024; 448:109035. [PMID: 38763033 DOI: 10.1016/j.heares.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The sensory epithelia of the auditory and vestibular systems of vertebrates have shared developmental and evolutionary histories. However, while the auditory epithelia show great variation across vertebrates, the vestibular sensory epithelia appear seemingly more conserved. An exploration of the current knowledge of the comparative biology of the amniote utricle, a vestibular sensory epithelium that senses linear acceleration, shows interesting instances of variability between birds and mammals. The distribution of sensory hair cell types, the position of the line of hair bundle polarity reversal and the properties of supporting cells show marked differences, likely impacting vestibular function and hair cell regeneration potential.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, UK.
| |
Collapse
|
8
|
Núñez KR, Bronson D, Chang R, Kalluri R. Vestibular afferent neurons develop normally in the absence of quantal/glutamatergic input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.597464. [PMID: 38915604 PMCID: PMC11195208 DOI: 10.1101/2024.06.12.597464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The vestibular nerve is comprised of neuron sub-groups with diverse functions related to their intrinsic biophysical properties. This diversity is partly due to differences in the types and numbers of low-voltage-gated potassium channels found in the neurons' membranes. Expression for some low-voltage gated ion channels like KCNQ4 is upregulated during early post-natal development; suggesting that ion channel composition and neuronal diversity may be shaped by hair cell activity. This idea is consistent with recent work showing that glutamatergic input from hair cells is necessary for the normal diversification auditory neurons. To test if biophysical diversity is similarly dependent on glutamatergic input in vestibular neurons, we examined the maturation of the vestibular epithelium and ganglion neurons in Vglut3-ko mice whose hair cell synapses lack glutamate. Despite lacking glutamatergic input, the knockout mice showed no notable balance deficits and crossed challenging balance beams with little difficulty. Immunolabeling of the Vglut3-ko vestibular epithelia showed normal development as indicated by an identifiable striolar zone with calyceal terminals labeled by molecular marker calretinin, and normal expression of KCNQ4 by the end of the second post-natal week. We found similar numbers of Type I and Type II hair cells in the knockout and wildtype animals, regardless of epithelial zone. Thus, the presumably quiescent Type II hair cells are not cleared from the epithelium. Patch-clamp recordings showed that biophysical diversity of vestibular ganglion neurons in the Vglut3-ko mice is comparable to that found in wildtype controls, with a similar range firing patterns at both immature and juvenile ages. However, our results suggest a subtle biophysical alteration to the largest ganglion cells (putative somata of central zone afferents); those in the knockout had smaller net conductance and were more excitable than those in the wild type. Thus, unlike in the auditory nerve, glutamatergic signaling is unnecessary for producing biophysical diversity in vestibular ganglion neurons. And yet, because the input signals from vestibular hair cells are complex and not solely reliant on quantal release of glutamate, whether diversity of vestibular ganglion neurons is simply hardwired or regulated by a more complex set of input signals remains to be determined.
Collapse
|
9
|
Borrajo M, Sedano D, Palou A, Giménez-Esbrí V, Barrallo-Gimeno A, Llorens J. Maturation of type I and type II rat vestibular hair cells in vivo and in vitro. Front Cell Dev Biol 2024; 12:1404894. [PMID: 38895157 PMCID: PMC11183282 DOI: 10.3389/fcell.2024.1404894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Vestibular sensory epithelia contain type I and type II sensory hair cells (HCI and HCII). Recent studies have revealed molecular markers for the identification of these cells, but the precise composition of each vestibular epithelium (saccule, utricle, lateral crista, anterior crista, posterior crista) and their postnatal maturation have not been described in detail. Moreover, in vitro methods to study this maturation are not well developed. We obtained total HCI and HCII counts in adult rats and studied the maturation of the epithelia from birth (P0) to postnatal day 28 (P28). Adult vestibular epithelia hair cells were found to comprise ∼65% HCI expressing osteopontin and PMCA2, ∼30% HCII expressing calretinin, and ∼4% HCII expressing SOX2 but neither osteopontin nor calretinin. At birth, immature HCs express both osteopontin and calretinin. P28 epithelia showed an almost adult-like composition but still contained 1.3% of immature HCs. In addition, we obtained free-floating 3D cultures of the epithelia at P1, which formed a fluid-filled cyst, and studied their survival and maturation in vitro up to day 28 (28 DIV). These cultures showed good HC resiliency and maturation. Using an enriched medium for the initial 4 days, a HCI/calretinin+-HCII ratio close to the in vivo ratio was obtained. These cultures are suitable to study HC maturation and mature HCs in pharmacological, toxicological and molecular research.
Collapse
Affiliation(s)
- Mireia Borrajo
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - David Sedano
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
| | - Aïda Palou
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - Víctor Giménez-Esbrí
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - Alejandro Barrallo-Gimeno
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Universitat de Barcelona (UB), Hospitalet de Llobregat, Catalunya, Spain
- Institut de Neurociències, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Catalunya, Spain
| |
Collapse
|
10
|
Stansak KL, Baum LD, Ghosh S, Thapa P, Vanga V, Walters BJ. PCP auto count: a novel Fiji/ImageJ plug-in for automated quantification of planar cell polarity and cell counting. Front Cell Dev Biol 2024; 12:1394031. [PMID: 38827526 PMCID: PMC11140036 DOI: 10.3389/fcell.2024.1394031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024] Open
Abstract
Introdution: During development, planes of cells give rise to complex tissues and organs. The proper functioning of these tissues is critically dependent on proper inter- and intra-cellular spatial orientation, a feature known as planar cell polarity (PCP). To study the genetic and environmental factors affecting planar cell polarity, investigators must often manually measure cell orientations, which is a time-consuming endeavor. To automate cell counting and planar cell polarity data collection we developed a Fiji/ImageJ plug-in called PCP Auto Count (PCPA). Methods: PCPA analyzes binary images and identifies "chunks" of white pixels that contain "caves" of infiltrated black pixels. For validation, inner ear sensory epithelia including cochleae and utricles from mice were immunostained for βII-spectrin and imaged with a confocal microscope. Images were preprocessed using existing Fiji functionality to enhance contrast, make binary, and reduce noise. An investigator rated PCPA cochlear hair cell angle measurements for accuracy using a one to five agreement scale. For utricle samples, PCPA derived measurements were directly compared against manually derived angle measurements and the concordance correlation coefficient (CCC) and Bland-Altman limits of agreement were calculated. PCPA was also tested against previously published images examining PCP in various tissues and across various species suggesting fairly broad utility. Results: PCPA was able to recognize and count 99.81% of cochlear hair cells, and was able to obtain ideally accurate planar cell polarity measurements for at least 96% of hair cells. When allowing for a <10° deviation from "perfect" measurements, PCPA's accuracy increased to 98%-100% for all users and across all samples. When PCPA's measurements were compared with manual angle measurements for E17.5 utricles there was negligible bias (<0.5°), and a CCC of 0.999. Qualitative examination of example images of Drosophila ommatidia, mouse ependymal cells, and mouse radial progenitors revealed a high level of accuracy for PCPA across a variety of stains, tissue types, and species. Discussion: Altogether, the data suggest that the PCPA plug-in suite is a robust and accurate tool for the automated collection of cell counts and PCP angle measurements.
Collapse
Affiliation(s)
| | | | | | | | | | - Bradley J. Walters
- University of Mississippi Medical Center, Department of Otolaryngology—Head and Neck Surgery, Jackson, MS, United States
| |
Collapse
|
11
|
Ratzan EM, Lee J, Madison MA, Zhu H, Zhou W, Géléoc GSG, Holt JR. TMC function, dysfunction, and restoration in mouse vestibular organs. Front Neurol 2024; 15:1356614. [PMID: 38638308 PMCID: PMC11024474 DOI: 10.3389/fneur.2024.1356614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Tmc1 and Tmc2 are essential pore-forming subunits of mechanosensory transduction channels localized to the tips of stereovilli in auditory and vestibular hair cells of the inner ear. To investigate expression and function of Tmc1 and Tmc2 in vestibular organs, we used quantitative polymerase chain reaction (qPCR), fluorescence in situ hybridization - hairpin chain reaction (FISH-HCR), immunostaining, FM1-43 uptake and we measured vestibular evoked potentials (VsEPs) and vestibular ocular reflexes (VORs). We found that Tmc1 and Tmc2 showed dynamic developmental changes, differences in regional expression patterns, and overall expression levels which differed between the utricle and saccule. These underlying changes contributed to unanticipated phenotypic loss of VsEPs and VORs in Tmc1 KO mice. In contrast, Tmc2 KO mice retained VsEPs despite the loss of the calcium buffering protein calretinin, a characteristic biomarker of mature striolar calyx-only afferents. Lastly, we found that neonatal Tmc1 gene replacement therapy is sufficient to restore VsEP in Tmc1 KO mice for up to six months post-injection.
Collapse
Affiliation(s)
- Evan M. Ratzan
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - John Lee
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Margot A. Madison
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Hong Zhu
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Wu Zhou
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Gwenaëlle S. G. Géléoc
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeffrey R. Holt
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Stansak KL, Baum LD, Ghosh S, Thapa P, Vanga V, Walters BJ. PCP Auto Count: A Novel Fiji/ImageJ plug-in for automated quantification of planar cell polarity and cell counting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578047. [PMID: 38352473 PMCID: PMC10862842 DOI: 10.1101/2024.01.30.578047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background During development, planes of cells give rise to complex tissues and organs. The proper functioning of these tissues is critically dependent on proper inter- and intra-cellular spatial orientation, a feature known as planar cell polarity (PCP). To study the genetic and environmental factors affecting planar cell polarity investigators must often manually measure cell orientations, which is a time-consuming endeavor. Methodology To automate cell counting and planar cell polarity data collection we developed a Fiji/ImageJ plug-in called PCP Auto Count (PCPA). PCPA analyzes binary images and identifies "chunks" of white pixels that contain "caves" of infiltrated black pixels. Inner ear sensory epithelia including cochleae (P4) and utricles (E17.5) from mice were immunostained for βII-spectrin and imaged on a confocal microscope. Images were preprocessed using existing Fiji functionality to enhance contrast, make binary, and reduce noise. An investigator rated PCPA cochlear angle measurements for accuracy using a 1-5 agreement scale. For utricle samples, we directly compared PCPA derived measurements against manually derived angle measurements using concordance correlation coefficients (CCC) and Bland-Altman limits of agreement. Finally, PCPA was tested against a variety of images copied from publications examining PCP in various tissues and across various species. Results PCPA was able to recognize and count 99.81% of cochlear hair cells (n = 1,1541 hair cells) in a sample set, and was able to obtain ideally accurate planar cell polarity measurements for over 96% of hair cells. When allowing for a <10° deviation from "perfect" measurements, PCPA's accuracy increased to >98%. When manual angle measurements for E17.5 utricles were compared, PCPA's measurements fell within -9 to +10 degrees of manually obtained mean angle measures with a CCC of 0.999. Qualitative examination of example images of Drosophila ommatidia, mouse ependymal cells, and mouse radial progenitors revealed a high level of accuracy for PCPA across a variety of stains, tissue types, and species. Altogether, the data suggest that the PCPA plug-in suite is a robust and accurate tool for the automated collection of cell counts and PCP angle measurements.
Collapse
Affiliation(s)
- Kendra L. Stansak
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Luke D. Baum
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Sumana Ghosh
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Punam Thapa
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Vineel Vanga
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Bradley J. Walters
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| |
Collapse
|
13
|
Wu J, Zhang Y, Mao S, Li W, Li G, Li H, Sun S. Cross-species analysis and comparison of the inner ear between chickens and mice. J Comp Neurol 2023; 531:1443-1458. [PMID: 37462291 DOI: 10.1002/cne.25524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
The inner ear of mammals includes the cochlea and vestibule, which house specialized hair cells that are responsible for hearing and balance, respectively. While cochlear hair cells fail to regenerate following damage, those of the utricle, which is part of the vestibular apparatus, show partial regeneration. In birds, the macula lagena, a unique ear structure in this clade, has the ability to regenerate hair cells similarly to the utricle. Many studies have sought to explain regeneration in terms of evolution and species differences. However, it remains unclear what the cellular and molecular basis is behind the differences in inner ear structures and between avians and mammals. In the present study, we first investigated the anatomical structures of the inner ear of both chickens and rodents. We then performed RNA sequencing (RNA-Seq) and made cross-species analyses of the expression of homologous genes obtained from the inner ear tissue from both chickens and mice. Finally, we focused on the lagena, the basilar papilla, and the utricle in chickens and identified differentially expressed genes between tissues and determined the expression patterns of genes involved in inner ear structure formation by single-cell RNA sequencing and bulk RNA-Seq. We concluded that the cellular and molecular composition of the lagena is more similar to that of the utricle than the cochlea. Taken together, our study provides a valuable resource for the study of inner ear evolution and development.
Collapse
Affiliation(s)
- Jingfang Wu
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| | - Yunzhong Zhang
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| | - Shihang Mao
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| | - Wen Li
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| | - Guangfei Li
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| | - Huawei Li
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, P. R. China
| | - Shan Sun
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, P. R. China
| |
Collapse
|
14
|
Liu Z, Bagnall MW. Organization of vestibular circuits for postural control in zebrafish. Curr Opin Neurobiol 2023; 82:102776. [PMID: 37634321 PMCID: PMC11528713 DOI: 10.1016/j.conb.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Most animals begin controlling their posture, or orientation with respect to gravity, at an early stage in life. Posture is vital for locomotor function. Even animals like fish, which are capable of swimming upside-down, must actively control their orientation to coordinate behaviors such as capturing prey near the water's surface. Here we review recent research from multiple laboratories investigating the organization and function of the vestibular circuits underlying postural control in zebrafish. Some findings in zebrafish strongly align with prior observations in mammals, reinforcing our understanding of homologies between systems. In other instances, the unique transparency and accessibility of zebrafish has enabled new analyses of several neural circuit components that remain challenging to study in mammalian systems. These new results demonstrate topographical and circuit features in postural control.
Collapse
Affiliation(s)
- Zhikai Liu
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. https://twitter.com/zhikai_liu
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA.
| |
Collapse
|
15
|
Tallandier V, Merlen L, Chalansonnet M, Boucard S, Thomas A, Venet T, Pouyatos B. Three-dimensional cultured ampullae from rats as a screening tool for vestibulotoxicity: Proof of concept using styrene. Toxicology 2023; 495:153600. [PMID: 37516305 DOI: 10.1016/j.tox.2023.153600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Numerous ototoxic drugs, such as some antibiotics and chemotherapeutics, are both cochleotoxic and vestibulotoxic (causing hearing loss and vestibular disorders). However, the impact of some industrial cochleotoxic compounds on the vestibular receptor, if any, remains unknown. As in vivo studies are long and expensive, there is considerable need for predictive and cost-effective in vitro models to test ototoxicity. Here, we present an organotypic model of cultured ampullae harvested from rat neonates. When cultured in a gelatinous matrix, ampulla explants form an enclosed compartment that progressively fills with a high-potassium (K+) endolymph-like fluid. Morphological analyses confirmed the presence of a number of cell types, sensory epithelium, secretory cells, and canalar cells. Treatments with inhibitors of potassium transporters demonstrated that the potassium homeostasis mechanisms were functional. To assess the potential of this model to reveal the toxic effects of chemicals, explants were exposed for either 2 or 72 h to styrene at a range of concentrations (0.5-1 mM). In the 2-h exposure condition, K+ concentration was significantly reduced, but ATP levels remained stable, and no histological damage was visible. After 72 h exposure, variations in K+ concentration were associated with histological damage and decreased ATP levels. This in vitro 3D neonatal rat ampulla model therefore represents a reliable and rapid means to assess the toxic properties of industrial compounds on this vestibular tissue, and can be used to investigate the specific underlying mechanisms.
Collapse
Affiliation(s)
- V Tallandier
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France; DevAH EA 3450 - Développement, Adaptation et Handicap. Régulations cardio-respiratoires et de la motricité-Université de Lorraine, F-54500 Vandœuvre, France
| | - L Merlen
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - M Chalansonnet
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France.
| | - S Boucard
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - A Thomas
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France
| | - T Venet
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France; DevAH EA 3450 - Développement, Adaptation et Handicap. Régulations cardio-respiratoires et de la motricité-Université de Lorraine, F-54500 Vandœuvre, France
| | - B Pouyatos
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre les Nancy, France; DevAH EA 3450 - Développement, Adaptation et Handicap. Régulations cardio-respiratoires et de la motricité-Université de Lorraine, F-54500 Vandœuvre, France
| |
Collapse
|
16
|
Alonso SM, Ayerve NA, Roca CM, Touma GC, de Dios JCDP, Gómez HS, Ruíz SSC, Caletrío ÁB. Use of Skull Vibration-Induced Nystagmus in the Follow-up of Patients With Ménière Disease Treated With Intratympanic Gentamicin. Clin Exp Otorhinolaryngol 2023; 16:236-243. [PMID: 37402470 PMCID: PMC10471906 DOI: 10.21053/ceo.2023.00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/27/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVES Ménière disease (MD) is an idiopathic disorder that affects hearing and inner ear balance. Intratympanic gentamicin (ITG) is recognized as an effective treatment for uncontrolled MD characterized by persistent vertigo attacks despite therapy. The video head impulse test (vHIT) and skull vibration-induced nystagmus (SVIN) are validated. METHODS for evaluating vestibular function. A progressive linear relationship has been identified between the slow-phase velocity (SPV) of SVIN determined using a 100-Hz skull vibrator and the gain difference (healthy ear/affected ear) measured by vHIT. The aim of this study was to ascertain whether the SPV of SVIN was associated with the recovery of vestibular function following ITG treatment. Consequently, we sought to determine whether SVIN could predict the onset of new vertigo attacks in patients with MD who were treated with ITG. METHODS A prospective longitudinal case-control study was conducted. Several variables were recorded post-ITG and throughout the follow-up period, followed by statistical analyses. Two groups were compared: patients who experienced vertigo attacks 6 months after ITG and those who did not. RESULTS The sample comprised 88 patients diagnosed with MD who underwent ITG treatment. Of the 18 patients who experienced recurring vertigo attacks, 15 demonstrated gain recovery in the affected ear. However, all 18 patients exhibited a decrease in the SPV of SVIN. CONCLUSION The SPV of SVIN may be more sensitive than vHIT in identifying the recovery of vestibular function following ITG administration. To our knowledge, this is the first study to illustrate the link between a reduction in SPV and the likelihood of vertigo episodes in patients with MD who have been treated with ITG.
Collapse
Affiliation(s)
- Susana Marcos Alonso
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Nicole Almeida Ayerve
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Chiara Monopoli Roca
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Guillermo Coronel Touma
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Juan Carlos del Pozo de Dios
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Hortensia Sánchez Gómez
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Santiago Santa Cruz Ruíz
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Ángel Batuecas Caletrío
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
17
|
Pastras CJ, Curthoys IS, Rabbitt RD, Brown DJ. Using macular velocity measurements to relate parameters of bone conduction to vestibular compound action potential responses. Sci Rep 2023; 13:10204. [PMID: 37353559 PMCID: PMC10290084 DOI: 10.1038/s41598-023-37102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
To examine mechanisms responsible for vestibular afferent sensitivity to transient bone conducted vibration, we performed simultaneous measurements of stimulus-evoked vestibular compound action potentials (vCAPs), utricular macula velocity, and vestibular microphonics (VMs) in anaesthetized guinea pigs. Results provide new insights into the kinematic variables of transient motion responsible for triggering mammalian vCAPs, revealing synchronized vestibular afferent responses are not universally sensitive to linear jerk as previously thought. For short duration stimuli (< 1 ms), the vCAP increases magnitude in close proportion to macular velocity and temporal bone (linear) acceleration, rather than other kinematic elements. For longer duration stimuli, the vCAP magnitude switches from temporal bone acceleration sensitive to linear jerk sensitive while maintaining macular velocity sensitivity. Frequency tuning curves evoked by tone-burst stimuli show vCAPs increase in proportion to onset macular velocity, while VMs increase in proportion to macular displacement across the entire frequency bandwidth tested between 0.1 and 2 kHz. The subset of vestibular afferent neurons responsible for synchronized firing and vCAPs have been shown previously to make calyceal synaptic contacts with type I hair cells in the striolar region of the epithelium and have irregularly spaced inter-spike intervals at rest. Present results provide new insight into mechanical and neural mechanisms underlying synchronized action potentials in these sensitive afferents, with clinical relevance for understanding the activation and tuning of neurons responsible for driving rapid compensatory reflex responses.
Collapse
Affiliation(s)
- Christopher J Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
- School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia.
| | - Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Richard D Rabbitt
- Departments of Biomedical Engineering, Otolaryngology and Neuroscience Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Daniel J Brown
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
18
|
Castle N, Liang J, Smith M, Petersen B, Matson C, Eldridge T, Zhang K, Lee CH, Liu Y, Dai C. Finite Element Modeling of Residual Hearing after Cochlear Implant Surgery in Chinchillas. Bioengineering (Basel) 2023; 10:bioengineering10050539. [PMID: 37237608 DOI: 10.3390/bioengineering10050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Cochlear implant (CI) surgery is one of the most utilized treatments for severe hearing loss. However, the effects of a successful scala tympani insertion on the mechanics of hearing are not yet fully understood. This paper presents a finite element (FE) model of the chinchilla inner ear for studying the interrelationship between the mechanical function and the insertion angle of a CI electrode. This FE model includes a three-chambered cochlea and full vestibular system, accomplished using µ-MRI and µ-CT scanning technologies. This model's first application found minimal loss of residual hearing due to insertion angle after CI surgery, and this indicates that it is a reliable and helpful tool for future applications in CI design, surgical planning, and stimuli setup.
Collapse
Affiliation(s)
- Nicholas Castle
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Junfeng Liang
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Matthew Smith
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Brett Petersen
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Cayman Matson
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Tara Eldridge
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Ke Zhang
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Chung-Hao Lee
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Yingtao Liu
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Chenkai Dai
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
19
|
Pastras CJ, Gholami N, Jennings S, Zhu H, Zhou W, Brown DJ, Curthoys IS, Rabbitt RD. A mathematical model for mechanical activation and compound action potential generation by the utricle in response to sound and vibration. Front Neurol 2023; 14:1109506. [PMID: 37051057 PMCID: PMC10083375 DOI: 10.3389/fneur.2023.1109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/01/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction Calyx bearing vestibular afferent neurons innervating type I hair cells in the striolar region of the utricle are exquisitely sensitive to auditory-frequency air conducted sound (ACS) and bone conducted vibration (BCV). Here, we present experimental data and a mathematical model of utricular mechanics and vestibular compound action potential generation (vCAP) in response to clinically relevant levels of ACS and BCV. Vibration of the otoconial layer relative to the sensory epithelium was simulated using a Newtonian two-degree-of-freedom spring-mass-damper system, action potential timing was simulated using an empirical model, and vCAPs were simulated by convolving responses of the population of sensitive neurons with an empirical extracellular voltage kernel. The model was validated by comparison to macular vibration and vCAPs recorded in the guinea pig, in vivo. Results Transient stimuli evoked short-latency vCAPs that scaled in magnitude and timing with hair bundle mechanical shear rate for both ACS and BCV. For pulse BCV stimuli with durations <0.8 ms, the vCAP magnitude increased in proportion to temporal bone acceleration, but for pulse durations >0.9 ms the magnitude increased in proportion to temporal bone jerk. Once validated using ACS and BCV data, the model was applied to predict blast-induced hair bundle shear, with results predicting acute mechanical damage to bundles immediately upon exposure. Discussion Results demonstrate the switch from linear acceleration to linear jerk as the adequate stimulus arises entirely from mechanical factors controlling the dynamics of sensory hair bundle deflection. The model describes the switch in terms of the mechanical natural frequencies of vibration, which vary between species based on morphology and mechanical factors.
Collapse
Affiliation(s)
- Christopher J. Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Nastaran Gholami
- Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Skyler Jennings
- Communication Sciences and Neuroscience Program, University of Utah, Salt Lake City, UT, United States
| | - Hong Zhu
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Wu Zhou
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Daniel J. Brown
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Richard D. Rabbitt
- Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Otolaryngology and Neuroscience Program, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
20
|
Shi T, Beaulieu MO, Saunders LM, Fabian P, Trapnell C, Segil N, Crump JG, Raible DW. Single-cell transcriptomic profiling of the zebrafish inner ear reveals molecularly distinct hair cell and supporting cell subtypes. eLife 2023; 12:82978. [PMID: 36598134 PMCID: PMC9851615 DOI: 10.7554/elife.82978] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023] Open
Abstract
A major cause of human deafness and vestibular dysfunction is permanent loss of the mechanosensory hair cells of the inner ear. In non-mammalian vertebrates such as zebrafish, regeneration of missing hair cells can occur throughout life. While a comparative approach has the potential to reveal the basis of such differential regenerative ability, the degree to which the inner ears of fish and mammals share common hair cells and supporting cell types remains unresolved. Here, we perform single-cell RNA sequencing of the zebrafish inner ear at embryonic through adult stages to catalog the diversity of hair cells and non-sensory supporting cells. We identify a putative progenitor population for hair cells and supporting cells, as well as distinct hair and supporting cell types in the maculae versus cristae. The hair cell and supporting cell types differ from those described for the lateral line system, a distributed mechanosensory organ in zebrafish in which most studies of hair cell regeneration have been conducted. In the maculae, we identify two subtypes of hair cells that share gene expression with mammalian striolar or extrastriolar hair cells. In situ hybridization reveals that these hair cell subtypes occupy distinct spatial domains within the three macular organs, the utricle, saccule, and lagena, consistent with the reported distinct electrophysiological properties of hair cells within these domains. These findings suggest that primitive specialization of spatially distinct striolar and extrastriolar hair cells likely arose in the last common ancestor of fish and mammals. The similarities of inner ear cell type composition between fish and mammals validate zebrafish as a relevant model for understanding inner ear-specific hair cell function and regeneration.
Collapse
Affiliation(s)
- Tuo Shi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Marielle O Beaulieu
- Department of Otolaryngology-Head and Neck Surgery, University of WashingtonSeattleUnited States
| | - Lauren M Saunders
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Cole Trapnell
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - David W Raible
- Department of Otolaryngology-Head and Neck Surgery, University of WashingtonSeattleUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Department of Biological Structure, University of WashingtonSeattleUnited States
| |
Collapse
|
21
|
Ciani Berlingeri AN, Pujol R, Cox BC, Stone JS. Sox2 is required in supporting cells for normal levels of vestibular hair cell regeneration in adult mice. Hear Res 2022; 426:108642. [PMID: 36334348 DOI: 10.1016/j.heares.2022.108642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 11/04/2022]
Abstract
Sox2 is a transcription factor that is necessary in the mammalian inner ear for development of sensory hair cells and supporting cells. Sox2 is expressed in supporting cells of adult mammals, but its function in this context is poorly understood. Given its role in the developing inner ear, we hypothesized that Sox2 is required in vestibular supporting cells for regeneration of type II hair cells after damage. Using adult mice, we deleted Sox2 from Sox9-CreER-expressing supporting cells prior to diphtheria toxin-mediated hair cell destruction and used fate-mapping to assess regeneration. In utricles of control mice with normal Sox2 expression, supporting cells regenerated nearly 200 hair cells by 3 weeks post-damage, which doubled by 12 weeks. In contrast, mice with Sox2 deletion from supporting cells had approximately 20 fate-mapped hair cells at 3 weeks post-damage, and this number did not change significantly by 12 weeks, indicating regeneration was dramatically curtailed. We made similar observations for saccules and ampullae. We found no evidence that supporting cells lacking Sox2 had altered cellular density, morphology, or ultrastructure. However, some Sox2-negative supporting cell nuclei appeared to migrate apically but did not turn on hair cell markers, and type I hair cell survival was higher. Sox2 heterozygotes also had reduced regeneration in utricles, but more hair cells were replaced than mice with Sox2 deletion. Our study determined that Sox2 is required in supporting cells for normal levels of vestibular hair cell regeneration but found no other major requirements for Sox2 in adult supporting cells.
Collapse
Affiliation(s)
- Amanda N Ciani Berlingeri
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, United States; Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Research Center, University of Washington School of Medicine, Seattle, Washington, United States
| | - Rémy Pujol
- University of Montpellier, INM-INSERM Unit 1298, Montpellier, France
| | - Brandon C Cox
- Departments of Pharmacology and Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, United States
| | - Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Research Center, University of Washington School of Medicine, Seattle, Washington, United States.
| |
Collapse
|
22
|
Ji YR, Tona Y, Wafa T, Christman ME, Tourney ED, Jiang T, Ohta S, Cheng H, Fitzgerald T, Fritzsch B, Jones SM, Cullen KE, Wu DK. Function of bidirectional sensitivity in the otolith organs established by transcription factor Emx2. Nat Commun 2022; 13:6330. [PMID: 36280667 PMCID: PMC9592604 DOI: 10.1038/s41467-022-33819-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/04/2022] [Indexed: 12/25/2022] Open
Abstract
Otolith organs of the inner ear are innervated by two parallel afferent projections to the brainstem and cerebellum. These innervations were proposed to segregate across the line of polarity reversal (LPR) within each otolith organ, which divides the organ into two regions of hair cells (HC) with opposite stereociliary orientation. The relationship and functional significance of these anatomical features are not known. Here, we show regional expression of Emx2 in otolith organs, which establishes LPR, mediates the neuronal segregation across LPR and constitutes the bidirectional sensitivity function. Conditional knockout (cKO) of Emx2 in HCs lacks LPR. Tmie cKO, in which mechanotransduction was abolished selectively in HCs within the Emx2 expression domain also lacks bidirectional sensitivity. Analyses of both mutants indicate that LPR is specifically required for mice to swim comfortably and to traverse a balance beam efficiently, but LPR is not required for mice to stay on a rotating rod.
Collapse
Affiliation(s)
- Young Rae Ji
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Sensory & Motor Systems Research Group, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Yosuke Tona
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Otolaryngology/Head and Neck Surgery, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Talah Wafa
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew E Christman
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Edward D Tourney
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tao Jiang
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Sho Ohta
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tracy Fitzgerald
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, 301 Barkley Memorial Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Doris K Wu
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
You D, Guo J, Zhang Y, Guo L, Lu X, Huang X, Sun S, Li H. The heterogeneity of mammalian utricular cells over the course of development. Clin Transl Med 2022; 12:e1052. [PMID: 36178017 PMCID: PMC9523683 DOI: 10.1002/ctm2.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The inner ear organ is a delicate tissue consisting of hair cells (HCs) and supporting cells (SCs).The mammalian inner ear HCs are terminally differentiated cells that cannot spontaneously regenerate in adults. Epithelial non-hair cells (ENHCs) in the utricle include HC progenitors and SCs, and the progenitors share similar characteristics with SCs in the neonatal inner ear. METHODS We applied single-cell sequencing to whole mouse utricles from the neonatal period to adulthood, including samples from postnatal day (P)2, P7 and P30 mice. Furthermore, using transgenic mice and immunostaining, we traced the source of new HC generation. RESULTS We identified several sensory epithelial cell clusters and further found that new HCs arose mainly through differentiation from Sox9+ progenitor cells and that only a few cells were produced by mitotic proliferation in both neonatal and adult mouse utricles. In addition, we identified the proliferative cells using the marker UbcH10 and demonstrated that in adulthood the mitotically generated HCs were primarily found in the extrastriola. Moreover, we observed that not only Type II, but also Type I HCs could be regenerated by either mitotic cell proliferation or progenitor cell differentiation. CONCLUSIONS Overall, our findings expand our understanding of ENHC cell fate and the characteristics of the vestibular organs in mammals over the course of development.
Collapse
Affiliation(s)
- Dan You
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Jin Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Yunzhong Zhang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xinsheng Huang
- Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Institutes of Biomedical SciencesFudan UniversityShanghaiChina,NHC Key Laboratory of Hearing Medicine, Fudan UniversityShanghaiChina,The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
24
|
Fritzsch B, Elliott KL, Yamoah EN. Neurosensory development of the four brainstem-projecting sensory systems and their integration in the telencephalon. Front Neural Circuits 2022; 16:913480. [PMID: 36213204 PMCID: PMC9539932 DOI: 10.3389/fncir.2022.913480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Somatosensory, taste, vestibular, and auditory information is first processed in the brainstem. From the brainstem, the respective information is relayed to specific regions within the cortex, where these inputs are further processed and integrated with other sensory systems to provide a comprehensive sensory experience. We provide the organization, genetics, and various neuronal connections of four sensory systems: trigeminal, taste, vestibular, and auditory systems. The development of trigeminal fibers is comparable to many sensory systems, for they project mostly contralaterally from the brainstem or spinal cord to the telencephalon. Taste bud information is primarily projected ipsilaterally through the thalamus to reach the insula. The vestibular fibers develop bilateral connections that eventually reach multiple areas of the cortex to provide a complex map. The auditory fibers project in a tonotopic contour to the auditory cortex. The spatial and tonotopic organization of trigeminal and auditory neuron projections are distinct from the taste and vestibular systems. The individual sensory projections within the cortex provide multi-sensory integration in the telencephalon that depends on context-dependent tertiary connections to integrate other cortical sensory systems across the four modalities.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, The University of Iowa, Iowa City, IA, United States
- Department of Otolaryngology, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch,
| | - Karen L. Elliott
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
25
|
Homma T, Sohel MSH, Onouchi S, Saito S. Morphometric study of the vestibuloauditory organ of the African clawed frog, Xenopus laevis. Anat Histol Embryol 2022; 51:514-523. [PMID: 35674017 DOI: 10.1111/ahe.12821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022]
Abstract
Independent auditory end-organs appear first in amphibians in vertebrate phylogeny. In amphibians, sound detection is carried out by the amphibian papilla, basilar papilla and macula saccule. Amphibians inhabit distinct habitats and exhibit specific behaviours and sound frequency responses, so the amphibian vestibuloauditory system is an excellent model for considering the relationships between behaviour and physiological/anatomical vestibuloauditory properties. The African clawed frog, Xenopus laevis, lives in shallow water throughout its life and is thought to use sound in a higher frequency range compared with terrestrial anurans. In this study, the size of each vestibuloauditory end-organ and the distribution of ganglion cells in the vestibuloauditory ganglion were examined using haematoxylin and eosin staining and lectin histochemistry in Xenopus laevis. This study revealed that the size ratios among end-organs in Xenopus are similar to those in terrestrial anurans. Large and small cells were observed in the ganglion, but their distribution patterns are different from those in general terrestrial anurans. Lycopersicon esculentum lectin stained a large number of ganglion cells. Lectin-stained cells were found throughout the whole ganglion, but were especially abundant in the caudal part. These results suggested a unique distribution pattern of the vestibuloauditory ganglion cells in Xenopus.
Collapse
Affiliation(s)
- Takeshi Homma
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Md Shahriar Hasan Sohel
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Sawa Onouchi
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
26
|
Mukhopadhyay M, Pangrsic T. Synaptic transmission at the vestibular hair cells of amniotes. Mol Cell Neurosci 2022; 121:103749. [PMID: 35667549 DOI: 10.1016/j.mcn.2022.103749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
A harmonized interplay between the central nervous system and the five peripheral end organs is how the vestibular system helps organisms feel a sense of balance and motion in three-dimensional space. The receptor cells of this system, much like their cochlear equivalents, are the specialized hair cells. However, research over the years has shown that the vestibular endorgans and hair cells evolved very differently from their cochlear counterparts. The structurally unique calyceal synapse, which appeared much later in the evolutionary time scale, and continues to intrigue researchers, is now known to support several forms of synaptic neurotransmission. The conventional quantal transmission is believed to employ the ribbon structures, which carry several tethered vesicles filled with neurotransmitters. However, the field of vestibular hair cell synaptic molecular anatomy is still at a nascent stage and needs further work. In this review, we will touch upon the basic structure and function of the peripheral vestibular system, with the focus on the various modes of neurotransmission at the type I vestibular hair cells. We will also shed light on the current knowledge about the molecular anatomy of the vestibular hair cell synapses and vestibular synaptopathy.
Collapse
Affiliation(s)
- Mohona Mukhopadhyay
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, and Institute for Auditory Neuroscience, 37075 Göttingen, Germany
| | - Tina Pangrsic
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, and Institute for Auditory Neuroscience, 37075 Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Collaborative Research Center 889, University of Göttingen, Göttingen, Germany; Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
27
|
Maudoux A, Vitry S, El-Amraoui A. Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions. Front Neurol 2022; 13:816534. [PMID: 35444606 PMCID: PMC9013928 DOI: 10.3389/fneur.2022.816534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The inner ear is responsible for both hearing and balance. These functions are dependent on the correct functioning of mechanosensitive hair cells, which convert sound- and motion-induced stimuli into electrical signals conveyed to the brain. During evolution of the inner ear, the major changes occurred in the hearing organ, whereas the structure of the vestibular organs remained constant in all vertebrates over the same period. Vestibular deficits are highly prevalent in humans, due to multiple intersecting causes: genetics, environmental factors, ototoxic drugs, infections and aging. Studies of deafness genes associated with balance deficits and their corresponding animal models have shed light on the development and function of these two sensory systems. Bilateral vestibular deficits often impair individual postural control, gaze stabilization, locomotion and spatial orientation. The resulting dizziness, vertigo, and/or falls (frequent in elderly populations) greatly affect patient quality of life. In the absence of treatment, prosthetic devices, such as vestibular implants, providing information about the direction, amplitude and velocity of body movements, are being developed and have given promising results in animal models and humans. Novel methods and techniques have led to major progress in gene therapies targeting the inner ear (gene supplementation and gene editing), 3D inner ear organoids and reprograming protocols for generating hair cell-like cells. These rapid advances in multiscale approaches covering basic research, clinical diagnostics and therapies are fostering interdisciplinary research to develop personalized treatments for vestibular disorders.
Collapse
Affiliation(s)
- Audrey Maudoux
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
- Center for Balance Evaluation in Children (EFEE), Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
28
|
Sadeghi SG, Géléoc GSG. Editorial: Commonalities and Differences in Vestibular and Auditory Pathways. Front Neurosci 2022; 16:876798. [PMID: 35401079 PMCID: PMC8984178 DOI: 10.3389/fnins.2022.876798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Soroush G. Sadeghi
- Center for Hearing and Deafness, Department of Communicative Disorders and Science, University at Buffalo, Buffalo, NY, United States
- *Correspondence: Soroush G. Sadeghi
| | - Gwenaëlle S. G. Géléoc
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Gwenaëlle S. G. Géléoc
| |
Collapse
|
29
|
Sung CYW, Barzik M, Costain T, Wang L, Cunningham LL. Semi-automated Quantification of Hair Cells in the Mature Mouse Utricle. Hear Res 2022; 416:108429. [PMID: 35081508 PMCID: PMC9034969 DOI: 10.1016/j.heares.2021.108429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/19/2021] [Accepted: 12/28/2021] [Indexed: 02/09/2023]
Abstract
The mouse utricle model system is the best-characterized ex vivo preparation for studies of mature mammalian hair cells (HCs). Despite the many advantages of this model system, efficient and reliable quantification of HCs from cultured utricles has been a persistent challenge with this model system. Utricular HCs are commonly quantified by counting immunolabeled HCs in regions of interest (ROIs) placed over an image of the utricle. Our data indicate that the accuracy of HC counts obtained using this method can be impacted by variability in HC density across different regions of the utricle. In addition, the commonly used HC marker myosin 7a results in a diffuse cytoplasmic stain that is not conducive to automated quantification and must be quantified manually, a labor-intensive task. Furthermore, myosin 7a immunoreactivity is retained in dead HCs, resulting in inaccurate quantification of live HCs using this marker. Here we have developed a method for semi-automated quantification of surviving HCs that combines immunoreactivity for the HC-specific transcription factor Pou4f3 with labeling of activated caspase 3/7 (AC3/7) to detect apoptotic HCs. The discrete nuclear Pou4f3 signal allowed us to utilize the binary or threshold function within ImageJ to automate HC quantification. To further streamline this process, we created an ImageJ macro that automates the process from raw image loading to a final quantified image that can be immediately evaluated for accuracy. Within this quantified image, the user can manually correct the quantification via an image overlay indicating the counted HC nuclei. Pou4f3-positive HCs that also express AC3/7 are subtracted to yield accurate counts of surviving HCs. Overall, we present a semi-automated method that is faster than manual HC quantification and identifies surviving HCs with high accuracy.
Collapse
|
30
|
Deans MR. Conserved and Divergent Principles of Planar Polarity Revealed by Hair Cell Development and Function. Front Neurosci 2021; 15:742391. [PMID: 34733133 PMCID: PMC8558554 DOI: 10.3389/fnins.2021.742391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Planar polarity describes the organization and orientation of polarized cells or cellular structures within the plane of an epithelium. The sensory receptor hair cells of the vertebrate inner ear have been recognized as a preeminent vertebrate model system for studying planar polarity and its development. This is principally because planar polarity in the inner ear is structurally and molecularly apparent and therefore easy to visualize. Inner ear planar polarity is also functionally significant because hair cells are mechanosensors stimulated by sound or motion and planar polarity underlies the mechanosensory mechanism, thereby facilitating the auditory and vestibular functions of the ear. Structurally, hair cell planar polarity is evident in the organization of a polarized bundle of actin-based protrusions from the apical surface called stereocilia that is necessary for mechanosensation and when stereociliary bundle is disrupted auditory and vestibular behavioral deficits emerge. Hair cells are distributed between six sensory epithelia within the inner ear that have evolved unique patterns of planar polarity that facilitate auditory or vestibular function. Thus, specialized adaptations of planar polarity have occurred that distinguish auditory and vestibular hair cells and will be described throughout this review. There are also three levels of planar polarity organization that can be visualized within the vertebrate inner ear. These are the intrinsic polarity of individual hair cells, the planar cell polarity or coordinated orientation of cells within the epithelia, and planar bipolarity; an organization unique to a subset of vestibular hair cells in which the stereociliary bundles are oriented in opposite directions but remain aligned along a common polarity axis. The inner ear with its complement of auditory and vestibular sensory epithelia allows these levels, and the inter-relationships between them, to be studied using a single model organism. The purpose of this review is to introduce the functional significance of planar polarity in the auditory and vestibular systems and our contemporary understanding of the developmental mechanisms associated with organizing planar polarity at these three cellular levels.
Collapse
Affiliation(s)
- Michael R Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
31
|
Maroto AF, Barrallo-Gimeno A, Llorens J. Relationship between vestibular hair cell loss and deficits in two anti-gravity reflexes in the rat. Hear Res 2021; 410:108336. [PMID: 34481267 DOI: 10.1016/j.heares.2021.108336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
The tail-lift reflex and the air-righting reflex in rats are anti-gravity reflexes that depend on vestibular function. To begin identifying their cellular basis, this study examined the relationship between reflex loss and the graded lesions caused in the vestibular sensory epithelia by varying doses of an ototoxic compound. After ototoxic exposure, we recorded these reflexes using high speed video. The movies were used to obtain objective measures of the reflexes: the minimum angle formed by the nose, the back of the neck and the base of the tail during the tail-lift maneuver and the time to right in the air-righting test. The vestibular sensory epithelia were then collected from the rats and used to estimate the loss of type I (HCI), type II (HCII) and all hair cells (HC) in both central and peripheral parts of the crista, utricle, and saccule. As expected, tail-lift angles decreased, and air-righting times increased, while the numbers of HCs remaining in the epithelia decreased in a dose-dependent manner. The results demonstrated greater sensitivity of HCI compared to HCII to the IDPN ototoxicity, as well as a relative resiliency of the saccule compared to the crista and utricle. Comparing the functional measures with the cell counts, we observed that loss of the tail-lift reflex associates better with HCI than with HCII loss. In contrast, most HCI in the crista and utricle were lost before air-righting times increased. These data suggest that these reflexes depend on the function of non-identical populations of vestibular HCs.
Collapse
Affiliation(s)
- Alberto F Maroto
- Departament de Ciències Fisiològiques, Institut de Neurociènces, Universitat de Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Catalunya, Spain.
| | - Alejandro Barrallo-Gimeno
- Departament de Ciències Fisiològiques, Institut de Neurociènces, Universitat de Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L'Hospitalet de Llobregat, Catalunya, Spain.
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Institut de Neurociènces, Universitat de Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L'Hospitalet de Llobregat, Catalunya, Spain.
| |
Collapse
|
32
|
Deafness-in-a-dish: modeling hereditary deafness with inner ear organoids. Hum Genet 2021; 141:347-362. [PMID: 34342719 PMCID: PMC9035009 DOI: 10.1007/s00439-021-02325-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022]
Abstract
Sensorineural hearing loss (SNHL) is a major cause of functional disability in both the developed and developing world. While hearing aids and cochlear implants provide significant benefit to many with SNHL, neither targets the cellular and molecular dysfunction that ultimately underlies SNHL. The successful development of more targeted approaches, such as growth factor, stem cell, and gene therapies, will require a yet deeper understanding of the underlying molecular mechanisms of human hearing and deafness. Unfortunately, the human inner ear cannot be biopsied without causing significant, irreversible damage to the hearing or balance organ. Thus, much of our current understanding of the cellular and molecular biology of human deafness, and of the human auditory system more broadly, has been inferred from observational and experimental studies in animal models, each of which has its own advantages and limitations. In 2013, researchers described a protocol for the generation of inner ear organoids from pluripotent stem cells (PSCs), which could serve as scalable, high-fidelity alternatives to animal models. Here, we discuss the advantages and limitations of conventional models of the human auditory system, describe the generation and characteristics of PSC-derived inner ear organoids, and discuss several strategies and recent attempts to model hereditary deafness in vitro. Finally, we suggest and discuss several focus areas for the further, intensive characterization of inner ear organoids and discuss the translational applications of these novel models of the human inner ear.
Collapse
|
33
|
Stone JS, Pujol R, Nguyen TB, Cox BC. The Transcription Factor Sox2 Is Required to Maintain the Cell Type-Specific Properties and Innervation of Type II Vestibular Hair Cells in Adult Mice. J Neurosci 2021; 41:6217-6233. [PMID: 34099510 PMCID: PMC8287988 DOI: 10.1523/jneurosci.1831-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
The sense of balance relies on vestibular hair cells, which detect head motions. Mammals have two types of vestibular hair cell, I and II, with unique morphological, molecular, and physiological properties. Furthermore, each hair cell type signals to a unique form of afferent nerve terminal. Little is known about the mechanisms in mature animals that maintain the specific features of each hair cell type or its postsynaptic innervation. We found that deletion of the transcription factor Sox2 from Type II hair cells in adult mice of both sexes caused many cells in utricles to acquire features unique to Type I hair cells and to lose Type II-specific features. This cellular transdifferentiation, which included changes in nuclear size, chromatin condensation, soma and stereocilium morphology, and marker expression, resulted in a significantly higher proportion of Type I-like hair cells in all epithelial zones. Furthermore, Sox2 deletion from Type II hair cells triggered non-cell autonomous changes in vestibular afferent neurons; they retracted bouton terminals (normally present on only Type II cells) from transdifferentiating hair cells and replaced them with a calyx terminal (normally present on only Type I cells). These changes were accompanied by significant expansion of the utricle's central zone, called the striola. Our study presents the first example of a transcription factor required to maintain the type-specific hair cell phenotype in adult inner ears. Furthermore, we demonstrate that a single genetic change in Type II hair cells is sufficient to alter the morphology of their postsynaptic partners, the vestibular afferent neurons.SIGNIFICANCE STATEMENT The sense of balance relies on two types of sensory cells in the inner ear, Type I and Type II hair cells. These two cell types have unique properties. Furthermore, their postsynaptic partners, the vestibular afferent neurons, have differently shaped terminals on Type I versus Type II hair cells. We show that the transcription factor Sox2 is required to maintain the cell-specific features of Type II hair cells and their postsynaptic terminals in adult mice. This is the first evidence of a molecule that maintains the phenotypes of hair cells and, non-cell autonomously, their postsynaptic partners in mature animals.
Collapse
Affiliation(s)
- Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Rémy Pujol
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
- Institut National de la Santé et de la Recherche Médicale Unit 1051, Institute of Neuroscience, University of Montpellier, 34000 Montpellier, France
| | - Tot Bui Nguyen
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Brandon C Cox
- Departments of Pharmacology and Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9624
| |
Collapse
|
34
|
Reichenberger I, Caussidier-Dechesne CJ, Straka H. Calretinin Immunoreactivity in the VIIIth Nerve and Inner Ear Endorgans of Ranid Frogs. Front Neurosci 2021; 15:691962. [PMID: 34305520 PMCID: PMC8292642 DOI: 10.3389/fnins.2021.691962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Calcium-binding proteins are essential for buffering intracellular calcium concentrations, which are critical for regulating cellular processes involved in neuronal computations. One such calcium-binding protein, calretinin, is present in many neurons of the central nervous system as well as those which innervate cranial sensory organs, although often with differential distributions in adjacent cellular elements. Here, we determined the presence and distribution of calretinin-immunoreactivity in the peripheral vestibular and auditory system of ranid frogs. Calretinin-immunoreactivity was observed in ganglion cells innervating the basilar and amphibian papilla, and in a subpopulation of ganglion cells innervating the saccular epithelium. In contrast, none of the ganglion cells innervating the lagena, the utricle, or the three semicircular canals were calretinin-immunopositive, suggesting that this calcium-binding protein is a marker for auditory but not vestibular afferent fibers in the frog. The absence of calretinin in vestibular ganglion cells corresponds with the lack of type I hair cells in anamniote vertebrates, many of which in amniotes are contacted by the neurites of large, calyx-forming calretinin-immunopositive ganglion cells. In the sensory epithelia of all endorgans, the majority of hair cells were strongly calretinin-immunopositive. Weakly calretinin-immunopositive hair cells were distributed in the intermediate region of the semicircular canal cristae, the central part of the saccular macula, the utricular, and lagenar striola and the medial part of the amphibian papilla. The differential presence of calretinin in the frog vestibular and auditory sensory periphery might reflect a biochemical feature related to firing patterns and frequency bandwidths of self-motion versus acoustic stimulus encoding, respectively.
Collapse
Affiliation(s)
| | | | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Planegg, Germany
| |
Collapse
|
35
|
Consistent removal of hair cells in vestibular end organs by time-dependent transtympanic administration of gentamicin in guinea pigs. J Neurosci Methods 2021; 351:109049. [PMID: 33359225 DOI: 10.1016/j.jneumeth.2020.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vestibular hair cell loss and its role in balance disorders are not yet completely understood due largely to the lack of precise hair cell damage protocols. NEW METHOD Our damage protocol aims to selectively remove type I hair cells in a way that produces consistent and predictable lesions that can be used for reliable inter-animal and inter-group comparison in balance research. This objective is achieved by transtympanic injection of gentamicin on both the round window membrane and oval window over a fixed time period followed by thorough washing. RESULTS We achieved nearly total and consistent loss of type I hair cells at 94 % for the crista ampullaris of the lateral semicircular canal (LSC) and 86 % for the utricular macula with negligible loss of type II hair cells at 4% for the crista ampullaris of the LSC and 6% for the utricular macula. While the vestibular function was compromised in the relevant study group, this group had a zero mortality rate with no significant suppression of body weight gain. COMPARISON WITH EXISTING METHODS Gentamicin is typically administered via intraperitoneal systemic injection or, more recently, transtympanic injection. The intraperitoneal method is simple, but mortality rate is high. The transtympanic injection method produces ototoxic damage but with inconsistent lesion size. This inconsistency prevents reliable comparisons among animals. CONCLUSIONS This protocol employs a transtympanic injection method which selectively targets type I hair cells for removal in the vestibular epithelia in a time-dependent manner, uniformly damages vestibular function, and causes uniform hair cell loss.
Collapse
|
36
|
Qian X, He Z, Wang Y, Chen B, Hetrick A, Dai C, Chi F, Li H, Ren D. Hair cell uptake of gentamicin in the developing mouse utricle. J Cell Physiol 2020; 236:5235-5252. [PMID: 33368220 DOI: 10.1002/jcp.30228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Intratympanic injection of gentamicin has proven to be an effective therapy for intractable vestibular dysfunction. However, most studies to date have focused on the cochlea, so little is known about the distribution and uptake of gentamicin by the counterpart of the auditory system, specifically vestibular hair cells (HCs). Here, with a combination of in vivo and in vitro approaches, we used a gentamicin-Texas Red (GTTR) conjugate to investigate the mechanisms of gentamicin vestibulotoxicity in the developing mammalian utricular HCs. In vivo, GTTR fluorescence was concentrated in the apical cytoplasm and the cellular membrane of neonatal utricular HCs, but scarce in the nucleus of HCs and supporting cells. Quantitative analysis showed the GTTR uptake by striolar HCs was significantly higher than that in the extrastriola. In addition, the GTTR fluorescence intensity in the striola was increased gradually from 1 to 8 days, peaking at 8-9 days postnatally. In vitro, utricle explants were incubated with GTTR and candidate uptake conduits, including mechanotransduction (MET) channels and endocytosis in the HC, were inhibited separately. GTTR uptake by HCs could be inhibited by quinine, a blocker of MET channels, under both normal and stressed conditions. Meanwhile, endocytic inhibition only reduced GTTR uptake in the CoCl2 hypoxia model. In sum, the maturation of MET channels mediated uptake of GTTR into vestibular HCs. Under stressed conditions, MET channels play a pronounced role, manifested by channel-dependent stress enhanced GTTR permeation, while endocytosis participates in GTTR entry in a more selective manner.
Collapse
Affiliation(s)
- Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Ziyu He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Yanmei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Binjun Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Alisa Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Chunfu Dai
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, USA.,Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| |
Collapse
|
37
|
Qian X, Ma R, Wang X, Xu X, Yang J, Chi F, Ren D. Simultaneous gentamicin-mediated damage and Atoh1 overexpression promotes hair cell regeneration in the neonatal mouse utricle. Exp Cell Res 2020; 398:112395. [PMID: 33279477 DOI: 10.1016/j.yexcr.2020.112395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 01/24/2023]
Abstract
Loss of hair cells from vestibular epithelium results in balance dysfunction. The current therapeutic regimen for vestibular diseases is limited. Upon injury or Atoh1 overexpression, hair cell replacement occurs rapidly in the mammalian utricle, suggesting a promising approach to induce vestibular hair cell regeneration. In this study, we applied simultaneous gentamicin-mediated hair cell ablation and Atoh1 overexpression to induce neonatal utricular hair cell formation in vitro. We confirmed that type I hair cells were the primary targets of gentamicin. Furthermore, injury and Atoh1 overexpression promoted hair cell regeneration in a timely and efficient manner through robust viral transfection. Hair cells regenerated with type II characteristics in the striola and type I/II characteristics in non-sensory regions. Rare EdU+/myosin7a+ cells in sensory regions and robust EdU+/myosin7a+ signals in ectopic regions indicate that transdifferentiation of supporting cells in situ, and mitosis and differentiation of non-sensory epithelial cells in ectopic regions, are sources of regenerative hair cells. Distinct regeneration patterns in in situ and ectopic regions suggested robust plasticity of vestibular non-sensory epithelium, generating more developed hair cell subtypes and thus providing a promising stem cell-like source of hair cells. These findings suggest that simultaneously causing injury and overexpressing Atoh1 promotes hair cell regeneration efficacy and maturity, thus expanding the understanding of ectopic plasticity in neonatal vestibular organs.
Collapse
Affiliation(s)
- Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Rui Ma
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Xinwei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Xinda Xu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Juanmei Yang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
38
|
Sayyid ZN, Wang T, Chen L, Jones SM, Cheng AG. Atoh1 Directs Regeneration and Functional Recovery of the Mature Mouse Vestibular System. Cell Rep 2020; 28:312-324.e4. [PMID: 31291569 PMCID: PMC6659123 DOI: 10.1016/j.celrep.2019.06.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/13/2019] [Accepted: 06/06/2019] [Indexed: 12/02/2022] Open
Abstract
Utricular hair cells (HCs) are mechanoreceptors required for vestibular function. After damage, regeneration of mammalian utricular HCs is limited and regenerated HCs appear immature. Thus, loss of vestibular function is presumed irreversible. Here, we found partial HC replacement and functional recovery in the mature mouse utricle, both enhanced by overexpressing the transcription factor Atoh1. Following damage, long-term fate mapping revealed that support cells non-mitotically and modestly regenerated HCs displaying no or immature bundles. By contrast, Atoh1 overexpression stimulated proliferation and widespread regeneration of HCs exhibiting elongated bundles, patent mechanotransduction channels, and synaptic connections. Finally, although damage without Atoh1 overexpression failed to initiate or sustain a spontaneous functional recovery, Atoh1 overexpression significantly enhanced both the degree and percentage of animals exhibiting sustained functional recovery. Therefore, the mature, damaged utricle has an Atoh1-responsive regenerative program leading to functional recovery, underscoring the potential of a reprogramming approach to sensory regeneration. The mature mouse utricle, which detects linear acceleration, displays limited regeneration, but whether function returns is unknown. Sayyid et al. show that regenerated hair cells appear and mature over months, resulting in a limited, unsustained functional recovery. Atoh1 overexpression enhances regeneration and leads to a sustained recovery of vestibular function.
Collapse
Affiliation(s)
- Zahra N Sayyid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon Chen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Holman HA, Wan Y, Rabbitt RD. Developmental GAD2 Expression Reveals Progenitor-like Cells with Calcium Waves in Mammalian Crista Ampullaris. iScience 2020; 23:101407. [PMID: 32771977 PMCID: PMC7415930 DOI: 10.1016/j.isci.2020.101407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 01/26/2023] Open
Abstract
Sense of motion, spatial orientation, and balance in vertebrates relies on sensory hair cells in the inner ear vestibular system. Vestibular supporting cells can regenerate hair cells that are lost from aging, ototoxicity, and trauma, although not all factors or specific cell types are known. Here we report a population of GAD2-positive cells in the mouse crista ampullaris and trace GAD2 progenitor-like cells that express pluripotent transcription factors SOX2, PROX1, and CTBP2. GAD2 progenitor-like cells organize into rosettes around a central branched structure in the eminentia cruciatum (EC) herein named the EC plexus. GCaMP5G calcium indicator shows spontaneous and acetylcholine-evoked whole-cell calcium waves in neonatal and adult mice. We present a hypothetical model that outlines the lineage and potential regenerative capacity of GAD2 cells in the mammalian vestibular neuroepithelium.
Collapse
Affiliation(s)
- Holly A Holman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Yong Wan
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard D Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Graduate Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, USA; Department of Otolaryngology-Head & Neck Surgery, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
40
|
Yu Z, McIntosh JM, Sadeghi SG, Glowatzki E. Efferent synaptic transmission at the vestibular type II hair cell synapse. J Neurophysiol 2020; 124:360-374. [PMID: 32609559 DOI: 10.1152/jn.00143.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the vestibular peripheral organs, type I and type II hair cells (HCs) transmit incoming signals via glutamatergic quantal transmission onto afferent nerve fibers. Additionally, type I HCs transmit via "non-quantal" transmission to calyx afferent fibers, by accumulation of glutamate and potassium in the synaptic cleft. Vestibular efferent inputs originating in the brainstem contact type II HCs and vestibular afferents. Here, synaptic inputs to type II HCs were characterized by using electrical and optogenetic stimulation of efferent fibers combined with in vitro whole cell patch-clamp recording from type II HCs in the rodent vestibular crista. Properties of efferent synaptic currents in type II HCs were similar to those found in cochlear HCs and mediated by activation of α9-containing nicotinic acetylcholine receptors (nAChRs) and small-conductance calcium-activated potassium (SK) channels. While efferents showed a low probability of release at low frequencies of stimulation, repetitive stimulation resulted in facilitation and increased probability of release. Notably, the membrane potential of type II HCs during optogenetic stimulation of efferents showed a strong hyperpolarization in response to single pulses and was further enhanced by repetitive stimulation. Such efferent-mediated inhibition of type II HCs can provide a mechanism to adjust the contribution of signals from type I and type II HCs to vestibular nerve fibers, with a shift of the response to be more like that of calyx-only afferents with faster non-quantal responses.NEW & NOTEWORTHY Type II vestibular hair cells (HCs) receive inputs from efferent neurons in the brain stem. We used in vitro optogenetic and electrical stimulation of vestibular efferent fibers to study their synaptic inputs to type II HCs. Stimulation of efferents inhibited type II HCs, similar to efferent effects on cochlear HCs. We propose that efferent inputs adjust the contribution of signals from type I and II HCs to vestibular nerve fibers.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, and The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Soroush G Sadeghi
- Department of Communicative Disorders and Sciences, and Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York.,Neuroscience Program, State University of New York at Buffalo, Buffalo, New York
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance, and The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
41
|
Sadler E, Ryals MM, May LA, Martin D, Welsh N, Boger ET, Morell RJ, Hertzano R, Cunningham LL. Cell-Specific Transcriptional Responses to Heat Shock in the Mouse Utricle Epithelium. Front Cell Neurosci 2020; 14:123. [PMID: 32528249 PMCID: PMC7247426 DOI: 10.3389/fncel.2020.00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Sensory epithelia of the inner ear contain mechanosensory hair cells (HCs) and glia-like supporting cells (SCs), both of which are required for hearing and balance functions. Each of these cell types has unique responses to ototoxic and cytoprotective stimuli. Non-lethal heat stress in the mammalian utricle induces heat shock proteins (HSPs) and protects against ototoxic drug-induced hair cell death. Induction of HSPs in the utricle demonstrates cell-type specificity at the protein level, with HSP70 induction occurring primarily in SCs, while HSP32 (also known as heme oxygenase 1, HMOX1) is induced primarily in resident macrophages. Neither of these HSPs are robustly induced in HCs, suggesting that HCs may have little capacity for induction of stress-induced protective responses. To determine the transcriptional responses to heat shock of these different cell types, we performed cell-type-specific transcriptional profiling using the RiboTag method, which allows for immunoprecipitation (IP) of actively translating mRNAs from specific cell types. RNA-Seq differential gene expression analyses demonstrated that the RiboTag method identified known cell type-specific markers as well as new markers for HCs and SCs. Gene expression differences suggest that HCs and SCs exhibit differential transcriptional heat shock responses. The chaperonin family member Cct8 was significantly enriched only in heat-shocked HCs, while Hspa1l (HSP70 family), and Hspb1 and Cryab (HSP27 and HSP20 families, respectively) were enriched only in SCs. Together our data indicate that HCs exhibit a limited but unique heat shock response, and SCs exhibit a broader and more robust transcriptional response to protective heat stress.
Collapse
Affiliation(s)
- Erica Sadler
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Matthew M Ryals
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States.,Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lindsey A May
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States.,Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Nora Welsh
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lisa L Cunningham
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
42
|
Forge A, Jagger DJ, Gale JE. Restoring the balance: regeneration of hair cells in the vestibular system of the inner ear. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Johnson Chacko L, Sergi C, Eberharter T, Dudas J, Rask-Andersen H, Hoermann R, Fritsch H, Fischer N, Glueckert R, Schrott-Fischer A. Early appearance of key transcription factors influence the spatiotemporal development of the human inner ear. Cell Tissue Res 2020; 379:459-471. [PMID: 31788757 DOI: 10.1007/s00441-019-03115-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Expression patterns of transcription factors leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), transforming growth factor-β-activated kinase-1 (TAK1), SRY (sex-determining region Y)-box 2 (SOX2), and GATA binding protein 3 (GATA3) in the developing human fetal inner ear were studied between the gestation weeks 9 and 12. Further development of cochlear apex between gestational weeks 11 and 16 (GW11 and GW16) was examined using transmission electron microscopy. LGR5 was evident in the apical poles of the sensory epithelium of the cochlear duct and the vestibular end organs at GW11. Immunostaining was limited to hair cells of the organ of Corti by GW12. TAK1 was immune positive in inner hair cells of the organ of Corti by GW12 and colocalized with p75 neurotrophic receptor expression. Expression for SOX2 was confined primarily to the supporting cells of utricle at the earliest stage examined at GW9. Intense expression for GATA3 was presented in the cochlear sensory epithelium and spiral ganglia at GW9. Expression of GATA3 was present along the midline of both the utricle and saccule in the zone corresponding to the striolar reversal zone where the hair cell phenotype switches from type I to type II. The spatiotemporal gradient of the development of the organ of Corti was also evident with the apex of the cochlea forming by GW16. It seems that highly specific staining patterns of several transcriptions factors are critical in guiding the genesis of the inner ear over development. Our findings suggest that the spatiotemporal gradient in cochlear development extends at least until gestational week 16.
Collapse
Affiliation(s)
- Lejo Johnson Chacko
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology and Department of Pediatrics, University of Alberta, 8440 112 St, NW, Edmonton, AB, T6G 2B7, Canada
| | - Theresa Eberharter
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Romed Hoermann
- Department of Anatomy, Histology & Embryology, Division of Clinical & Functional Anatomy, Medical University of Innsbruck, Muellerstrasse 59, 6020, Innsbruck, Austria
| | - Helga Fritsch
- Department of Anatomy, Histology & Embryology, Division of Clinical & Functional Anatomy, Medical University of Innsbruck, Muellerstrasse 59, 6020, Innsbruck, Austria
| | - Natalie Fischer
- University Clinics Innsbruck, Tirol Kliniken, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- University Clinics Innsbruck, Tirol Kliniken, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Anneliese Schrott-Fischer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
44
|
Stewart CE, Bauer DS, Kanicki AC, Altschuler RA, King WM. Intense noise exposure alters peripheral vestibular structures and physiology. J Neurophysiol 2020; 123:658-669. [PMID: 31875485 PMCID: PMC7052639 DOI: 10.1152/jn.00642.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022] Open
Abstract
The otolith organs play a critical role in detecting linear acceleration and gravity to control posture and balance. Some afferents that innervate these structures can be activated by sound and are at risk for noise overstimulation. A previous report demonstrated that noise exposure can abolish vestibular short-latency evoked potential (VsEP) responses and damage calyceal terminals. However, the stimuli that were used to elicit responses were weaker than those established in previous studies and may have been insufficient to elicit VsEP responses in noise-exposed animals. The goal of this study was to determine the effect of an established noise exposure paradigm on VsEP responses using large head-jerk stimuli to determine if noise induces a stimulus threshold shift and/or if large head-jerks are capable of evoking VsEP responses in noise-exposed rats. An additional goal is to relate these measurements to the number of calyceal terminals and hair cells present in noise-exposed vs. non-noise-exposed tissue. Exposure to intense continuous noise significantly reduced VsEP responses to large stimuli and abolished VsEP responses to small stimuli. This finding confirms that while measurable VsEP responses can be elicited from noise-lesioned rat sacculi, larger head-jerk stimuli are required, suggesting a shift in the minimum stimulus necessary to evoke the VsEP. Additionally, a reduction in labeled calyx-only afferent terminals was observed without a concomitant reduction in the overall number of calyces or hair cells. This finding supports a critical role of calretinin-expressing calyceal-only afferents in the generation of a VsEP response.NEW & NOTEWORTHY This study identifies a change in the minimum stimulus necessary to evoke vestibular short-latency evoked potential (VsEP) responses after noise-induced damage to the vestibular periphery and reduced numbers of calretinin-labeled calyx-only afferent terminals in the striolar region of the sacculus. These data suggest that a single intense noise exposure may impact synaptic function in calyx-only terminals in the striolar region of the sacculus. Reduced calretinin immunolabeling may provide insight into the mechanism underlying noise-induced changes in VsEP responses.
Collapse
Affiliation(s)
- C E Stewart
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - D S Bauer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - A C Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - R A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - W M King
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
45
|
Ono K, Keller J, López Ramírez O, González Garrido A, Zobeiri OA, Chang HHV, Vijayakumar S, Ayiotis A, Duester G, Della Santina CC, Jones SM, Cullen KE, Eatock RA, Wu DK. Retinoic acid degradation shapes zonal development of vestibular organs and sensitivity to transient linear accelerations. Nat Commun 2020; 11:63. [PMID: 31896743 PMCID: PMC6940366 DOI: 10.1038/s41467-019-13710-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/21/2019] [Indexed: 01/18/2023] Open
Abstract
Each vestibular sensory epithelium in the inner ear is divided morphologically and physiologically into two zones, called the striola and extrastriola in otolith organ maculae, and the central and peripheral zones in semicircular canal cristae. We found that formation of striolar/central zones during embryogenesis requires Cytochrome P450 26b1 (Cyp26b1)-mediated degradation of retinoic acid (RA). In Cyp26b1 conditional knockout mice, formation of striolar/central zones is compromised, such that they resemble extrastriolar/peripheral zones in multiple features. Mutants have deficient vestibular evoked potential (VsEP) responses to jerk stimuli, head tremor and deficits in balance beam tests that are consistent with abnormal vestibular input, but normal vestibulo-ocular reflexes and apparently normal motor performance during swimming. Thus, degradation of RA during embryogenesis is required for formation of highly specialized regions of the vestibular sensory epithelia with specific functions in detecting head motions.
Collapse
Affiliation(s)
- Kazuya Ono
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James Keller
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Qiagen Sciences Inc., Germantown, MD, 20874, USA
| | - Omar López Ramírez
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | | | - Omid A Zobeiri
- Department of Physiology McGill University, Montreal, QC, Canada, H3G 1Y6
| | | | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, 301 Barkley Memorial Center, University of Nebraska-Lincoln, Lincoln, NE, 68583-0738, USA
| | - Andrianna Ayiotis
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gregg Duester
- Neuroscience and Aging Research Center, Stanford Burnham Prebys Medical Discovery Institutes, Stanford, CA, 92037, USA
| | - Charles C Della Santina
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, 301 Barkley Memorial Center, University of Nebraska-Lincoln, Lincoln, NE, 68583-0738, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Doris K Wu
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
46
|
Lu J, Hu L, Ye B, Hu H, Tao Y, Shu Y, Hao Chiang, Borse V, Xiang M, Wu H, Edge ASB, Shi F. Increased Type I and Decreased Type II Hair Cells after Deletion of Sox2 in the Developing Mouse Utricle. Neuroscience 2019; 422:146-160. [PMID: 31678344 PMCID: PMC10858341 DOI: 10.1016/j.neuroscience.2019.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
The vestibular system of the inner ear contains Type I and Type II hair cells (HCs) generated from sensory progenitor cells; however, little is known about how the HC subtypes are formed. Sox2 (encoding SRY-box 2) is expressed in Type II, but not in Type I, HCs. The present study aimed to investigate the role of SOX2 in cell fate determination in Type I vs. Type II HCs. First, we confirmed that Type I HCs developed from Sox2-expressing cells through lineage tracing of Sox2-positive cells using a CAG-tdTomato reporter mouse crossed with a Sox2-CreER mouse. Then, Sox2 loss of function was induced in HCs, using Sox2flox transgenic mice crossed with a Gfi1-Cre driver mouse. Knockout of Sox2 in HCs increased the number of Type I HCs and decreased the number of Type II HCs, while the total number of HCs and Sox2-positive supporting cells did not change. In addition, the effect of Sox2-knockout persisted into adulthood, resulting in an increased number of Type I HCs. These results demonstrate that SOX2 plays a critical role in the determination of Type II vs. Type I HC fate. The results suggested that Sox2 is a potential target for generating Type I HCs, which may be important for regenerative strategies for balance disorders.
Collapse
Affiliation(s)
- Jingrong Lu
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Lingxiang Hu
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China; Department of Otolaryngology Head & Neck Surgery, Shanghai 9th People's Hospital/Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Bin Ye
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Haixia Hu
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Yong Tao
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China; Department of Otolaryngology Head & Neck Surgery, Shanghai 9th People's Hospital/Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Hao Chiang
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Vikrant Borse
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Mingliang Xiang
- Department of Otolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China
| | - Hao Wu
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, China; Department of Otolaryngology Head & Neck Surgery, Shanghai 9th People's Hospital/Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Fuxin Shi
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Decibel Therapeutics, Boston, MA 02215, USA.
| |
Collapse
|
47
|
Hageman KN, Chow MR, Roberts D, Boutros PJ, Tooker A, Lee K, Felix S, Pannu SS, Haque R, Della Santina CC. Binocular 3D otolith-ocular reflexes: responses of chinchillas to prosthetic electrical stimulation targeting the utricle and saccule. J Neurophysiol 2019; 123:259-276. [PMID: 31747349 DOI: 10.1152/jn.00883.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
From animal experiments by Cohen and Suzuki et al. in the 1960s to the first-in-human clinical trials now in progress, prosthetic electrical stimulation targeting semicircular canal branches of the vestibular nerve has proven effective at driving directionally appropriate vestibulo-ocular reflex eye movements, postural responses, and perception. That work was considerably facilitated by the fact that all hair cells and primary afferent neurons in each canal have the same directional sensitivity to head rotation, the three canals' ampullary nerves are geometrically distinct from one another, and electrically evoked three-dimensional (3D) canal-ocular reflex responses approximate a simple vector sum of linearly independent components representing relative excitation of each of the three canals. In contrast, selective prosthetic stimulation of the utricle and saccule has been difficult to achieve, because hair cells and afferents with many different directional sensitivities are densely packed in those endorgans and the relationship between 3D otolith-ocular reflex responses and the natural and/or prosthetic stimuli that elicit them is more complex. As a result, controversy exists regarding whether selective, controllable stimulation of electrically evoked otolith-ocular reflexes (eeOOR) is possible. Using micromachined, planar arrays of electrodes implanted in the labyrinth, we quantified 3D, binocular eeOOR responses to prosthetic electrical stimulation targeting the utricle, saccule, and semicircular canals of alert chinchillas. Stimuli delivered via near-bipolar electrode pairs near the maculae elicited sustained ocular countertilt responses that grew reliably with pulse rate and pulse amplitude, varied in direction according to which stimulating electrode was employed, and exhibited temporal dynamics consistent with responses expected for isolated macular stimulation.NEW & NOTEWORTHY As the second in a pair of papers on Binocular 3D Otolith-Ocular Reflexes, this paper describes new planar electrode arrays and vestibular prosthesis architecture designed to target the three semicircular canals and the utricle and saccule. With this technological advancement, electrically evoked otolith-ocular reflexes due to stimulation via utricle- and saccule-targeted electrodes were recorded in chinchillas. Results demonstrate advances toward achieving selective stimulation of the utricle and saccule.
Collapse
Affiliation(s)
- Kristin N Hageman
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Margaret R Chow
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Dale Roberts
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Peter J Boutros
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Angela Tooker
- Lawrence Livermore National Laboratory, Livermore, California
| | - Kye Lee
- Lawrence Livermore National Laboratory, Livermore, California
| | - Sarah Felix
- Lawrence Livermore National Laboratory, Livermore, California
| | | | - Razi Haque
- Lawrence Livermore National Laboratory, Livermore, California
| | - Charles C Della Santina
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Atoh1 is required in supporting cells for regeneration of vestibular hair cells in adult mice. Hear Res 2019; 385:107838. [PMID: 31751832 DOI: 10.1016/j.heares.2019.107838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022]
Abstract
In amniotes, head movements are encoded by two types of vestibular hair cells (type I and type II) with unique morphology, physiology, and innervation. After hair cell destruction in mature rodents, supporting cells regenerate some type II hair cells, but no type I hair cells are replaced. The transcription factor Atoh1 is required for hair cell development, and Atoh1 is upregulated in supporting cells, the hair cell progenitors, in mature chickens and mice following hair cell damage. We investigated whether Atoh1 is required for type II hair cell regeneration in adult mice after genetic ablation of hair cells. First, we used a knock-in Atoh1 reporter to demonstrate that supporting cells in the utricle, a vestibular organ that detects linear acceleration of the head, upregulate Atoh1 expression by 7 days after hair cell destruction was initiated. Next, we labeled supporting cells prior to damage and fate-mapped them over time to test whether conditional deletion of Atoh1 from supporting cells prevented them from converting into hair cells after damage. In mice with normal Atoh1 expression, fate-mapped supporting cells in the adult utricle gave rise to hundreds of type II hair cells after hair cell destruction, but they did not form new type I hair cells. By contrast, mice with Atoh1 deletion prior to hair cell damage had only 10-20 fate-mapped type II hair cells per utricle at 3 weeks post-damage, and numbers did not change at 12 weeks after hair cell destruction. Supporting cells had normal cell shape and nuclear density up to 12 weeks after Atoh1 deletion. Similar observations were made in two other vestibular organs, the saccule and the lateral ampulla. Our findings demonstrate that Atoh1 is necessary in adult mouse supporting cells for regeneration of type II vestibular hair cells and that deletion of Atoh1 from supporting cells prior to damage does not appear to induce supporting cells to die or to proliferate.
Collapse
|
49
|
Climer LK, Cox AM, Reynolds TJ, Simmons DD. Oncomodulin: The Enigmatic Parvalbumin Protein. Front Mol Neurosci 2019; 12:235. [PMID: 31649505 PMCID: PMC6794386 DOI: 10.3389/fnmol.2019.00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/13/2019] [Indexed: 01/21/2023] Open
Abstract
EF-hand Ca2+-binding protein family members, α- and β-parvalbumins have been studied for decades. Yet, considerable information is lacking distinguishing functional differences between mammalian α-parvalbumin (PVALB) and oncomodulin (OCM), a branded β-parvalbumin. Herein, we provide an overview detailing the current body of work centered around OCM as an EF-Hand Ca2+-binding protein and describe potential mechanisms of OCM function within the inner ear and immune cells. Additionally, we posit that OCM is evolutionarily distinct from PVALB and most other β-parvalbumins. This review summarizes recent studies pertaining to the function of OCM and emphasizes OCM as a parvalbumin possessing a unique cell and tissue distribution, Ca2+ buffering capacity and phylogenetic origin.
Collapse
Affiliation(s)
- Leslie K Climer
- Department of Biology, Baylor University, Waco, TX, United States.,Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Andrew M Cox
- Department of Biology, Baylor University, Waco, TX, United States.,Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | | | - Dwayne D Simmons
- Department of Biology, Baylor University, Waco, TX, United States.,Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States.,Biomedical Sciences Program, Baylor University, Waco, TX, United States
| |
Collapse
|
50
|
Cassel R, Bordiga P, Carcaud J, Simon F, Beraneck M, Le Gall A, Benoit A, Bouet V, Philoxene B, Besnard S, Watabe I, Pericat D, Hautefort C, Assie A, Tonetto A, Dyhrfjeld-Johnsen J, Llorens J, Tighilet B, Chabbert C. Morphological and functional correlates of vestibular synaptic deafferentation and repair in a mouse model of acute-onset vertigo. Dis Model Mech 2019; 12:dmm.039115. [PMID: 31213478 PMCID: PMC6679379 DOI: 10.1242/dmm.039115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/06/2019] [Indexed: 12/25/2022] Open
Abstract
Damage to cochlear primary afferent synapses has been shown to be a key factor in various auditory pathologies. Similarly, the selective lesioning of primary vestibular synapses might be an underlying cause of peripheral vestibulopathies that cause vertigo and dizziness, for which the pathophysiology is currently unknown. To thoroughly address this possibility, we selectively damaged the synaptic contacts between hair cells and primary vestibular neurons in mice through the transtympanic administration of a glutamate receptor agonist. Using a combination of histological and functional approaches, we demonstrated four key findings: (1) selective synaptic deafferentation is sufficient to generate acute vestibular syndrome with characteristics similar to those reported in patients; (2) the reduction of the vestibulo-ocular reflex and posturo-locomotor deficits mainly depends on spared synapses; (3) damaged primary vestibular synapses can be repaired over the days and weeks following deafferentation; and (4) the synaptic repair process occurs through the re-expression and re-pairing of synaptic proteins such as CtBP2 and SHANK-1. Primary synapse repair might contribute to re-establishing the initial sensory network. Deciphering the molecular mechanism that supports synaptic repair could offer a therapeutic opportunity to rescue full vestibular input and restore gait and balance in patients. Summary: The molecular rearrangements of the synaptic proteins that accompany the deafferentation and subsequent reafferentation of the inner ear sensors following an excitotoxic insult are demonstrated for the first time.
Collapse
Affiliation(s)
- Raphaelle Cassel
- Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, 13000 France
| | - Pierrick Bordiga
- Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, 13000 France
| | - Julie Carcaud
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS, 75006 Paris, France
| | - François Simon
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS, 75006 Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
| | - Mathieu Beraneck
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS, 75006 Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
| | | | | | | | | | | | - Isabelle Watabe
- Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, 13000 France
| | - David Pericat
- Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, 13000 France
| | | | - Axel Assie
- Aix-Marseille Université, CNRS, Centrale Marseille, FSCM (FR1739), PRATIM, Marseille, 13000 France
| | - Alain Tonetto
- Aix-Marseille Université, CNRS, Centrale Marseille, FSCM (FR1739), PRATIM, Marseille, 13000 France
| | | | | | - Brahim Tighilet
- Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, 13000 France
| | - Christian Chabbert
- Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, 13000 France
| |
Collapse
|