1
|
Pamplona GSP, Giussani A, Salzmann L, Staempfli P, Schneller S, Gassert R, Ionta S. Neuro-cognitive effects of degraded visibility on illusory body ownership. Neuroimage 2024; 300:120870. [PMID: 39349148 DOI: 10.1016/j.neuroimage.2024.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024] Open
Abstract
Based on visuo-tactile stimulation, the rubber hand illusion induces a sense of ownership for a dummy hand. Manipulating the visibility of the dummy hand during the stimulation influences cognitive aspects of the illusion, suggesting that the related brain activity may be influenced too. To test this, we analyzed brain activity (fMRI), subjective ratings, and skin conductance from 45 neurotypical participants undergoing a modified rubber hand illusion protocol where we manipulated the visibility (high, medium, and low) of a virtual hand, not the brush (virtual hand illusion; VHI). To further investigate the impact of visibility manipulations on VHI-related secondary effects (i.e. vicarious somatosensation), we recorded brain activity and skin conductance during a vicarious pain protocol (observation of painful stimulations of the virtual hand) that occurred after the VHI procedure. Results showed that, during both the VHI and vicarious pain periods, the activity of distinct visual, somatosensory, and motor brain regions was modulated by (i) visibility manipulations, (ii) coherence between visual and tactile stimulation, and (iii) time of visuo-tactile stimulation. Accordingly, embodiment-related subjective ratings of the perceived illusion were specifically influenced by visibility manipulations. These findings suggest that visibility modifications can impact the neural and cognitive effects of illusory body ownership, in that when visibility decreases the illusion is perceived as weaker and the brain activity in visual, motor, and somatosensory regions is overall lower. We interpret this evidence as a sign of the weight of vision on embodiment processes, in that the cortical and subjective aspects of illusory body ownership are weakened by a degradation of visual input during the induction of the illusion.
Collapse
Affiliation(s)
- Gustavo S P Pamplona
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology/University of Lausanne, Lausanne, Switzerland; Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Amedeo Giussani
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology/University of Lausanne, Lausanne, Switzerland
| | - Lena Salzmann
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Philipp Staempfli
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Stefan Schneller
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Silvio Ionta
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology/University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Ding K, Rakhshan M, Paredes-Acuña N, Cheng G, Thakor NV. Sensory integration for neuroprostheses: from functional benefits to neural correlates. Med Biol Eng Comput 2024; 62:2939-2960. [PMID: 38760597 DOI: 10.1007/s11517-024-03118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
In the field of sensory neuroprostheses, one ultimate goal is for individuals to perceive artificial somatosensory information and use the prosthesis with high complexity that resembles an intact system. To this end, research has shown that stimulation-elicited somatosensory information improves prosthesis perception and task performance. While studies strive to achieve sensory integration, a crucial phenomenon that entails naturalistic interaction with the environment, this topic has not been commensurately reviewed. Therefore, here we present a perspective for understanding sensory integration in neuroprostheses. First, we review the engineering aspects and functional outcomes in sensory neuroprosthesis studies. In this context, we summarize studies that have suggested sensory integration. We focus on how they have used stimulation-elicited percepts to maximize and improve the reliability of somatosensory information. Next, we review studies that have suggested multisensory integration. These works have demonstrated that congruent and simultaneous multisensory inputs provided cognitive benefits such that an individual experiences a greater sense of authority over prosthesis movements (i.e., agency) and perceives the prosthesis as part of their own (i.e., ownership). Thereafter, we present the theoretical and neuroscience framework of sensory integration. We investigate how behavioral models and neural recordings have been applied in the context of sensory integration. Sensory integration models developed from intact-limb individuals have led the way to sensory neuroprosthesis studies to demonstrate multisensory integration. Neural recordings have been used to show how multisensory inputs are processed across cortical areas. Lastly, we discuss some ongoing research and challenges in achieving and understanding sensory integration in sensory neuroprostheses. Resolving these challenges would help to develop future strategies to improve the sensory feedback of a neuroprosthetic system.
Collapse
Affiliation(s)
- Keqin Ding
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Mohsen Rakhshan
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, 32816, USA
- Disability, Aging, and Technology Cluster, University of Central Florida, Orlando, FL, 32816, USA
| | - Natalia Paredes-Acuña
- Institute for Cognitive Systems, School of Computation, Information and Technology, Technical University of Munich, 80333, Munich, Germany
| | - Gordon Cheng
- Institute for Cognitive Systems, School of Computation, Information and Technology, Technical University of Munich, 80333, Munich, Germany
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
3
|
Heurley LP, Obrecht L, Vanborren H, Touzard F, Brouillet T. The prediction-confirmation account of the sense of body ownership: Evidence from a rubber hand illusion paradigm. Psychon Bull Rev 2024:10.3758/s13423-024-02553-w. [PMID: 39105938 DOI: 10.3758/s13423-024-02553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
We investigated the contribution of multisensory predictions to body ownership, and beyond, to the integration of body-related signals. Contrary to the prevailing idea, according to which, to be integrated, cues necessarily have to be perceived simultaneously, we instead proposed the prediction-confirmation account. According to this account, a perceived cue can be integrated with a predicted cue as long as both signals are relatively simultaneous. To test this hypothesis, a standard rubber hand illusion (RHI) paradigm was used. In the first part of each trial, the illusion was induced while participants observed the rubber hand being touched with a paintbrush. In the subsequent part of the trial, (i) both rubber hand and the participant's real hand were stroked as before (i.e., visible/synchronous condition), (ii) the rubber hand was not stroke anymore (i.e., visible/tactile-only condition), or (iii) both rubber hand and the participant's real hand were synchronously stroked while the location where the rubber hand was touched was occulted (i.e., occulted/synchronous condition). However, in this latter condition, participants still perceived the approaching movement of the paintbrush. Thus, based on this visual cue, the participants can properly predict the timepoint at which the tactile cue should occur (i.e., visuotactile predictions). Our major finding was that compared with the visible/tactile-only condition, the occulted/synchronous condition did not exhibit a decrease of the RHI as in the visible/synchronous condition. This finding supports the prediction-confirmation account and suggests that this mechanism operates even in the standard version of the RHI.
Collapse
Affiliation(s)
- Loïc P Heurley
- Laboratoire sur les Interactions Cognition, Action, Émotion (LICAE)-Université Paris Nanterre, 200 avenue, 92001, de La République, Nanterre Cedex, France.
| | - Léa Obrecht
- Laboratoire sur les Interactions Cognition, Action, Émotion (LICAE)-Université Paris Nanterre, 200 avenue, 92001, de La République, Nanterre Cedex, France
| | - Hélène Vanborren
- Laboratoire sur les Interactions Cognition, Action, Émotion (LICAE)-Université Paris Nanterre, 200 avenue, 92001, de La République, Nanterre Cedex, France
| | - Fleur Touzard
- Laboratoire sur les Interactions Cognition, Action, Émotion (LICAE)-Université Paris Nanterre, 200 avenue, 92001, de La République, Nanterre Cedex, France
| | - Thibaut Brouillet
- Laboratoire sur les Interactions Cognition, Action, Émotion (LICAE)-Université Paris Nanterre, 200 avenue, 92001, de La République, Nanterre Cedex, France
| |
Collapse
|
4
|
Gallese V, Ardizzi M, Ferroni F. Schizophrenia and the bodily self. Schizophr Res 2024; 269:152-162. [PMID: 38815468 DOI: 10.1016/j.schres.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Despite the historically consolidated psychopathological perspective, on the one hand, contemporary organicistic psychiatry often highlights abnormalities in neurotransmitter systems like dysregulation of dopamine transmission, neural circuitry, and genetic factors as key contributors to schizophrenia. Neuroscience, on the other, has so far almost entirely neglected the first-person experiential dimension of this syndrome, mainly focusing on high-order cognitive functions, such as executive function, working memory, theory of mind, and the like. An alternative view posits that schizophrenia is a self-disorder characterized by anomalous self-experience and awareness. This view may not only shed new light on the psychopathological features of psychosis but also inspire empirical research targeting the bodily and neurobiological changes underpinning this disorder. Cognitive neuroscience can today address classic topics of phenomenological psychopathology by adding a new level of description, finally enabling the correlation between the first-person experiential aspects of psychiatric diseases and their neurobiological roots. Recent empirical evidence on the neurobiological basis of a minimal notion of the self, the bodily self, is presented. The relationship between the body, its motor potentialities and the notion of minimal self is illustrated. Evidence on the neural mechanisms underpinning the bodily self, its plasticity, and the blurring of self-other distinction in schizophrenic patients is introduced and discussed. It is concluded that brain-body function anomalies of multisensory integration, differential processing of self- and other-related bodily information mediating self-experience, might be at the basis of the disruption of the self disorders characterizing schizophrenia.
Collapse
Affiliation(s)
- Vittorio Gallese
- Dept. of Medicine and Surgery, Unit of Neuroscience, University of Parma, Italy; Italian Academy for Advanced Studies in America, Columbia University, New York, USA.
| | - Martina Ardizzi
- Dept. of Medicine and Surgery, Unit of Neuroscience, University of Parma, Italy
| | - Francesca Ferroni
- Dept. of Medicine and Surgery, Unit of Neuroscience, University of Parma, Italy
| |
Collapse
|
5
|
Basile GA, Tatti E, Bertino S, Milardi D, Genovese G, Bruno A, Muscatello MRA, Ciurleo R, Cerasa A, Quartarone A, Cacciola A. Neuroanatomical correlates of peripersonal space: bridging the gap between perception, action, emotion and social cognition. Brain Struct Funct 2024; 229:1047-1072. [PMID: 38683211 PMCID: PMC11147881 DOI: 10.1007/s00429-024-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Peripersonal space (PPS) is a construct referring to the portion of space immediately surrounding our bodies, where most of the interactions between the subject and the environment, including other individuals, take place. Decades of animal and human neuroscience research have revealed that the brain holds a separate representation of this region of space: this distinct spatial representation has evolved to ensure proper relevance to stimuli that are close to the body and prompt an appropriate behavioral response. The neural underpinnings of such construct have been thoroughly investigated by different generations of studies involving anatomical and electrophysiological investigations in animal models, and, recently, neuroimaging experiments in human subjects. Here, we provide a comprehensive anatomical overview of the anatomical circuitry underlying PPS representation in the human brain. Gathering evidence from multiple areas of research, we identified cortical and subcortical regions that are involved in specific aspects of PPS encoding.We show how these regions are part of segregated, yet integrated functional networks within the brain, which are in turn involved in higher-order integration of information. This wide-scale circuitry accounts for the relevance of PPS encoding in multiple brain functions, including not only motor planning and visuospatial attention but also emotional and social cognitive aspects. A complete characterization of these circuits may clarify the derangements of PPS representation observed in different neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| | - Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, 10031, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Bruno
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Maria Rosaria Anna Muscatello
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Cerasa
- S. Anna Institute, Crotone, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
6
|
O'Kane SH, Chancel M, Ehrsson HH. Hierarchical and dynamic relationships between body part ownership and full-body ownership. Cognition 2024; 246:105697. [PMID: 38364444 DOI: 10.1016/j.cognition.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/18/2024]
Abstract
What is the relationship between experiencing individual body parts and the whole body as one's own? We theorised that body part ownership is driven primarily by the perceptual binding of visual and somatosensory signals from specific body parts, whereas full-body ownership depends on a more global binding process based on multisensory information from several body segments. To examine this hypothesis, we used a bodily illusion and asked participants to rate illusory changes in ownership over five different parts of a mannequin's body and the mannequin as a whole, while we manipulated the synchrony or asynchrony of visual and tactile stimuli delivered to three different body parts. We found that body part ownership was driven primarily by local visuotactile synchrony and could be experienced relatively independently of full-body ownership. Full-body ownership depended on the number of synchronously stimulated parts in a nonlinear manner, with the strongest full-body ownership illusion occurring when all parts received synchronous stimulation. Additionally, full-body ownership influenced body part ownership for nonstimulated body parts, and skin conductance responses provided physiological evidence supporting an interaction between body part and full-body ownership. We conclude that body part and full-body ownership correspond to different processes and propose a hierarchical probabilistic model to explain the relationship between part and whole in the context of multisensory awareness of one's own body.
Collapse
Affiliation(s)
- Sophie H O'Kane
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Marie Chancel
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Meng J. Bridging the gap between consciousness and matter: recurrent out-of-body projection of visual awareness revealed by the law of non-identity. Integr Psychol Behav Sci 2024; 58:178-203. [PMID: 37221424 PMCID: PMC10904448 DOI: 10.1007/s12124-023-09775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
Consciousness is the most precious function of brain; however, there is an explanatory gap between consciousness and matter, which is deemed to affect the scientific research on consciousness. We believe that a methodological trap commonly present in scientific research and the incompleteness of logic are the true reasons that affect the research on consciousness. Here, a novel logic tool, the non-identity law, was extracted from physics and applied into the analysis of the visual dynamics related to naturalistic observation of night-shot still life, whose methodological approach is consistent with Descartes' matter-body-mind approach, breaking free from the methodological trap of current research. We show that visual system, the representative sensory system, has a postponed, recurrent out-of-body projection pathway from brain to observed object, besides the well-known feedforward signaling pathway available in existing literature, suggesting that human possesses an instinct of not only subjectively imaging (brain-generated imagery) but also projecting the image back onto the original or a particular place according to the clue of the manipulated afferent messenger light pathway. This finding adds a key piece of puzzle to the visual system. The out-of-body projection, coupled with neural correlates of consciousness (NCC), bridges the gap between consciousness and matter. This study in a self-contained and systematic manner provides a foundation for understanding the subjectivity and intentionality of human consciousness from the angle of visual awareness as well as the isomorphic relationships between unknowable original, private experience, and shareable expression (recording, calculus and deduction), showing that consciousness is obedient to certain rules rather than being unruly. The result paves the way for scientific research on consciousness and facilitates the integration of humanities and natural science.
Collapse
Affiliation(s)
- Jinsong Meng
- University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
8
|
Crucianelli L, Reader AT, Ehrsson HH. Subcortical contributions to the sense of body ownership. Brain 2024; 147:390-405. [PMID: 37847057 PMCID: PMC10834261 DOI: 10.1093/brain/awad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
The sense of body ownership (i.e. the feeling that our body or its parts belong to us) plays a key role in bodily self-consciousness and is believed to stem from multisensory integration. Experimental paradigms such as the rubber hand illusion have been developed to allow the controlled manipulation of body ownership in laboratory settings, providing effective tools for investigating malleability in the sense of body ownership and the boundaries that distinguish self from other. Neuroimaging studies of body ownership converge on the involvement of several cortical regions, including the premotor cortex and posterior parietal cortex. However, relatively less attention has been paid to subcortical structures that may also contribute to body ownership perception, such as the cerebellum and putamen. Here, on the basis of neuroimaging and neuropsychological observations, we provide an overview of relevant subcortical regions and consider their potential role in generating and maintaining a sense of ownership over the body. We also suggest novel avenues for future research targeting the role of subcortical regions in making sense of the body as our own.
Collapse
Affiliation(s)
- Laura Crucianelli
- Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4DQ, UK
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Arran T Reader
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| |
Collapse
|
9
|
Lee DH, Chung CK, Kim JS, Ryun S. Unraveling tactile categorization and decision-making in the subregions of supramarginal gyrus via direct cortical stimulation. Clin Neurophysiol 2024; 158:16-26. [PMID: 38134532 DOI: 10.1016/j.clinph.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE This study aims to investigate the potential of direct cortical stimulation (DCS) to modulate tactile categorization and decision-making, as well as to identify the specific locations where these cognitive functions occur. METHODS We analyzed behavioral changes in three epilepsy patients with implanted electrodes using electrocorticography (ECoG) and a vibrotactile discrimination task. DCS was applied to investigate its impact on tactile categorization and decision-making processes. We determined the precise location of the electrodes where each cognitive function was modulated. RESULTS This functional discrimination was related with gamma band activity from ECoG. DCS selectively affected either tactile categorization or decision-making processes. Tactile categorization was modulated by stimulating the rostral part of the supramarginal gyrus, while decision-making was modulated by stimulating the caudal part. CONCLUSIONS DCS can enhance cognitive processes and map brain regions responsible for tactile categorization and decision-making within the supramarginal gyrus. This study also demonstrates that DCS and the gamma activity of ECoG can concordantly identify the detailed brain mapping in a tactile process compared to other functional neuroimaging. SIGNIFICANCE The combination of DCS and ECoG gamma activity provides a more nuanced and detailed understanding of brain function than traditional neuroimaging techniques alone.
Collapse
Affiliation(s)
- Dong Hyeok Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - June Sic Kim
- The Research Institute of Basic Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokyun Ryun
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
10
|
Fang W, Liu Y, Wang L. Multisensory Integration in Body Representation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1437:77-89. [PMID: 38270854 DOI: 10.1007/978-981-99-7611-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
To be aware of and to move one's body, the brain must maintain a coherent representation of the body. While the body and the brain are connected by dense ascending and descending sensory and motor pathways, representation of the body is not hardwired. This is demonstrated by the well-known rubber hand illusion in which a visible fake hand is erroneously felt as one's own hand when it is stroked in synchrony with the viewer's unseen actual hand. Thus, body representation in the brain is not mere maps of tactile and proprioceptive inputs, but a construct resulting from the interpretation and integration of inputs across sensory modalities.
Collapse
Affiliation(s)
- Wen Fang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yuqi Liu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liping Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Ozawa Y, Yoshimura N. Temporal Electroencephalography Traits Dissociating Tactile Information and Cross-Modal Congruence Effects. SENSORS (BASEL, SWITZERLAND) 2023; 24:45. [PMID: 38202907 PMCID: PMC10780639 DOI: 10.3390/s24010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
To explore whether temporal electroencephalography (EEG) traits can dissociate the physical properties of touching objects and the congruence effects of cross-modal stimuli, we applied a machine learning approach to two major temporal domain EEG traits, event-related potential (ERP) and somatosensory evoked potential (SEP), for each anatomical brain region. During a task in which participants had to identify one of two material surfaces as a tactile stimulus, a photo image that matched ('congruent') or mismatched ('incongruent') the material they were touching was given as a visual stimulus. Electrical stimulation was applied to the median nerve of the right wrist to evoke SEP while the participants touched the material. The classification accuracies using ERP extracted in reference to the tactile/visual stimulus onsets were significantly higher than chance levels in several regions in both congruent and incongruent conditions, whereas SEP extracted in reference to the electrical stimulus onsets resulted in no significant classification accuracies. Further analysis based on current source signals estimated using EEG revealed brain regions showing significant accuracy across conditions, suggesting that tactile-based object recognition information is encoded in the temporal domain EEG trait and broader brain regions, including the premotor, parietal, and somatosensory areas.
Collapse
Affiliation(s)
- Yusuke Ozawa
- School of Engineering, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
| | - Natsue Yoshimura
- School of Computing, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
12
|
Threethipthikoon T, Li Z, Shigemasu H. Orientation representation in human visual cortices: contributions of non-visual information and action-related process. Front Psychol 2023; 14:1231109. [PMID: 38106392 PMCID: PMC10722153 DOI: 10.3389/fpsyg.2023.1231109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Orientation processing in the human brain plays a crucial role in guiding grasping actions toward an object. Remarkably, despite the absence of visual input, the human visual cortex can still process orientation information. Instead of visual input, non-visual information, including tactile and proprioceptive sensory input from the hand and arm, as well as feedback from action-related processes, may contribute to orientation processing. However, the precise mechanisms by which the visual cortices process orientation information in the context of non-visual sensory input and action-related processes remain to be elucidated. Thus, our study examined the orientation representation within the visual cortices by analyzing the blood-oxygenation-level-dependent (BOLD) signals under four action conditions: direct grasp (DG), air grasp (AG), non-grasp (NG), and uninformed grasp (UG). The images of the cylindrical object were shown at +45° or - 45° orientations, corresponding to those of the real object to be grasped with the whole-hand gesture. Participants judged their orientation under all conditions. Grasping was performed without online visual feedback of the hand and object. The purpose of this design was to investigate the visual areas under conditions involving tactile feedback, proprioception, and action-related processes. To address this, a multivariate pattern analysis was used to examine the differences among the cortical patterns of the four action conditions in orientation representation by classification. Overall, significant decoding accuracy over chance level was discovered for the DG; however, during AG, only the early visual areas showed significant accuracy, suggesting that the object's tactile feedback influences the orientation process in higher visual areas. The NG showed no statistical significance in any area, indicating that without the grasping action, visual input does not contribute to cortical pattern representation. Interestingly, only the dorsal and ventral divisions of the third visual area (V3d and V3v) showed significant decoding accuracy during the UG despite the absence of visual instructions, suggesting that the orientation representation was derived from action-related processes in V3d and visual recognition of object visualization in V3v. The processing of orientation information during non-visually guided grasping of objects relies on other non-visual sources and is specifically divided by the purpose of action or recognition.
Collapse
Affiliation(s)
| | - Zhen Li
- Guangdong Laboratory of Machine Perception and Intelligent Computing, Shenzhen MSU-BIT University, Shenzhen, China
- Department of Engineering, Shenzhen MSU-BIT University, Shenzhen, China
| | | |
Collapse
|
13
|
Lanfranco RC, Chancel M, Ehrsson HH. Quantifying body ownership information processing and perceptual bias in the rubber hand illusion. Cognition 2023; 238:105491. [PMID: 37178590 DOI: 10.1016/j.cognition.2023.105491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Bodily illusions have fascinated humankind for centuries, and researchers have studied them to learn about the perceptual and neural processes that underpin multisensory channels of bodily awareness. The influential rubber hand illusion (RHI) has been used to study changes in the sense of body ownership - that is, how a limb is perceived to belong to one's body, which is a fundamental building block in many theories of bodily awareness, self-consciousness, embodiment, and self-representation. However, the methods used to quantify perceptual changes in bodily illusions, including the RHI, have mainly relied on subjective questionnaires and rating scales, and the degree to which such illusory sensations depend on sensory information processing has been difficult to test directly. Here, we introduce a signal detection theory (SDT) framework to study the sense of body ownership in the RHI. We provide evidence that the illusion is associated with changes in body ownership sensitivity that depend on the information carried in the degree of asynchrony of correlated visual and tactile signals, as well as with perceptual bias and sensitivity that reflect the distance between the rubber hand and the participant's body. We found that the illusion's sensitivity to asynchrony is remarkably precise; even a 50 ms visuotactile delay significantly affected body ownership information processing. Our findings conclusively link changes in a complex bodily experience such as body ownership to basic sensory information processing and provide a proof of concept that SDT can be used to study bodily illusions.
Collapse
Affiliation(s)
- Renzo C Lanfranco
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Marie Chancel
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Psychology and Neurocognition Lab, Université Grenoble-Alpes, Grenoble, France
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Chancel M, Ehrsson HH. Proprioceptive uncertainty promotes the rubber hand illusion. Cortex 2023; 165:70-85. [PMID: 37269634 PMCID: PMC10284257 DOI: 10.1016/j.cortex.2023.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 06/05/2023]
Abstract
Body ownership is the multisensory perception of a body as one's own. Recently, the emergence of body ownership illusions like the visuotactile rubber hand illusion has been described by Bayesian causal inference models in which the observer computes the probability that visual and tactile signals come from a common source. Given the importance of proprioception for the perception of one's body, proprioceptive information and its relative reliability should impact this inferential process. We used a detection task based on the rubber hand illusion where participants had to report whether the rubber hand felt like their own or not. We manipulated the degree of asynchrony of visual and tactile stimuli delivered to the rubber hand and the real hand under two levels of proprioceptive noise using tendon vibration applied to the lower arm's antagonist extensor and flexor muscles. As hypothesized, the probability of the emergence of the rubber hand illusion increased with proprioceptive noise. Moreover, this result, well fitted by a Bayesian causal inference model, was best described by a change in the a priori probability of a common cause for vision and touch. These results offer new insights into how proprioceptive uncertainty shapes the multisensory perception of one's own body.
Collapse
Affiliation(s)
- Marie Chancel
- Department of Neuroscience, Brain, Body and Self Laboratory, Karolinska Institutet, Sweden; Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France.
| | - H Henrik Ehrsson
- Department of Neuroscience, Brain, Body and Self Laboratory, Karolinska Institutet, Sweden
| |
Collapse
|
15
|
Harduf A, Shaked A, Yaniv AU, Salomon R. Disentangling the Neural Correlates of Agency, Ownership and Multisensory Processing. Neuroimage 2023:120255. [PMID: 37414232 DOI: 10.1016/j.neuroimage.2023.120255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
The experience of the self as an embodied agent in the world is an essential aspect of human consciousness. This experience arises from the feeling of control over one's bodily actions, termed the Sense of Agency, and the feeling that the body belongs to the self, Body Ownership. Despite long-standing philosophical and scientific interest in the relationship between the body and brain, the neural systems involved in Body Ownership and Sense of Agency, and especially their interactions, are not yet understood. In this preregistered study using the Moving Rubber Hand Illusion inside an MR-scanner, we aimed to uncover the relationship between Body Ownership and Sense of Agency in the human brain. Importantly, by using both visuomotor and visuotactile stimulations and measuring online trial-by-trial fluctuations in the illusion magnitude, we were able to disentangle brain systems related to objective sensory stimulation and subjective judgments of the bodily-self. Our results indicate that at both the behavioral and neural levels, Body Ownership and Sense of Agency are strongly interrelated. Multisensory regions in the occipital and fronto-parietal regions encoded convergence of sensory stimulation conditions. The subjective judgments of the bodily-self were related to BOLD fluctuations in the Somatosensory cortex and in regions not activated by the sensory conditions, such as the insular cortex and precuneus. Our results highlight the convergence of multisensory processing in specific neural systems for both Body Ownership and Sense of Agency with partially dissociable regions for subjective judgments in regions of the Default Mode Network.
Collapse
Affiliation(s)
- Amir Harduf
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel; The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ariel Shaked
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Adi Ulmer Yaniv
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel; Center for Developmental Social Neuroscience, Reichman University, Herzliya 4610101, Israel
| | - Roy Salomon
- Department of Cognitive Sciences, Haifa University, Haifa 31905, Israel; The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
16
|
Chaposhloo M, Nicholson AA, Becker S, McKinnon MC, Lanius R, Shaw SB. Altered Resting-State functional connectivity in the anterior and posterior hippocampus in Post-traumatic stress disorder: The central role of the anterior hippocampus. Neuroimage Clin 2023; 38:103417. [PMID: 37148709 PMCID: PMC10193024 DOI: 10.1016/j.nicl.2023.103417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Post-traumatic stress disorder can be viewed as a memory disorder, with trauma-related flashbacks being a core symptom. Given the central role of the hippocampus in autobiographical memory, surprisingly, there is mixed evidence concerning altered hippocampal functional connectivity in PTSD. We shed light on this discrepancy by considering the distinct roles of the anterior versus posterior hippocampus and examine how this distinction may map onto whole-brain resting-state functional connectivity patterns among those with and without PTSD. METHODS We first assessed whole-brain between-group differences in the functional connectivity profiles of the anterior and posterior hippocampus within a publicly available data set of resting-state fMRI data from 31 male Vietnam war veterans diagnosed with PTSD (mean age = 67.6 years, sd = 2.3) and 29 age-matched combat-exposed male controls (age = 69.1 years, sd = 3.5). Next, the connectivity patterns of each subject within the PTSD group were correlated with their PTSD symptom scores. Finally, the between-group differences in whole-brain functional connectivity profiles discovered for the anterior and posterior hippocampal seeds were used to prescribe post-hoc ROIs, which were then used to perform ROI-to-ROI functional connectivity and graph-theoretic analyses. RESULTS The PTSD group showed increased functional connectivity of the anterior hippocampus with affective brain regions (anterior/posterior insula, orbitofrontal cortex, temporal pole) and decreased functional connectivity of the anterior/posterior hippocampus with regions involved in processing bodily self-consciousness (supramarginal gyrus). Notably, decreased anterior hippocampus connectivity with the posterior cingulate cortex/precuneus was associated with increased PTSD symptom severity. The left anterior hippocampus also emerged as a central locus of abnormal functional connectivity, with graph-theoretic measures suggestive of a more central hub-like role for this region in those with PTSD compared to trauma-exposed controls. CONCLUSIONS Our results highlight that the anterior hippocampus plays a critical role in the neurocircuitry underlying PTSD and underscore the importance of the differential roles of hippocampal sub-regions in serving as biomarkers of PTSD. Future studies should investigate whether the differential patterns of functional connectivity stemming from hippocampal sub-regions is observed in PTSD populations other than older war veterans.
Collapse
Affiliation(s)
- Mohammad Chaposhloo
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Andrew A Nicholson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Atlas Institute for Veterans and Families, Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, Ontario, Canada; School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Suzanna Becker
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Ruth Lanius
- Department of Psychiatry, Western University, London, Ontario, Canada; Department of Neuroscience, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | - Saurabh Bhaskar Shaw
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada.
| |
Collapse
|
17
|
Scheliga S, Kellermann T, Lampert A, Rolke R, Spehr M, Habel U. Neural correlates of multisensory integration in the human brain: an ALE meta-analysis. Rev Neurosci 2023; 34:223-245. [PMID: 36084305 DOI: 10.1515/revneuro-2022-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/22/2022] [Indexed: 02/07/2023]
Abstract
Previous fMRI research identified superior temporal sulcus as central integration area for audiovisual stimuli. However, less is known about a general multisensory integration network across senses. Therefore, we conducted activation likelihood estimation meta-analysis with multiple sensory modalities to identify a common brain network. We included 49 studies covering all Aristotelian senses i.e., auditory, visual, tactile, gustatory, and olfactory stimuli. Analysis revealed significant activation in bilateral superior temporal gyrus, middle temporal gyrus, thalamus, right insula, and left inferior frontal gyrus. We assume these regions to be part of a general multisensory integration network comprising different functional roles. Here, thalamus operate as first subcortical relay projecting sensory information to higher cortical integration centers in superior temporal gyrus/sulcus while conflict-processing brain regions as insula and inferior frontal gyrus facilitate integration of incongruent information. We additionally performed meta-analytic connectivity modelling and found each brain region showed co-activations within the identified multisensory integration network. Therefore, by including multiple sensory modalities in our meta-analysis the results may provide evidence for a common brain network that supports different functional roles for multisensory integration.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.,JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, RWTH Aachen University, Institute for Biology, Worringerweg 3, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.,JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
18
|
Sonobe Y, Yamagata T, Yang H, Haruki Y, Ogawa K. Supramodal Representation of the Sense of Body Ownership in the Human Parieto-Premotor and Extrastriate Cortices. eNeuro 2023; 10:ENEURO.0332-22.2023. [PMID: 36657967 PMCID: PMC9927518 DOI: 10.1523/eneuro.0332-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
The sense of body ownership, defined as the sensation that one's body belongs to oneself, is a fundamental component of bodily self-consciousness. Several studies have shown the importance of multisensory integration for the emergence of the sense of body ownership, together with the involvement of the parieto-premotor and extrastriate cortices in bodily awareness. However, whether the sense of body ownership elicited by different sources of signal, especially visuotactile and visuomotor inputs, is represented by common neural patterns remains to be elucidated. We used functional magnetic resonance imaging (fMRI) to investigate the existence of neural correlates of the sense of body ownership independent of the sensory modalities. Participants received tactile stimulation or executed finger movements while given synchronous and asynchronous visual feedback of their hand. We used multivoxel patterns analysis (MVPA) to decode the synchronous and asynchronous conditions with cross-classification between two modalities: the classifier was first trained in the visuotactile sessions and then tested in the visuomotor sessions, and vice versa. Regions of interest (ROIs)-based and searchlight analyses revealed significant above-chance cross-classification accuracies in the bilateral intraparietal sulcus (IPS), the bilateral ventral premotor cortex (PMv), and the left extrastriate body area (EBA). Moreover, we observed a significant positive correlation between the cross-classification accuracy in the left PMv and the difference in subjective ratings of the sense of body ownership between the synchronous and asynchronous conditions. Our findings revealed the neural representations of the sense of body ownership in the IPS, PMv, and EBA that is invariant to the sensory modalities.
Collapse
Affiliation(s)
- Yusuke Sonobe
- Department of Psychology, Hokkaido University, Sapporo 060-0810, Japan
| | - Toyoki Yamagata
- Department of Psychology, Hokkaido University, Sapporo 060-0810, Japan
| | - Huixiang Yang
- Department of Psychology, Hokkaido University, Sapporo 060-0810, Japan
| | - Yusuke Haruki
- Department of Psychology, Hokkaido University, Sapporo 060-0810, Japan
| | - Kenji Ogawa
- Department of Psychology, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
19
|
Su S, Chai G, Xu W, Meng J, Sheng X, Mouraux A, Zhu X. Neural evidence for functional roles of tactile and visual feedback in the application of myoelectric prosthesis. J Neural Eng 2023; 20. [PMID: 36595235 DOI: 10.1088/1741-2552/acab32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Objective. The primary purpose of this study was to investigate the electrophysiological mechanism underlying different modalities of sensory feedback and multi-sensory integration in typical prosthesis control tasks.Approach. We recruited 15 subjects and developed a closed-loop setup for three prosthesis control tasks which covered typical activities in the practical prosthesis application, i.e. prosthesis finger position control (PFPC), equivalent grasping force control (GFC) and box and block control (BABC). All the three tasks were conducted under tactile feedback (TF), visual feedback (VF) and tactile-visual feedback (TVF), respectively, with a simultaneous electroencephalography (EEG) recording to assess the electroencephalogram (EEG) response underlying different types of feedback. Behavioral and psychophysical assessments were also administered in each feedback condition.Results. EEG results showed that VF played a predominant role in GFC and BABC tasks. It was reflected by a significantly lower somatosensory alpha event-related desynchronization (ERD) in TVF than in TF and no significant difference in visual alpha ERD between TVF and VF. In PFPC task, there was no significant difference in somatosensory alpha ERD between TF and TVF, while a significantly lower visual alpha ERD was found in TVF than in VF, indicating that TF was essential in situations related to proprioceptive position perception. Tactile-visual integration was found when TF and VF were congruently implemented, showing an obvious activation over the premotor cortex in the three tasks. Behavioral and psychophysical results were consistent with EEG evaluations.Significance. Our findings could provide neural evidence for multi-sensory integration and functional roles of tactile and VF in a practical setting of prosthesis control, shedding a multi-dimensional insight into the functional mechanisms of sensory feedback.
Collapse
Affiliation(s)
- Shiyong Su
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Guohong Chai
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jianjun Meng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - André Mouraux
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels, Belgium
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Vision- and touch-dependent brain correlates of body-related mental processing. Cortex 2022; 157:30-52. [PMID: 36272330 DOI: 10.1016/j.cortex.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In humans, the nature of sensory input influences body-related mental processing. For instance, behavioral differences (e.g., response time) can be found between mental spatial transformations (e.g., mental rotation) of viewed and touched body parts. It can thus be hypothesized that distinct brain activation patterns are associated with such sensory-dependent body-related mental processing. However, direct evidence that the neural correlates of body-related mental processing can be modulated by the nature of the sensory stimuli is still missing. We thus analyzed event-related functional magnetic resonance imaging (fMRI) data from thirty-one healthy participants performing mental rotation of visually- (images) and haptically-presented (plastic) hands. We also dissociated the neural activity related to rotation or task-related performance using models that either regressed out or included the variance associated with response time. Haptically-mediated mental rotation recruited mostly the sensorimotor brain network. Visually-mediated mental rotation led to parieto-occipital activations. In addition, faster mental rotation was associated with sensorimotor activity, while slower mental rotation was associated with parieto-occipital activations. The fMRI results indicated that changing the type of sensory inputs modulates the neural correlates of body-related mental processing. These findings suggest that distinct sensorimotor brain dynamics can be exploited to execute similar tasks depending on the available sensory input. The present study can contribute to a better evaluation of body-related mental processing in experimental and clinical settings.
Collapse
|
21
|
Tran HT, Li YC, Lin HY, Lee SD, Wang PJ. Sensory Processing Impairments in Children with Developmental Coordination Disorder. CHILDREN 2022; 9:children9101443. [PMID: 36291382 PMCID: PMC9600147 DOI: 10.3390/children9101443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022]
Abstract
The two objectives of this systematic review were to examine the following: (1) the difference in sensory processing areas (auditory, visual, vestibular, touch, proprioceptive, and multi-sensory) between children with and without developmental coordination disorder (DCD), and (2) the relationship between sensory processing and motor coordination in DCD. The following databases were comprehensively searched for relevant articles: PubMed, Science Direct, Web of Science, and Cochrane library. There were 1107 articles (published year = 2010 to 2021) found in the initial search. Full-text articles of all possibly relevant citations were obtained and inspected for suitability by two authors. The outcome measures were sensory processing impairments and their relationship with motor coordination. A total of 10 articles met the inclusion criteria. Children with DCD showed significant impairments in visual integration, tactile integration, proprioceptive integration, auditory integration, vestibular integration, and oral integration processes when compared with typically developing children. Evidence also supported that sensory processing impairments were associated with poor motor coordination in DCD. Preliminary support indicated that DCD have sensory processing impairments in visual, tactile, proprioceptive, auditory, and vestibular areas, which might contribute to participation restriction in motor activities. It is important to apply sensory integration therapy in rehabilitation programs for DCD in order to facilitate participation in daily activities.
Collapse
Affiliation(s)
- Huynh-Truc Tran
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan
| | - Yao-Chuen Li
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan
| | - Hung-Yu Lin
- Department of Occupational Therapy, Asia University, Taichung 41354, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan
| | - Pei-Jung Wang
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-2332-3456 (ext. 48039)
| |
Collapse
|
22
|
Chancel M, Iriye H, Ehrsson HH. Causal Inference of Body Ownership in the Posterior Parietal Cortex. J Neurosci 2022; 42:7131-7143. [PMID: 35940875 PMCID: PMC9480881 DOI: 10.1523/jneurosci.0656-22.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/21/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
How do we come to sense that a hand in view belongs to our own body or not? Previous studies have suggested that the integration of vision and somatosensation in the frontoparietal areas plays a critical role in the sense of body ownership (i.e., the multisensory perception of limbs and body parts as our own). However, little is known about how these areas implement the multisensory integration process at the computational level and whether activity predicts illusion elicitation in individual participants on a trial-by-trial basis. To address these questions, we used functional magnetic resonance imaging and a rubber hand illusion-detection task and fitted the registered neural responses to a Bayesian causal inference model of body ownership. Thirty healthy human participants (male and female) performed 12 s trials with varying degrees of asynchronously delivered visual and tactile stimuli of a rubber hand (in view) and a (hidden) real hand. After the 12 s period, participants had to judge whether the rubber hand felt like their own. As hypothesized, activity in the premotor and posterior parietal cortices was related to illusion elicitation at the level of individual participants and trials. Importantly, activity in the posterior parietal cortex fit the predicted probability of illusion emergence of the Bayesian causal inference model based on each participant's behavioral response profile. Our findings suggest an important role for the posterior parietal cortex in implementing Bayesian causal inference of body ownership and reveal how trial-by-trial variations in neural signatures of multisensory integration relate to the elicitation of the rubber hand illusion.SIGNIFICANCE STATEMENT How does the brain create a coherent perceptual experience of one's own body based on information from the different senses? We examined how the likelihood of eliciting a classical bodily illusion that depends on vision and touch-the rubber hand illusion-is related to neural activity measured by functional magnetic resonance imaging. We found that trial-by-trial variations in the neural signal in the posterior parietal cortex, a well known center for sensory integration, fitted a statistical function that describes how likely it is that the brain infers that a rubber hand is one's own given the available visual and tactile evidence. Thus, probabilistic analysis of sensory information in the parietal lobe underlies our unitary sense of bodily self.
Collapse
Affiliation(s)
- Marie Chancel
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Heather Iriye
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
23
|
Socially meaningful visual context either enhances or inhibits vocalisation processing in the macaque brain. Nat Commun 2022; 13:4886. [PMID: 35985995 PMCID: PMC9391382 DOI: 10.1038/s41467-022-32512-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Social interactions rely on the interpretation of semantic and emotional information, often from multiple sensory modalities. Nonhuman primates send and receive auditory and visual communicative signals. However, the neural mechanisms underlying the association of visual and auditory information based on their common social meaning are unknown. Using heart rate estimates and functional neuroimaging, we show that in the lateral and superior temporal sulcus of the macaque monkey, neural responses are enhanced in response to species-specific vocalisations paired with a matching visual context, or when vocalisations follow, in time, visual information, but inhibited when vocalisation are incongruent with the visual context. For example, responses to affiliative vocalisations are enhanced when paired with affiliative contexts but inhibited when paired with aggressive or escape contexts. Overall, we propose that the identified neural network represents social meaning irrespective of sensory modality. Social interaction involves processing semantic and emotional information. Here the authors show that in the macaque monkey lateral and superior temporal sulcus, cortical activity is enhanced in response to species-specific vocalisations predicted by matching face or social visual stimuli but inhibited when vocalisations are incongruent with the predictive visual context.
Collapse
|
24
|
Wang Q, Xing W, Ouyang L, Li L, Jin H, Yang S. Brain alterations of regional homogeneity, degree centrality, and functional connectivity in vulnerable carotid plaque patients with neither clinical symptoms nor routine MRI lesions: A resting-state fMRI study. Front Neurosci 2022; 16:937245. [PMID: 35992918 PMCID: PMC9389209 DOI: 10.3389/fnins.2022.937245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Aims Based on resting-state functional MRI (fMRI), we preliminarily explored brain alterations in asymptomatic patients with vulnerable carotid plaques, but carotid stenosis was < 50%. Methods A total of 58 asymptomatic patients with vulnerable carotid plaques (stenosis <50%) and 38 healthy controls were recruited. Between-group differences in regional homogeneity (ReHo), degree centrality (DC), and functional connectivity (FC) were analyzed. Correlation analysis was performed between the ReHo or DC values in altered brain regions as well as voxel-wise abnormal FC and scores on neuropsychiatric scales, serum interleukin-6 (IL-6), and C-reactive protein (CRP). Results Both ReHo and DC values on the left superior occipital gyrus (SOG.L) of the asymptomatic vulnerable carotid plaque group reduced, regardless of plaque location (left, right, or bilateral). Functional connections weakened between the SOG.L and right lingual gyrus (LING.R)/right inferior occipital gyrus (IOG.R), right middle frontal gyrus (MFG.R)/orbital part of superior frontal gyrus (ORBsup.R)/orbital part of middle frontal gyrus (ORBmid.R), left precentral gyrus (PreCG.L)/postcentral gyrus (PoCG.L), left supplementary motor area (SMA.L), right paracentral lobule (PCL.R), left precuneus (PCUN.L), and right postcentral gyrus (PoCG.R)/PCL.R. In ReHo-altered brain regions, ReHo values were positively correlated with Hamilton Rating Scale for Depression (HAMD) scores, and the setting region of abnormal ReHo as seed points, voxel-wise FC between the SOG.L and PreCG.L was negatively correlated with CRP. Conclusions Cerebral alterations of neuronal synchronization, activity, and connectivity properties in the asymptomatic vulnerable carotid plaque group were independent of the laterality of vulnerable carotid plaques. Significant relation between ReHo values on the SOG.L and HAMD indicated that even when there were neither clinical symptoms nor lesions on routine MRI, brain function might have changed already at an early stage of carotid atherosclerosis. Inflammation might play a role in linking vulnerable carotid plaques and changes of resting-state functional connectivity.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lirong Ouyang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lang Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Yang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Shuai Yang
| |
Collapse
|
25
|
Ren Q, Marshall AC, Kaiser J, Schütz-Bosbach S. Multisensory Integration of Anticipated Cardiac Signals with Visual Targets Affects Their Detection among Multiple Visual Stimuli. Neuroimage 2022; 262:119549. [DOI: 10.1016/j.neuroimage.2022.119549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
|
26
|
Transcutaneous spinal stimulation alters cortical and subcortical activation patterns during mimicked-standing: A proof-of-concept fMRI study. NEUROIMAGE: REPORTS 2022; 2. [DOI: 10.1016/j.ynirp.2022.100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Li Y, Wang P, Li R, Tao M, Liu Z, Qiao H. A Survey of Multifingered Robotic Manipulation: Biological Results, Structural Evolvements, and Learning Methods. Front Neurorobot 2022; 16:843267. [PMID: 35574228 PMCID: PMC9097019 DOI: 10.3389/fnbot.2022.843267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Multifingered robotic hands (usually referred to as dexterous hands) are designed to achieve human-level or human-like manipulations for robots or as prostheses for the disabled. The research dates back 30 years ago, yet, there remain great challenges to effectively design and control them due to their high dimensionality of configuration, frequently switched interaction modes, and various task generalization requirements. This article aims to give a brief overview of multifingered robotic manipulation from three aspects: a) the biological results, b) the structural evolvements, and c) the learning methods, and discuss potential future directions. First, we investigate the structure and principle of hand-centered visual sensing, tactile sensing, and motor control and related behavioral results. Then, we review several typical multifingered dexterous hands from task scenarios, actuation mechanisms, and in-hand sensors points. Third, we report the recent progress of various learning-based multifingered manipulation methods, including but not limited to reinforcement learning, imitation learning, and other sub-class methods. The article concludes with open issues and our thoughts on future directions.
Collapse
Affiliation(s)
- Yinlin Li
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Peng Wang
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Centre for Artificial Intelligence and Robotics, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Rui Li
- School of Automation, Chongqing University, Chongqing, China
| | - Mo Tao
- Science and Technology on Thermal Energy and Power Laboratory, Wuhan Second Ship Design and Research Institute, Wuhan, China
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Qiao
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
de Borst AW, de Gelder B. Threat Detection in Nearby Space Mobilizes Human Ventral Premotor Cortex, Intraparietal Sulcus, and Amygdala. Brain Sci 2022; 12:brainsci12030391. [PMID: 35326349 PMCID: PMC8946485 DOI: 10.3390/brainsci12030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
In the monkey brain, the precentral gyrus and ventral intraparietal area are two interconnected brain regions that form a system for detecting and responding to events in nearby “peripersonal” space (PPS), with threat detection as one of its major functions. Behavioral studies point toward a similar defensive function of PPS in humans. Here, our aim was to find support for this hypothesis by investigating if homolog regions in the human brain respond more strongly to approaching threatening stimuli. During fMRI scanning, naturalistic social stimuli were presented in a 3D virtual environment. Our results showed that the ventral premotor cortex and intraparietal sulcus responded more strongly to threatening stimuli entering PPS. Moreover, we found evidence for the involvement of the amygdala and anterior insula in processing threats. We propose that the defensive function of PPS may be supported by a subcortical circuit that sends information about the relevance of the stimulus to the premotor cortex and intraparietal sulcus, where action preparation is facilitated when necessary.
Collapse
Affiliation(s)
- Aline W. de Borst
- Department of Biological and Neuropsychology, Faculty of Psychology and Human Movement, Hamburg University, Von-Melle-Park 11, 20146 Hamburg, Germany
- UCL Interaction Centre, University College London, 66-72 Gower St., London WC1E 6EA, UK
- Correspondence:
| | - Beatrice de Gelder
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands;
| |
Collapse
|
29
|
Sebastianelli G, Abagnale C, Casillo F, Cioffi E, Parisi V, Di Lorenzo C, Serrao M, Porcaro C, Schoenen J, Coppola G. Bimodal sensory integration in migraine: A study of the effect of visual stimulation on somatosensory evoked cortical responses. Cephalalgia 2022; 42:654-662. [PMID: 35166155 DOI: 10.1177/03331024221075073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Merging of sensory information is a crucial process for adapting the behaviour to the environment in all species. It is not known if this multisensory integration might be dysfunctioning interictally in migraine without aura, where sensory stimuli of various modalities are processed abnormally when delivered separately. To investigate this question, we compared the effects of a concomitant visual stimulation on conventional low-frequency somatosensory evoked potentials and embedded high-frequency oscillations between migraine patients and healthy volunteers. METHODS We recorded somatosensory evoked potentials in 19 healthy volunteers and in 19 interictal migraine without aura patients before, during, and 5 min after (T2) simultaneous synchronous pattern-reversal visual stimulation. At each time point, we measured amplitude and habituation of the N20-P25 low-frequency-somatosensory evoked potentials component and maximal peak-to-peak amplitude of early and late bursts of high-frequency oscillations. RESULTS In healthy volunteers, the bimodal stimulation significantly reduced low-frequency-somatosensory evoked potentials habituation and tended to reduce early high-frequency oscillations that reflect thalamocortical activity. By contrast, in migraine without aura patients, bimodal stimulation significantly increased low-frequency-somatosensory evoked potentials habituation and early high-frequency oscillations. At T2, all visual stimulation-induced changes of somatosensory processing had vanished. CONCLUSION These results suggest a malfunctioning multisensory integration process, which could be favoured by an abnormal excitability level of thalamo-cortical loops.
Collapse
Affiliation(s)
- Gabriele Sebastianelli
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Chiara Abagnale
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Francesco Casillo
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Ettore Cioffi
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | | | - Cherubino Di Lorenzo
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Mariano Serrao
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.,Institute of Cognitive Sciences and Technologies (ISTC) - National Research Council (CNR), Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Jean Schoenen
- Headache Research Unit, University Department of Neurology CHR, Citadelle Hospital. University of Liège, Liège, Belgium
| | - Gianluca Coppola
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| |
Collapse
|
30
|
Errante A, Rossi Sebastiano A, Ziccarelli S, Bruno V, Rozzi S, Pia L, Fogassi L, Garbarini F. Structural connectivity associated with the sense of body ownership: a diffusion tensor imaging and disconnection study in patients with bodily awareness disorder. Brain Commun 2022; 4:fcac032. [PMID: 35233523 PMCID: PMC8882004 DOI: 10.1093/braincomms/fcac032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/25/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
The brain mechanisms underlying the emergence of a normal sense of body ownership can be investigated starting from pathological conditions in which body awareness is selectively impaired. Here, we focused on pathological embodiment, a body ownership disturbance observed in brain-damaged patients who misidentify other people’s limbs as their own. We investigated whether such body ownership disturbance can be classified as a disconnection syndrome, using three different approaches based on diffusion tensor imaging: (i) reconstruction of disconnectome maps in a large sample (N = 70) of stroke patients with and without pathological embodiment; (ii) probabilistic tractography, performed on the age-matched healthy controls (N = 16), to trace cortical connections potentially interrupted in patients with pathological embodiment and spared in patients without this pathological condition; (iii) probabilistic ‘in vivo’ tractography on two patients without and one patient with pathological embodiment. The converging results revealed the arcuate fasciculus and the third branch of the superior longitudinal fasciculus as mainly involved fibre tracts in patients showing pathological embodiment, suggesting that this condition could be related to the disconnection between frontal, parietal and temporal areas. This evidence raises the possibility of a ventral self-body recognition route including regions where visual (computed in occipito-temporal areas) and sensorimotor (stored in premotor and parietal areas) body representations are integrated, giving rise to a normal sense of body ownership.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | | | - Settimio Ziccarelli
- Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | - Valentina Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Stefano Rozzi
- Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | - Lorenzo Pia
- SAMBA Research Group, Psychology Department, University of Turin, Turin 10123, Italy
- Neuroscience Institute of Turin (NIT), Turin 10123, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, 43125, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
- Neuroscience Institute of Turin (NIT), Turin 10123, Italy
| |
Collapse
|
31
|
de Mendonça Filho EJ, Barth B, Bandeira DR, de Lima RMS, Arcego DM, Dalmaz C, Pokhvisneva I, Sassi RB, Hall GBC, Meaney MJ, Silveira PP. Cognitive Development and Brain Gray Matter Susceptibility to Prenatal Adversities: Moderation by the Prefrontal Cortex Brain-Derived Neurotrophic Factor Gene Co-expression Network. Front Neurosci 2021; 15:744743. [PMID: 34899157 PMCID: PMC8652300 DOI: 10.3389/fnins.2021.744743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Previous studies focused on the relationship between prenatal conditions and neurodevelopmental outcomes later in life, but few have explored the interplay between gene co-expression networks and prenatal adversity conditions on cognitive development trajectories and gray matter density. Methods: We analyzed the moderation effects of an expression polygenic score (ePRS) for the Brain-derived Neurotrophic Factor gene network (BDNF ePRS) on the association between prenatal adversity and child cognitive development. A score based on genes co-expressed with the prefrontal cortex (PFC) BDNF was created, using the effect size of the association between the individual single nucleotide polymorphisms (SNP) and the BDNF expression in the PFC. Cognitive development trajectories of 157 young children from the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort were assessed longitudinally in 4-time points (6, 12, 18, and 36 months) using the Bayley-II mental scales. Results: Linear mixed-effects modeling indicated that BDNF ePRS moderates the effects of prenatal adversity on cognitive growth. In children with high BDNF ePRS, higher prenatal adversity was associated with slower cognitive development in comparison with those exposed to lower prenatal adversity. Parallel-Independent Component Analysis (pICA) suggested that associations of expression-based SNPs and gray matter density significantly differed between low and high prenatal adversity groups. The brain IC included areas involved in visual association processes (Brodmann area 19 and 18), reallocation of attention, and integration of information across the supramodal cortex (Brodmann area 10). Conclusion: Cognitive development trajectories and brain gray matter seem to be influenced by the interplay of prenatal environmental conditions and the expression of an important BDNF gene network that guides the growth and plasticity of neurons and synapses.
Collapse
Affiliation(s)
- Euclides José de Mendonça Filho
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Denise Ruschel Bandeira
- Programa de Pós-Graduação em Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Randriely Merscher Sobreira de Lima
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Programa de Pós-Graduação em Bioquímica e Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danusa Mar Arcego
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | - Carla Dalmaz
- Programa de Pós-Graduação em Bioquímica e Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | | | - Geoffrey B. C. Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael J. Meaney
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| |
Collapse
|
32
|
Nilsson M, Kalckert A. Region-of-interest analysis approaches in neuroimaging studies of body ownership: An activation likelihood estimation meta-analysis. Eur J Neurosci 2021; 54:7974-7988. [PMID: 34796572 DOI: 10.1111/ejn.15534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 12/01/2022]
Abstract
How do we feel that we own our body? By manipulating the integration of multisensory signals and creating the illusory experience of owning external body parts and entire bodies, researchers have investigated the neurofunctional correlates of body ownership. Recent attempts to synthesize the neuroimaging literature of body ownership through meta-analysis have shown partly inconsistent results. A large proportion of functional magnetic resonance imaging (fMRI) findings on body ownership include analyses based on regions of interest (ROIs). This approach can produce inflated findings when results are synthesized in meta-analyses. We conducted a systematic search of the fMRI literature of ownership of body parts and entire bodies. Three activation likelihood estimation (ALE) meta-analyses were conducted, testing the impact of including ROI-based findings. When both whole-brain and ROI-based results were included, frontal and posterior parietal multisensory areas were associated with body ownership. When only ROI-based results were included, larger areas of the frontal and posterior parietal cortices and the middle occipital gyrus were associated with body ownership. A whole-brain meta-analysis, excluding ROI-based results, found no significant convergence of activation across the brain. These findings highlight the difficulty of quantitatively synthesizing a neuroimaging field where a large part of the literature is based on findings from ROI-based analyses. We discuss these findings in the light of current practices within this field of research and highlight current problems of meta-analytic approaches of body ownership. We recommend the sharing of unthresholded data as a means to facilitate future meta-analyses of the neuroimaging literature of body ownership.
Collapse
Affiliation(s)
- Martin Nilsson
- Department of Cognitive Neuroscience and Philosophy, Institute of Bioscience, University of Skövde, Skövde, Sweden
| | - Andreas Kalckert
- Department of Cognitive Neuroscience and Philosophy, Institute of Bioscience, University of Skövde, Skövde, Sweden
| |
Collapse
|
33
|
Ronga I, Galigani M, Bruno V, Castellani N, Rossi Sebastiano A, Valentini E, Fossataro C, Neppi-Modona M, Garbarini F. Seeming confines: Electrophysiological evidence of peripersonal space remapping following tool-use in humans. Cortex 2021; 144:133-150. [PMID: 34666298 DOI: 10.1016/j.cortex.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/05/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022]
Abstract
The peripersonal space (PPS) is a special portion of space immediately surrounding the body, where the integration between tactile stimuli delivered on the body and auditory or visual events emanating from the environment occurs. Interestingly, PPS can widen if a tool is employed to interact with objects in the far space. However, electrophysiological evidence of such tool-use dependent plasticity in the human brain is scarce. Here, in a series of three experiments, participants were asked to respond to tactile stimuli, delivered to their right hand, either in isolation (unimodal condition) or combined with auditory stimulation, which could occur near (bimodal-near) or far from the stimulated hand (bimodal-far). According to multisensory integration spatial rule, when bimodal stimuli are presented at the same location, we expected a response enhancement (response time - RT - facilitation and event-related potential - ERP - super-additivity). In Experiment 1, we verified that RT facilitation was driven by bimodal input spatial congruency, independently from auditory stimulus intensity. In Experiment 2, we showed that our bimodal task was effective in eliciting the magnification of ERPs in bimodal conditions, with significantly larger responses in the near as compared to far condition. In Experiment 3 (main experiment), we explored tool-use driven PPS plasticity. Our audio-tactile task was performed either following tool-use (a 20-min reaching task, performed using a 145 cm-long rake) or after a control cognitive training (a 20-min visual discrimination task) performed in the far space. Following the control training, faster RTs and greater super-additive ERPs were found in bimodal-near as compared to bimodal-far condition (replicating Experiment 2 results). Crucially, this far-near differential response was significantly reduced after tool-use. Altogether our results indicate a selective effect of tool-use remapping in extending the boundaries of PPS. The present finding might be considered as an electrophysiological evidence of tool-use dependent plasticity in the human brain.
Collapse
Affiliation(s)
- Irene Ronga
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Mattia Galigani
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Valentina Bruno
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Nicolò Castellani
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy; Molecular Mind Lab, IMT School for Advanced Studies, Lucca, Italy
| | | | - Elia Valentini
- Department of Psychology and Centre for Brain Science, University of Essex, UK
| | - Carlotta Fossataro
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Marco Neppi-Modona
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy
| | - Francesca Garbarini
- MANIBUS Research Group, Department of Psychology, University of Turin, Italy.
| |
Collapse
|
34
|
Decoding grip type and action goal during the observation of reaching-grasping actions: A multivariate fMRI study. Neuroimage 2021; 243:118511. [PMID: 34450263 DOI: 10.1016/j.neuroimage.2021.118511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/01/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022] Open
Abstract
During execution and observation of reaching-grasping actions, the brain must encode, at the same time, the final action goal and the type of grip necessary to achieve it. Recently, it has been proposed that the Mirror Neuron System (MNS) is involved not only in coding the final goal of the observed action, but also the type of grip used to grasp the object. However, the specific contribution of the different areas of the MNS, at both cortical and subcortical level, in disentangling action goal and grip type is still unclear. Here, twenty human volunteers participated in an fMRI study in which they performed two tasks: (a) observation of four different types of actions, consisting in reaching-to-grasp a box handle with two possible grips (precision, hook) and two possible goals (open, close); (b) action execution, in which participants performed grasping actions similar to those presented during the observation task. A conjunction analysis revealed the presence of shared activated voxels for both action observation and execution within several cortical areas including dorsal and ventral premotor cortex, inferior and superior parietal cortex, intraparietal sulcus, primary somatosensory cortex, and cerebellar lobules VI and VIII. ROI analyses showed a main effect for grip type in several premotor and parietal areas and cerebellar lobule VI, with higher BOLD activation during observation of precision vs hook actions. A grip x goal interaction was also present in the left inferior parietal cortex, with higher BOLD activity during precision-to-close actions. A multivariate pattern analysis (MVPA) revealed a significant accuracy for the grip model in all ROIs, while for the action goal model, significant accuracy was observed only for left inferior parietal cortex ROI. These findings indicate that a large network involving cortical and cerebellar areas is involved in the processing of type of grip, while final action goal appears to be mainly processed within the inferior parietal region, suggesting a differential contribution of the areas activated in this study.
Collapse
|
35
|
Zanini A, Salemme R, Farnè A, Brozzoli C. Associative learning in peripersonal space: fear responses are acquired in hand-centered coordinates. J Neurophysiol 2021; 126:864-874. [PMID: 34379522 DOI: 10.1152/jn.00157.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Space coding affects perception of stimuli associated to negative valence: threatening stimuli presented within the peripersonal space (PPS) speed up behavioral responses compared with nonthreatening events. However, it remains unclear whether the association between stimuli and their negative valence is acquired in a body part-centered reference system, a main feature of the PPS coding. Here we test the hypothesis that associative learning takes place in hand-centered coordinates and can therefore remap according to hand displacement. In two experiments, we used a Pavlovian fear-learning paradigm to associate a visual stimulus [light circle, the conditioned stimulus (CS)] with an aversive stimulus (electrocutaneous shock) applied on the right hand only when the CS was displayed close (CS+) but when not far from it (CS-). Measuring the skin conductance response (SCR), we observed successful fear conditioning, with increased anticipatory fear responses associated with CS+. Crucially, experiment I showed a remapping of these responses following hand displacement, with a generalization to both types of CS. Experiment II corroborated and further extended our findings by ruling out the novelty of the experimental context as a driving factor of such modulations. Indeed, fear responses were present only for stimuli within the PPS but not for new stimuli displayed outside the PPS. By revealing a hand-centered (re)mapping of the conditioning effect, these findings indicate that associative learning can arise in hand-centered coordinates. They further suggest that the threatening valence of an object also depends on its basic spatial relationship with our body.NEW & NOTEWORTHY Associative fear learning takes place in hand-centered coordinates. Using a Pavlovian fear-learning paradigm, we show that the anticipatory skin conductance response indicating the association between the negative value and an initially neutral stimulus is acquired and then remapped in space when the stimulated body part moves to a different position. These results demonstrate the relationship between the representation of peripersonal space and the encoding of threatening stimuli. Hypotheses concerning the underlying neural network are discussed.
Collapse
Affiliation(s)
- A Zanini
- Impact-Integrative Multisensory Perception Action and Cognition Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France.,University Claude Bernard Lyon I, Lyon, France
| | - R Salemme
- Impact-Integrative Multisensory Perception Action and Cognition Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France.,University Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Neuro-immersion-Mouvement et Handicap, Lyon, France
| | - A Farnè
- Impact-Integrative Multisensory Perception Action and Cognition Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France.,University Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Neuro-immersion-Mouvement et Handicap, Lyon, France.,Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - C Brozzoli
- Impact-Integrative Multisensory Perception Action and Cognition Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France.,University Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Neuro-immersion-Mouvement et Handicap, Lyon, France.,Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Pamplona GSP, Salgado JAD, Staempfli P, Seifritz E, Gassert R, Ionta S. Illusory Body Ownership Affects the Cortical Response to Vicarious Somatosensation. Cereb Cortex 2021; 32:312-328. [PMID: 34240141 PMCID: PMC8754387 DOI: 10.1093/cercor/bhab210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Fundamental human feelings such as body ownership (“this” body is “my” body) and vicariousness (first-person-like experience of events occurring to others) are based on multisensory integration. Behavioral links between body ownership and vicariousness have been shown, but the neural underpinnings remain largely unexplored. To fill this gap, we investigated the neural effects of altered body ownership on vicarious somatosensation. While recording functional brain imaging data, first, we altered participants’ body ownership by robotically delivering tactile stimulations (“tactile” stroking) in synchrony or not with videos of a virtual hand being brushed (“visual” stroking). Then, we manipulated vicarious somatosensation by showing videos of the virtual hand being touched by a syringe’s plunger (touch) or needle (pain). Only after the alteration of body ownership (synchronous visuo-tactile stroking) and specifically during late epochs of vicarious somatosensation, vicarious pain was associated with lower activation in premotor and anterior cingulate cortices with respect to vicarious touch. At the methodological level, the present study highlights the importance of the neural response’s temporal evolution. At the theoretical level, it shows that the higher-level (cognitive) impact of a lower-level (sensory) body-related processing (visuo-tactile) is not limited to body ownership but also extends to other psychological body-related domains, such as vicarious somatosensation.
Collapse
Affiliation(s)
- Gustavo S P Pamplona
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, Lausanne, Switzerland
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Julio A D Salgado
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Philipp Staempfli
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Silvio Ionta
- Address correspondence to Silvio Ionta, Fondation Asile des Aveugles, Av. de France 15, 1002 Lausanne, Switzerland.
| |
Collapse
|
37
|
Li W, Xu Q, Li Y, Li C, Wu F, Ji L. EEG characteristics in “eyes-open” versus “eyes-closed” condition during vibrotactile stimulation. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Bogdanova OV, Bogdanov VB, Dureux A, Farnè A, Hadj-Bouziane F. The Peripersonal Space in a social world. Cortex 2021; 142:28-46. [PMID: 34174722 DOI: 10.1016/j.cortex.2021.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/27/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022]
Abstract
The PeriPersonal Space (PPS) has been defined as the space surrounding the body, where physical interactions with elements of the environment take place. As our world is social in nature, recent evidence revealed the complex modulation of social factors onto PPS representation. In light of the growing interest in the field, in this review we take a close look at the experimental approaches undertaken to assess the impact of social factors onto PPS representation. Our social world also influences the personal space (PS), a concept stemming from social psychology, defined as the space we keep between us and others to avoid discomfort. Here we analytically compare PPS and PS with the aim of understanding if and how they relate to each other. At the behavioral level, the multiplicity of experimental methodologies, whether well-established or novel, lead to somewhat divergent results and interpretations. Beyond behavior, we review physiological and neural signatures of PPS representation to discuss how interoceptive signals could contribute to PPS representation, as well as how these internal signals could shape the neural responses of PPS representation. In particular, by merging exteroceptive information from the environment and internal signals that come from the body, PPS may promote an integrated representation of the self, as distinct from the environment and the others. We put forward that integrating internal and external signals in the brain for perception of proximal environmental stimuli may also provide us with a better understanding of the processes at play during social interactions. Adopting such an integrative stance may offer novel insights about PPS representation in a social world. Finally, we discuss possible links between PPS research and social cognition, a link that may contribute to the understanding of intentions and feelings of others around us and promote appropriate social interactions.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; INCIA, UMR 5287, CNRS, Université de Bordeaux, France.
| | - Volodymyr B Bogdanov
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Ecole Nationale des Travaux Publics de l'Etat, Laboratoire Génie Civil et Bâtiment, Vaulx-en-Velin, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France; Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France.
| |
Collapse
|
39
|
Moayedi M, Noroozbahari N, Hadjis G, Themelis K, Salomons TV, Newport R, S. Lewis J. The structural and functional connectivity neural underpinnings of body image. Hum Brain Mapp 2021; 42:3608-3619. [PMID: 33960581 PMCID: PMC8249883 DOI: 10.1002/hbm.25457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
How we perceive our bodies is fundamental to our self-consciousness and our experience in the world. There are two types of interrelated internal body representations-a subjective experience of the position of a limb in space (body schema) and the subjective experience of the shape and size of the limb (body image). Body schema has been extensively studied, but there is no evidence of the brain structure and network dynamics underpinning body image. Here, we provide the first evidence for the extrastriate body area (EBA), a multisensory brain area, as the structural and functional neural substrate for body shape and size. We performed a multisensory finger-stretch illusion that elongated the index finger. EBA volume and functional connectivity to the posterior parietal cortex are both related to the participants' susceptibility to the illusion. Taken together, these data suggest that EBA structure and connectivity encode body representation and body perception disturbances.
Collapse
Affiliation(s)
- Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Nasim Noroozbahari
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Georgia Hadjis
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of DentistryUniversity of TorontoTorontoOntarioCanada
| | - Kristy Themelis
- School of PsychologyUniversity of NottinghamNottinghamUK,Department of PsychologyUniversity of WarwickCoventryUK
| | - Tim V. Salomons
- School of Psychology and Clinical Language SciencesUniversity of ReadingReadingUK,Department of PsychologyQueen's University, KingstonOntarioCanada
| | - Roger Newport
- School of PsychologyUniversity of NottinghamNottinghamUK,School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Jennifer S. Lewis
- CRPS/CCLER Service, Royal United Hospitals Bath NHS TrustBath,School of Health and Social Wellbeing, Faculty of Health and Applied SciencesGlenside Campus, University of the West of EnglandBristol
| |
Collapse
|
40
|
de Klerk CCJM, Filippetti ML, Rigato S. The development of body representations: an associative learning account. Proc Biol Sci 2021; 288:20210070. [PMID: 33906399 DOI: 10.1098/rspb.2021.0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Representing one's own body is of fundamental importance to interact with our environment, yet little is known about how body representations develop. One account suggests that the ability to represent one's own body is present from birth and supports infants' ability to detect similarities between their own and others' bodies. However, in recent years evidence has been accumulating for alternative accounts that emphasize the role of multisensory experience obtained through acting and interacting with our own body in the development of body representations. Here, we review this evidence, and propose an integrative account that suggests that through experience, infants form multisensory associations that facilitate the development of body representations. This associative account provides a coherent explanation for previous developmental findings, and generates novel hypotheses for future research.
Collapse
Affiliation(s)
- Carina C J M de Klerk
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| | | | - Silvia Rigato
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
41
|
Fanghella M, Era V, Candidi M. Interpersonal Motor Interactions Shape Multisensory Representations of the Peripersonal Space. Brain Sci 2021; 11:255. [PMID: 33669561 PMCID: PMC7922994 DOI: 10.3390/brainsci11020255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
This perspective review focuses on the proposal that predictive multisensory integration occurring in one's peripersonal space (PPS) supports individuals' ability to efficiently interact with others, and that integrating sensorimotor signals from the interacting partners leads to the emergence of a shared representation of the PPS. To support this proposal, we first introduce the features of body and PPS representations that are relevant for interpersonal motor interactions. Then, we highlight the role of action planning and execution on the dynamic expansion of the PPS. We continue by presenting evidence of PPS modulations after tool use and review studies suggesting that PPS expansions may be accounted for by Bayesian sensory filtering through predictive coding. In the central section, we describe how this conceptual framework can be used to explain the mechanisms through which the PPS may be modulated by the actions of our interaction partner, in order to facilitate interpersonal coordination. Last, we discuss how this proposal may support recent evidence concerning PPS rigidity in Autism Spectrum Disorder (ASD) and its possible relationship with ASD individuals' difficulties during interpersonal coordination. Future studies will need to clarify the mechanisms and neural underpinning of these dynamic, interpersonal modulations of the PPS.
Collapse
Affiliation(s)
- Martina Fanghella
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, University of London, London EC1V 0HB, UK
| | - Vanessa Era
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Matteo Candidi
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
42
|
Mustile M, Giocondo F, Caligiore D, Borghi AM, Kourtis D. Motor Inhibition to Dangerous Objects: Electrophysiological Evidence for Task-dependent Aversive Affordances. J Cogn Neurosci 2021; 33:826-839. [PMID: 33571078 DOI: 10.1162/jocn_a_01690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous work suggests that perception of an object automatically facilitates actions related to object grasping and manipulation. Recently, the notion of automaticity has been challenged by behavioral studies suggesting that dangerous objects elicit aversive affordances that interfere with encoding of an object's motor properties; however, related EEG studies have provided little support for these claims. We sought EEG evidence that would support the operation of an inhibitory mechanism that interferes with the motor encoding of dangerous objects, and we investigated whether such mechanism would be modulated by the perceived distance of an object and the goal of a given task. EEGs were recorded by 24 participants who passively perceived dangerous and neutral objects in their peripersonal, boundary, or extrapersonal space and performed either a reachability judgment task or a categorization task. Our results showed that greater attention, reflected in the visual P1 potential, was drawn by dangerous and reachable objects. Crucially, a frontal N2 potential, associated with motor inhibition, was larger for dangerous objects only when participants performed a reachability judgment task. Furthermore, a larger parietal P3b potential for dangerous objects indicated the greater difficulty in linking a dangerous object to the appropriate response, especially when it was located in the participants' extrapersonal space. Taken together, our results show that perception of dangerous objects elicits aversive affordances in a task-dependent way and provides evidence for the operation of a neural mechanism that does not code affordances of dangerous objects automatically, but rather on the basis of contextual information.
Collapse
Affiliation(s)
| | | | | | - Anna M Borghi
- National Research Council, Rome, Italy.,Sapienza University of Rome, Italy
| | | |
Collapse
|
43
|
Nobusako S, Osumi M, Furukawa E, Nakai A, Maeda T, Morioka S. Increased visual bias in children with developmental coordination disorder: Evidence from a visual-tactile temporal order judgment task. Hum Mov Sci 2020; 75:102743. [PMID: 33341403 DOI: 10.1016/j.humov.2020.102743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Previous studies have suggested that children with developmental coordination disorder (DCD) rely heavily on vision to perform movements, which may contribute to their clumsy movements. However, few studies have objectively and quantitatively investigated the perceptual biases of children with DCD. METHODS A visual-tactile temporal order judgment (TOJ) task was used to measure and compare the perceptual biases of 19 children with DCD and 19 age- and sex-matched typically developing children. The point of subjective equality, which demonstrates when "visual first" and "tactile first" judgment probabilities are equal (50%), obtained by analyzing the results of the visual-tactile TOJ task, was used as an indicator of perceptual biases. Further, variables (age and manual dexterity in all participants; motor function, autism spectrum disorder and attention-deficit hyperactivity disorder traits, and depressive symptoms in children with DCD) associated with perceptual biases were examined with correlation analysis. RESULTS Children with DCD had significantly stronger visual bias than typically developing children. Overall correlation analysis showed that increased visual bias was significantly correlated with poor manual dexterity. CONCLUSION Children with DCD had a strong visual bias, which was associated with poor manual dexterity.
Collapse
Affiliation(s)
- Satoshi Nobusako
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan; Graduate School of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan.
| | - Michihiro Osumi
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan; Graduate School of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Emi Furukawa
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Akio Nakai
- Graduate School of Clinical Education & The Center for the Study of Child Development, Institute for Education, Mukogawa Women's University, 6-46 Ikebiraki-cho, Nishinomiya-city, Hyogo 663-8558, Japan
| | - Takaki Maeda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan; Graduate School of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan
| |
Collapse
|
44
|
Rabellino D, Frewen PA, McKinnon MC, Lanius RA. Peripersonal Space and Bodily Self-Consciousness: Implications for Psychological Trauma-Related Disorders. Front Neurosci 2020; 14:586605. [PMID: 33362457 PMCID: PMC7758430 DOI: 10.3389/fnins.2020.586605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022] Open
Abstract
Peripersonal space (PPS) is defined as the space surrounding the body where we can reach or be reached by external entities, including objects or other individuals. PPS is an essential component of bodily self-consciousness that allows us to perform actions in the world (e.g., grasping and manipulating objects) and protect our body while interacting with the surrounding environment. Multisensory processing plays a critical role in PPS representation, facilitating not only to situate ourselves in space but also assisting in the localization of external entities at a close distance from our bodies. Such abilities appear especially crucial when an external entity (a sound, an object, or a person) is approaching us, thereby allowing the assessment of the salience of a potential incoming threat. Accordingly, PPS represents a key aspect of social cognitive processes operational when we interact with other people (for example, in a dynamic dyad). The underpinnings of PPS have been investigated largely in human models and in animals and include the operation of dedicated multimodal neurons (neurons that respond specifically to co-occurring stimuli from different perceptive modalities, e.g., auditory and tactile stimuli) within brain regions involved in sensorimotor processing (ventral intraparietal sulcus, ventral premotor cortex), interoception (insula), and visual recognition (lateral occipital cortex). Although the defensive role of the PPS has been observed in psychopathology (e.g., in phobias) the relation between PPS and altered states of bodily consciousness remains largely unexplored. Specifically, PPS representation in trauma-related disorders, where altered states of consciousness can involve dissociation from the body and its surroundings, have not been investigated. Accordingly, we review here: (1) the behavioral and neurobiological literature surrounding trauma-related disorders and its relevance to PPS; and (2) outline future research directions aimed at examining altered states of bodily self-consciousness in trauma related-disorders.
Collapse
Affiliation(s)
- Daniela Rabellino
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Paul A. Frewen
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Margaret C. McKinnon
- Mood Disorders Program, St. Joseph’s Healthcare, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Homewood Research Institute, Guelph, ON, Canada
| | - Ruth A. Lanius
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
45
|
Anobile G, Arrighi R, Castaldi E, Burr DC. A Sensorimotor Numerosity System. Trends Cogn Sci 2020; 25:24-36. [PMID: 33221159 DOI: 10.1016/j.tics.2020.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Incoming sensory input provides information for the planning and execution of actions, which yield motor outcomes that are themselves sensory inputs. One dimension where action and perception strongly interact is numerosity perception. Many non-human animals can estimate approximately the number of external elements as well as their own actions, and neurons have been identified that respond to both. Recent psychophysical adaptation studies on humans also provide evidence for neural mechanisms responding to both the number of externally generated events and self-produced actions. Here we advance the idea that these strong connections may arise from dedicated sensorimotor mechanisms in the brain, part of a more generalized system interfacing action with the processing of other quantitative magnitudes such as space and time.
Collapse
Affiliation(s)
- Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy; Institute of Neuroscience, National Research Council, Pisa, Italy.
| |
Collapse
|
46
|
Wang X, Tan Y, Van den Bergh O, von Leupoldt A, Qiu J. Intrinsic functional brain connectivity patterns underlying enhanced interoceptive sensibility. J Affect Disord 2020; 276:804-814. [PMID: 32738665 DOI: 10.1016/j.jad.2020.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Accepted: 07/11/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cumulative evidence has suggested that brain regions including the bilateral insula and the anterior cingulate cortex play critical roles in the processing of interoceptive information. However, the brain functional connectivity patterns underlying interoceptive sensibility (IS) and their role in the relationship between IS and self-reported bodily symptoms remain unknown. We aimed to investigate the intrinsic functional connectivity patterns associated with IS and how this modulates the relationship between IS and self-reported bodily symptoms. METHODS Resting-state functional magnetic resonance imaging was used to test the intrinsic large-scale functional connectivity in 459 healthy subjects. IS and self-reported bodily symptoms were assessed by questionnaires. RESULTS Individuals with greater IS had a stronger tendency to report bodily symptoms. Higher IS was correlated with decreased ventral anterior insula-superior temporal gyrus, dorsal anterior cingulate cortex-middle frontal cortex and amygdala-medioventral occipital cortex connectivity. The large-scale functional connectivity of cingulo-opercular task control network (CON)-default mode network, CON-subcortical network and CON-dorsal attention network moderated the association between IS and bodily symptoms. LIMITATIONS The Body Perception Questionnaire mainly reflects the self-perceived tendency to focus on negatively-valenced interoceptive sensations. Future research should distinguish neutral and negative IS in order to make the definition of IS clearer. CONCLUSIONS This study suggests that IS may be related to impaired intrinsic functional connectivity between brain areas related to multisensory integration and cognitive-affective control, resulting in increased vigilance-attention to bodily signals. These findings offer new empirical evidence for a better understanding of the intricate relationships between interoception and symptom reporting.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China; School of Psychology, Southwest University, Chongqing, China
| | - Yafei Tan
- School of Psychology, Central China Normal University, Wuhan, China
| | | | | | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China; School of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
47
|
Chancel M, Ehrsson HH. Which hand is mine? Discriminating body ownership perception in a two-alternative forced-choice task. Atten Percept Psychophys 2020; 82:4058-4083. [PMID: 32856222 PMCID: PMC7593318 DOI: 10.3758/s13414-020-02107-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The experience of one's body as one's own is referred to as the sense of body ownership. This central part of human conscious experience determines the boundary between the self and the external environment, a crucial distinction in perception, action, and cognition. Although body ownership is known to involve the integration of signals from multiple sensory modalities, including vision, touch, and proprioception, little is known about the principles that determine this integration process, and the relationship between body ownership and perception is unclear. These uncertainties stem from the lack of a sensitive and rigorous method to quantify body ownership. Here, we describe a two-alternative forced-choice discrimination task that allows precise and direct measurement of body ownership as participants decide which of two rubber hands feels more like their own in a version of the rubber hand illusion. In two experiments, we show that the temporal and spatial congruence principles of multisensory stimulation, which determine ownership discrimination, impose tighter constraints than previously thought and that texture congruence constitutes an additional principle; these findings are compatible with theoretical models of multisensory integration. Taken together, our results suggest that body ownership constitutes a genuine perceptual multisensory phenomenon that can be quantified with psychophysics in discrimination experiments.
Collapse
Affiliation(s)
- Marie Chancel
- Department of Neuroscience, Brain, Body and Self Laboratory, Karolinska Institute, SE-171 77, Stockholm, Sweden.
| | - H Henrik Ehrsson
- Department of Neuroscience, Brain, Body and Self Laboratory, Karolinska Institute, SE-171 77, Stockholm, Sweden
| |
Collapse
|
48
|
Sakai K, Goto K, Watanabe R, Tanabe J, Amimoto K, Kumai K, Shibata K, Morikawa K, Ikeda Y. Immediate effects of visual-motor illusion on resting-state functional connectivity. Brain Cogn 2020; 146:105632. [PMID: 33129054 DOI: 10.1016/j.bandc.2020.105632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/02/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
Visual-motor illusion (VMI) is to evoke a kinesthetic sensation by viewing images of oneself performing physical exercise while the body is at rest. Previous studies demonstrated that VMI activates the motor association brain areas; however, it is unclear whether VMI immediately alters the resting-state functional connectivity (RSFC). This study is aimed to verify whether the VMI induction changed the RSFC using functional near-infrared spectroscopy (fNIRS). The right hands of 13 healthy adults underwent illusion and observation conditions for 20 min each. Before and after each condition, RSFC was measured using fNIRS. After each condition, degree of kinesthetic illusion and a sense of body ownership measured using the Likert scale. Our results indicated that, compared with the observation condition, the degree of kinesthetic illusion and the sense of body ownership were significantly higher after the illusion condition. Compared with the observation condition, RSFC after the illusion condition significantly increased brain areas associated with kinesthetic illusion, a sense of body ownership, and motor execution. In conclusion, RSFC has become a biomarker that shows changes in brain function occurring due to VMI. VMI may be applied to the treatment of patients with stroke or orthopedic diseases.
Collapse
Affiliation(s)
- Katsuya Sakai
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan; Faculty of Healthcare Sciences, Chiba Prefectural University of Health Sciences, Japan.
| | - Keisuke Goto
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Rui Watanabe
- Department of Psychiatry and Behavioral Science, Tokyo Medical and Dental University, Japan; Department of Frontier Health Science, Tokyo Metropolitan University, Japan.
| | - Junpei Tanabe
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Kazu Amimoto
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Ken Kumai
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Keiichiro Shibata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Kenji Morikawa
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Yumi Ikeda
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| |
Collapse
|
49
|
Zhang L, Wang XH, Li L. Diagnosing autism spectrum disorder using brain entropy: A fast entropy method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 190:105240. [PMID: 31806393 DOI: 10.1016/j.cmpb.2019.105240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Previous resting-state fMRI-based diagnostic models for autism spectrum disorder (ASD) were based on traditional linear features. The complexity of the ASD brain remains unexplored. METHODS To increase our understanding of the nonlinear neural mechanisms in ASD, entropy (i.e., approximate entropy (ApEn) and sample entropy (SampEn)) method was used to analyze the resting-state fMRI datasets collected from 21 ASD patients and 26 typically developing (TD) individuals. Here, a fast entropy algorithm was proposed through matrix computation. We combined entropy with a support-vector machine and selected "important entropy" as features to diagnose ASD. The classification performance of the fast entropy method was compared to the state-of-the-art functional connectivity (FC) method. RESULTS The area under the receiver operating characteristic curve based on FC was 0.62. The areas under the receiver operating characteristic curves based on ApEn and SampEn were 0.79 and 0.89, respectively. The results showed that the proposed fast entropy method was more efficacious than the FC method. In addition, lower entropy was found in the ASD patients. The ApEn of the left postcentral gyrus (rs = -0.556, p = 0.009) and the SampEn of the right lingual gyrus (rs = -0.526, p = 0.014) were both significantly negatively related to Autism Diagnostic Observation Schedule total scores in the ASD patients. The proposed algorithm for entropy computation was faster than the traditional entropy method. CONCLUSIONS Our study provides a new perspective to better understand the neural mechanisms of ASD. Brain entropy based on a fast algorithm was applied to distinguish ASD patients from TD individuals. ApEn and SampEn could be potential biomarkers in ASD investigations.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lihua Li
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
50
|
Ding K, Dragomir A, Bose R, Osborn LE, Seet MS, Bezerianos A, Thakor NV. Towards machine to brain interfaces: sensory stimulation enhances sensorimotor dynamic functional connectivity in upper limb amputees. J Neural Eng 2020; 17:035002. [DOI: 10.1088/1741-2552/ab882d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|