1
|
Thio BJ, Titus ND, Pelot NA, Grill WM. Reverse-engineered models reveal differential membrane properties of autonomic and cutaneous unmyelinated fibers. PLoS Comput Biol 2024; 20:e1012475. [PMID: 39374306 PMCID: PMC11486378 DOI: 10.1371/journal.pcbi.1012475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/17/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024] Open
Abstract
Unmyelinated C-fibers constitute the vast majority of axons in peripheral nerves and play key roles in homeostasis and signaling pain. However, little is known about their ion channel expression, which controls their firing properties. Also, because of their small diameters (~ 1 μm), it has not been possible to characterize their membrane properties using voltage clamp. We developed a novel library of isoform-specific ion channel models to serve as the basis functions of our C-fiber models. We then developed a particle swarm optimization (PSO) framework that used the isoform-specific ion channel models to reverse engineer C-fiber membrane properties from measured autonomic and cutaneous C-fiber conduction responses. Our C-fiber models reproduced experimental conduction velocity, chronaxie, action potential duration, intracellular threshold, and paired pulse recovery cycle. The models also matched experimental activity-dependent slowing, a property not included in model optimization. We found that simple conduction responses, characterizing the action potential, were controlled by similar membrane properties in both the autonomic and cutaneous C-fiber models, but complicated conduction response, characterizing the afterpotenials, were controlled by differential membrane properties. The unmyelinated C-fiber models constitute important tools to study autonomic signaling, assess the mechanisms of pain, and design bioelectronic devices. Additionally, the novel reverse engineering approach can be applied to generate models of other neurons where voltage clamp data are not available.
Collapse
Affiliation(s)
- Brandon J. Thio
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Nathan D. Titus
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Nicole A. Pelot
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
| | - Warren M. Grill
- Department of Biomedical Engineering Duke University Durham, North Carolina, United States of America
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States of America
- Duke University School of Medicine, Department of Neurobiology, Durham, North Carolina, United States of America
- Duke University School of Medicine, Department of Neurosurgery, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Gyenes A, Tapasztó Z, Quirce S, Luna C, Frutos-Rincón L, Gallar J, Acosta MC, Kovács I. Cyclosporine A Decreases Dryness-Induced Hyperexcitability of Corneal Cold-Sensitive Nerve Terminals. Int J Mol Sci 2023; 24:13025. [PMID: 37629206 PMCID: PMC10455570 DOI: 10.3390/ijms241613025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cyclosporine A (CsA) is used for the treatment of dry eye (DE) with good clinical results, improving tear secretion and decreasing subjective symptoms. These effects are attributed to the improved tear film dynamics, but there are no data on the effect of CsA on the abnormal sensory nerve activity characteristic in DE. Our purpose was to evaluate the CsA effect on the enhanced activity of corneal cold thermoreceptors in a tear-deficient DE animal model using in vitro extracellular recording of cold thermoreceptors nerve terminal impulses (NTIs) before and in the presence of CsA. NTI shape was also analyzed. Blinking frequency and tearing rate were also measured in awake animals before and after topical CsA. CsA increased the tearing and blinking of treated animals. CsA significantly decreased the peak response to cold of cold thermoreceptors. Neither their spontaneous NTIs discharge rate nor their cooling threshold were modified. CsA also seemed to reverse some of the changes in NTI shape induced by tear deficiency. These data suggest that, at least in part, the beneficial clinical effects of CsA in DE can be attributed to a direct effect on sensory nerve endings, although the precise mechanisms underlying this effect need further studies to be fully clarified.
Collapse
Affiliation(s)
- Andrea Gyenes
- Department of Ophthalmology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Tapasztó
- Department of Ophthalmology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Susana Quirce
- Instituto de Neurociencias, Universidad Miguel Hernández—CSIC, 03550 San Juan de Alicante, Spain (C.L.); (L.F.-R.); (M.C.A.)
| | - Carolina Luna
- Instituto de Neurociencias, Universidad Miguel Hernández—CSIC, 03550 San Juan de Alicante, Spain (C.L.); (L.F.-R.); (M.C.A.)
| | - Laura Frutos-Rincón
- Instituto de Neurociencias, Universidad Miguel Hernández—CSIC, 03550 San Juan de Alicante, Spain (C.L.); (L.F.-R.); (M.C.A.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante-ISABIAL, 03010 Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández—CSIC, 03550 San Juan de Alicante, Spain (C.L.); (L.F.-R.); (M.C.A.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante-ISABIAL, 03010 Alicante, Spain
| | - M. Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández—CSIC, 03550 San Juan de Alicante, Spain (C.L.); (L.F.-R.); (M.C.A.)
| | - Illés Kovács
- Department of Ophthalmology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Clinical Ophthalmology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
3
|
Contribution of tetrodotoxin-resistant persistent Na + currents to the excitability of C-type dural afferent neurons in rats. J Headache Pain 2022; 23:73. [PMID: 35764917 PMCID: PMC9238149 DOI: 10.1186/s10194-022-01443-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Growing evidence supports the important role of persistent sodium currents (INaP) in the neuronal excitability of various central neurons. However, the role of tetrodotoxin-resistant (TTX-R) Na+ channel-mediated INaP in the neuronal excitability of nociceptive neurons remains poorly understood. METHODS We investigated the functional role of TTX-R INaP in the excitability of C-type nociceptive dural afferent neurons, which was identified using a fluorescent dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchloride (DiI), and a whole-cell patch-clamp technique. RESULTS TTX-R INaP were found in most DiI-positive neurons, but their density was proportional to neuronal size. Although the voltage dependence of TTX-R Na+ channels did not differ among DiI-positive neurons, the extent of the onset of slow inactivation, recovery from inactivation, and use-dependent inhibition of these channels was highly correlated with neuronal size and, to a great extent, the density of TTX-R INaP. In the presence of TTX, treatment with a specific INaP inhibitor, riluzole, substantially decreased the number of action potentials generated by depolarizing current injection, suggesting that TTX-R INaP are related to the excitability of dural afferent neurons. In animals treated chronically with inflammatory mediators, the density of TTX-R INaP was significantly increased, and it was difficult to inactivate TTX-R Na+ channels. CONCLUSIONS TTX-R INaP apparently contributes to the differential properties of TTX-R Na+ channels and neuronal excitability. Consequently, the selective modulation of TTX-R INaP could be, at least in part, a new approach for the treatment of migraine headaches.
Collapse
|
4
|
Graham RD, Jhand AS, Lempka SF. Dorsal root ganglion stimulation produces differential effects on action potential propagation across a population of biophysically distinct C-neurons. FRONTIERS IN PAIN RESEARCH 2022; 3:1017344. [PMID: 36387415 PMCID: PMC9643723 DOI: 10.3389/fpain.2022.1017344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Dorsal root ganglion stimulation (DRGS) is a neurostimulation therapy used to manage chronic pain that does not respond to conventional therapies. Unfortunately, not all patients receive sufficient pain relief from DRGS, leaving them with few other treatment options. Presently, our understanding of the mechanisms of action of DRGS is incomplete, preventing us from determining why some patients do not receive analgesia from the therapy. One hypothesis suggests that DRGS augments the filtering of action potentials (APs) at the T-junction of nociceptive C-neurons. To test this hypothesis, we utilized a computational modeling approach in which we developed a population of one thousand biophysically distinct C-neuron models which each produced electrophysiological characteristics (e.g., AP height, AP duration) reported in previous experimental studies. We used this population of model C-neurons to study how morphological and electrophysiological characteristics affected the propagation of APs through the T-junction. We found that trains of APs can propagate through the T-junction in the orthodromic direction at a higher frequency than in the antidromic direction due to the decrease in axonal diameter from the peripheral to spinal axon. Including slow outward conductances in the axonal compartments near the T-junction reduced following frequencies to ranges measured experimentally. We next used the population of C-neuron models to investigate how DRGS affected the orthodromic propagation of APs through the T-junction. Our data suggest that suprathreshold DRGS augmented the filtering of APs at the T-junction of some model C-neurons while increasing the activity of other model C-neurons. However, the stimulus pulse amplitudes required to induce activity in C-neurons (i.e., several mA) fell outside the range of stimulation pulse amplitudes used clinically (i.e., typically ≤1 mA). Furthermore, our data suggest that somatic GABA currents activated directly or indirectly by the DRGS pulse may produce diverse effects on orthodromic AP propagation in C-neurons. These data suggest DRGS may produce differential effects across a population of C-neurons and indicate that understanding how inherent biological variability affects a neuron's response to therapeutic electrical stimulation may be helpful in understanding its mechanisms of action.
Collapse
Affiliation(s)
- Robert D Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Amolak S Jhand
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Wu X, Hong L. Calmodulin Interactions with Voltage-Gated Sodium Channels. Int J Mol Sci 2021; 22:ijms22189798. [PMID: 34575961 PMCID: PMC8472079 DOI: 10.3390/ijms22189798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Calmodulin (CaM) is a small protein that acts as a ubiquitous signal transducer and regulates neuronal plasticity, muscle contraction, and immune response. It interacts with ion channels and plays regulatory roles in cellular electrophysiology. CaM modulates the voltage-gated sodium channel gating process, alters sodium current density, and regulates sodium channel protein trafficking and expression. Many mutations in the CaM-binding IQ domain give rise to diseases including epilepsy, autism, and arrhythmias by interfering with CaM interaction with the channel. In the present review, we discuss CaM interactions with the voltage-gated sodium channel and modulators involved in CaM regulation, as well as summarize CaM-binding IQ domain mutations associated with human diseases in the voltage-gated sodium channel family.
Collapse
|
6
|
Cannabidiol Inhibition of Murine Primary Nociceptors: Tight Binding to Slow Inactivated States of Na v1.8 Channels. J Neurosci 2021; 41:6371-6387. [PMID: 34131037 DOI: 10.1523/jneurosci.3216-20.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to have analgesic effects in animal studies but little is known about its mechanism of action. We examined the effects of CBD on intrinsic excitability of primary pain-sensing neurons. Studying acutely dissociated capsaicin-sensitive mouse DRG neurons at 37°C, we found that CBD effectively inhibited repetitive action potential firing, from 15-20 action potentials evoked by 1 s current injections in control to 1-3 action potentials with 2 μm CBD. Reduction of repetitive firing was accompanied by a reduction of action potential height, widening of action potentials, reduction of the afterhyperpolarization, and increased propensity to enter depolarization block. Voltage-clamp experiments showed that CBD inhibited both TTX-sensitive and TTX-resistant (TTX-R) sodium currents in a use-dependent manner. CBD showed strong state-dependent inhibition of TTX-R channels, with fast binding to inactivated channels during depolarizations and slow unbinding on repolarization. CBD alteration of channel availability at various voltages suggested that CBD binds especially tightly [K d (dissociation constant), ∼150 nm] to the slow inactivated state of TTX-R channels, which can be substantially occupied at voltages as negative as -40 mV. Remarkably, CBD was more potent in inhibiting TTX-R channels and inhibiting action potential firing than the local anesthetic bupivacaine. We conclude that CBD might produce some of its analgesic effects by direct effects on neuronal excitability, with tight binding to the slow inactivated state of Nav1.8 channels contributing to effective inhibition of repetitive firing by modest depolarizations.SIGNIFICANCE STATEMENT Cannabidiol (CBD) has been shown to inhibit pain in various rodent models, but the mechanism of this effect is unknown. We describe the ability of CBD to inhibit repetitive action potential firing in primary nociceptive neurons from mouse dorsal root ganglia and analyze the effects on voltage-dependent sodium channels. We find that CBD interacts with TTX-resistant sodium channels in a state-dependent manner suggesting particularly tight binding to slow inactivated states of Nav1.8 channels, which dominate the overall inactivation of Nav1.8 channels for small maintained depolarizations from the resting potential. The results suggest that CBD can exert analgesic effects in part by directly inhibiting repetitive firing of primary nociceptors and suggest a strategy of identifying compounds that bind selectively to slow inactivated states of Nav1.8 channels for developing effective analgesics.
Collapse
|
7
|
Luu MJ, Jones KE, Collins DF. Decreased excitability of motor axons contributes substantially to contraction fatigability during neuromuscular electrical stimulation. Appl Physiol Nutr Metab 2021; 46:346-355. [DOI: 10.1139/apnm-2020-0366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study was designed to (i) determine the time course of changes in motor axon excitability during and after neuromuscular electrical stimulation (NMES); and (ii) characterize the relationship between contraction fatigability, NMES frequency, and changes at the axon, neuromuscular junction, and muscle. Eight neurologically intact participants attended 3 sessions. NMES was delivered over the common peroneal nerve at 20, 40, or 60 Hz for 8 min (0.3 s “on”, 0.7 s “off”). Threshold tracking was used to measure changes in axonal excitability. Supramaximal stimuli were used to assess neuromuscular transmission and force-generating capacity of the tibialis anterior muscle. Torque decreased by 49% and 62% during 8 min of 40 and 60 Hz NMES, respectively. Maximal twitch torque decreased only during 60 Hz NMES. Motor axon excitability decreased by 14%, 27%, and 35% during 20, 40, and 60 Hz NMES, respectively. Excitability recovered to baseline immediately (20 Hz) and at 2 min (40 Hz) and 4 min (60 Hz) following NMES. Overall, decreases in axonal excitability best predicted how torque declined over 8 min of NMES. During NMES, motor axons become less excitable and motor units “drop out” of the contraction, contributing substantially to contraction fatigability and its dependence on NMES frequency. Novelty: The excitability of motor axons decreased during NMES in a frequency-dependent manner. As excitability decreased, axons failed to reach threshold and motor units dropped out of the contraction. Overall, decreased excitability best predicted how torque declined and thus is a key contributor to fatigability during NMES.
Collapse
Affiliation(s)
- M. John Luu
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - Kelvin E. Jones
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - David F. Collins
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| |
Collapse
|
8
|
Hong L, Zhang M, Sridhar A, Darbar D. Pathogenic mutations perturb calmodulin regulation of Na v1.8 channel. Biochem Biophys Res Commun 2020; 533:168-174. [PMID: 32948286 PMCID: PMC11038804 DOI: 10.1016/j.bbrc.2020.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
The voltage-gated sodium channels play a key role in the generation and propagation of the cardiac action potential. Emerging data indicate that the Nav1.8 channel, encoded by the SCN10A gene, is a modulator of cardiac conduction and variation in the gene has been associated with arrhythmias such as atrial fibrillation (AF) and Brugada syndrome (BrS). The voltage gated sodium channels contain a calmodulin (CaM)-binding IQ domain involved in channel slow inactivation, we here investigated the role of CaM regulation of Nav1.8 channel function, and showed that CaM enhanced slow inactivation of the Nav1.8 channel and hyperpolarized steady-state inactivation curve of sodium currents. The effects of CaM on the channel gating were disrupted in the Nav1.8 channel truncated IQ domain. We studied Nav1.8 IQ domain mutations associated with AF and BrS, and found that a BrS-linked mutation (R1863Q) reduced the CaM-induced hyperpolarization shift, AF-linked mutations (R1869C and R1869G) disrupted CaM-induced enhanced inactivation, and effects of CaM on both development and recovery from slow inactivation were attenuated in all pathogenic mutations. Our findings indicate a role of CaM in the regulation of Nav1.8 channel function in cardiac arrhythmias.
Collapse
Affiliation(s)
- Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Meihong Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Arvind Sridhar
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dawood Darbar
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Administration, Chicago, IL, USA.
| |
Collapse
|
9
|
Abstract
Neuropathic pain (NeP) can result from sources as varied as nerve compression, channelopathies, autoimmune disease, and incision. By identifying the neurobiological changes that underlie the pain state, it will be clinically possible to exploit mechanism-based therapeutics for maximum analgesic effect as diagnostic accuracy is optimized. Obtaining sufficient knowledge regarding the neuroadaptive alterations that occur in a particular NeP state will result in improved patient analgesia and a mechanism-based, as opposed to a disease-based, therapeutic approach to facilitate target identification. This will rely on comprehensive disease pathology insight; our knowledge is vastly improving due to continued forward and back translational preclinical and clinical research efforts. Here we discuss the clinical aspects of neuropathy and currently used drugs whose mechanisms of action are outlined alongside their clinical use. Finally, we consider sensory phenotypes, patient clusters, and predicting the efficacy of an analgesic for neuropathy.
Collapse
Affiliation(s)
- Kirsty Bannister
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom;
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
10
|
Mini-review - Sodium channels and beyond in peripheral nerve disease: Modulation by cytokines and their effector protein kinases. Neurosci Lett 2020; 741:135446. [PMID: 33166641 DOI: 10.1016/j.neulet.2020.135446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022]
Abstract
Peripheral neuropathy is associated with enhanced activity of primary afferents which is often manifested as pain. Voltage-gated sodium channels (VGSCs) are critical for the initiation and propagation of action potentials and are thus essential for the transmission of the noxious stimuli from the periphery. Human peripheral sensory neurons express multiple VGSCs, including Nav1.7, Nav1.8, and Nav1.9 that are almost exclusively expressed in the peripheral nervous system. Distinct biophysical properties of Nav1.7, Nav1.8, and Nav1.9 underlie their differential contributions to finely tuned neuronal firing of nociceptors, and mutations in these channels have been associated with several inherited human pain disorders. Functional characterization of these mutations has provided additional insights into the role of these channels in electrogenesis in nociceptive neurons and pain sensation. Peripheral tissue damage activates an inflammatory response and triggers generation and release of inflammatory mediators, which can act through diverse signaling cascades to modulate expression and activity of ion channels including VGSCs, contributing to the development and maintenance of pathological pain conditions. In this review, we discuss signaling pathways that are activated by pro-nociceptive inflammatory mediators that regulate peripheral sodium channels, with a specific focus on direct phosphorylation of these channels by multiple protein kinases.
Collapse
|
11
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
12
|
Kim DH, Choi JS. Differential use-dependent inactivation of Nav1.8 in the subpopulation of cultured dorsal root ganglion. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Kim DH, Lee SJ, Hahn SJ, Choi JS. Trifluoperazine blocks the human cardiac sodium channel, Na v1.5, independent of calmodulin. Biochem Biophys Res Commun 2016; 479:584-589. [PMID: 27666479 DOI: 10.1016/j.bbrc.2016.09.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/22/2016] [Indexed: 11/20/2022]
Abstract
Trifluoperazine is a phenothiazine derivative which is mainly used in the management of schizophrenia and also acts as a calmodulin inhibitor. We used the whole-cell patch-clamp technique to study the effects of trifluoperazine on human Nav1.5 (hNav1.5) currents expressed in HEK293 cells. The 50% inhibitory concentration of trifluoperazine was 15.5 ± 0.3 μM and the Hill coefficient was 2.7 ± 0.1. The effects of trifluoperazine on hNav1.5 were completely and repeatedly reversible after washout. Trifluoperazine caused depolarizing shifts in the activation and hyperpolarizing shifts in the steady-state inactivation of hNav1.5. Trifluoperazine also showed strong use-dependent inhibition of hNav1.5. The blockade of hNav1.5 currents by trifluoperazine was not affected by the whole cell dialysis of the calmodulin inhibitory peptide. Our results indicated that trifluoperazine blocks hNav1.5 current in concentration-, state- and use-dependent manners rather than via calmodulin inhibition.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Su-Jin Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Sang June Hahn
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jin-Sung Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea.
| |
Collapse
|
14
|
Zhang Q, Cao DL, Zhang ZJ, Jiang BC, Gao YJ. Chemokine CXCL13 mediates orofacial neuropathic pain via CXCR5/ERK pathway in the trigeminal ganglion of mice. J Neuroinflammation 2016; 13:183. [PMID: 27401148 PMCID: PMC4940825 DOI: 10.1186/s12974-016-0652-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
Background Trigeminal nerve damage-induced neuropathic pain is a severely debilitating chronic orofacial pain syndrome. Spinal chemokine CXCL13 and its receptor CXCR5 were recently demonstrated to play a pivotal role in the pathogenesis of spinal nerve ligation-induced neuropathic pain. Whether and how CXCL13/CXCR5 in the trigeminal ganglion (TG) mediates orofacial pain are unknown. Methods The partial infraorbital nerve ligation (pIONL) was used to induce trigeminal neuropathic pain in mice. The expression of ATF3, CXCL13, CXCR5, and phosphorylated extracellular signal-regulated kinase (pERK) in the TG was detected by immunofluorescence staining and western blot. The effect of shRNA targeting on CXCL13 or CXCR5 on pain hypersensitivity was checked by behavioral testing. Results pIONL induced persistent mechanical allodynia and increased the expression of ATF3, CXCL13, and CXCR5 in the TG. Inhibition of CXCL13 or CXCR5 by shRNA lentivirus attenuated pIONL-induced mechanical allodynia. Additionally, pIONL-induced neuropathic pain and the activation of ERK in the TG were reduced in Cxcr5−/− mice. Furthermore, MEK inhibitor (PD98059) attenuated mechanical allodynia and reduced TNF-α and IL-1β upregulation induced by pIONL. TNF-α inhibitor (Etanercept) and IL-1β inhibitor (Diacerein) attenuated pIONL-induced orofacial pain. Finally, intra-TG injection of CXCL13 induced mechanical allodynia, increased the activation of ERK and the production of TNF-α and IL-1β in the TG of WT mice, but not in Cxcr5−/− mice. Pretreatment with PD98059, Etanercept, or Diacerein partially blocked CXCL13-induced mechanical allodynia, and PD98059 also reduced CXCL13-induced TNF-α and IL-1β upregulation. Conclusions CXCL13 and CXCR5 contribute to orofacial pain via ERK-mediated proinflammatory cytokines production. Targeting CXCL13/CXCR5/ERK/TNF-α and IL-1β pathway in the trigeminal ganglion may offer effective treatment for orofacial neuropathic pain.
Collapse
Affiliation(s)
- Qian Zhang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Seyuan Road, Nantong, Jiangsu, 226019, China
| | - De-Li Cao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Zhi-Jun Zhang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Seyuan Road, Nantong, Jiangsu, 226019, China.,Department of Human Anatomy, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, China
| | - Bao-Chun Jiang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Seyuan Road, Nantong, Jiangsu, 226019, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Seyuan Road, Nantong, Jiangsu, 226019, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
15
|
Guo F, Zhou PD, Gao QH, Gong J, Feng R, Xu XX, Liu SY, Hu HY, Zhao MM, Adam HC, Cai JQ, Hao LY. Low-Mg(2+) treatment increases sensitivity of voltage-gated Na(+) channels to Ca(2+)/calmodulin-mediated modulation in cultured hippocampal neurons. Am J Physiol Cell Physiol 2015; 308:C594-605. [PMID: 25652447 DOI: 10.1152/ajpcell.00174.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023]
Abstract
Culture of hippocampal neurons in low-Mg(2+) medium (low-Mg(2+) neurons) results in induction of continuous seizure activity. However, the underlying mechanism of the contribution of low Mg(2+) to hyperexcitability of neurons has not been clarified. Our data, obtained using the patch-clamp technique, show that voltage-gated Na(+) channel (VGSC) activity, which is associated with a persistent, noninactivating Na(+) current (INa,P), was modulated by calmodulin (CaM) in a concentration-dependent manner in normal and low-Mg(2+) neurons, but the channel activity was more sensitive to Ca(2+)/CaM regulation in low-Mg(2+) than normal neurons. The increased sensitivity of VGSCs in low-Mg(2+) neurons was partially retained when CaM12 and CaM34, CaM mutants with disabled binding sites in the N or C lobe, were used but was diminished when CaM1234, a CaM mutant in which all four Ca(2+) sites are disabled, was used, indicating that functional Ca(2+)-binding sites from either lobe of CaM are required for modulation of VGSCs in low-Mg(2+) neurons. Furthermore, the number of neurons exhibiting colocalization of CaM with the VGSC subtypes NaV1.1, NaV1.2, and NaV1.3 was significantly higher in low- Mg(2+) than normal neurons, as shown by immunofluorescence. Our main finding is that low-Mg(2+) treatment increases sensitivity of VGSCs to Ca(2+)/CaM-mediated regulation. Our data reveal that CaM, as a core regulating factor, connects the functional roles of the three main intracellular ions, Na(+), Ca(2+), and Mg(2+), by modulating VGSCs and provides a possible explanation for the seizure discharge observed in low-Mg(2+) neurons.
Collapse
Affiliation(s)
- Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Pei-Dong Zhou
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Qing-Hua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jian Gong
- Department of Clinical Pharmacy, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiao-Xue Xu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China; and
| | - Shu-Yuan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hui-Yuan Hu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Mei-Mi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hogan-Cann Adam
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ji-Qun Cai
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Li-Ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Wilson MJ, Zhang MM, Gajewiak J, Azam L, Rivier JE, Olivera BM, Yoshikami D. Α- and β-subunit composition of voltage-gated sodium channels investigated with μ-conotoxins and the recently discovered μO§-conotoxin GVIIJ. J Neurophysiol 2015; 113:2289-301. [PMID: 25632083 DOI: 10.1152/jn.01004.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/26/2015] [Indexed: 11/22/2022] Open
Abstract
We investigated the identities of the isoforms of the α (NaV1)- and β (NaVβ)-subunits of voltage-gated sodium channels, including those responsible for action potentials in rodent sciatic nerves. To examine α-subunits, we used seven μ-conotoxins, which target site 1 of the channel. With the use of exogenously expressed channels, we show that two of the μ-conotoxins, μ-BuIIIB and μ-SxIIIA, are 50-fold more potent in blocking NaV1.6 from mouse than that from rat. Furthermore, we observed that μ-BuIIIB and μ-SxIIIA are potent blockers of large, myelinated A-fiber compound action potentials (A-CAPs) [but not small, unmyelinated C-fiber CAPs (C-CAPs)] in the sciatic nerve of the mouse (unlike A-CAPs of the rat, previously shown to be insensitive to these toxins). To investigate β-subunits, we used two synthetic derivatives of the recently discovered μO§-conotoxin GVIIJ that define site 8 of the channel, as previously characterized with cloned rat NaV1- and NaVβ-subunits expressed in Xenopus laevis oocytes, where it was shown that μO§-GVIIJ is a potent inhibitor of several NaV1-isoforms and that coexpression of NaVβ2 or -β4 (but not NaVβ1 or -β3) totally protects against block by μO§-GVIIJ. We report here the effects of μO§-GVIIJ on 1) sodium currents of mouse NaV1.6 coexpressed with various combinations of NaVβ-subunits in oocytes; 2) A- and C-CAPs of mouse and rat sciatic nerves; and 3) sodium currents of small and large neurons dissociated from rat dorsal root ganglia. Our overall results lead us to conclude that action potentials in A-fibers of the rodent sciatic nerve are mediated primarily by NaV1.6 associated with NaVβ2 or NaVβ4.
Collapse
Affiliation(s)
- Michael J Wilson
- Department of Biology, University of Utah, Salt Lake City, Utah; and
| | - Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah; and
| | - Joanna Gajewiak
- Department of Biology, University of Utah, Salt Lake City, Utah; and
| | - Layla Azam
- Department of Biology, University of Utah, Salt Lake City, Utah; and
| | - Jean E Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California
| | | | - Doju Yoshikami
- Department of Biology, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|
17
|
Zhang Z, Schmelz M, Segerdahl M, Quiding H, Centerholt C, Juréus A, Carr TH, Whiteley J, Salter H, Kvernebo MS, Ørstavik K, Helås T, Kleggetveit IP, Lunden LK, Jørum E. Exonic mutations in SCN9A (NaV1.7) are found in a minority of patients with erythromelalgia. Scand J Pain 2014; 5:217-225. [DOI: 10.1016/j.sjpain.2014.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
Abstract
Background and aim
“Gain-of-function” mutations in voltage-gated sodium channel NaV1.7 have been linked to erythromelalgia (EM), characterized by painful hot and red hands and feet. We investigated the proportion of patients with EM that carry a mutation in NaV1.7 or in other pain-related genes and studied possible clinical differences.
Methods
In this study, 48 patients with EM were screened for mutations in a total of 29 candidate genes, including all sodium channel subunits, transient receptor potential channels (TRPA1, TRPV1, TRPM8), neurotrophic factors (NGF, NGFR, BDNF, GDNF, NTRK1 and WNK1) and other known pain-related genes (CACNG2, KCNS1, COMT, P2RX3, TAC1, TACR1), using a combination of next generation sequencing and classical Sanger sequencing.
Results
In 7/48 patients protein-modifying mutations of NaV1.7 (P187L, I228M, I848T (n = 4) and N1245S) were identified. Patients with the I848T mutation could be identified clinically based on early onset and severity of the disease. In contrast, there were no clinical characteristics that differentiated the other patients with NaV1.7 mutation from those patients without. We also found more than twenty rare protein-modifying genetic variants in the genes coding for sodium channels (NaV1.8, NaV1.9, NaV1.6, NaV1.5, NaV2.1, SCN1B, SCN3B), transient receptor potential channel (TRPA1, TRPV1), and other pain-related targets (WNK1 and NGFR).
Conclusion
We conclude that functionally characterized mutations of NaV1.7 (I848T) are present only in a minority of patient with EM. Albeit the majority of patients (27/48) carried rare protein-modifying mutations the vast majority of those will most probably not be causally linked to their disease.
Implications
The key question remaining to be solved is the possible role of rare variants of NaV1.8, NaV1.9, or beta-subunits in provoking chronic pain conditions or even EM.
Collapse
Affiliation(s)
| | - Martin Schmelz
- Department of Anesthesiology Mannheim , Heidelberg University , Heidelberg , Germany
| | - Märta Segerdahl
- AstraZeneca R&D , Södertälje , Sweden
- Department of Physiology and Pharmacology , Karolinska Institute , Stockholm , Sweden
| | | | | | | | | | | | - Hugh Salter
- AstraZeneca Translational Science Centre , Department of Clinical Neuroscience , Karolinska Institutet , Karolinska , Sweden
| | | | - Kristin Ørstavik
- Section of Clinical Neurophysiology , Department of Neurology , Oslo University Hospital-Rikshospitalet , Oslo , Norway
| | - Tormod Helås
- Section of Clinical Neurophysiology , Department of Neurology , Oslo University Hospital-Rikshospitalet , Oslo , Norway
| | - Inge-Petter Kleggetveit
- Section of Clinical Neurophysiology , Department of Neurology , Oslo University Hospital-Rikshospitalet , Oslo , Norway
| | - Lars Kristian Lunden
- Section of Clinical Neurophysiology , Department of Neurology , Oslo University Hospital-Rikshospitalet , Oslo , Norway
| | - Ellen Jørum
- Section of Clinical Neurophysiology , Department of Neurology , Oslo University Hospital-Rikshospitalet , Oslo , Norway
| |
Collapse
|
18
|
Zhang MM, Wilson MJ, Gajewiak J, Rivier JE, Bulaj G, Olivera BM, Yoshikami D. Pharmacological fractionation of tetrodotoxin-sensitive sodium currents in rat dorsal root ganglion neurons by μ-conotoxins. Br J Pharmacol 2014; 169:102-14. [PMID: 23351163 DOI: 10.1111/bph.12119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/18/2012] [Accepted: 12/27/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Adult rat dorsal root ganglion (DRG) neurons normally express transcripts for five isoforms of the α-subunit of voltage-gated sodium channels: NaV 1.1, 1.6, 1.7, 1.8 and 1.9. Tetrodotoxin (TTX) readily blocks all but NaV 1.8 and 1.9, and pharmacological agents that discriminate among the TTX-sensitive NaV 1-isoforms are scarce. Recently, we used the activity profile of a panel of μ-conotoxins in blocking cloned rodent NaV 1-isoforms expressed in Xenopus laevis oocytes to conclude that action potentials of A- and C-fibres in rat sciatic nerve were, respectively, mediated primarily by NaV 1.6 and NaV 1.7. EXPERIMENTAL APPROACH We used three μ-conotoxins, μ-TIIIA, μ-PIIIA and μ-SmIIIA, applied individually and in combinations, to pharmacologically differentiate the TTX-sensitive INa of voltage-clamped neurons acutely dissociated from adult rat DRG. We examined only small and large neurons whose respective INa were >50% and >80% TTX-sensitive. KEY RESULTS In both small and large neurons, the ability of the toxins to block TTX-sensitive INa was μ-TIIIA < μ-PIIIA < μ-SmIIIA, with the latter blocking ≳90%. Comparison of the toxin-susceptibility profiles of the neuronal INa with recently acquired profiles of rat NaV 1-isoforms, co-expressed with various NaV β-subunits in X. laevis oocytes, were consistent: NaV 1.1, 1.6 and 1.7 could account for all of the TTX-sensitive INa , with NaV 1.1 < NaV 1.6 < NaV 1.7 for small neurons and NaV 1.7 < NaV 1.1 < NaV 1.6 for large neurons. CONCLUSIONS AND IMPLICATIONS Combinations of μ-conotoxins can be used to determine the probable NaV 1-isoforms underlying the INa in DRG neurons. Preliminary experiments with sympathetic neurons suggest that this approach is extendable to other neurons.
Collapse
Affiliation(s)
- Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
KIF5B promotes the forward transport and axonal function of the voltage-gated sodium channel Nav1.8. J Neurosci 2013; 33:17884-96. [PMID: 24198377 DOI: 10.1523/jneurosci.0539-13.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nav1.8 is a tetrodotoxin-resistant voltage-gated sodium channel selectively expressed in primary sensory neurons. Peripheral inflammation and nerve injury induce Nav1.8 accumulation in peripheral nerves. However, the mechanisms and related significance of channel accumulation in nerves remains unclear. Here we report that KIF5B promotes the forward transport of Nav1.8 to the plasma membrane and axons in dorsal root ganglion (DRG) neurons of the rat. In peripheral inflammation induced through the intraplantar injection of complete Freund's adjuvant, increased KIF5 and Nav1.8 accumulation were observed in the sciatic nerve. The knock-down of KIF5B, a highly expressed member of the KIF5 family in DRGs, reduced the current density of Nav1.8 in both cultured DRG neurons and ND7-23 cells. Overexpression of KIF5B in ND7-23 cells increased the current density and surface expression of Nav1.8, which were abolished through brefeldin A treatment, whereas the increases were lost in KIF5B mutants defective in ATP hydrolysis or cargo binding. Overexpression of KIF5B also decreased the proteasome-associated degradation of Nav1.8. In addition, coimmunoprecipitation experiments showed interactions between the N terminus of Nav1.8 and the 511-620 aa sequence in the stalk domain of KIF5B. Furthermore, KIF5B increased Nav1.8 accumulation, Nav1.8 current, and neuronal excitability detected in the axons of cultured DRG neurons, which were completely abolished by the disruption of interactions between KIF5B and the N terminus of Nav1.8. Therefore, our results reveal that KIF5B is required for the forward transport and axonal function of Nav1.8, suggesting a mechanism for axonal accumulation of Nav1.8 in inflammatory pain.
Collapse
|
20
|
Vega AV, Avila G, Matthews G. Interaction between the transcriptional corepressor Sin3B and voltage-gated sodium channels modulates functional channel expression. Sci Rep 2013; 3:2809. [PMID: 24077057 PMCID: PMC3786298 DOI: 10.1038/srep02809] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/05/2013] [Indexed: 11/09/2022] Open
Abstract
Proteins that interact with voltage-gated sodium (Na(v)) channels are important in channel sorting and modulation. In this study, we identified the transcriptional regulator, Sin3B, as a novel binding partner of Na(v) channels in a yeast two-hybrid screen and confirmed the interaction using pull-down assays, co-immunoprecipitation, and immunofluorescence-colocalization. Because both long (~1100-residue) and short (N-terminal 293 residues) Sin3B variants interacted with Na(v) channels, binding occurred within the N-terminal region containing two paired-amphipathic helix domains. In Na(v) channels, Sin3B bound to a 132-residue portion of the cytoplasmic C-terminus. Expression of the short Sin3B variant strongly reduced native sodium current and Na(v)-channel gating charge in the neuronal cell line N1E-115, without affecting the voltage-dependence of activation. Because the total amount of channel protein was unchanged by Sin3B, binding of Sin3B likely decreases the number of channels in the plasma membrane, suggesting that interaction with Sin3B influences Na(v)-channel trafficking or stability in the membrane.
Collapse
Affiliation(s)
- Ana V Vega
- Carrera de Médico Cirujano. UBIMED. FES Iztacala, UNAM. Los Reyes Iztacala. Edo, Mex. 54090 México
| | | | | |
Collapse
|
21
|
Chichili VPR, Xiao Y, Seetharaman J, Cummins TR, Sivaraman J. Structural basis for the modulation of the neuronal voltage-gated sodium channel NaV1.6 by calmodulin. Sci Rep 2013; 3:2435. [PMID: 23942337 PMCID: PMC3743062 DOI: 10.1038/srep02435] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 01/07/2023] Open
Abstract
The neuronal-voltage gated sodium channel (VGSC), Na(V)1.6, plays an important role in propagating action potentials along myelinated axons. Calmodulin (CaM) is known to modulate the inactivation kinetics of Na(V)1.6 by interacting with its IQ motif. Here we report the crystal structure of apo-CaM:Na(V)1.6IQ motif, along with functional studies. The IQ motif of Na(V)1.6 adopts an α-helical conformation in its interaction with the C-lobe of CaM. CaM uses different residues to interact with Na(V)1.6IQ motif depending on the presence or absence of Ca²⁺. Three residues from Na(V)1.6, Arg1902, Tyr1904 and Arg1905 were identified as the key common interacting residues in both the presence and absence of Ca²⁺. Substitution of Arg1902 and Tyr1904 with alanine showed a reduced rate of Na(V)1.6 inactivation in electrophysiological experiments in vivo. Compared with other CaM:Na(V) complexes, our results reveal a different mode of interaction for CaM:Na(V)1.6 and provides structural insight into the isoform-specific modulation of VGSCs.
Collapse
Affiliation(s)
| | - Yucheng Xiao
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J. Seetharaman
- X4 Beamline, Brookhaven National Laboratory, Upton, New York, USA
| | - Theodore R. Cummins
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543,
| |
Collapse
|
22
|
Xu X, Guo F, Lv X, Feng R, Min D, Ma L, Liu Y, Zhao J, Wang L, Chen T, Shaw C, Hao L, Cai J. Abnormal changes in voltage-gated sodium channels NaV1.1, NaV1.2, NaV1.3, NaV1.6 and in calmodulin/calmodulin-dependent protein kinase II, within the brains of spontaneously epileptic rats and tremor rats. Brain Res Bull 2013; 96:1-9. [DOI: 10.1016/j.brainresbull.2013.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
23
|
Davis MP. Drug management of visceral pain: concepts from basic research. PAIN RESEARCH AND TREATMENT 2012; 2012:265605. [PMID: 22619712 PMCID: PMC3348642 DOI: 10.1155/2012/265605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
Visceral pain is experienced by 40% of the population, and 28% of cancer patients suffer from pain arising from intra- abdominal metastasis or from treatment. Neuroanatomy of visceral nociception and neurotransmitters, receptors, and ion channels that modulate visceral pain are qualitatively or quantitatively different from those that modulate somatic and neuropathic pain. Visceral pain should be recognized as distinct pain phenotype. TRPV1, Na 1.8, and ASIC3 ion channels and peripheral kappa opioid receptors are important mediators of visceral pain. Mu agonists, gabapentinoids, and GABAB agonists reduce pain by binding to central receptors and channels. Combinations of analgesics and adjuvants in animal models have supra-additive antinociception and should be considered in clinical trials. This paper will discuss the neuroanatomy, receptors, ion channels, and neurotransmitters important to visceral pain and provide a basic science rationale for analgesic trials and management.
Collapse
Affiliation(s)
- Mellar P. Davis
- Cleveland Clinic Lerner School of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Solid Tumor Division, Harry R. Horvitz Center for Palliative Medicine, Taussig Cancer Institute, USA
| |
Collapse
|
24
|
Abstract
Voltage-gated sodium channels underlie the rapid regenerative upstroke of action potentials and are modulated by cytoplasmic calcium ions through a poorly understood mechanism. We describe the 1.35 Å crystal structure of Ca(2+)-bound calmodulin (Ca(2+)/CaM) in complex with the inactivation gate (DIII-IV linker) of the cardiac sodium channel (Na(V)1.5). The complex harbors the positions of five disease mutations involved with long Q-T type 3 and Brugada syndromes. In conjunction with isothermal titration calorimetry, we identify unique inactivation-gate mutations that enhance or diminish Ca(2+)/CaM binding, which, in turn, sensitize or abolish Ca(2+) regulation of full-length channels in electrophysiological experiments. Additional biochemical experiments support a model whereby a single Ca(2+)/CaM bridges the C-terminal IQ motif to the DIII-IV linker via individual N and C lobes, respectively. The data suggest that Ca(2+)/CaM destabilizes binding of the inactivation gate to its receptor, thus biasing inactivation toward more depolarized potentials.
Collapse
|
25
|
Liang R, Liu X, Wei L, Wang W, Zheng P, Yan X, Zhao Y, Liu L, Cao X. The modulation of the excitability of primary sensory neurons by Ca2+–CaM–CaMKII pathway. Neurol Sci 2011; 33:1083-93. [DOI: 10.1007/s10072-011-0907-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/14/2011] [Indexed: 01/19/2023]
|
26
|
Hypermorphic mutation of the voltage-gated sodium channel encoding gene Scn10a causes a dramatic stimulus-dependent neurobehavioral phenotype. Proc Natl Acad Sci U S A 2011; 108:19413-8. [PMID: 22087007 DOI: 10.1073/pnas.1117020108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium channel Na(v)1.8 is known to function in the transmission of pain signals induced by cold, heat, and mechanical stimuli. Sequence variants of human Na(v)1.8 have been linked to altered cardiac conduction. We identified an allele of Scn10a encoding the α-subunit of Na(v)1.8 among mice homozygous for N-ethyl-N-nitrosourea-induced mutations. The allele creates a dominant neurobehavioral phenotype termed Possum, characterized by transient whole-body tonic immobility induced by pinching the skin at the back of the neck ("scruffing"). The Possum mutation enhanced Na(v)1.8 sodium currents and neuronal excitability and heightened sensitivity of mutants to cold stimuli. Striking electroencephalographic changes were observed concomitant with the scruffing-induced behavioral change. In addition, electrocardiography demonstrated that Possum mice exhibited marked sinus bradycardia and R-R variability upon scruffing, abrogated by infusion of atropine. However, atropine failed to prevent or mitigate the tonic immobility response. Hyperactive sodium conduction via Na(v)1.8 thus leads to a complex neurobehavioral phenotype, which resembles catatonia in schizophrenic humans and tonic immobility in other mammals upon application of a discrete stimulus; no other form of mechanosensory stimulus could induce the immobility phenotype. Our data confirm the involvement of Na(v)1.8 in transducing pain initiated by cold and additionally implicate Na(v)1.8 in previously unknown functions in the central nervous system and heart.
Collapse
|
27
|
Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel. Biochem Biophys Res Commun 2011; 411:329-34. [DOI: 10.1016/j.bbrc.2011.06.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 11/30/2022]
|
28
|
Qi FH, Zhou YL, Xu GY. Targeting voltage-gated sodium channels for treatment for chronic visceral pain. World J Gastroenterol 2011; 17:2357-64. [PMID: 21633634 PMCID: PMC3103787 DOI: 10.3748/wjg.v17.i19.2357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/16/2011] [Accepted: 03/23/2011] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated sodium channels (VGSCs) play a fundamental role in controlling cellular excitability, and their abnormal activity is related to several pathological processes, including cardiac arrhythmias, epilepsy, neurodegenerative diseases, spasticity and chronic pain. In particular, chronic visceral pain, the central symptom of functional gastrointestinal disorders such as irritable bowel syndrome, is a serious clinical problem that affects a high percentage of the world population. In spite of intense research efforts and after the dedicated decade of pain control and research, there are not many options to treat chronic pain conditions. However, there is a wealth of evidence emerging to give hope that a more refined approach may be achievable. By using electronic databases, available data on structural and functional properties of VGSCs in chronic pain, particularly functional gastrointestinal hypersensitivity, were reviewed. We summarize the involvement and molecular bases of action of VGSCs in the pathophysiology of several organic and functional gastrointestinal disorders. We also describe the efficacy of VGSC blockers in the treatment of these neurological diseases, and outline future developments that may extend the therapeutic use of compounds that target VGSCs. Overall, clinical and experimental data indicate that isoform-specific blockers of these channels or targeting of their modulators may provide effective and novel approaches for visceral pain therapy.
Collapse
|
29
|
Andres C, Meyer S, Dina OA, Levine JD, Hucho T. Quantitative automated microscopy (QuAM) elucidates growth factor specific signalling in pain sensitization. Mol Pain 2010; 6:98. [PMID: 21187008 PMCID: PMC3023724 DOI: 10.1186/1744-8069-6-98] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/27/2010] [Indexed: 01/19/2023] Open
Abstract
Background Dorsal root ganglia (DRG)-neurons are commonly characterized immunocytochemically. Cells are mostly grouped by the experimenter's eye as "marker-positive" and "marker-negative" according to their immunofluorescence intensity. Classification criteria remain largely undefined. Overcoming this shortfall, we established a quantitative automated microscopy (QuAM) for a defined and multiparametric analysis of adherent heterogeneous primary neurons on a single cell base. The growth factors NGF, GDNF and EGF activate the MAP-kinase Erk1/2 via receptor tyrosine kinase signalling. NGF and GDNF are established factors in regeneration and sensitization of nociceptive neurons. If also the tissue regenerating growth factor, EGF, influences nociceptors is so far unknown. We asked, if EGF can act on nociceptors, and if QuAM can elucidate differences between NGF, GDNF and EGF induced Erk1/2 activation kinetics. Finally, we evaluated, if the investigation of one signalling component allows prediction of the behavioral response to a reagent not tested on nociceptors such as EGF. Results We established a software-based neuron identification, described quantitatively DRG-neuron heterogeneity and correlated measured sample sizes and corresponding assay sensitivity. Analysing more than 70,000 individual neurons we defined neuronal subgroups based on differential Erk1/2 activation status in sensory neurons. Baseline activity levels varied strongly already in untreated neurons. NGF and GDNF subgroup responsiveness correlated with their subgroup specificity on IB4(+)- and IB4(-)-neurons, respectively. We confirmed expression of EGF-receptors in all sensory neurons. EGF treatment induced STAT3 translocation into the nucleus. Nevertheless, we could not detect any EGF induced Erk1/2 phosphorylation. Accordingly, intradermal injection of EGF resulted in a fundamentally different outcome than NGF/GDNF. EGF did not induce mechanical hyperalgesia, but blocked PGE2-induced sensitization. Conclusions QuAM is a suitable if not necessary tool to analyze activation of endogenous signalling in heterogeneous cultures. NGF, GDNF and EGF stimulation of DRG-neurons shows differential Erk1/2 activation responses and a corresponding differential behavioral phenotype. Thus, in addition to expression-markers also signalling-activity can be taken for functional subgroup differentiation and as predictor of behavioral outcome. The anti-nociceptive function of EGF is an intriguing result in the context of tissue damage but also for understanding pain resulting from EGF-receptor block during cancer therapy.
Collapse
Affiliation(s)
- Christine Andres
- Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, Berlin, Germany
| | | | | | | | | |
Collapse
|
30
|
Swanwick RS, Pristerá A, Okuse K. The trafficking of Na(V)1.8. Neurosci Lett 2010; 486:78-83. [PMID: 20816723 PMCID: PMC2977848 DOI: 10.1016/j.neulet.2010.08.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 12/23/2022]
Abstract
The α-subunit of tetrodotoxin-resistant voltage-gated sodium channel Na(V)1.8 is selectively expressed in sensory neurons. It has been reported that Na(V)1.8 is involved in the transmission of nociceptive information from sensory neurons to the central nervous system in nociceptive [1] and neuropathic [24] pain conditions. Thus Na(V)1.8 has been a promising target to treat chronic pain. Here we discuss the recent advances in the study of trafficking mechanism of Na(V)1.8. These pieces of information are particularly important as such trafficking machinery could be new targets for painkillers.
Collapse
Affiliation(s)
| | | | - Kenji Okuse
- Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
31
|
Dib-Hajj SD, Waxman SG. Isoform-specific and pan-channel partners regulate trafficking and plasma membrane stability; and alter sodium channel gating properties. Neurosci Lett 2010; 486:84-91. [DOI: 10.1016/j.neulet.2010.08.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022]
|
32
|
Moraes ER, Kalapothakis E, Naves LA, Kushmerick C. Differential effects of Tityus bahiensis scorpion venom on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium currents. Neurotox Res 2009; 19:102-14. [PMID: 20020338 DOI: 10.1007/s12640-009-9144-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
We examined modification of sodium channel gating by Tityus bahiensis scorpion venom (TbScV), and compared effects on native tetrodotoxin-sensitive and tetrodotoxin-resistant sodium currents from rat dorsal root ganglion neurons and cardiac myocytes. In neurons, TbScV dramatically reduced the rate of sodium current inactivation, increased current amplitude, and caused a negative shift in the voltage-dependence of activation and inactivation of tetrodotoxin-sensitive channels. Enhanced activation of modified sodium channels was independent of a depolarizing prepulse. We identified two components of neuronal tetrodotoxin-resistant current with biophysical properties similar to those described for NaV1.8 and NaV1.9. In contrast to its effects on neuronal tetrodotoxin-sensitive current, TbScV caused a small decrease in neuronal tetrodotoxin-resistant sodium current amplitude and the gating modifications described above were absent. A third tetrodotoxin-resistant current, NaV1.5 recorded in rat cardiac ventricular myocytes, was inhibited approximately 50% by TbScV, and the remaining current exhibited markedly slowed activation and inactivation. In conclusion, TbScV has very different effects on different sodium channel isoforms. Among the neuronal types, currents resistant to tetrodotoxin are also resistant to gating modification by TbScV. The cardiac tetrodotoxin-resistant current has complex sensitivity that includes both inhibition of current amplitude and slowing of activation and inactivation.
Collapse
Affiliation(s)
- Eder R Moraes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
33
|
Zhang H, Verkman AS. Aquaporin-1 tunes pain perception by interaction with Na(v)1.8 Na+ channels in dorsal root ganglion neurons. J Biol Chem 2009; 285:5896-906. [PMID: 20018876 DOI: 10.1074/jbc.m109.090233] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aquaporin-1 (AQP1) water channels are expressed in the plasma membrane of dorsal root ganglion (DRG) neurons. We found reduced osmotic water permeability in freshly isolated DRG neurons from AQP1(-/-) versus AQP1(+/+) mice. Behavioral studies showed greatly reduced thermal inflammatory pain perception in AQP1(-/-) mice evoked by bradykinin, prostaglandin E(2), and capsaicin as well as reduced cold pain perception. Patch clamp of freshly isolated DRG neurons showed reduced action potential firing in response to current injections. Single action potentials after pulse current injections showed reduced maximum inward current, suggesting impaired Na(v)1.8 Na(+) function. Whole-cell Na(v)1.8 Na(+) currents in Na(v)1.8-expressing ND7-23 cells showed slowed frequency-dependent inactivation after AQP1 transfection. Immunoprecipitation studies showed AQP1- Na(v)1.8 Na(+) interaction, which was verified in live cells by single-particle tracking of quantum dot-labeled AQP1. Our results implicate the involvement of AQP1 in DRG neurons for the perception of inflammatory thermal pain and cold pain, whose molecular basis is accounted for, in part, by reduced Na(v)1.8-dependent membrane Na(+) current. AQP1 is, thus, a novel target for pain management.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Medicine, University of California, San Francisco, California 94143-0521, USA
| | | |
Collapse
|
34
|
Liu C, Li Q, Su Y, Bao L. Prostaglandin E2 promotes Na1.8 trafficking via its intracellular RRR motif through the protein kinase A pathway. Traffic 2009; 11:405-17. [PMID: 20028484 DOI: 10.1111/j.1600-0854.2009.01027.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage-gated sodium channels (Na(v)) are essential for the initiation and propagation of action potentials in neurons. Na(v)1.8 activity is regulated by prostaglandin E(2) (PGE(2)). There is, however, no direct evidence showing the regulated trafficking of Na(v)1.8, and the molecular and cellular mechanism of PGE(2)-induced sodium channel trafficking is not clear. Here, we report that PGE(2) regulates the trafficking of Na(v)1.8 through the protein kinase A (PKA) signaling pathway, and an RRR motif in the first intracellular loop of Na(v)1.8 mediates this effect. In rat dorsal root ganglion (DRG) neurons, prolonged PGE(2) treatment enhanced Na(v)1.8 currents by increasing the channel density on the cell surface. Activation of PKA by forskolin had the same effect on DRG neurons and human embryonic kidney 293T cells expressing Na(v)1.8. Inhibition of PKA completely blocked the PGE(2)-promoted effect on Na(v)1.8. Mutation of five PKA phosphorylation sites or the RRR motif in the first intracellular loop of Na(v)1.8 abolished the PKA-promoted Na(v)1.8 surface expression. Furthermore, a membrane-tethered peptide containing the intracellular RRR motif disrupted the PGE(2)-induced promotion of the Na(v)1.8 current in DRG neurons. Our data indicate that PGE(2) promotes the surface expression of Na(v)1.8 via an intracellular RRR motif, and provide a novel mechanism for functional modulation of Na(v)1.8 by hyperalgesic agents.
Collapse
Affiliation(s)
- Chao Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | | | |
Collapse
|
35
|
|
36
|
Browne LE, Clare JJ, Wray D. Functional and pharmacological properties of human and rat NaV1.8 channels. Neuropharmacology 2009; 56:905-14. [DOI: 10.1016/j.neuropharm.2009.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
37
|
Dib-Hajj SD, Binshtok AM, Cummins TR, Jarvis MF, Samad T, Zimmermann K. Voltage-gated sodium channels in pain states: Role in pathophysiology and targets for treatment. ACTA ACUST UNITED AC 2009; 60:65-83. [DOI: 10.1016/j.brainresrev.2008.12.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/19/2022]
|
38
|
Phosphorylation of sodium channel Na(v)1.8 by p38 mitogen-activated protein kinase increases current density in dorsal root ganglion neurons. J Neurosci 2008; 28:3190-201. [PMID: 18354022 DOI: 10.1523/jneurosci.4403-07.2008] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The sensory neuron-specific sodium channel Na(v)1.8 and p38 mitogen-activated protein kinase are potential therapeutic targets within nociceptive dorsal root ganglion (DRG) neurons in inflammatory, and possibly neuropathic, pain. Na(v)1.8 channels within nociceptive DRG neurons contribute most of the inward current underlying the depolarizing phase of action potentials. Nerve injury and inflammation of peripheral tissues cause p38 activation in DRG neurons, a process that may contribute to nociceptive neuron hyperexcitability, which is associated with pain. However, how substrates of activated p38 contribute to DRG neuron hyperexcitability is currently not well understood. We report here, for the first time, that Na(v)1.8 and p38 are colocalized in DRG neurons, that Na(v)1.8 within DRG neurons is a substrate for p38, and that direct phosphorylation of the Na(v)1.8 channel by p38 regulates its function in these neurons. We show that direct phosphorylation of Na(v)1.8 at two p38 phospho-acceptor serine residues on the L1 loop (S551 and S556) causes an increase in Na(v)1.8 current density that is not accompanied by changes in gating properties of the channel. Our study suggests a mechanism by which activated p38 contributes to inflammatory, and possibly neuropathic, pain through a p38-mediated increase of Na(v)1.8 current density.
Collapse
|
39
|
Fiedler B, Zhang MM, Buczek O, Azam L, Bulaj G, Norton RS, Olivera BM, Yoshikami D. Specificity, affinity and efficacy of iota-conotoxin RXIA, an agonist of voltage-gated sodium channels Na(V)1.2, 1.6 and 1.7. Biochem Pharmacol 2008; 75:2334-44. [PMID: 18486102 DOI: 10.1016/j.bcp.2008.03.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 12/19/2022]
Abstract
The excitotoxic conopeptide iota-RXIA induces repetitive action potentials in frog motor axons and seizures upon intracranial injection into mice. We recently discovered that iota-RXIA shifts the voltage-dependence of activation of voltage-gated sodium channel Na(V)1.6 to a more hyperpolarized level. Here, we performed voltage-clamp experiments to examine its activity against rodent Na(V)1.1 through Na(V)1.7 co-expressed with the beta1 subunit in Xenopus oocytes and Na(V)1.8 in dissociated mouse DRG neurons. The order of sensitivity to iota-RXIA was Na(V)1.6 > 1.2 > 1.7, and the remaining subtypes were insensitive. The time course of iota-RXIA-activity on Na(V)1.6 during exposure to different peptide concentrations were well fit by single-exponential curves that provided k(obs). The plot of k(obs)versus [iota-RXIA] was linear, consistent with a bimolecular reaction with a K(d) of approximately 3 microM, close to the steady-state EC(50) of approximately 2 microM. iota-RXIA has an unusual residue, D-Phe, and the analog with an L-Phe instead, iota-RXIA[L-Phe44], had a two-fold lower affinity and two-fold faster off-rate than iota-RXIA on Na(V)1.6 and furthermore was inactive on Na(V)1.2. iota-RXIA induced repetitive action potentials in mouse sciatic nerve with conduction velocities of both A- and C-fibers, consistent with the presence of Na(V)1.6 at nodes of Ranvier as well as in unmyelinated axons. Sixteen peptides homologous to iota-RXIA have been identified from a single species of Conus, so these peptides represent a rich family of novel sodium channel-targeting ligands.
Collapse
Affiliation(s)
- Brian Fiedler
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Biswas S, Deschênes I, Disilvestre D, Tian Y, Halperin VL, Tomaselli GF. Calmodulin regulation of Nav1.4 current: role of binding to the carboxyl terminus. ACTA ACUST UNITED AC 2008; 131:197-209. [PMID: 18270170 PMCID: PMC2248716 DOI: 10.1085/jgp.200709863] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calmodulin (CaM) regulates steady-state inactivation of sodium currents (NaV1.4) in skeletal muscle. Defects in Na current inactivation are associated with pathological muscle conditions such as myotonia and paralysis. The mechanisms of CaM modulation of expression and function of the Na channel are incompletely understood. A physical association between CaM and the intact C terminus of NaV1.4 has not previously been demonstrated. FRET reveals channel conformation-independent association of CaM with the C terminus of NaV1.4 (CT-NaV1.4) in mammalian cells. Mutation of the NaV1.4 CaM-binding IQ motif (NaV1.4IQ/AA) reduces cell surface expression of NaV1.4 channels and eliminates CaM modulation of gating. Truncations of the CT that include the IQ region abolish Na current. NaV1.4 channels with one CaM fused to the CT by variable length glycine linkers exhibit CaM modulation of gating only with linker lengths that allowed CaM to reach IQ region. Thus one CaM is sufficient to modulate Na current, and CaM acts as an ancillary subunit of NaV1.4 channels that binds to the CT in a conformation-independent fashion, modulating the voltage dependence of inactivation and facilitating trafficking to the surface membrane.
Collapse
Affiliation(s)
- Subrata Biswas
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
41
|
Choi JS, Dib-Hajj SD, Waxman SG. Differential Slow Inactivation and Use-Dependent Inhibition of Nav1.8 Channels Contribute to Distinct Firing Properties in IB4+ and IB4− DRG Neurons. J Neurophysiol 2007; 97:1258-65. [PMID: 17108087 DOI: 10.1152/jn.01033.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nociceptive dorsal root ganglion (DRG) neurons can be classified into nonpeptidergic IB4+ and peptidergic IB4− subtypes, which terminate in different layers in dorsal horn and transmit pain along different ascending pathways, and display different firing properties. Voltage-gated, tetrodotoxin-resistant (TTX-R) Nav1.8 channels are expressed in both IB4+ and IB4− cells and produce most of the current underlying the depolarizing phase of action potential (AP). Slow inactivation of TTX-R channels has been shown to regulate repetitive DRG neuron firing behavior. We show in this study that use-dependent reduction of Nav1.8 current in IB4+ neurons is significantly stronger than that in IB4− neurons, although voltage dependency of activation and steady-state inactivation are not different. The time constant for entry of Nav1.8 into slow inactivation in IB4+ neurons is significantly faster and more Nav1.8 enter the slow inactivation state than in IB4− neurons. In addition, recovery from slow inactivation of Nav1.8 in IB4+ neurons is slower than that in IB4− neurons. Using current-clamp recording, we demonstrate a significantly higher current threshold for generation of APs and a longer latency to onset of firing in IB4+, compared with those of IB4− neurons. In response to a ramp stimulus, IB4+ neurons produce fewer APs and display stronger adaptation, with a faster decline of AP peak than IB4− neurons. Our data suggest that differential use-dependent reduction of Nav1.8 current in these two DRG subpopulations, which results from their different rate of entry into and recovery from the slow inactivation state, contributes to functional differences between these two neuronal populations.
Collapse
Affiliation(s)
- Jin-Sung Choi
- Department of Neurology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
42
|
Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 2006; 579:1-14. [PMID: 17158175 PMCID: PMC2075388 DOI: 10.1113/jphysiol.2006.121483] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dorsal root ganglion neurons express an array of sodium channel isoforms allowing precise control of excitability. An increasing body of literature indicates that regulation of firing behaviour in these cells is linked to their patterns of expression of specific sodium channel isoforms, which have been discovered to possess distinct biophysical characteristics. The pattern of expression of sodium channels differs in different subclasses of DRG neurons and is not fixed but, on the contrary, changes in response to a variety of disease insults. Moreover, modulation of channels by their environment has been found to play an important role in the response of these neurons to stimuli. In this review we illustrate how excitability can be finely tuned to provide contrasting firing templates in different subclasses of DRG neurons by selective deployment of various sodium channel isoforms, by plasticity of expression of these proteins, and by interactions of these sodium channel isoforms with each other and with other modulatory molecules.
Collapse
|
43
|
Zhou X, Dong XW, Priestley T. The neuroleptic drug, fluphenazine, blocks neuronal voltage-gated sodium channels. Brain Res 2006; 1106:72-81. [PMID: 16839522 DOI: 10.1016/j.brainres.2006.05.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 05/19/2006] [Accepted: 05/24/2006] [Indexed: 11/24/2022]
Abstract
Fluphenazine (Prolixin(R)) is a potent phenothiazine-based dopamine receptor antagonist, first introduced into clinical practice in the late 1950s as a novel antipsychotic. The drug emerged as a 'hit' during a routine ion channel screening assay, the present studies describe our electrophysiological examination of fluphenazine at tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) voltage-gated sodium channel variants expressed in three different cell populations. Constitutively expressed TTX-S conductances were studied in ND7/23 cells (a dorsal root ganglion-derived clonal cell line) and rat primary cerebrocortical neurons. Recombinant rat Na(V)1.8 currents were studied using ND7/23 cells as a host line for heterologous expression. Sodium currents were examined using standard whole-cell voltage-clamp electrophysiology. Current-voltage relationships for either ND7/23 cell or Na(V)1.8 currents revealed a prominent fluphenazine block of sodium channel activity. Steady-state inactivation curves were shifted by approximately 10 mV in the hyperpolarizing direction by fluphenazine (3 microM for ND7/23 currents and 10 microM for Na(V)1.8), suggesting that the drug stabilizes the inactivated channel state. Fluphenazine's apparent potency for blocking either ND7/23 or Na(V)1.8 sodium channels was increased by membrane depolarization, corresponding IC(50) values for the ND7/23 cell conductances were 18 microM and 960 nM at holding potentials of -120 mV and -50 mV, respectively. Frequency-dependent channel block was evident for each of the cell/channel variants, again suggesting a preferential binding to inactivated channel state(s). These experiments show fluphenazine to be capable of blocking neuronal sodium channels. Several unusual pharmacokinetic features of this drug suggest that sodium channel block may contribute to the overall clinical profile of this classical neuroleptic agent.
Collapse
Affiliation(s)
- Xiaoping Zhou
- Department of CNS Neurobiology, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Xiao-Wei Dong
- Department of CNS Neurobiology, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Tony Priestley
- Department of CNS Neurobiology, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| |
Collapse
|