1
|
Peelman K, Haider B. Environmental context sculpts spatial and temporal visual processing in thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605345. [PMID: 39091887 PMCID: PMC11291113 DOI: 10.1101/2024.07.26.605345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Behavioral state modulates neural activity throughout the visual system; this is largely due to changes in arousal that alter internal brain state. However, behaviors are constrained by the external environmental context, so it remains unclear if this context itself dictates the regime of visual processing, apart from ongoing changes in arousal. Here, we addressed this question in awake head-fixed mice while they passively viewed visual stimuli in two different environmental contexts: either a cylindrical tube, or a circular running wheel. We targeted high-density silicon probe recordings to the dorsal lateral geniculate nucleus (dLGN) and simultaneously measured several electrophysiological and behavioral correlates of arousal changes, and thus controlled for them across contexts. We found surprising differences in spatial and temporal processing in dLGN across contexts, even in identical states of alertness and stillness. The wheel context (versus tube) showed elevated baseline activity, faster visual responses, and smaller but less selective spatial receptive fields. Further, arousal caused similar changes to visual responsiveness across all conditions, but the environmental context mainly changed the overall set-point for this relationship. Together, our results reveal an unexpected influence of the physical environmental context on fundamental aspects of visual processing in the early visual system.
Collapse
Affiliation(s)
- Kayla Peelman
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Bilal Haider
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Bowen JD, Alforque CV, Silver MA. Effects of involuntary and voluntary attention on critical spacing of visual crowding. J Vis 2023; 23:2. [PMID: 36862108 PMCID: PMC9987171 DOI: 10.1167/jov.23.3.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Visual spatial attention can be allocated in two distinct ways: one that is voluntarily directed to behaviorally relevant locations in the world, and one that is involuntarily captured by salient external stimuli. Precueing spatial attention has been shown to improve perceptual performance on a number of visual tasks. However, the effects of spatial attention on visual crowding, defined as the reduction in the ability to identify target objects in clutter, are far less clear. In this study, we used an anticueing paradigm to separately measure the effects of involuntary and voluntary spatial attention on a crowding task. Each trial began with a brief peripheral cue that predicted that the crowded target would appear on the opposite side of the screen 80% of the time and on the same side of the screen 20% of the time. Subjects performed an orientation discrimination task on a target Gabor patch that was flanked by other similar Gabor patches with independent random orientations. For trials with a short stimulus onset asynchrony between cue and target, involuntary capture of attention led to faster response times and smaller critical spacing when the target appeared on the cue side. For trials with a long stimulus onset asynchrony, voluntary allocation of attention led to faster reaction times but no significant effect on critical spacing when the target appeared on the opposite side to the cue. We additionally found that the magnitudes of these cueing effects of involuntary and voluntary attention were not strongly correlated across subjects for either reaction time or critical spacing.
Collapse
Affiliation(s)
- Joel D Bowen
- Vision Science Graduate Group, University of California Berkeley, Berkeley, CA, USA.,
| | - Carissa V Alforque
- Herbert Wertheim School of Optometry & Vision Science, University of California Berkeley, Berkeley, CA, USA.,
| | - Michael A Silver
- Vision Science Graduate Group, University of California Berkeley, Berkeley, CA, USA.,Herbert Wertheim School of Optometry & Vision Science, University of California Berkeley, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.,
| |
Collapse
|
4
|
Li Y, Wang T, Yang Y, Dai W, Wu Y, Li L, Han C, Zhong L, Li L, Wang G, Dou F, Xing D. Cascaded normalizations for spatial integration in the primary visual cortex of primates. Cell Rep 2022; 40:111221. [PMID: 35977486 DOI: 10.1016/j.celrep.2022.111221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022] Open
Abstract
Spatial integration of visual information is an important function in the brain. However, neural computation for spatial integration in the visual cortex remains unclear. In this study, we recorded laminar responses in V1 of awake monkeys driven by visual stimuli with grating patches and annuli of different sizes. We find three important response properties related to spatial integration that are significantly different between input and output layers: neurons in output layers have stronger surround suppression, smaller receptive field (RF), and higher sensitivity to grating annuli partially covering their RFs. These interlaminar differences can be explained by a descriptive model composed of two global divisions (normalization) and a local subtraction. Our results suggest suppressions with cascaded normalizations (CNs) are essential for spatial integration and laminar processing in the visual cortex. Interestingly, the features of spatial integration in convolutional neural networks, especially in lower layers, are different from our findings in V1.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lianfeng Li
- China Academy of Launch Vehicle Technology, Beijing 100076, China
| | - Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lvyan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing 100005, China
| | - Gang Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100005, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
5
|
Dual counterstream architecture may support separation between vision and predictions. Conscious Cogn 2022; 103:103375. [DOI: 10.1016/j.concog.2022.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/03/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
6
|
Srinath R, Ruff DA, Cohen MR. Attention improves information flow between neuronal populations without changing the communication subspace. Curr Biol 2021; 31:5299-5313.e4. [PMID: 34699782 PMCID: PMC8665027 DOI: 10.1016/j.cub.2021.09.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Visual attention allows observers to change the influence of different parts of a visual scene on their behavior, suggesting that information can be flexibly shared between visual cortex and neurons involved in decision making. We investigated the neural substrate of flexible information routing by analyzing the activity of populations of visual neurons in the medial temporal area (MT) and oculo-motor neurons in the superior colliculus (SC) while rhesus monkeys switched spatial attention. We demonstrated that attention increases the efficacy of visuomotor communication: trial-to-trial variability in SC population activity could be better predicted by the activity of the MT population (and vice versa) when attention was directed toward their joint receptive fields. Surprisingly, this improvement in prediction was not explained by changes in the dimensionality of the shared subspace or in the magnitude of local or shared pairwise noise correlations. These results lay a foundation for future theoretical and experimental studies into how visual attention can flexibly change information flow between sensory and decision neurons.
Collapse
Affiliation(s)
- Ramanujan Srinath
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Douglas A Ruff
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marlene R Cohen
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Abstract
Visual processing is dynamically controlled by multiple neuromodulatory molecules that modify the responsiveness of neurons and the strength of the connections between them. In particular, modulatory control of processing in the lateral geniculate nucleus of the thalamus, V1, and V2 will alter the outcome of all subsequent processing of visual information, including the extent to and manner in which individual inputs contribute to perception and decision making and are stored in memory. This review addresses five small-molecule neuromodulators-acetylcholine, dopamine, serotonin, noradrenaline, and histamine-considering the structural basis for their action, and the effects of their release, in the early visual pathway of the macaque monkey. Traditionally, neuromodulators are studied in isolation and in discrete circuits; this review makes a case for considering the joint action of modulatory molecules and differences in modulatory effects across brain areas as a better means of understanding the diverse roles that these molecules serve.
Collapse
Affiliation(s)
- Anita A Disney
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA;
| |
Collapse
|
8
|
Pfeffer T, Ponce-Alvarez A, Tsetsos K, Meindertsma T, Gahnström CJ, van den Brink RL, Nolte G, Engel AK, Deco G, Donner TH. Circuit mechanisms for the chemical modulation of cortex-wide network interactions and behavioral variability. SCIENCE ADVANCES 2021; 7:eabf5620. [PMID: 34272245 PMCID: PMC8284895 DOI: 10.1126/sciadv.abf5620] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/03/2021] [Indexed: 05/07/2023]
Abstract
Influential theories postulate distinct roles of catecholamines and acetylcholine in cognition and behavior. However, previous physiological work reported similar effects of these neuromodulators on the response properties (specifically, the gain) of individual cortical neurons. Here, we show a double dissociation between the effects of catecholamines and acetylcholine at the level of large-scale interactions between cortical areas in humans. A pharmacological boost of catecholamine levels increased cortex-wide interactions during a visual task, but not rest. An acetylcholine boost decreased interactions during rest, but not task. Cortical circuit modeling explained this dissociation by differential changes in two circuit properties: the local excitation-inhibition balance (more strongly increased by catecholamines) and intracortical transmission (more strongly reduced by acetylcholine). The inferred catecholaminergic mechanism also predicted noisier decision-making, which we confirmed for both perceptual and value-based choice behavior. Our work highlights specific circuit mechanisms for shaping cortical network interactions and behavioral variability by key neuromodulatory systems.
Collapse
Affiliation(s)
- Thomas Pfeffer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adrian Ponce-Alvarez
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Konstantinos Tsetsos
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Meindertsma
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Christoffer Julius Gahnström
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruud Lucas van den Brink
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Karl Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Tobias Hinrich Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
9
|
Dasilva M, Brandt C, Alwin Gieselmann M, Distler C, Thiele A. Contribution of Ionotropic Glutamatergic Receptors to Excitability and Attentional Signals in Macaque Frontal Eye Field. Cereb Cortex 2021; 31:3266-3284. [PMID: 33626129 PMCID: PMC8196243 DOI: 10.1093/cercor/bhab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/27/2022] Open
Abstract
Top-down attention, controlled by frontal cortical areas, is a key component of cognitive operations. How different neurotransmitters and neuromodulators flexibly change the cellular and network interactions with attention demands remains poorly understood. While acetylcholine and dopamine are critically involved, glutamatergic receptors have been proposed to play important roles. To understand their contribution to attentional signals, we investigated how ionotropic glutamatergic receptors in the frontal eye field (FEF) of male macaques contribute to neuronal excitability and attentional control signals in different cell types. Broad-spiking and narrow-spiking cells both required N-methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation for normal excitability, thereby affecting ongoing or stimulus-driven activity. However, attentional control signals were not dependent on either glutamatergic receptor type in broad- or narrow-spiking cells. A further subdivision of cell types into different functional types using cluster-analysis based on spike waveforms and spiking characteristics did not change the conclusions. This can be explained by a model where local blockade of specific ionotropic receptors is compensated by cell embedding in large-scale networks. It sets the glutamatergic system apart from the cholinergic system in FEF and demonstrates that a reduction in excitability is not sufficient to induce a reduction in attentional control signals.
Collapse
Affiliation(s)
- Miguel Dasilva
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,College of Medicine and Health, University of Exeter, EX1 2LU, UK
| | - Christian Brandt
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Institute of Clinical Research, University of Southern Denmark, DK-5230 Odense, Denmark
| | | | - Claudia Distler
- Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, Bochum 44801 Germany
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
Lockhofen DEL, Mulert C. Neurochemistry of Visual Attention. Front Neurosci 2021; 15:643597. [PMID: 34025339 PMCID: PMC8133366 DOI: 10.3389/fnins.2021.643597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Visual attention is the cognitive process that mediates the selection of important information from the environment. This selection is usually controlled by bottom-up and top-down attentional biasing. Since for most humans vision is the dominant sense, visual attention is critically important for higher-order cognitive functions and related deficits are a core symptom of many neuropsychiatric and neurological disorders. Here, we summarize the importance and relative contributions of different neuromodulators and neurotransmitters to the neural mechanisms of top-down and bottom-up attentional control. We will not only review the roles of widely accepted neuromodulators, such as acetylcholine, dopamine and noradrenaline, but also the contributions of other modulatory substances. In doing so, we hope to shed some light on the current understanding of the role of neurochemistry in shaping neuron properties contributing to the allocation of attention in the visual field.
Collapse
Affiliation(s)
| | - Christoph Mulert
- Center for Psychiatry and Psychotherapy, Justus-Liebig University, Hessen, Germany
| |
Collapse
|
11
|
Herrero JL, Thiele A. Effects of muscarinic and nicotinic receptors on contextual modulation in macaque area V1. Sci Rep 2021; 11:8384. [PMID: 33863988 PMCID: PMC8052350 DOI: 10.1038/s41598-021-88044-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023] Open
Abstract
Context affects the salience and visibility of image elements in visual scenes. Collinear flankers can enhance or decrease the perceptual and neuronal sensitivity to flanked stimuli. These effects are mediated through lateral interactions between neurons in the primary visual cortex (area V1), in conjunction with feedback from higher visual areas. The strength of lateral interactions is affected by cholinergic neuromodulation. Blockade of muscarinic receptors should increase the strength of lateral intracortical interactions, while nicotinic blockade should reduce thalamocortical feed-forward drive. Here we test this proposal through local iontophoretic application of the muscarinic receptor antagonist scopolamine and the nicotinic receptor antagonist mecamylamine, while recording single cells in parafoveal representations in awake fixating macaque V1. Collinear flankers generally reduced neuronal contrast sensitivity. Muscarinic and nicotinic receptor blockade equally reduced neuronal contrast sensitivity. Contrary to our hypothesis, flanker interactions were not systematically affected by either receptor blockade.
Collapse
Affiliation(s)
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
12
|
Ferro D, van Kempen J, Boyd M, Panzeri S, Thiele A. Directed information exchange between cortical layers in macaque V1 and V4 and its modulation by selective attention. Proc Natl Acad Sci U S A 2021; 118:e2022097118. [PMID: 33723059 PMCID: PMC8000025 DOI: 10.1073/pnas.2022097118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Achieving behavioral goals requires integration of sensory and cognitive information across cortical laminae and cortical regions. How this computation is performed remains unknown. Using local field potential recordings and spectrally resolved conditional Granger causality (cGC) analysis, we mapped visual information flow, and its attentional modulation, between cortical layers within and between macaque brain areas V1 and V4. Stimulus-induced interlaminar information flow within V1 dominated upwardly, channeling information toward supragranular corticocortical output layers. Within V4, information flow dominated from granular to supragranular layers, but interactions between supragranular and infragranular layers dominated downwardly. Low-frequency across-area communication was stronger from V4 to V1, with little layer specificity. Gamma-band communication was stronger in the feedforward V1-to-V4 direction. Attention to the receptive field of V1 decreased communication between all V1 layers, except for granular-to-supragranular layer interactions. Communication within V4, and from V1 to V4, increased with attention across all frequencies. While communication from V4 to V1 was stronger in lower-frequency bands (4 to 25 Hz), attention modulated cGCs from V4 to V1 across all investigated frequencies. Our data show that top-down cognitive processes result in reduced communication within cortical areas, increased feedforward communication across all frequency bands, and increased gamma-band feedback communication.
Collapse
Affiliation(s)
- Demetrio Ferro
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, 38068 Rovereto, Italy
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Jochem van Kempen
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Michael Boyd
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy;
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| |
Collapse
|
13
|
Karaduman A, Karoglu-Eravsar ET, Kaya U, Aydin A, Adams MM, Kafaligonul H. The optomotor response of aging zebrafish reveals a complex relationship between visual motion characteristics and cholinergic system. Neurobiol Aging 2020; 98:21-32. [PMID: 33227566 DOI: 10.1016/j.neurobiolaging.2020.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
Understanding the principles underlying age-related changes in motion perception is paramount for improving the quality of life and health of older adults. However, the mechanisms underlying age-related alterations in this aspect of vision, which is essential for survival in a dynamic world, still remain unclear. Using optomotor responses to drifting gratings, we investigated age-related changes in motion detection of adult zebrafish (wild-type/AB-strain and achesb55/+ mutants with decreased levels of acetylcholinesterase). Our results pointed out negative optomotor responses that significantly depend on the spatial frequency and contrast level of stimulation, providing supporting evidence for the visual motion-driven aspect of this behavior mainly exhibited by adult zebrafish. Although there were no significant main effects of age and genotype, we found a significant three-way interaction between contrast level, age, and genotype. In the contrast domain, the changes in optomotor responses and thus in the detection of motion direction were age- and genotype-specific. Accordingly, these behavioral findings suggest a strong but complicated relationship between visual motion characteristics and the cholinergic system during neural aging.
Collapse
Affiliation(s)
- Aysenur Karaduman
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Elif Tugce Karoglu-Eravsar
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Utku Kaya
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Alaz Aydin
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey
| | - Hulusi Kafaligonul
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.
| |
Collapse
|
14
|
Fernandes TP, Hovis JK, Almeida N, Souto JJS, Bonifacio TA, Rodrigues S, Silva GM, Andrade MO, Silva JB, Gomes GH, Oliveira ME, Lima EH, Gomes ME, Junior MVA, Martins ML, Santos NA. Effects of Nicotine Gum Administration on Vision (ENIGMA-Vis): Study Protocol of a Double-Blind, Randomized, and Controlled Clinical Trial. Front Hum Neurosci 2020; 14:314. [PMID: 33100983 PMCID: PMC7506462 DOI: 10.3389/fnhum.2020.00314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/12/2023] Open
Abstract
Studies reported that tobacco addiction was related to visual impairments, but one unresolved issue is whether the impairments are related to the many compounds existing in the cigarettes or to the effects of nicotine. On the other hand, nicotine gum can be used as replacement therapy or as a neuroprotective agent for some diseases. The main purpose of this controlled trial is to investigate the effects of nicotine gum on vision. The ENIGMA-Vis trial aims to compare two dosages of nicotine gum (2 and 4 mg) and a placebo gum in a randomized, double-blind, placebo-controlled trial of 100 participants to be allocated into a single group assignment of repeated measures (two studies; N = 50 for each one). Eligibility criteria are healthy non-smokers not diagnosed with substance abuse and without an acute or chronic medical condition. Intervention will last three sessions for each participant with a window frame of 1 week per session. Study outcomes are (1) short-term effects of nicotine gum on contrast sensitivity; (2) short-term effects of nicotine gum on chromatic contrast discrimination; and (3) whether demographics, body mass index, or serum cotinine predicts response of visual processing. This study addresses an important gap in the effects of nicotine on vision. One of the main takeaways of this study is to understand the effects of nicotine on contrast sensitivity and chromatic contrast discrimination. This information will provide a further understanding of how nicotine interacts with early visual processes and help determine how the different components present during smoking can affect vision. Clinical Trial Registration Number: RBR-46tjy3.
Collapse
Affiliation(s)
- Thiago P Fernandes
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Jeffery K Hovis
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Natalia Almeida
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Jandirlly J S Souto
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Thiago Augusto Bonifacio
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Stephanye Rodrigues
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Gabriella Medeiros Silva
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Michael Oliveira Andrade
- Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Department of Psychology, State University of Minas Gerais, Belo Horizonte, Brazil
| | - Jessica Bruna Silva
- Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Department of Psychology, State University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Milena Edite Oliveira
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Eveline Holanda Lima
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Maria Eduarda Gomes
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Marcos V A Junior
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Mariana Lopes Martins
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Department of Speech Therapy, Federal University of Paraiba, João Pessoa, Brazil
| | - Natanael A Santos
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
15
|
Long-range inputome of cortical neurons containing corticotropin-releasing hormone. Sci Rep 2020; 10:12209. [PMID: 32699360 PMCID: PMC7376058 DOI: 10.1038/s41598-020-68115-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022] Open
Abstract
Dissection of the neural circuits of the cerebral cortex is essential for studying mechanisms underlying brain function. Herein, combining a retrograde rabies tracing system with fluorescent micro-optical sectional tomography, we investigated long-range input neurons of corticotropin-releasing hormone containing neurons in the six main cortical areas, including the prefrontal, somatosensory, motor, auditory, and visual cortices. The whole brain distribution of input neurons showed similar patterns to input neurons distributed mainly in the adjacent cortical areas, thalamus, and basal forebrain. Reconstruction of continuous three-dimensional datasets showed the anterior and middle thalamus projected mainly to the rostral cortex whereas the posterior and lateral projected to the caudal cortex. In the basal forebrain, immunohistochemical staining showed these cortical areas received afferent information from cholinergic neurons in the substantia innominata and lateral globus pallidus, whereas cholinergic neurons in the diagonal band nucleus projected strongly to the prefrontal and visual cortex. Additionally, dense neurons in the zona incerta and ventral hippocampus were found to project to the prefrontal cortex. These results showed general patterns of cortical input circuits and unique connection patterns of each individual area, allowing for valuable comparisons among the organisation of different cortical areas and new insight into cortical functions.
Collapse
|
16
|
Vaucher E, Laliberté G, Higgins MC, Maheux M, Jolicoeur P, Chamoun M. Cholinergic potentiation of visual perception and vision restoration in rodents and humans. Restor Neurol Neurosci 2020; 37:553-569. [PMID: 31839615 DOI: 10.3233/rnn-190947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The cholinergic system is a potent neuromodulator system that plays a critical role in cortical plasticity, attention, and learning. Recently, it was found that boosting this system during perceptual learning robustly enhances sensory perception in rodents. In particular, pairing cholinergic activation with visual stimulation increases neuronal responses, cue detection ability, and long-term facilitation in the primary visual cortex. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation, and modulation of the excitatory/inhibitory balance. Some studies currently examine this effect in humans. OBJECTIVE The present article reviews the research from our laboratory, examining whether potentiating the central cholinergic system could help visual perception and restoration. METHODS Electrophysiological or pharmacological enhancement of the cholinergic system are administered during a visual training. Electrophysiological responses and perceptual learning performance are investigated before and after the training in rats and humans. This approach's ability to restore visual capacities following a visual deficit induced by a partial optic nerve crush is also investigated in rats. RESULTS The coupling of visual training to cholinergic stimulation improved visual discrimination and visual acuity in rats, and improved residual vision after a deficit. These changes were due to muscarinic and nicotinic transmissions and were associated with a functional improvement of evoked potentials. In humans, potentiation of cholinergic transmission with 5 mg of donepezil showed improved learning and ocular dominance plasticity, although this treatment was ineffective in augmenting the perceptual threshold and electroencephalography. CONCLUSIONS Potential therapeutic outcomes ought to facilitate vision restoration using commercially available cholinergic agents combined with visual stimulation in order to prevent irreversible vision loss in patients. This approach has the potential to help a large population of visually impaired individuals.
Collapse
Affiliation(s)
- Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada
| | - Guillaume Laliberté
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Marie-Charlotte Higgins
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Manon Maheux
- Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada.,Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Jolicoeur
- Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada.,Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Mira Chamoun
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
17
|
Byrne KN, McDevitt EA, Sheremata SL, Peters MW, Mednick SC, Silver MA. Transient cholinergic enhancement does not significantly affect either the magnitude or selectivity of perceptual learning of visual texture discrimination. J Vis 2020; 20:5. [PMID: 32511666 PMCID: PMC7416900 DOI: 10.1167/jov.20.6.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Perceptual learning (PL), often characterized by improvements in perceptual performance with training that are specific to the stimulus conditions used during training, exemplifies experience-dependent cortical plasticity. An improved understanding of how neuromodulatory systems shape PL promises to provide new insights into the mechanisms of plasticity, and by extension how PL can be generated and applied most efficiently. Previous studies have reported enhanced PL in human subjects following administration of drugs that increase signaling through acetylcholine (ACh) receptors, and physiological evidence indicates that ACh sharpens neuronal selectivity, suggesting that this neuromodulator supports PL and its stimulus specificity. Here we explored the effects of enhancing endogenous cholinergic signaling during PL of a visual texture discrimination task. We found that training on this task in the lower visual field yielded significant behavioral improvement at the trained location. However, a single dose of the cholinesterase inhibitor donepezil, administered before training, did not significantly impact either the magnitude or the location specificity of texture discrimination learning compared with placebo. We discuss potential explanations for discrepant findings in the literature regarding the role of ACh in visual PL, including possible differences in plasticity mechanisms in the dorsal and ventral cortical processing streams.
Collapse
|
18
|
Sajedin A, Menhaj MB, Vahabie AH, Panzeri S, Esteky H. Cholinergic Modulation Promotes Attentional Modulation in Primary Visual Cortex- A Modeling Study. Sci Rep 2019; 9:20186. [PMID: 31882838 PMCID: PMC6934489 DOI: 10.1038/s41598-019-56608-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Attention greatly influences sensory neural processing by enhancing firing rates of neurons that represent the attended stimuli and by modulating their tuning properties. The cholinergic system is believed to partly mediate the attention contingent improvement of cortical processing by influencing neuronal excitability, synaptic transmission and neural network characteristics. Here, we used a biophysically based model to investigate the mechanisms by which cholinergic system influences sensory information processing in the primary visual cortex (V1) layer 4C. The physiological properties and architectures of our model were inspired by experimental data and include feed-forward input from dorsal lateral geniculate nucleus that sets up orientation preference in V1 neural responses. When including a cholinergic drive, we found significant sharpening in orientation selectivity, desynchronization of LFP gamma power and spike-field coherence, decreased response variability and correlation reduction mostly by influencing intracortical interactions and by increasing inhibitory drive. Our results indicated that these effects emerged due to changes specific to the behavior of the inhibitory neurons. The behavior of our model closely resembles the effects of attention on neural activities in monkey V1. Our model suggests precise mechanisms through which cholinergic modulation may mediate the effects of attention in the visual cortex.
Collapse
Affiliation(s)
- Atena Sajedin
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave., 15875-4413, Tehran, Iran
| | - Mohammad Bagher Menhaj
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave., 15875-4413, Tehran, Iran.
| | - Abdol-Hossein Vahabie
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), 19395-5746, Tehran, Iran
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068, Rovereto, Italy
| | - Hossein Esteky
- Research Group for Brain and Cognitive Sciences, School of Medicine, Shahid Beheshti Medical University, 19839-63113, Tehran, Iran.
| |
Collapse
|
19
|
Cell class-specific modulation of attentional signals by acetylcholine in macaque frontal eye field. Proc Natl Acad Sci U S A 2019; 116:20180-20189. [PMID: 31527242 PMCID: PMC6778228 DOI: 10.1073/pnas.1905413116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Attention is critical to high-level cognition, and attentional deficits are a hallmark of cognitive dysfunction. A key transmitter for attentional control is acetylcholine, but its cellular actions in attention-controlling areas remain poorly understood. Here we delineate how muscarinic and nicotinic receptors affect basic neuronal excitability and attentional control signals in different cell types in macaque frontal eye field. We found that broad spiking and narrow spiking cells both require muscarinic and nicotinic receptors for normal excitability, thereby affecting ongoing or stimulus-driven activity. Attentional control signals depended on muscarinic, not nicotinic receptors in broad spiking cells, while they depended on both muscarinic and nicotinic receptors in narrow spiking cells. Cluster analysis revealed that muscarinic and nicotinic effects on attentional control signals were highly selective even for different subclasses of narrow spiking cells and of broad spiking cells. These results demonstrate that cholinergic receptors are critical to establish attentional control signals in the frontal eye field in a cell type-specific manner.
Collapse
|
20
|
Towards a Unified View on Pathways and Functions of Neural Recurrent Processing. Trends Neurosci 2019; 42:589-603. [PMID: 31399289 DOI: 10.1016/j.tins.2019.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 11/20/2022]
Abstract
There are three neural feedback pathways to the primary visual cortex (V1): corticocortical, pulvinocortical, and cholinergic. What are the respective functions of these three projections? Possible functions range from contextual modulation of stimulus processing and feedback of high-level information to predictive processing (PP). How are these functions subserved by different pathways and can they be integrated into an overarching theoretical framework? We propose that corticocortical and pulvinocortical connections are involved in all three functions, whereas the role of cholinergic projections is limited by their slow response to stimuli. PP provides a broad explanatory framework under which stimulus-context modulation and high-level processing are subsumed, involving multiple feedback pathways that provide mechanisms for inferring and interpreting what sensory inputs are about.
Collapse
|
21
|
Thiele A, Bellgrove MA. Neuromodulation of Attention. Neuron 2019; 97:769-785. [PMID: 29470969 PMCID: PMC6204752 DOI: 10.1016/j.neuron.2018.01.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
Attention is critical to high-level cognition and attention deficits are a hallmark of neurologic and neuropsychiatric disorders. Although years of research indicates that distinct neuromodulators influence attentional control, a mechanistic account that traverses levels of analysis (cells, circuits, behavior) is missing. However, such an account is critical to guide the development of next-generation pharmacotherapies aimed at forestalling or remediating the global burden associated with disorders of attention. Here, we summarize current neuroscientific understanding of how attention affects single neurons and networks of neurons. We then review key results that have informed our understanding of how neuromodulation shapes these neuron and network properties and thereby enables the appropriate allocation of attention to relevant external or internal events. Finally, we highlight areas where we believe hypotheses can be formulated and tackled experimentally in the near future, thereby critically increasing our mechanistic understanding of how attention is implemented at the cellular and network levels.
Collapse
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | - Mark A Bellgrove
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN) and School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
22
|
Krueger J, Disney AA. Structure and function of dual-source cholinergic modulation in early vision. J Comp Neurol 2018; 527:738-750. [PMID: 30520037 DOI: 10.1002/cne.24590] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Behavioral states such as arousal and attention have profound effects on sensory processing, determining how-even whether-a stimulus is perceived. This state-dependence is believed to arise, at least in part, in response to inputs from subcortical structures that release neuromodulators such as acetylcholine, often nonsynaptically. The mechanisms that underlie the interaction between these nonsynaptic signals and the more point-to-point synaptic cortical circuitry are not well understood. This review highlights the state of the field, with a focus on cholinergic action in early visual processing. Key anatomical and physiological features of both the cholinergic and the visual systems are discussed. Furthermore, presenting evidence of cholinergic modulation in visual thalamus and primary visual cortex, we explore potential functional roles of acetylcholine and its effects on the processing of visual input over the sleep-wake cycle, sensory gain control during wakefulness, and consider evidence for cholinergic support of visual attention.
Collapse
Affiliation(s)
- Juliane Krueger
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Anita A Disney
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
23
|
Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G, Role LW, Ananth M, Rajebhosale P, Talmage DA, Hasselmo ME, Dannenberg H, Minces VH, Chiba AA. Specific Basal Forebrain-Cortical Cholinergic Circuits Coordinate Cognitive Operations. J Neurosci 2018; 38:9446-9458. [PMID: 30381436 PMCID: PMC6209837 DOI: 10.1523/jneurosci.1676-18.2018] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits. ACh selectively modulates dynamics for encoding and attention within individual cortical circuits, allows for important transitions during sleep, and shapes the fidelity of sensory processing by changing the correlation structure of neural firing. The importance of this system for integrated and fluid behavioral function is underscored by its disease-modifying role; the demise of BF cholinergic neurons has long been established in Alzheimer's disease and recent studies have revealed the involvement of the cholinergic system in modulation of anxiety-related circuits. Therefore, the BF cholinergic system plays a pivotal role in modulating the dynamics of the brain during sleep and behavior, as foretold by the intricacies of its anatomical map.
Collapse
Affiliation(s)
- Laszlo Záborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102,
| | - Peter Gombkoto
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Peter Varsanyi
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Matthew R Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Gina Poe
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095
| | - Lorna W Role
- Department of Neurobiology and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Mala Ananth
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Prithviraj Rajebhosale
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - David A Talmage
- Department of Pharmacological Sciences and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Michael E Hasselmo
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Holger Dannenberg
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Victor H Minces
- Department of Cognitive Science, University of California, San Diego 92093
| | - Andrea A Chiba
- Department of Cognitive Science, University of California, San Diego 92093
| |
Collapse
|
24
|
Wei H, Wang L. A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing. SENSORS 2018; 18:s18072116. [PMID: 30004415 PMCID: PMC6069452 DOI: 10.3390/s18072116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 12/05/2022]
Abstract
For robots equipped with an advanced computer vision-based system, object recognition has stringent real-time requirements. When the environment becomes complicated and keeps changing, existing works (e.g., template-matching strategy and machine-learning strategy) are computationally expensive, compromising object recognition performance and even stability. In order to detect objects accurately, it is necessary to build an efficient imaging sensor architecture as the neural architecture. Inspired by the neural mechanism of primary visual cortex, this paper presents an efficient three-layer architecture and proposes an approach of constraint propagation examination to efficiently extract and process information (linear contour). Through applying this architecture in the preprocessing phase to extract lines, the running time of object detection is decreased dramatically because not only are all lines represented as very simple vectors, but also the number of lines is very limited. In terms of the second measure of improving efficiency, we apply a shape-based recognition method because it does not need any high-dimensional feature descriptor, long-term training, or time-expensive preprocessing. The final results perform well. It is proved that detection performance is good. The brain is the result of natural optimization, so we conclude that a visual cortex-inspired imaging sensor architecture can greatly improve the efficiency of information processing.
Collapse
Affiliation(s)
- Hui Wei
- Laboratory of Cognitive Model and Algorithm, Department of Computer Science, Fudan University, No. 825 Zhangheng Road, Shanghai 201203, China.
- Shanghai Key Laboratory of Data Science, No. 220 Handan Road, Shanghai 200433, China.
| | - Luping Wang
- Laboratory of Cognitive Model and Algorithm, Department of Computer Science, Fudan University, No. 825 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
25
|
Huppé-Gourgues F, Jegouic K, Vaucher E. Topographic Organization of Cholinergic Innervation From the Basal Forebrain to the Visual Cortex in the Rat. Front Neural Circuits 2018; 12:19. [PMID: 29662442 PMCID: PMC5890115 DOI: 10.3389/fncir.2018.00019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022] Open
Abstract
Acetylcholine is an important neurotransmitter for the regulation of visual attention, plasticity, and perceptual learning. It is released in the visual cortex predominantly by cholinergic projections from the basal forebrain, where stimulation may produce potentiation of visual processes. However, little is known about the fine organization of these corticopetal projections, such as whether basal forebrain neurons projecting to the primary and secondary visual cortical areas (V1 and V2, respectively) are organized retinotopically. The aim of this study was to map these basal forebrain-V1/V2 projections. Microinjections of the fluorescent retrograde tracer cholera toxin b fragment in different sites within V1 and V2 in Long–Evans rats were performed. Retrogradely labeled cell bodies in the horizontal and vertical limbs of the diagonal band of Broca (HDB and VDB, respectively), nucleus basalis magnocellularis, and substantia innominata (SI), were mapped ex vivo with a computer-assisted microscope stage controlled by stereological software. Choline acetyltranferase immunohistochemistry was used to identify cholinergic cells. Our results showed a predominance of cholinergic projections coming from the HDB. These projections were not retinotopically organized but projections to V1 arised from neurons located in the anterior HDB/SI whereas projections to V2 arised from neurons located throughout the whole extent of HDB/SI. The absence of a clear topography of these projections suggests that BF activation can stimulate visual cortices broadly.
Collapse
Affiliation(s)
- Frédéric Huppé-Gourgues
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montreal, QC, Canada.,École de Psychologie, Université de Moncton, Moncton, NB, Canada
| | - Karim Jegouic
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
26
|
Lean GA, Liu YJ, Lyon DC. Cell type specific tracing of the subcortical input to primary visual cortex from the basal forebrain. J Comp Neurol 2018; 527:589-599. [PMID: 29441578 DOI: 10.1002/cne.24412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/04/2023]
Abstract
The basal forebrain provides cholinergic inputs to primary visual cortex (V1) that play a key modulatory role on visual function. While basal forebrain afferents terminate in the infragranular layers of V1, acetylcholine is delivered to more superficial layers through volume transmission. Nevertheless, direct synaptic contact in deep layers 5 and 6 may provide a more immediate effect on V1 modulation. Using helper viruses with cell type specific promoters to target retrograde infection of pseudotyped and genetically modified rabies virus evidence was found for direct synaptic input onto V1 inhibitory neurons. These inputs were similar in number to geniculocortical inputs and, therefore, considered robust. In contrast, while clear evidence for dorsal lateral geniculate nucleus input to V1 excitatory neurons was found, there was no evidence of direct synaptic input from the basal forebrain. These results suggest a direct and more immediate influence of the basal forebrain on local V1 inhibition.
Collapse
Affiliation(s)
- Georgina A Lean
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, California.,Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| | - Yong-Jun Liu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| | - David C Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| |
Collapse
|
27
|
Coppola JJ, Disney AA. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems. Front Neural Circuits 2018; 12:8. [PMID: 29440996 PMCID: PMC5797555 DOI: 10.3389/fncir.2018.00008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.
Collapse
Affiliation(s)
- Jennifer J. Coppola
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Anita A. Disney
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
28
|
Harewood Smith AN, Challa JA, Silver MA. Neither Cholinergic Nor Dopaminergic Enhancement Improve Spatial Working Memory Precision in Humans. Front Neural Circuits 2017; 11:94. [PMID: 29259546 PMCID: PMC5723298 DOI: 10.3389/fncir.2017.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/14/2017] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine and dopamine are neurotransmitters that play multiple important roles in perception and cognition. Pharmacological cholinergic enhancement reduces excitatory receptive field size of neurons in marmoset primary visual cortex and sharpens the spatial tuning of visual perception and visual cortical fMRI responses in humans. Moreover, previous studies show that manipulation of cholinergic or dopaminergic signaling alters the spatial tuning of macaque prefrontal cortical neurons during the delay period of a spatial working memory (SWM) task and can improve SWM performance in macaque monkeys and human subjects. Here, we investigated the effects of systemic cholinergic and dopaminergic enhancement on the precision of SWM, as measured behaviorally in human subjects. Cholinergic transmission was increased by oral administration of 5 mg of the cholinesterase inhibitor donepezil, and dopaminergic signaling was enhanced with 100 mg levodopa/10 mg carbidopa. Each neurotransmitter system was separately investigated in double-blind placebo-controlled studies. On each trial of the SWM task, a square was presented for 150 ms at a random location along an invisible circle with a radius of 12 degrees of visual angle, followed by a 900 ms delay period with no stimulus shown on the screen. Then, the square was presented at new location, displaced in either a clockwise (CW) or counterclockwise (CCW) direction along the circle. Subjects used their memory of the location of the original square to report the direction of displacement. SWM precision was defined as the amount of displacement corresponding to 75% correct performance. We observed no significant effect on SWM precision for either donepezil or levodopa/carbidopa. There was also no significant effect on performance on the SWM task (percent correct across all trials) for either donepezil or levodopa/carbidopa. Thus, despite evidence that acetylcholine and dopamine regulate spatial tuning of individual neurons and can improve performance of SWM tasks, pharmacological enhancement of signaling of these neurotransmitters does not substantially affect a behavioral measure of the precision of SWM in humans.
Collapse
Affiliation(s)
- Adeola N Harewood Smith
- Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, United States
| | - Jnana Aditya Challa
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Michael A Silver
- Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States.,School of Optometry, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
29
|
Herrero JL, Gieselmann MA, Thiele A. Muscarinic and Nicotinic Contribution to Contrast Sensitivity of Macaque Area V1 Neurons. Front Neural Circuits 2017; 11:106. [PMID: 29311843 PMCID: PMC5742228 DOI: 10.3389/fncir.2017.00106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/11/2017] [Indexed: 02/02/2023] Open
Abstract
Acetylcholine is a neuromodulator that shapes information processing in different cortical and subcortical areas. Cell type and location specific cholinergic receptor distributions suggest that acetylcholine in macaque striate cortex should boost feed-forward driven activity, while also reducing population excitability by increasing inhibitory tone. Studies using cholinergic agonists in anesthetized primate V1 have yielded conflicting evidence for such a proposal. Here we investigated how muscarinic or nicotinic receptor blockade affect neuronal excitability and contrast response functions in awake macaque area V1. Muscarinic or nicotinic receptor blockade caused reduced activity for all contrasts tested, without affecting the contrast where neurons reach their half maximal response (c50). The activity reduction upon muscarinic and nicotinic blockade resulted in reduced neuronal contrast sensitivity, as assessed through neurometric functions. In the majority of cells receptor blockade was best described by a response gain model (a multiplicative scaling of responses), indicating that ACh is involved in signal enhancement, not saliency filtering in macaque V1.
Collapse
|
30
|
Cholinergic Overstimulation Attenuates Rule Selectivity in Macaque Prefrontal Cortex. J Neurosci 2017; 38:1137-1150. [PMID: 29255006 DOI: 10.1523/jneurosci.3198-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine is released in the prefrontal cortex (PFC) and is a key modulator of cognitive performance in primates. Cholinergic stimulation has been shown to have beneficial effects on performance of cognitive tasks, and cholinergic receptors are being actively explored as promising targets for ameliorating cognitive deficits in Alzheimer's disease. We hypothesized that cholinergic stimulation of PFC during performance of a cognitive task would augment neuronal activity and neuronal coding of task attributes. We iontophoretically applied the general cholinergic receptor agonist carbachol onto neurons in dorsolateral PFC (DLPFC) of male rhesus macaques performing rule-guided prosaccades and antisaccades, a well established oculomotor task for testing cognitive control. Carbachol application had heterogeneous effects on neuronal excitability, with both excitation and suppression observed in significant proportions. Contrary to our prediction, neurons with rule-selective activity exhibited a reduction in selectivity during carbachol application. Cholinergic stimulation disrupted rule selectivity regardless of whether it had suppressive or excitatory effects on these neurons. In addition, cholinergic stimulation excited putative pyramidal neurons, whereas the activity of putative interneurons remained unchanged. Moreover, cholinergic stimulation attenuated saccade direction selectivity in putative pyramidal neurons due to nonspecific increases in activity. Our results suggest excessive cholinergic stimulation has detrimental effects on DLPFC representations of task attributes. These findings delineate the complexity and heterogeneity of neuromodulation of cerebral cortex by cholinergic stimulation, an area of active exploration with respect to the development of cognitive enhancers.SIGNIFICANCE STATEMENT The neurotransmitter acetylcholine is known to be important for cognitive processes in the prefrontal cortex. Removal of acetylcholine from prefrontal cortex can disrupt short-term memory performance and is reminiscent of Alzheimer's disease, which is characterized by degeneration of acetylcholine-producing neurons. Stimulation of cholinergic receptors is being explored to create cognitive enhancers for the treatment of Alzheimer's disease and other psychiatric diseases. Here, we stimulated cholinergic receptors in prefrontal cortex and examined its effects on neurons that are engaged in cognitive behavior. Surprisingly, cholinergic stimulation decreased neurons' ability to discriminate between rules. This work suggests that overstimulation of acetylcholine receptors could disrupt neuronal processing during cognition and is relevant to the design of cognitive enhancers based on stimulating the cholinergic system.
Collapse
|
31
|
Chung STL, Li RW, Silver MA, Levi DM. Donepezil Does Not Enhance Perceptual Learning in Adults with Amblyopia: A Pilot Study. Front Neurosci 2017; 11:448. [PMID: 28824369 PMCID: PMC5545606 DOI: 10.3389/fnins.2017.00448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022] Open
Abstract
Amblyopia is a developmental disorder that results in a wide range of visual deficits. One proven approach to recovering vision in adults with amblyopia is perceptual learning (PL). Recent evidence suggests that neuromodulators can enhance adult plasticity. In this pilot study, we asked whether donepezil, a cholinesterase inhibitor, enhances visual PL in adults with amblyopia. Nine adults with amblyopia were first trained on a low-contrast single-letter identification task while taking a daily dose (5 mg) of donepezil throughout training. Following 10,000 trials of training, participants showed improved contrast sensitivity for identifying single letters. However, the magnitude of improvement was no greater than, and the rate of improvement was slower than, that obtained in a previous study in which six adults with amblyopia were trained using an identical task and protocol but without donepezil (Chung et al., 2012). In addition, we measured transfer of learning effects to other tasks and found that for donepezil, the post-pre performance ratios in both a size-limited (acuity) and a spacing-limited (crowding) task were not significantly different from those found in the previous study without donepezil administration. After an interval of several weeks, six participants returned for a second course of training on identifying flanked (crowded) letters, again with concurrent donepezil administration. Although this task has previously been shown to be highly amenable to PL in adults with amblyopia (Chung et al., 2012; Hussain et al., 2012), only one observer in our study showed significant learning over 10,000 trials of training. Auxiliary experiments showed that the lack of a learning effect on this task during donepezil administration was not due to either the order of training of the two tasks or the use of a sequential training paradigm. Our results reveal that cholinergic enhancement with donepezil during training does not improve or speed up PL of single-letter identification in adults with amblyopia, and importantly, it may even halt learning and transfer related to a crowding task. Clinical Trial Registration: This study was registered with ClinicalTrials.gov (NCT03109314).
Collapse
Affiliation(s)
- Susana T L Chung
- School of Optometry, Vision Science Graduate Group, Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, United States
| | - Roger W Li
- School of Optometry, Vision Science Graduate Group, Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, United States
| | - Michael A Silver
- School of Optometry, Vision Science Graduate Group, Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, United States
| | - Dennis M Levi
- School of Optometry, Vision Science Graduate Group, Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
32
|
van Kempen J, Panzeri S, Thiele A. Cholinergic Control of Information Coding. Trends Neurosci 2017; 40:522-524. [PMID: 28693847 DOI: 10.1016/j.tins.2017.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
Specific forms of firing rate correlations can limit efficient information coding in neuronal populations. How this is mitigated is an important topic of current research. A novel study shows that increasing cortical acetylcholine (ACh) levels alter specific aspects of the population correlation structure, which in turn improves population-coding abilities.
Collapse
Affiliation(s)
- Jochem van Kempen
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Stefano Panzeri
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
33
|
Chalk M, Masset P, Deneve S, Gutkin B. Sensory noise predicts divisive reshaping of receptive fields. PLoS Comput Biol 2017; 13:e1005582. [PMID: 28622330 PMCID: PMC5509365 DOI: 10.1371/journal.pcbi.1005582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 07/13/2017] [Accepted: 05/10/2017] [Indexed: 11/18/2022] Open
Abstract
In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics.
Collapse
Affiliation(s)
- Matthew Chalk
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Paul Masset
- Department of Neuroscience, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Watson School of Biological Sciences, Cold Spring Harbor, New York, United States of America
| | - Sophie Deneve
- National Research University Higher School of Economics, Center for Cognition and Decision Making, Moscow, Russia
| | - Boris Gutkin
- National Research University Higher School of Economics, Center for Cognition and Decision Making, Moscow, Russia
- Group for Neural Theory, LNC INSERM U960, Departement d’Etudes Cognitive, Ecole Normale Superieure PSL* University, Paris, France
| |
Collapse
|
34
|
Abstract
A primary function of the brain is to form representations of the sensory world. Its capacity to do so depends on the relationship between signal correlations, associated with neuronal receptive fields, and noise correlations, associated with neuronal response variability. It was recently shown that the behavioral relevance of sensory stimuli can modify the relationship between signal and noise correlations, presumably increasing the encoding capacity of the brain. In this work, we use data from the visual cortex of the awake mouse watching naturalistic stimuli and show that a similar modification is observed under heightened cholinergic modulation. Increasing cholinergic levels in the cortex through optogenetic stimulation of basal forebrain cholinergic neurons decreases the dependency that is commonly observed between signal and noise correlations. Simulations of correlated neural networks with realistic firing statistics indicate that this change in the correlation structure increases the encoding capacity of the network.
Collapse
|
35
|
Cholinergic, But Not Dopaminergic or Noradrenergic, Enhancement Sharpens Visual Spatial Perception in Humans. J Neurosci 2017; 37:4405-4415. [PMID: 28336568 DOI: 10.1523/jneurosci.2405-16.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
The neuromodulator acetylcholine modulates spatial integration in visual cortex by altering the balance of inputs that generate neuronal receptive fields. These cholinergic effects may provide a neurobiological mechanism underlying the modulation of visual representations by visual spatial attention. However, the consequences of cholinergic enhancement on visuospatial perception in humans are unknown. We conducted two experiments to test whether enhancing cholinergic signaling selectively alters perceptual measures of visuospatial interactions in human subjects. In Experiment 1, a double-blind placebo-controlled pharmacology study, we measured how flanking distractors influenced detection of a small contrast decrement of a peripheral target, as a function of target-flanker distance. We found that cholinergic enhancement with the cholinesterase inhibitor donepezil improved target detection, and modeling suggested that this was mainly due to a narrowing of the extent of facilitatory perceptual spatial interactions. In Experiment 2, we tested whether these effects were selective to the cholinergic system or would also be observed following enhancements of related neuromodulators dopamine or norepinephrine. Unlike cholinergic enhancement, dopamine (bromocriptine) and norepinephrine (guanfacine) manipulations did not improve performance or systematically alter the spatial profile of perceptual interactions between targets and distractors. These findings reveal mechanisms by which cholinergic signaling influences visual spatial interactions in perception and improves processing of a visual target among distractors, effects that are notably similar to those of spatial selective attention.SIGNIFICANCE STATEMENT Acetylcholine influences how visual cortical neurons integrate signals across space, perhaps providing a neurobiological mechanism for the effects of visual selective attention. However, the influence of cholinergic enhancement on visuospatial perception remains unknown. Here we demonstrate that cholinergic enhancement improves detection of a target flanked by distractors, consistent with sharpened visuospatial perceptual representations. Furthermore, whereas most pharmacological studies focus on a single neurotransmitter, many neuromodulators can have related effects on cognition and perception. Thus, we also demonstrate that enhancing noradrenergic and dopaminergic systems does not systematically improve visuospatial perception or alter its tuning. Our results link visuospatial tuning effects of acetylcholine at the neuronal and perceptual levels and provide insights into the connection between cholinergic signaling and visual attention.
Collapse
|
36
|
Dannenberg H, Hinman JR, Hasselmo ME. Potential roles of cholinergic modulation in the neural coding of location and movement speed. ACTA ACUST UNITED AC 2016; 110:52-64. [PMID: 27677935 DOI: 10.1016/j.jphysparis.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | - James R Hinman
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
37
|
Shimegi S, Kimura A, Sato A, Aoyama C, Mizuyama R, Tsunoda K, Ueda F, Araki S, Goya R, Sato H. Cholinergic and serotonergic modulation of visual information processing in monkey V1. ACTA ACUST UNITED AC 2016; 110:44-51. [PMID: 27619519 DOI: 10.1016/j.jphysparis.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 11/30/2022]
Abstract
The brain dynamically changes its input-output relationship depending on the behavioral state and context in order to optimize information processing. At the molecular level, cholinergic/monoaminergic transmitters have been extensively studied as key players for the state/context-dependent modulation of brain function. In this paper, we review how cortical visual information processing in the primary visual cortex (V1) of macaque monkey, which has a highly differentiated laminar structure, is optimized by serotonergic and cholinergic systems by examining anatomical and in vivo electrophysiological aspects to highlight their similarities and distinctions. We show that these two systems have a similar layer bias for axonal fiber innervation and receptor distribution. The common target sites are the geniculorecipient layers and geniculocortical fibers, where the appropriate gain control is established through a geniculocortical signal transformation. Both systems exert activity-dependent response gain control across layers, but in a manner consistent with the receptor subtype. The serotonergic receptors 5-HT1B and 5HT2A modulate the contrast-response curve in a manner consistent with bi-directional response gain control, where the sign (facilitation/suppression) is switched according to the firing rate and is complementary to the other. On the other hand, cholinergic nicotinic/muscarinic receptors exert mono-directional response gain control without a sign reversal. Nicotinic receptors increase the response magnitude in a multiplicative manner, while muscarinic receptors exert both suppressive and facilitative effects. We discuss the implications of the two neuromodulator systems in hierarchical visual signal processing in V1 on the basis of the developed laminar structure.
Collapse
Affiliation(s)
- Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Akihiro Kimura
- Department of Healthcare, Osaka Health Science University, Toyonaka, Osaka 560-0043, Japan
| | - Akinori Sato
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Chisa Aoyama
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryo Mizuyama
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Keisuke Tsunoda
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Fuyuki Ueda
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sera Araki
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryoma Goya
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hiromichi Sato
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
38
|
Sugihara H, Chen N, Sur M. Cell-specific modulation of plasticity and cortical state by cholinergic inputs to the visual cortex. JOURNAL OF PHYSIOLOGY, PARIS 2016; 110:37-43. [PMID: 27840211 PMCID: PMC5769868 DOI: 10.1016/j.jphysparis.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022]
Abstract
Acetylcholine (ACh) modulates diverse vital brain functions. Cholinergic neurons from the basal forebrain innervate a wide range of cortical areas, including the primary visual cortex (V1), and multiple cortical cell types have been found to be responsive to ACh. Here we review how different cell types contribute to different cortical functions modulated by ACh. We specifically focus on two major cortical functions: plasticity and cortical state. In layer II/III of V1, ACh acting on astrocytes and somatostatin-expressing inhibitory neurons plays critical roles in these functions. Cell type specificity of cholinergic modulation points towards the growing understanding that even diffuse neurotransmitter systems can mediate specific functions through specific cell classes and receptors.
Collapse
Affiliation(s)
- Hiroki Sugihara
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Naiyan Chen
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A(∗)STAR, Republic of Singapore
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
Boucart M, Bubbico G, Szaffarczyk S, Defoort S, Ponchel A, Waucquier N, Deplanque D, Deguil J, Bordet R. Donepezil increases contrast sensitivity for the detection of objects in scenes. Behav Brain Res 2015; 292:443-7. [PMID: 26162753 DOI: 10.1016/j.bbr.2015.06.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 11/18/2022]
Abstract
We assessed the effects of donepezil, a drug that stimulates cholinergic transmission, and scopolamine, an antagonist of cholinergic transmission, on contrast sensitivity. 30 young male participants were tested under three treatment conditions: placebo, donepezil, and scopolamine in a random order. Pairs of photographs varying in contrast were displayed left and right of fixation for 50 ms. Participants were asked to locate the scene containing an animal. Accuracy was better under donepezil than under scopolamine, particularly for signals of high intensity (at higher levels of contrast). A control experiment showed that the lower performance under scopolamine did not result from the mydriasis induced by scopolamine. The results suggest that cholinergic stimulation, through donepezil, facilitates signal detection in agreement with studies on animals showing that the pharmacological activation of cholinergic receptors controls the gain in the relationship between the stimulus contrast (intensity of the visual input) and visual response. As Alzheimer disease is associated to depletion in acetylcholine, and there is evidence of deficits in contrast sensitivity in Alzheimer, it might be interesting to integrate such rapid and sensitive visual tasks in the biomarkers at early stage of drug development.
Collapse
Affiliation(s)
- Muriel Boucart
- Laboratoire de Sciences Cognitives et Affectives SCALab, Université de Lille, CNRS, France.
| | - Giovanna Bubbico
- Laboratoire de Sciences Cognitives et Affectives SCALab, Université de Lille, CNRS, France
| | - Sebastien Szaffarczyk
- Laboratoire de Sciences Cognitives et Affectives SCALab, Université de Lille, CNRS, France
| | - Sabine Defoort
- Laboratoire de Sciences Cognitives et Affectives SCALab, Université de Lille, CNRS, France
| | - Amelie Ponchel
- U1171, Université de Lille, INSERM, Centre Hospitalier et Universitaire, Lille, France
| | - Nawal Waucquier
- CIC1403, Université de Lille, INSERM, Centre Hospitalier et Universitaire, Lille, France
| | - Dominique Deplanque
- U1171, Université de Lille, INSERM, Centre Hospitalier et Universitaire, Lille, France; CIC1403, Université de Lille, INSERM, Centre Hospitalier et Universitaire, Lille, France
| | - Julie Deguil
- U1171, Université de Lille, INSERM, Centre Hospitalier et Universitaire, Lille, France
| | - Régis Bordet
- U1171, Université de Lille, INSERM, Centre Hospitalier et Universitaire, Lille, France
| |
Collapse
|
40
|
Groleau M, Kang JI, Huppé-Gourgues F, Vaucher E. Distribution and effects of the muscarinic receptor subtypes in the primary visual cortex. Front Synaptic Neurosci 2015; 7:10. [PMID: 26150786 PMCID: PMC4472999 DOI: 10.3389/fnsyn.2015.00010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/04/2015] [Indexed: 11/13/2022] Open
Abstract
Muscarinic cholinergic receptors modulate the activity and plasticity of the visual cortex. Muscarinic receptors are divided into five subtypes that are not homogeneously distributed throughout the cortical layers and cells types. This distribution results in complex action of the muscarinic receptors in the integration of visual stimuli. Selective activation of the different subtypes can either strengthen or weaken cortical connectivity (e.g., thalamocortical vs. corticocortical), i.e., it can influence the processing of certain stimuli over others. Moreover, muscarinic receptors differentially modulate some functional properties of neurons during experience-dependent activity and cognitive processes and they contribute to the fine-tuning of visual processing. These functions are involved in the mechanisms of attention, maturation and learning in the visual cortex. This minireview describes the anatomo-functional aspects of muscarinic modulation of the primary visual cortex's (V1) microcircuitry.
Collapse
Affiliation(s)
- Marianne Groleau
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Jun Il Kang
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Frédéric Huppé-Gourgues
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
41
|
Chen N, Sugihara H, Sur M. An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nat Neurosci 2015; 18:892-902. [PMID: 25915477 PMCID: PMC4446146 DOI: 10.1038/nn.4002] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/13/2015] [Indexed: 12/30/2022]
Abstract
Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. We found that intracortical cholinergic inputs to mouse visual cortex specifically and differentially drive a defined cortical microcircuit: they facilitate somatostatin-expressing (SOM) inhibitory neurons that in turn inhibit parvalbumin-expressing inhibitory neurons and pyramidal neurons. Selective optogenetic inhibition of SOM responses blocked desynchronization and decorrelation, demonstrating that direct cholinergic activation of SOM neurons is necessary for this phenomenon. Optogenetic inhibition of vasoactive intestinal peptide-expressing neurons did not block desynchronization, despite these neurons being activated at high levels of cholinergic drive. Direct optogenetic SOM activation, independent of cholinergic modulation, was sufficient to induce desynchronization. Together, these findings demonstrate a mechanistic basis for temporal structure in cortical populations and the crucial role of neuromodulatory drive in specific inhibitory-excitatory circuits in actively shaping the dynamics of neuronal activity.
Collapse
Affiliation(s)
- Naiyan Chen
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hiroki Sugihara
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Gregoriou GG, Paneri S, Sapountzis P. Oscillatory synchrony as a mechanism of attentional processing. Brain Res 2015; 1626:165-82. [PMID: 25712615 DOI: 10.1016/j.brainres.2015.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/24/2015] [Accepted: 02/01/2015] [Indexed: 01/11/2023]
Abstract
The question of how the brain selects which stimuli in our visual field will be given priority to enter into perception, to guide our actions and to form our memories has been a matter of intense research in studies of visual attention. Work in humans and animal models has revealed an extended network of areas involved in the control and maintenance of attention. For many years, imaging studies in humans constituted the main source of a systems level approach, while electrophysiological recordings in non-human primates provided insight into the cellular mechanisms of visual attention. Recent technological advances and the development of sophisticated analytical tools have allowed us to bridge the gap between the two approaches and assess how neuronal ensembles across a distributed network of areas interact in visual attention tasks. A growing body of evidence suggests that oscillatory synchrony plays a crucial role in the selective communication of neuronal populations that encode the attended stimuli. Here, we discuss data from theoretical and electrophysiological studies, with more emphasis on findings from humans and non-human primates that point to the relevance of oscillatory activity and synchrony for attentional processing and behavior. These findings suggest that oscillatory synchrony in specific frequencies reflects the biophysical properties of specific cell types and local circuits and allows the brain to dynamically switch between different spatio-temporal patterns of activity to achieve flexible integration and selective routing of information along selected neuronal populations according to behavioral demands. This article is part of a Special Issue entitled SI: Prediction and Attention.
Collapse
Affiliation(s)
- Georgia G Gregoriou
- University of Crete, Faculty of Medicine, 71003 Heraklion, Crete, Greece; Foundation for Research and Technology Hellas, Institute of Applied and Computational Mathematics, 70013 Heraklion, Crete, Greece.
| | - Sofia Paneri
- University of Crete, Faculty of Medicine, 71003 Heraklion, Crete, Greece; Foundation for Research and Technology Hellas, Institute of Applied and Computational Mathematics, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Sapountzis
- Foundation for Research and Technology Hellas, Institute of Applied and Computational Mathematics, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
43
|
Effects of locomotion extend throughout the mouse early visual system. Curr Biol 2014; 24:2899-907. [PMID: 25484299 DOI: 10.1016/j.cub.2014.10.045] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/15/2014] [Accepted: 10/15/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neural responses in visual cortex depend not only on sensory input but also on behavioral context. One such context is locomotion, which modulates single-neuron activity in primary visual cortex (V1). How locomotion affects neuronal populations across cortical layers and in precortical structures is not well understood. RESULTS We performed extracellular multielectrode recordings in the visual system of mice during locomotion and stationary periods. We found that locomotion influenced activity of V1 neurons with a characteristic laminar profile and shaped the population response by reducing pairwise correlations. Although the reduction of pairwise correlations was restricted to cortex, locomotion slightly but consistently increased firing rates and controlled tuning selectivity already in the dorsolateral geniculate nucleus (dLGN) of the thalamus. At the level of the eye, increases in locomotion speed were associated with pupil dilation. CONCLUSIONS These findings document further, nonmultiplicative effects of locomotion, reaching earlier processing stages than cortex.
Collapse
|
44
|
Luchicchi A, Bloem B, Viaña JNM, Mansvelder HD, Role LW. Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors. Front Synaptic Neurosci 2014; 6:24. [PMID: 25386136 PMCID: PMC4209819 DOI: 10.3389/fnsyn.2014.00024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/03/2014] [Indexed: 12/05/2022] Open
Abstract
Acetylcholine (ACh) signaling underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. Alterations in ACh signaling are involved in the pathophysiology of multiple neuropsychiatric disorders. In the central nervous system, ACh transmission is mainly guaranteed by dense innervation of select cortical and subcortical regions from disperse groups of cholinergic neurons within the basal forebrain (BF; e.g., diagonal band, medial septal, nucleus basalis) and the pontine-mesencephalic nuclei, respectively. Despite the fundamental role of cholinergic signaling in the CNS and the long standing knowledge of the organization of cholinergic circuitry, remarkably little is known about precisely how ACh release modulates cortical and subcortical neural activity and the behaviors these circuits subserve. Growing interest in cholinergic signaling in the CNS focuses on the mechanism(s) of action by which endogenously released ACh regulates cognitive functions, acting as a neuromodulator and/or as a direct transmitter via nicotinic and muscarinic receptors. The development of optogenetic techniques has provided a valuable toolbox with which we can address these questions, as it allows the selective manipulation of the excitability of cholinergic inputs to the diverse array of cholinergic target fields within cortical and subcortical domains. Here, we review recent papers that use the light-sensitive opsins in the cholinergic system to elucidate the role of ACh in circuits related to attention and emotionally salient behaviors. In particular, we highlight recent optogenetic studies which have tried to disentangle the precise role of ACh in the modulation of cortical-, hippocampal- and striatal-dependent functions.
Collapse
Affiliation(s)
- Antonio Luchicchi
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Netherlands
| | - Bernard Bloem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Netherlands ; McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - John Noel M Viaña
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Netherlands
| | - Lorna W Role
- Department of Neurobiology and Behavior, Stony Brook University Stony Brook, NY, USA
| |
Collapse
|
45
|
Kang JI, Huppé-Gourgues F, Vaucher E. Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception. Front Syst Neurosci 2014; 8:172. [PMID: 25278848 PMCID: PMC4167004 DOI: 10.3389/fnsys.2014.00172] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/31/2014] [Indexed: 11/29/2022] Open
Abstract
The cholinergic system is a potent neuromodulatory system that plays critical roles in cortical plasticity, attention and learning. In this review, we propose that the cellular effects of acetylcholine (ACh) in the primary visual cortex during the processing of visual inputs might induce perceptual learning; i.e., long-term changes in visual perception. Specifically, the pairing of cholinergic activation with visual stimulation increases the signal-to-noise ratio, cue detection ability and long-term facilitation in the primary visual cortex. This cholinergic enhancement would increase the strength of thalamocortical afferents to facilitate the treatment of a novel stimulus while decreasing the cortico-cortical signaling to reduce recurrent or top-down modulation. This balance would be mediated by different cholinergic receptor subtypes that are located on both glutamatergic and GABAergic neurons of the different cortical layers. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation (LTP) and modulation of the excitatory/inhibitory balance. Recently, it was found that boosting the cholinergic system during visual training robustly enhances sensory perception in a long-term manner. Our hypothesis is that repetitive pairing of cholinergic and sensory stimulation over a long period of time induces long-term changes in the processing of trained stimuli that might improve perceptual ability. Various non-invasive approaches to the activation of the cholinergic neurons have strong potential to improve visual perception.
Collapse
Affiliation(s)
- Jun Il Kang
- École d'optométrie, Université de Montréal Montréal, QC, Canada ; Département de Neuroscience, Université de Montréal Montréal, QC, Canada
| | | | - Elvire Vaucher
- École d'optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
46
|
Impaired functional organization in the visual cortex of muscarinic receptor knock-out mice. Neuroimage 2014; 98:233-42. [PMID: 24837499 DOI: 10.1016/j.neuroimage.2014.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/09/2014] [Accepted: 05/07/2014] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine modulates maturation and neuronal activity through muscarinic and nicotinic receptors in the primary visual cortex. However, the specific contribution of different muscarinic receptor subtypes in these neuromodulatory mechanisms is not fully understood. The present study evaluates in vivo the functional organization and the properties of the visual cortex of different groups of muscarinic receptor knock-out (KO) mice. Optical imaging of intrinsic signals coupled to continuous and episodic visual stimulation paradigms was used. Retinotopic maps along elevation and azimuth were preserved among the different groups of mice. However, compared to their wild-type counterparts, the apparent visual field along elevation was larger in M2/M4-KO mice but smaller in M1-KO. There was a reduction in the estimated relative receptive field size of V1 neurons in M1/M3-KO and M1-KO mice. Spatial frequency and contrast selectivity of V1 neuronal populations were affected only in M1/M3-KO and M1-KO mice. Finally, the neuronal connectivity was altered by the absence of M2/M4 muscarinic receptors. All these effects suggest the distinct roles of different subtypes of muscarinic receptors in the intrinsic organization of V1 and a strong involvement of the muscarinic transmission in the detectability of visual stimuli.
Collapse
|
47
|
Bloem B, Poorthuis RB, Mansvelder HD. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Front Neural Circuits 2014; 8:17. [PMID: 24653678 PMCID: PMC3949318 DOI: 10.3389/fncir.2014.00017] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/20/2014] [Indexed: 11/27/2022] Open
Abstract
Acetylcholine (ACh) release in the medial prefrontal cortex (mPFC) is crucial for normal cognitive performance. Despite the fact that many have studied how ACh affects neuronal processing in the mPFC and thereby influences attention behavior, there is still a lot unknown about how this occurs. Here we will review the evidence that cholinergic modulation of the mPFC plays a role in attention and we will summarize the current knowledge about the role between ACh receptors (AChRs) and behavior and how ACh receptor activation changes processing in the cortical microcircuitry. Recent evidence implicates fast phasic release of ACh in cue detection and attention. This review will focus mainly on the fast ionotropic nicotinic receptors and less on the metabotropic muscarinic receptors. Finally, we will review limitations of the existing studies and address how innovative technologies might push the field forward in order to gain understanding into the relation between ACh, neuronal activity and behavior.
Collapse
Affiliation(s)
- Bernard Bloem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije UniversiteitAmsterdam, Netherlands
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
| | | | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije UniversiteitAmsterdam, Netherlands
| |
Collapse
|
48
|
Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, Jahanshahi M. The nucleus basalis of Meynert: A new target for deep brain stimulation in dementia? Neurosci Biobehav Rev 2013; 37:2676-88. [DOI: 10.1016/j.neubiorev.2013.09.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
|
49
|
Cholinesterase inhibitor, donepezil, improves visual contrast detectability in freely behaving rats. Behav Brain Res 2013; 256:362-7. [DOI: 10.1016/j.bbr.2013.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/16/2013] [Accepted: 08/14/2013] [Indexed: 11/23/2022]
|
50
|
Handjaras G, Ricciardi E, Szczepanik J, Pietrini P, Furey ML. Cholinergic enhancement differentially modulates neural response to encoding during face identity and face location working memory tasks. Exp Biol Med (Maywood) 2013; 238:999-1008. [PMID: 23975732 DOI: 10.1177/1535370213497326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Potentiation of cholinergic transmission influences stimulus processing by enhancing signal detection through suppression and/or filtering out of irrelevant information (bottom-up modulation) and with top-down task-oriented executive mechanisms based on the recruitment of prefrontal and parietal attentional systems. The cholinergic system also plays a critical role in working memory (WM) processes and preferentially modulates WM encoding, likely through stimulus-processing mechanisms. Previous research reported increased brain responses in visual extrastriate cortical regions during cholinergic enhancement in the encoding phase of WM, independently addressing object and spatial encoding. The current study used functional magnetic resonance imaging to determine the effects of cholinergic enhancement on encoding of key visual processing features. Subjects participated in two scanning sessions, one during an intravenous (i.v.) infusion of saline and the other during an infusion of the acetylcholinesterase inhibitor physostigmine. In each scan session, subjects alternated between a face identity recognition and a spatial location WM. Enhanced cholinergic function increased neural activity in the ventral stream during encoding of face identity and in the dorsal stream during encoding of face location. Conversely, a reduction in brain response was found for scrambled sensorimotor control images. The cholinergic effects on neural activity in the ventral stream during encoding of face identity were stronger than those observed in the dorsal stream during encoding of face location, likely as a consequence of the role of acetylcholine in establishing the inherently relevant nature of face identity. Despite the limited sample-size, the results suggest the stimulus-dependent role of cholinergic system in signal detection, as they show that cholinergic potentiation enhances neural activity in regions associated with early perceptual processing in a selective manner depending on the attended stimulus feature.
Collapse
Affiliation(s)
- Giacomo Handjaras
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa 56126, Italy
| | | | | | | | | |
Collapse
|