1
|
Sahoo PK, Hanovice N, Ward P, Agrawal M, Smith TP, SiMa H, Dulin JN, Vaughn LS, Tuszynski M, Welshhans K, Benowitz L, English A, Houle JD, Twiss JL. Disruption of Core Stress Granule Protein Aggregates Promotes CNS Axon Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597743. [PMID: 38895344 PMCID: PMC11185597 DOI: 10.1101/2024.06.07.597743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Depletion or inhibition of core stress granule proteins, G3BP1 in mammals and TIAR-2 in C. elegans , increases axon regeneration in injured neurons that show spontaneous regeneration. Inhibition of G3BP1 by expression of its acidic or 'B-domain' accelerates axon regeneration after nerve injury bringing a potential therapeutic intervention to promote neural repair in the peripheral nervous system. Here, we asked if G3BP1 inhibition is a viable strategy to promote regeneration in the injured mammalian central nervous system where axons do not regenerate spontaneously. G3BP1 B-domain expression was found to promote axon regeneration in both the mammalian spinal cord and optic nerve. Moreover, a cell permeable peptide to a subregion of G3BP1's B-domain (rodent G3BP1 amino acids 190-208) accelerated axon regeneration after peripheral nerve injury and promoted the regrowth of reticulospinal axons into the distal transected spinal cord through a bridging peripheral nerve graft. The rodent and human G3BP1 peptides promoted axon growth from rodent and human neurons cultured on permissive substrates, and this function required alternating Glu/Asp-Pro repeats that impart a unique predicted tertiary structure. These studies point to G3BP1 granules as a critical impediment to CNS axon regeneration and indicate that G3BP1 granule disassembly represents a novel therapeutic strategy for promoting neural repair after CNS injury.
Collapse
|
2
|
Lam DV, Lindemann M, Yang K, Liu DX, Ludwig KA, Shoffstall AJ. An Open-Source 3D-Printed Hindlimb Stabilization Apparatus for Reliable Measurement of Stimulation-Evoked Ankle Flexion in Rat. eNeuro 2024; 11:ENEURO.0305-23.2023. [PMID: 38164555 PMCID: PMC10918511 DOI: 10.1523/eneuro.0305-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Currently there are numerous methods to evaluate peripheral nerve stimulation interfaces in rats, with stimulation-evoked ankle torque being one of the most prominent. Commercial rat ankle torque measurement systems and custom one-off solutions have been published in the literature. However, commercial systems are proprietary and costly and do not allow for customization. One-off lab-built systems have required specialized machining expertise, and building plans have previously not been made easily accessible. Here, detailed building plans are provided for a low-cost, open-source, and basic ankle torque measurement system from which additional customization can be made. A hindlimb stabilization apparatus was developed to secure and stabilize a rat's hindlimb, while allowing for simultaneous ankle-isometric torque and lower limb muscle electromyography (EMG). The design was composed mainly of adjustable 3D-printed components to accommodate anatomical differences between rat hindlimbs. Additionally, construction and calibration procedures of the rat hindlimb stabilization apparatus were demonstrated in this study. In vivo torque measurements were reliably acquired and corresponded to increasing stimulation amplitudes. Furthermore, implanted leads used for intramuscular EMG recordings complemented torque measurements and were used as an additional functional measurement in evaluating the performance of a peripheral nerve stimulation interface. In conclusion, an open-source and noninvasive platform, made primarily with 3D-printed components, was constructed for reliable data acquisition of evoked motor activity in rat models. The purpose of this apparatus is to provide researchers a versatile system with adjustable components that can be tailored to meet user-defined experimental requirements when evaluating motor function of the rat hindlimbs.
Collapse
Affiliation(s)
- Danny V Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland 44106, Ohio
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland 44106, Ohio
| | - Madeline Lindemann
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland 44106, Ohio
| | - Kevin Yang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland 44106, Ohio
| | - Derrick X Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland 44106, Ohio
| | - Kip A Ludwig
- Department of Neurosurgery, University of Wisconsin-Madison, Madison 53705, Wisconsin
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland 44106, Ohio
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland 44106, Ohio
| |
Collapse
|
3
|
Chen SH, Lien PH, Lin FH, Chou PY, Chen CH, Chen ZY, Chen SH, Hsieh ST, Huang CC, Kao HK. Aligned core-shell fibrous nerve wrap containing Bletilla striata polysaccharide improves functional outcomes of peripheral nerve repair. Int J Biol Macromol 2023; 241:124636. [PMID: 37119896 DOI: 10.1016/j.ijbiomac.2023.124636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Peripheral nerve injuries are commonly encountered in extremity traumas. Their motor and sensory recovery following microsurgical repair is limited by slow regeneration speed (<1 mm/d) and subsequent muscle atrophy, which are consequently correlated with the activity of local Schwann cells and efficacy of axon outgrowth. To promote post-surgical nerve regeneration, we synthesized a nerve wrap consisting of an aligned polycaprolactone (PCL) fiber shell with a Bletilla striata polysaccharide (BSP) core (APB). Cell experiments demonstrated that the APB nerve wrap markedly promoted neurite outgrowth and Schwann cell migration and proliferation. Animal experiments applying a rat sciatic nerve repair model indicated that the APB nerve wrap restored conduction efficacy of the repaired nerve and the compound action potential as well as contraction force of the related leg muscles. Histology of the downstream nerves disclosed significantly higher fascicle diameter and myelin thickness with the APB nerve wrap compared to those without BSP. Thus, the BSP-loaded nerve wrap is potentially beneficial for the functional recovery after peripheral nerve repair and offers sustained targeted release of a natural polysaccharide with good bioactivity.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan.
| | - Po-Hao Lien
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pang-Yun Chou
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | - Zhi-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Hsien Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang-Gung Memorial Hospital, Chang-Gung University and Medical College, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Enhancing Motor and Sensory Axon Regeneration after Peripheral Nerve Injury Using Bioluminescent Optogenetics. Int J Mol Sci 2022; 23:ijms232416084. [PMID: 36555724 PMCID: PMC9783325 DOI: 10.3390/ijms232416084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction-Recovery from peripheral nerve injuries is poor even though injured peripheral axons can regenerate. Novel therapeutic approaches are needed. The most successful preclinical experimental treatments have relied on increasing the activity of the regenerating axons, but the approaches taken are not applicable to many nerve-injured patients. Bioluminescent optogenetics (BL-OG) is a novel method of increasing the excitation of neurons that might be similar to that found with activity-dependent experimental therapies. We investigated the use of BL-OG as an approach to promoting axon regeneration following peripheral nerve injury. Methods-BL-OG uses luminopsins, light-sensing ion channels (opsins) fused with a light-emitting luciferase. When exposed to a luciferase substrate, such as coelenterazine (CTZ), luminopsins expressed in neurons generate bioluminescence and produce excitation through their opsin component. Adeno-associated viral vectors encoding either an excitatory luminopsin (eLMO3) or a mutated form (R115A) that can generate bioluminescence but not excite neurons were injected into mouse sciatic nerves. After retrograde transport and viral transduction, nerves were cut and repaired by simple end-to-end anastomosis, and mice were treated with a single dose of CTZ. Results-Four weeks after nerve injury, compound muscle action potentials (M waves) recorded in response to sciatic nerve stimulation were more than fourfold larger in mice expressing the excitatory luminopsin than in controls expressing the mutant luminopsin. The number of motor and sensory neurons retrogradely labeled from reinnervated muscles in mice expressing eLMO3 was significantly greater than the number in mice expressing the R115A luminopsin and not significantly different from those in intact mice. When viral injection was delayed so that luminopsin expression was induced after nerve injury, a clinically relevant scenario, evoked M waves recorded from reinnervated muscles were significantly larger after injury in eLMO3-expressing mice. Conclusions-Treatment of peripheral nerve injuries using BL-OG has significant potential to enhance axon regeneration and promote functional recovery.
Collapse
|
5
|
Michel-Flutot P, Jesus I, Mansart A, Bonay M, Lee KZ, Auré K, Vinit S. Evaluation of Gastrocnemius Motor Evoked Potentials Induced by Trans-Spinal Magnetic Stimulation Following Tibial Nerve Crush in Rats. BIOLOGY 2022; 11:biology11121834. [PMID: 36552344 PMCID: PMC9776027 DOI: 10.3390/biology11121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Peripheral nerve injuries induce long-lasting physiological and severe functional impairment due to motor, sensory, and autonomic denervation. Preclinical models allow us to study the process of nerve damage, evaluate the capacity of the peripheral nervous system for spontaneous recovery, and test diagnostic tools to assess the damage and subsequent recovery. Methods: In this study on Sprague-Dawley rats, we: (1) compared the use of two different anesthetics (isoflurane and urethane) for the evaluation of motor evoked potentials (MEPs) induced by trans-spinal magnetic stimulation (TSMS) in gastrocnemius and brachioradialis muscles; (2) monitored the evolution of gastrocnemius MEPs by applying paired-pulse stimulation to evaluate the neuromuscular junction activity; and (3) evaluated the MEP amplitude before and after left tibialis nerve crush (up to 7 days post-injury under isoflurane anesthesia). The results showed that muscle MEPs had higher amplitudes under isoflurane anesthesia, as compared with urethane anesthesia in the rats, demonstrating higher motoneuronal excitability under isoflurane anesthesia evaluated by TSMS. Following tibial nerve crush, a significant reduction in gastrocnemius MEP amplitude was observed on the injured side, mainly due to axonal damage from the initial crush. No spontaneous recovery of MEP amplitude in gastrocnemius muscles was observed up to 7 days post-crush; even a nerve section did not induce any variation in residual MEP amplitude, suggesting that the initial crush effectively severed the axonal fibers. These observations were confirmed histologically by a drastic reduction in the remaining myelinated fibers in the crushed tibial nerve. These data demonstrate that TSMS can be reliably used to noninvasively evaluate peripheral nerve function in rats. This method could therefore readily be applied to evaluate nerve conductance in the clinical environment.
Collapse
Affiliation(s)
| | - Isley Jesus
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France
| | - Arnaud Mansart
- Infection et Inflammation (2I), UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France
| | - Marcel Bonay
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
| | - Karine Auré
- Department of Neurophysiology, Foch Hospital, 75073 Suresnes, France
| | - Stéphane Vinit
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France
- Correspondence: ; Tel.: +33-170-429-427
| |
Collapse
|
6
|
Leupeptin accelerates recovery after sciatic transection and repair, but not crush injuries in rats. Neuroreport 2022; 33:590-596. [DOI: 10.1097/wnr.0000000000001821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Tolkachev VS, Bazhanov SP, Matveeva OV, Korshunova GA, Shuvalov SD, Ulyanov VY, Ostrovskij VV. Degeneration Of Spinal Ganglion And Segmental Apparatus Of The Spinal Neurons In Sciatic Nerve Injury: An Experimental Study. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objective — To investigate the extent of degenerative changes in neurons of spinal ganglion and segmental apparatus in various injuries to sciatic nerve in the experiment on white rats. Material and Methods — The research involved 40 white non-pedigree male rats distributed among four groups. The animals of Group 1 (n=10) underwent the compression of nerve trunks with Mosquito clamp forceps for 15 minutes. In Group 2 (n=10), the animals had their nerve trunks ligated; and in Group 3, they had their nerves completely transected in their middle thirds. The separate group of control animals (n=10) suffered no damage to their sciatic nerves. Spinal cords and spinal ganglia at L4-L6 level were the material for histopathological examination. We calculated the number (percent) of degenerated neurons in spinal cords and spinal ganglia at the affected sides on Day 30, and compared them to those at the intact sides. Results — The number (percent) of degenerated neurons in spinal cord and spinal ganglion, expressed as Me (Q1; Q2), constituted 2.52% (1.92; 2.74) and 3.75% (2.37; 4.74) in Group 1, 9.27% (9.03; 9.94) and 16.74% (16.01; 18.22) in Group 2, 25.59% (24.36; 26.29) and 31.94% (31.44; 33.03) in Group 3, respectively. Depending on the number (percent) of degenerated neurons, we classified three grades of change manifestation: mild (Group 1), medium (Group 2), and severe (Group 3). No degenerated neurons were found in the control animals. Conclusion — The compression, ischemic exposure on the sciatic nerve, and complete anatomical transection of its trunk resulted in Wallerian degeneration, as well as degeneration of segmental apparatus in spinal cord neurons.
Collapse
Affiliation(s)
| | | | - Olga V. Matveeva
- Saratov State Medical University n.a. V.I. Razumovsky, Saratov, Russia
| | | | | | | | | |
Collapse
|
8
|
Bruna J, Alberti P, Calls-Cobos A, Caillaud M, Damaj MI, Navarro X. Methods for in vivo studies in rodents of chemotherapy induced peripheral neuropathy. Exp Neurol 2020; 325:113154. [PMID: 31837318 PMCID: PMC7105293 DOI: 10.1016/j.expneurol.2019.113154] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
Peripheral neuropathy is one of the most common, dose limiting, and long-lasting disabling adverse events of chemotherapy treatment. Unfortunately, no treatment has proven efficacy to prevent this adverse effect in patients or improve the nerve regeneration, once it is established. Experimental models, particularly using rats and mice, are useful to investigate the mechanisms related to axonal or neuronal degeneration and target loss of function induced by neurotoxic drugs, as well as to test new strategies to prevent the development of neuropathy and to improve functional restitution. Therefore, objective and reliable methods should be applied for the assessment of function and innervation in adequately designed in vivo studies of CIPN, taking into account the impact of age, sex and species/strains features. This review gives an overview of the most useful methods to assess sensory, motor and autonomic functions, electrophysiological and morphological tests in rodent models of peripheral neuropathy, focused on CIPN. We include as well a proposal of protocols that may improve the quality and comparability of studies undertaken in different laboratories. It is recommended to apply more than one functional method for each type of function, and to perform parallel morphological studies in the same targets and models.
Collapse
Affiliation(s)
- Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge, Institut Català d'Oncologia L'Hospitalet, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University Milano Bicocca, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Aina Calls-Cobos
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
9
|
Madison RD, Robinson GA. Muscle-Derived Extracellular Vesicles Influence Motor Neuron Regeneration Accuracy. Neuroscience 2019; 419:46-59. [PMID: 31454553 DOI: 10.1016/j.neuroscience.2019.08.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
Abstract
Extracellular vesicles are lipid bilayer-enclosed extracellular structures. Although the term extracellular vesicles is quite inclusive, it generally refers to exosomes (<200 nm), and microvesicles (~100-1000 nm). Such vesicles are resistant to degradation and can contain proteins, lipids, and nucleic acids. Although it was previously thought that the primary purpose of such vesicles was to rid cells of unwanted components, it is now becoming increasingly clear that they can function as intercellular messengers, sometimes operating over long distances. As such, there is now intense interest in extracellular vesicles in fields as diverse as immunology, cell biology, cancer, and more recently, neuroscience. The influence that such extracellular vesicles might exert on peripheral nerve regeneration is just beginning to be investigated. In the current studies we show that muscle-derived extracellular vesicles significantly influence the anatomical accuracy of motor neuron regeneration in the rat femoral nerve. These findings suggest a basic cellular mechanism by which target end-organs could guide their own reinnervation following nerve injury.
Collapse
Affiliation(s)
- Roger D Madison
- Research Service of the Veterans Affairs Medical Center, Durham, NC 27705, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Grant A Robinson
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Park S, Liu CY, Ward PJ, Jaiswal PB, English AW. Effects of Repeated 20-Hz Electrical Stimulation on Functional Recovery Following Peripheral Nerve Injury. Neurorehabil Neural Repair 2019; 33:775-784. [PMID: 31328654 DOI: 10.1177/1545968319862563] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One hour of 20-Hz continuous electrical stimulation (ES) applied at the time of injury promotes the regeneration of axons in cut peripheral nerves. A more robust enhancement of peripheral axon regeneration is achieved by 2 weeks of daily treadmill exercise. We investigated whether repeated applications of brief ES (mES) would be more effective in promoting regeneration than a single application. Sciatic nerves of C57B6 mice were cut and repaired by end-to-end anastomosis. At that time and every third day for 2 weeks, the repaired nerve was stimulated for 1 hour at 20 Hz. In controls, injured mice were either untreated or treated with ES only once. Direct muscle responses recorded from reinnervated muscles in awake animals were observed earlier both in mice treated with ES and mES than untreated controls. Their amplitudes increased progressively over the post transection study period, but the rate of this progression was increased significantly only in animals treated once with ES. Monosynaptic H reflexes recovered to pretransection levels in both untreated and singly treated mice but in the animals treated repeatedly, they were maintained at more than twice that of the same reflexes recorded prior to injury. In anatomical analyses, both excitatory and inhibitory synaptic contacts with the cell bodies of injured motoneurons, including those expressing the vesicular glutamate transporter 1 (VGLUT1), were sustained in mice treated repeatedly but not in singly treated or untreated mice. Repeated ES does not enhance the rate of restoration of functional muscle reinnervation and results in the retention of exaggerated reflexes.
Collapse
Affiliation(s)
- Sohee Park
- 1 Emory University School of Medicine, Atlanta, GA, USA
| | - Cai-Yue Liu
- 2 Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
11
|
Sahoo PK, Lee SJ, Jaiswal PB, Alber S, Kar AN, Miller-Randolph S, Taylor EE, Smith T, Singh B, Ho TSY, Urisman A, Chand S, Pena EA, Burlingame AL, Woolf CJ, Fainzilber M, English AW, Twiss JL. Axonal G3BP1 stress granule protein limits axonal mRNA translation and nerve regeneration. Nat Commun 2018; 9:3358. [PMID: 30135423 PMCID: PMC6105716 DOI: 10.1038/s41467-018-05647-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Critical functions of intra-axonally synthesized proteins are thought to depend on regulated recruitment of mRNA from storage depots in axons. Here we show that axotomy of mammalian neurons induces translation of stored axonal mRNAs via regulation of the stress granule protein G3BP1, to support regeneration of peripheral nerves. G3BP1 aggregates within peripheral nerve axons in stress granule-like structures that decrease during regeneration, with a commensurate increase in phosphorylated G3BP1. Colocalization of G3BP1 with axonal mRNAs is also correlated with the growth state of the neuron. Disrupting G3BP functions by overexpressing a dominant-negative protein activates intra-axonal mRNA translation, increases axon growth in cultured neurons, disassembles axonal stress granule-like structures, and accelerates rat nerve regeneration in vivo. G3BP1 is RasGAP SH3 domain binding protein 1 that interacts with 48S pre-initiation complex when translation is stalled. Here, Twiss and colleagues show that neuronal G3BP1 can negatively regulate axonal mRNA translation, and inhibit axonal regeneration after injury.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA
| | - Poonam B Jaiswal
- Department of Cell Biology, Emory University College of Medicine, Atlanta, 30322, GA, USA
| | - Stefanie Alber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA
| | | | - Elizabeth E Taylor
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA
| | - Terika Smith
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA
| | - Bhagat Singh
- FM Kirby Neurobiology Center and Boston Children's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Tammy Szu-Yu Ho
- FM Kirby Neurobiology Center and Boston Children's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Anatoly Urisman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, 94158, CA, USA
| | - Shreya Chand
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, 94158, CA, USA
| | - Edsel A Pena
- Department of Statistics, University of South Carolina, Columbia, 29208, SC, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, 94158, CA, USA
| | - Clifford J Woolf
- FM Kirby Neurobiology Center and Boston Children's Hospital and Harvard Medical School, Boston, 02115, MA, USA
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Arthur W English
- Department of Cell Biology, Emory University College of Medicine, Atlanta, 30322, GA, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, SC, USA.
| |
Collapse
|
12
|
Eftekhar A, Norton JJS, McDonough CM, Wolpaw JR. Retraining Reflexes: Clinical Translation of Spinal Reflex Operant Conditioning. Neurotherapeutics 2018; 15:669-683. [PMID: 29987761 PMCID: PMC6095771 DOI: 10.1007/s13311-018-0643-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders, such as spinal cord injury, stroke, traumatic brain injury, cerebral palsy, and multiple sclerosis cause motor impairments that are a huge burden at the individual, family, and societal levels. Spinal reflex abnormalities contribute to these impairments. Spinal reflex measurements play important roles in characterizing and monitoring neurological disorders and their associated motor impairments, such as spasticity, which affects nearly half of those with neurological disorders. Spinal reflexes can also serve as therapeutic targets themselves. Operant conditioning protocols can target beneficial plasticity to key reflex pathways; they can thereby trigger wider plasticity that improves impaired motor skills, such as locomotion. These protocols may complement standard therapies such as locomotor training and enhance functional recovery. This paper reviews the value of spinal reflexes and the therapeutic promise of spinal reflex operant conditioning protocols; it also considers the complex process of translating this promise into clinical reality.
Collapse
Affiliation(s)
- Amir Eftekhar
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - James J S Norton
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Christine M McDonough
- School of Health and Rehabilitation Services, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Neurology, Stratton VA Medical Center, Albany, NY, USA
| |
Collapse
|
13
|
Abstract
Injuries to the peripheral nervous system are major sources of disability and often result in painful neuropathies or the impairment of muscle movement and/or normal sensations. For gaps smaller than 10 mm in rodents, nearly normal functional recovery can be achieved; for longer gaps, however, there are challenges that have remained insurmountable. The current clinical gold standard used to bridge long, nonhealing nerve gaps, the autologous nerve graft (autograft), has several drawbacks. Despite best efforts, engineering an alternative "nerve bridge" for peripheral nerve repair remains elusive; hence, there is a compelling need to design new approaches that match or exceed the performance of autografts across critically sized nerve gaps. Here an immunomodulatory approach to stimulating nerve repair in a nerve-guidance scaffold was used to explore the regenerative effect of reparative monocyte recruitment. Early modulation of the immune environment at the injury site via fractalkine delivery resulted in a dramatic increase in regeneration as evident from histological and electrophysiological analyses. This study suggests that biasing the infiltrating inflammatory/immune cellular milieu after injury toward a proregenerative population creates a permissive environment for repair. This approach is a shift from the current modes of clinical and laboratory methods for nerve repair, which potentially opens an alternative paradigm to stimulate endogenous peripheral nerve repair.
Collapse
|
14
|
Electrical Stimulation of Low-Threshold Proprioceptive Fibers in the Adult Rat Increases Density of Glutamatergic and Cholinergic Terminals on Ankle Extensor α-Motoneurons. PLoS One 2016; 11:e0161614. [PMID: 27552219 PMCID: PMC4994941 DOI: 10.1371/journal.pone.0161614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022] Open
Abstract
The effects of stimulation of low-threshold proprioceptive afferents in the tibial nerve on two types of excitatory inputs to α-motoneurons were tested. The first input is formed by glutamatergic Ia sensory afferents contacting monosynaptically α-motoneurons. The second one is the cholinergic input originating from V0c—interneurons, located in lamina X of the spinal cord, modulating activity of α-motoneurons via C-terminals. Our aim was to clarify whether enhancement of signaling to ankle extensor α-motoneurons, via direct electrical stimulation addressed predominantly to low-threshold proprioceptive fibers in the tibial nerve of awake rats, will affect Ia glutamatergic and cholinergic innervation of α-motoneurons of lateral gastrocnemius (LG). LG motoneurons were identified with True Blue tracer injected intramuscularly. Tibial nerve was stimulated for 7 days with continuous bursts of three pulses applied in four 20 min sessions daily. The Hoffmann reflex and motor responses recorded from the soleus muscle, LG synergist, allowed controlling stimulation. Ia terminals and C-terminals abutting on LG-labeled α-motoneurons were detected by immunofluorescence (IF) using input-specific anti- VGLUT1 and anti-VAChT antibodies, respectively. Quantitative analysis of confocal images revealed that the number of VGLUT1 IF and VAChT IF terminals contacting the soma of LG α-motoneurons increased after stimulation by 35% and by 26%, respectively, comparing to the sham-stimulated side. The aggregate volume of VGLUT1 IF and VAChT IF terminals increased by 35% and by 30%, respectively. Labeling intensity of boutons was also increased, suggesting an increase of signaling to LG α-motoneurons after stimulation. To conclude, one week of continuous burst stimulation of proprioceptive input to LG α-motoneurons is effective in enrichment of their direct glutamatergic but also indirect cholinergic inputs. The effectiveness of such and longer stimulation in models of injury is a prerequisite to propose it as a therapeutic method to improve inputs to selected group of α-motoneurons after damage.
Collapse
|
15
|
Nepomuceno AC, Politani EL, Silva EGD, Salomone R, Longo MVL, Salles AG, Faria JCMD, Gemperli R. Tibial and fibular nerves evaluation using intraoperative electromyography in rats. Acta Cir Bras 2016; 31:542-8. [DOI: 10.1590/s0102-865020160080000007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023] Open
|
16
|
Cannoy J, Crowley S, Jarratt A, Werts KL, Osborne K, Park S, English AW. Upslope treadmill exercise enhances motor axon regeneration but not functional recovery following peripheral nerve injury. J Neurophysiol 2016; 116:1408-17. [PMID: 27466130 DOI: 10.1152/jn.00129.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/30/2016] [Indexed: 11/22/2022] Open
Abstract
Following peripheral nerve injury, moderate daily exercise conducted on a level treadmill results in enhanced axon regeneration and modest improvements in functional recovery. If the exercise is conducted on an upwardly inclined treadmill, even more motor axons regenerate successfully and reinnervate muscle targets. Whether this increased motor axon regeneration also results in greater improvement in functional recovery from sciatic nerve injury was studied. Axon regeneration and muscle reinnervation were studied in Lewis rats over an 11 wk postinjury period using stimulus evoked electromyographic (EMG) responses in the soleus muscle of awake animals. Motor axon regeneration and muscle reinnervation were enhanced in slope-trained rats. Direct muscle (M) responses reappeared faster in slope-trained animals than in other groups and ultimately were larger than untreated animals. The amplitude of monosynaptic H reflexes recorded from slope-trained rats remained significantly smaller than all other groups of animals for the duration of the study. The restoration of the amplitude and pattern of locomotor EMG activity in soleus and tibialis anterior and of hindblimb kinematics was studied during treadmill walking on different slopes. Slope-trained rats did not recover the ability to modulate the intensity of locomotor EMG activity with slope. Patterned EMG activity in flexor and extensor muscles was not noted in slope-trained rats. Neither hindblimb length nor limb orientation during level, upslope, or downslope walking was restored in slope-trained rats. Slope training enhanced motor axon regeneration but did not improve functional recovery following sciatic nerve transection and repair.
Collapse
Affiliation(s)
- Jill Cannoy
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Sam Crowley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Allen Jarratt
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Kelly LeFevere Werts
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Krista Osborne
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Sohee Park
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
17
|
Navarro X. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview. Eur J Neurosci 2015; 43:271-86. [PMID: 26228942 DOI: 10.1111/ejn.13033] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 01/08/2023]
Abstract
Peripheral nerve injuries usually lead to severe loss of motor, sensory and autonomic functions in the patients. Due to the complex requirements for adequate axonal regeneration, functional recovery is often poorly achieved. Experimental models are useful to investigate the mechanisms related to axonal regeneration and tissue reinnervation, and to test new therapeutic strategies to improve functional recovery. Therefore, objective and reliable evaluation methods should be applied for the assessment of regeneration and function restitution after nerve injury in animal models. This review gives an overview of the most useful methods to assess nerve regeneration, target reinnervation and recovery of complex sensory and motor functions, their values and limitations. The selection of methods has to be adequate to the main objective of the research study, either enhancement of axonal regeneration, improving regeneration and reinnervation of target organs by different types of nerve fibres, or increasing recovery of complex sensory and motor functions. It is generally recommended to use more than one functional method for each purpose, and also to perform morphological studies of the injured nerve and the reinnervated targets.
Collapse
Affiliation(s)
- Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
18
|
Brandt J, Evans JT, Mildenhall T, Mulligan A, Konieczny A, Rose SJ, English AW. Delaying the onset of treadmill exercise following peripheral nerve injury has different effects on axon regeneration and motoneuron synaptic plasticity. J Neurophysiol 2015; 113:2390-9. [PMID: 25632080 DOI: 10.1152/jn.00892.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/21/2015] [Indexed: 11/22/2022] Open
Abstract
Transection of a peripheral nerve results in withdrawal of synapses from motoneurons. Some of the withdrawn synapses are restored spontaneously, but those containing the vesicular glutamate transporter 1 (VGLUT1), and arising mainly from primary afferent neurons, are withdrawn permanently. If animals are exercised immediately after nerve injury, regeneration of the damaged axons is enhanced and no withdrawal of synapses from injured motoneurons can be detected. We investigated whether delaying the onset of exercise until after synapse withdrawal had occurred would yield similar results. In Lewis rats, the right sciatic nerve was cut and repaired. Reinnervation of the soleus muscle was monitored until a direct muscle (M) response was observed to stimulation of the tibial nerve. At that time, rats began 2 wk of daily treadmill exercise using an interval training protocol. Both M responses and electrically-evoked H reflexes were monitored weekly for an additional seven wk. Contacts made by structures containing VGLUT1 or glutamic acid decarboxylase (GAD67) with motoneurons were studied from confocal images of retrogradely labeled cells. Timing of full muscle reinnervation was similar in both delayed and immediately exercised rats. H reflex amplitude in delayed exercised rats was only half that found in immediately exercised animals. Unlike immediately exercised animals, motoneuron contacts containing VGLUT1 in delayed exercised rats were reduced significantly, relative to intact rats. The therapeutic window for application of exercise as a treatment to promote restoration of synaptic inputs onto motoneurons following peripheral nerve injury is different from that for promoting axon regeneration in the periphery.
Collapse
Affiliation(s)
- Jaclyn Brandt
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Jonathan T Evans
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Taylor Mildenhall
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Amanda Mulligan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Aimee Konieczny
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Samuel J Rose
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
19
|
Gore RK, Choi Y, Bellamkonda R, English A. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface. J Neural Eng 2015; 12:016017. [PMID: 25605627 DOI: 10.1088/1741-2560/12/1/016017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Neural interface technologies could provide controlling connections between the nervous system and external technologies, such as limb prosthetics. The recording of efferent, motor potentials is a critical requirement for a peripheral neural interface, as these signals represent the user-generated neural output intended to drive external devices. Our objective was to evaluate structural and functional neural regeneration through a microchannel neural interface and to characterize potentials recorded from electrodes placed within the microchannels in awake and behaving animals. APPROACH Female rats were implanted with muscle EMG electrodes and, following unilateral sciatic nerve transection, the cut nerve was repaired either across a microchannel neural interface or with end-to-end surgical repair. During a 13 week recovery period, direct muscle responses to nerve stimulation proximal to the transection were monitored weekly. In two rats repaired with the neural interface, four wire electrodes were embedded in the microchannels and recordings were obtained within microchannels during proximal stimulation experiments and treadmill locomotion. MAIN RESULTS In these proof-of-principle experiments, we found that axons from cut nerves were capable of functional reinnervation of distal muscle targets, whether regenerating through a microchannel device or after direct end-to-end repair. Discrete stimulation-evoked and volitional potentials were recorded within interface microchannels in a small group of awake and behaving animals and their firing patterns correlated directly with intramuscular recordings during locomotion. Of 38 potentials extracted, 19 were identified as motor axons reinnervating tibialis anterior or soleus muscles using spike triggered averaging. SIGNIFICANCE These results are evidence for motor axon regeneration through microchannels and are the first report of in vivo recordings from regenerated motor axons within microchannels in a small group of awake and behaving animals. These unique findings provide preliminary evidence that efferent, volitional motor potentials can be recorded from the microchannel-based peripheral neural interface; a critical requirement for any neural interface intended to facilitate direct neural control of external technologies.
Collapse
Affiliation(s)
- Russell K Gore
- Department of Neurology, Emory University School of Medicine, 550 Peachtree Street NE, 9th Floor MOT, Atlanta, GA 30308, USA. Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
20
|
Kavlak E, Belge F, Unsal C, Uner AG, Cavlak U, Cömlekçi S. Effects of pulsed electromagnetic field and swimming exercise on rats with experimental sciatic nerve injury. J Phys Ther Sci 2014; 26:1355-61. [PMID: 25276015 PMCID: PMC4175236 DOI: 10.1589/jpts.26.1355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/27/2014] [Indexed: 12/11/2022] Open
Abstract
[Purpose] The current study aimed to reveal the therapeutic effects of a pulsed electromagnetic field and swimming exercises on rats with experimental sciatic nerve injury, which was induced with crush-type neuropathy model damage, using electrophysiological methods. [Subjects] In the current study, the sample consisted of 28 adult male Wistar albino rats. [Methods] The rats were randomized into four groups (n=7). Swimming exercise and PEMF (2 Hz and 0.3 MT) were applied one hour a day, five days a week, for four weeks. Electroneuromyographic (ENMG) measurements were taken on day 7. [Results] When the data were evaluated, it was found that the 4 weeks of PEMF and swimming exercises led to an increase in motor conduction rates and a decrease in latency values, but the changes were not significant in comparison with the control and injury groups. The compound muscle action potential (CMAP) values of the left leg were lower in weeks 2, 3, and 4 in the swimming exercise group in comparison with the control group, although for the PEMF group, the CMAP values of the left leg reached the level observed in the control group beginning in week 3. [Conclusion] PEMF and swimming exercise made positive contributions to nerve regeneration after week 1, and regeneration was enhanced.
Collapse
Affiliation(s)
- Erdoğan Kavlak
- School of Physical Therapy and Rehabilitation, Pamukkale University, Turkey
| | - Ferda Belge
- Department of Physiology, Faculty of Veterinary Medicine, Adnan Menderes University, Turkey
| | - Cengiz Unsal
- Department of Physiology, Faculty of Veterinary Medicine, Adnan Menderes University, Turkey
| | - Aykut Göktürk Uner
- Department of Physiology, Faculty of Veterinary Medicine, Adnan Menderes University, Turkey
| | - Uğur Cavlak
- School of Physical Therapy and Rehabilitation, Pamukkale University, Turkey
| | - Selçuk Cömlekçi
- Department of Electronics and Communication, Faculty of Engineering, Süleyman Demirel University, Turkey
| |
Collapse
|
21
|
Madison RD, Robinson GA. Accuracy of regenerating motor neurons: influence of diffusion in denervated nerve. Neuroscience 2014; 273:128-40. [PMID: 24846614 DOI: 10.1016/j.neuroscience.2014.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
Following injury to a peripheral nerve the denervated distal nerve segment undergoes remarkable changes including loss of the blood-nerve barrier, Schwann cell proliferation, macrophage invasion, and the production of many cytokines and neurotrophic factors. The aggregate consequence of such changes is that the denervated nerve becomes a permissive and even preferred target for regenerating axons from the proximal nerve segment. The possible role that an original end-organ target (e.g. muscle) may play in this phenomenon during the regeneration period is largely unexplored. We used the rat femoral nerve as an in vivo model to begin to address this question. We also examined the effects of disrupting communication with muscle in terms of accuracy of regenerating motor neurons as judged by their ability to correctly project to their original terminal nerve branch. Our results demonstrate that the accuracy of regenerating motor neurons is dependent upon the denervated nerve segment remaining in uninterrupted continuity with muscle. We hypothesized that this influence of muscle on the denervated nerve might be via diffusion-driven movement of biomolecules or the active axonal transport that continues in severed axons for several days in the rat, so we devised experiments to separate these two possibilities. Our data show that disrupting ongoing diffusion-driven movement in a denervated nerve significantly reduces the accuracy of regenerating motor neurons.
Collapse
Affiliation(s)
- R D Madison
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States; Biological Laboratory Research and Development Service of the Veterans Affairs Medical Center, Durham, NC 27705, United States.
| | - G A Robinson
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| |
Collapse
|
22
|
Boeltz T, Ireland M, Mathis K, Nicolini J, Poplavski K, Rose SJ, Wilson E, English AW. Effects of treadmill training on functional recovery following peripheral nerve injury in rats. J Neurophysiol 2013; 109:2645-57. [PMID: 23468390 DOI: 10.1152/jn.00946.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise, in the form of moderate daily treadmill training following nerve transection and repair leads to enhanced axon regeneration, but its effect on functional recovery is less well known. Female rats were exercised by walking continuously, at a slow speed (10 m/min), for 1 h/day on a level treadmill, beginning 3 days after unilateral transection and surgical repair of the sciatic nerve, and conducted 5 days/wk for 2 wk. In Trained rats, both direct muscle responses to tibial nerve stimulation and H reflexes in soleus reappeared earlier and increased in amplitude more rapidly over time than in Untrained rats. The efficacy of the restored H reflex was greater in Trained rats than in Untrained controls. The reinnervated tibialis anterior and soleus were coactivated during treadmill locomotion in Untrained rats. In Trained animals, the pattern of activation of soleus, but not tibialis anterior, was not significantly different from that found in Intact rats. The overall length of the hindlimb during level and up- and downslope locomotion was conserved after nerve injury in both groups. This conservation was achieved by changes in limb orientation. Limb length was conserved effectively in all rats during downslope walking but only in Trained rats during level and upslope walking. Moderate daily exercise applied immediately after sciatic nerve transection is sufficient to promote axon regeneration, to restore muscle reflexes, and to improve the ability of rats to cope with different biomechanical demands of slope walking.
Collapse
Affiliation(s)
- Tiffany Boeltz
- Dept. of Cell Biology, Emory Univ. School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Xu Q, Quan Y, Yang L, He J. An adaptive algorithm for the determination of the onset and offset of muscle contraction by EMG signal processing. IEEE Trans Neural Syst Rehabil Eng 2012. [PMID: 23193462 DOI: 10.1109/tnsre.2012.2226916] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Estimation of on-off timing of human skeletal muscles during movement is an ongoing issue in surface electromyography (sEMG) signal processing for relevant clinical applications. Widely used single threshold methods still rely on the experience of the operator to manually establish a threshold level. In this paper, a novel approach to address this issue is presented. Based on the generalized likelihood ratio test, the maximum likelihood (ML) method is improved with an adaptive threshold technique based on the signal-to-noise ratio (SNR) estimate in the initial time before accurate sEMG analyses. The dependence of optimal threshold on SNR is determined by minimizing the onset/offset estimate error on a large set of simulated signals with well-known signal parameters. Accuracy and precision of the algorithm were assessed by using a set of simulated signals and real sEMG signals recorded from two healthy subjects during elbow flexion-extension movements with and without workload. Comparison with traditional algorithms shows that with a moderate increase in the computational effort the ML algorithm performs well even for low levels of EMG activity, while the proposed adaptive method is most robust with respect to variations in SNRs. Also, we discuss the results of analyzing the sEMG recordings from the selected proximal muscles of the upper limb in two hemiparetic subjects. The detection algorithm is automatic and user-independent, managing the detection of both onset and offset activation, and is applicable in presence of noise allowing use by skilled and unskilled operators alike.
Collapse
Affiliation(s)
- Qi Xu
- Neural Interface and Rehabilitation Research Center, Key Laboratory of Ministry of Education for Image Processing and Intelligent control, Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | |
Collapse
|
24
|
Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 2012; 33:8793-801. [PMID: 22979988 DOI: 10.1016/j.biomaterials.2012.08.050] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/22/2012] [Indexed: 12/15/2022]
Abstract
Peripheral nerve repair across long gaps remains clinically challenging despite progress made with autograft transplantation. While scaffolds that present trophic factors and extracellular matrix molecules have been designed, matching the performance of autograft-induced repair has been challenging. In this study, we explored the effect of cytokine mediated 'biasing' of macrophage phenotypes on Schwann cell (SC) migration and axonal regeneration in vitro and in vivo. Macrophage phenotype was successfully modulated by local delivery of either Interferon-gamma (IFN-γ) or Interleukin-4 (IL-4) within polymeric nerve guidance channels, polarizing them toward pro-inflammatory (M1) or pro-healing (M2a and M2c) phenotypes, respectively. The initial polarization of macrophages to M2a and M2c phenotype results in enhanced SC infiltration and substantially faster axonal growth in a critically-sized rat sciatic nerve gap model (15 mm). The ratio of pro-healing to pro-inflammatory population of macrophages (CD206+/CCR7+), defined as regenerative bias, demonstrates a linear relationship with the number of axons at the distal end of the nerve scaffolds. The present results clearly suggest that rather than the extent of macrophage presence, their specific phenotype at the site of injury regulates the regenerative outcomes.
Collapse
|
25
|
Devesa P, Gelabert M, Gonźlez-Mosquera T, Gallego R, Relova JL, Devesa J, Arce VM. Growth hormone treatment enhances the functional recovery of sciatic nerves after transection and repair. Muscle Nerve 2012; 45:385-92. [PMID: 22334173 DOI: 10.1002/mus.22303] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Although nerves can spontaneously regenerate in the peripheral nervous system without treatment, functional recovery is generally poor, and thus there is a need for strategies to improve nerve regeneration. METHODS The left sciatic nerve of adult rats was transected and immediately repaired by epineurial sutures. Rats were then assigned to one of two experimental groups treated with either growth hormone (GH) or saline for 8 weeks. Sciatic nerve regeneration was estimated by histological evaluation, nerve conduction tests, and rotarod and treadmill performance. RESULTS GH-treated rats showed increased cellularity at the lesion site together with more abundant immunoreactive axons and Schwann cells. Compound muscle action potential (CMAP) amplitude was also higher in these animals, and CMAP latency was significantly lower. Treadmill performance increased in rats receiving GH. CONCLUSION GH enhanced the functional recovery of the damaged nerves, thus supporting the use of GH treatment, alone or combined with other therapeutic approaches, in promoting nerve repair.
Collapse
Affiliation(s)
- Pablo Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, San Francisco 1, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Sun C, Wang Y, Chen XY. WITHDRAWN: H-reflex up-conditioning after sciatic nerve transection and regeneration may increase VGLUT-1 terminals and GluR2/3 immunoreactivity in spinal motoneurons. Neurosci Lett 2011:S0304-3940(11)01597-7. [PMID: 22198372 DOI: 10.1016/j.neulet.2011.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 11/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Chenyou Sun
- Wadsworth Center, Laboratory of Neural Injury and Repair, New York State Department Health and State University of New York at Albany, Albany, NY 12201-0509, United States; Department of Anatomy, Wenzhou Medical College, Zhejiang Province 325035, China
| | | | | |
Collapse
|
27
|
Abstract
Axonal mRNA transport is robust in cultured neurons but there has been limited evidence for this in vivo. We have used a genetic approach to test for in vivo axonal transport of reporter mRNAs. We show that β-actin's 3'-UTR can drive axonal localization of GFP mRNA in mature DRG neurons, but mice with γ-actin's 3'-UTR show no axonal GFP mRNA. Peripheral axotomy triggers transport of the β-actin 3'-UTR containing transgene mRNA into axons. This GFP-3'-β-actin mRNA accumulates in injured PNS axons before activation of the transgene promoter peaks in the DRG. Spinal cord injury also increases axonal GFP signals in mice carrying this transgene without any increase in transgene expression in the DRGs. These data show for the first time that the β-actin 3'-UTR is sufficient for axonal localization in both PNS and CNS neurons in vivo.
Collapse
|
28
|
Sabatier MJ, To BN, Rose S, Nicolini J, English AW. Chondroitinase ABC reduces time to muscle reinnervation and improves functional recovery after sciatic nerve transection in rats. J Neurophysiol 2011; 107:747-57. [PMID: 22049333 DOI: 10.1152/jn.00887.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Application of chondroitinase ABC (ChABC) to injured peripheral nerves improves axon regeneration, but it is not known whether functional recovery is also improved. Recordings of EMG activity [soleus (Sol) M response and H reflexes] evoked by nerve stimulation and of Sol and tibialis anterior (TA) EMG activity and hindlimb and foot kinematics during slope walking were made to determine whether ChABC treatment of the sciatic nerve at the time of transection improves functional recovery. Recovery of evoked EMG responses began as multiple small responses with a wide range of latencies that eventually coalesced into one or two more distinctive and consistent responses (the putative M response and the putative H reflex) in both groups. Both the initial evoked responses and the time course of their maturation returned sooner in the ChABC group than in the untreated (UT) group. The reinnervated Sol and TA were coactivated during treadmill locomotion during downslope, level, and upslope walking throughout the study period in both UT and ChABC-treated rats. By 10 wk after nerve transection and repair, locomotor activity in Sol, but not TA, had returned to its pretransection pattern. There was an increased reliance on central control of Sol activation across slopes for both groups as interpreted from elevated prestance Sol EMG activity that was no longer modulated with slope. Limb length and orientation during locomotion were similar to those observed prior to nerve injury during upslope walking only in the ChABC-treated rats. Thus treatment of cut nerves with ChABC leads to improvements in functional recovery.
Collapse
Affiliation(s)
- Manning J Sabatier
- Department of Cell Biology, Emory University School of Medicine, Atlanta, USA.
| | | | | | | | | |
Collapse
|
29
|
Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity. EMBO J 2011; 30:4665-77. [PMID: 21964071 DOI: 10.1038/emboj.2011.347] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 08/23/2011] [Indexed: 11/08/2022] Open
Abstract
Subcellular localization of mRNAs is regulated by RNA-protein interactions. Here, we show that introduction of a reporter mRNA with the 3'UTR of β-actin mRNA competes with endogenous mRNAs for binding to ZBP1 in adult sensory neurons. ZBP1 is needed for axonal localization of β-actin mRNA, and introducing GFP with the 3'UTR of β-actin mRNA depletes axons of endogenous β-actin and GAP-43 mRNAs and attenuates both in vitro and in vivo regrowth of severed axons. Consistent with limited levels of ZBP1 protein in adult neurons, mice heterozygous for the ZBP1 gene are haploinsufficient for axonal transport of β-actin and GAP-43 mRNAs and for regeneration of peripheral nerve. Exogenous ZBP1 can rescue the RNA transport deficits, but the axonal growth deficit is only rescued if the transported mRNAs are locally translated. These data support a direct role for ZBP1 in transport and translation of mRNA cargos in axonal regeneration in vitro and in vivo.
Collapse
|
30
|
Amado S, Armada-da-Silva PAS, João F, Maurício AC, Luís AL, Simões MJ, Veloso AP. The sensitivity of two-dimensional hindlimb joint kinematics analysis in assessing functional recovery in rats after sciatic nerve crush. Behav Brain Res 2011; 225:562-73. [PMID: 21875621 DOI: 10.1016/j.bbr.2011.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/08/2011] [Accepted: 08/13/2011] [Indexed: 12/26/2022]
Abstract
Walking analysis in the rat is increasingly used to assess functional recovery after peripheral nerve injury. Here we assess the sensitivity and specificity of hindlimb joint kinematics measures during the rat gait early after sciatic nerve crush injury (DEN), after twelve weeks of recovery (REINN) and in sham-operated controls (Sham) using discriminant analysis. The analysis addressed gait spatiotemporal variables and hip, knee and ankle angle and angular velocity measures during the entire walking cycle. In DEN animals, changes affected all studied joints plus spatiotemporal parameters of gait. Both the spatiotemporal and ankle kinematics parameters recovered to normality within twelve weeks. At this time point, some hip and knee kinematics values were still abnormal when compared to sham controls. Discriminant models based on hip, knee and ankle kinematics displayed maximal sensitivity to identify DEN animals. However, the discriminant models based on spatiotemporal and ankle kinematics data showed a poor performance when assigning animals to the REINN and Sham groups. Models using hip and knee kinematics during walking showed the best sensitivity to recognize the reinnervated animals. The model construed on the basis of hip joint kinematics was the one combining highest sensitivity with robustness and high specificity. It is concluded that ankle joint kinematics fails in detecting minor functional deficits after long term recovery from sciatic nerve crush and extending the kinematic analysis during walking to the hip and knee joints improves the sensitivity of this functional test.
Collapse
Affiliation(s)
- Sandra Amado
- Faculty of Human Kinetics and Neuromechanics of Human Movement Group, CIPER, Technical University of Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
31
|
Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. II. Loss of functional connectivity with motoneurons. J Neurophysiol 2011; 106:2471-85. [PMID: 21832030 DOI: 10.1152/jn.01097.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regeneration of a cut muscle nerve fails to restore the stretch reflex, and the companion paper to this article [Alvarez FJ, Titus-Mitchell HE, Bullinger KL, Kraszpulski M, Nardelli P, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01095.2010] suggests an important central contribution from substantial and persistent disassembly of synapses between regenerated primary afferents and motoneurons. In the present study we tested for physiological correlates of synaptic disruption. Anesthetized adult rats were studied 6 mo or more after a muscle nerve was severed and surgically rejoined. We recorded action potentials (spikes) from individual muscle afferents classified as IA like (*IA) by several criteria and tested for their capacity to produce excitatory postsynaptic potentials (EPSPs) in homonymous motoneurons, using spike-triggered averaging (STA). Nearly every paired recording from a *IA afferent and homonymous motoneuron (93%) produced a STA EPSP in normal rats, but that percentage was only 17% in rats with regenerated nerves. In addition, the number of motoneurons that produced aggregate excitatory stretch synaptic potentials (eSSPs) in response to stretch of the reinnervated muscle was reduced from 100% normally to 60% after nerve regeneration. The decline in functional connectivity was not attributable to synaptic depression, which returned to its normally low level after regeneration. From these findings and those in the companion paper, we put forward a model in which synaptic excitation of motoneurons by muscle stretch is reduced not only by misguided axon regeneration that reconnects afferents to the wrong receptor type but also by retraction of synapses with motoneurons by spindle afferents that successfully reconnect with spindle receptors in the periphery.
Collapse
Affiliation(s)
- Katie L Bullinger
- Dept. of Neuroscience, Cell Biology, and Physiology, Wright State Univ. School of Medicine, 3640 Colonel Glenn Hwy., Dayton OH 45435, USA
| | | | | | | | | |
Collapse
|
32
|
H-reflex up-conditioning encourages recovery of EMG activity and H-reflexes after sciatic nerve transection and repair in rats. J Neurosci 2011; 30:16128-36. [PMID: 21123559 DOI: 10.1523/jneurosci.4578-10.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Operant conditioning of the spinal stretch reflex or its electrical analog, the H-reflex, produces spinal cord plasticity and can thereby affect motoneuron responses to primary afferent input. To explore whether this conditioning can affect the functional outcome after peripheral nerve injury, we assessed the effect of up-conditioning soleus (SOL) H-reflex on SOL and tibialis anterior (TA) function after sciatic nerve transection and repair. Sprague Dawley rats were implanted with EMG electrodes in SOL and TA and stimulating cuffs on the posterior tibial nerve. After control data collection, the sciatic nerve was transected and repaired and the rat was exposed for 120 d to continued control data collection (TC rats) or SOL H-reflex up-conditioning (TU rats). At the end of data collection, motoneurons that had reinnervated SOL and TA were labeled retrogradely. Putative primary afferent terminals [i.e., terminals containing vesicular glutamate transporter-1 (VGLUT1)] on SOL motoneurons were studied immunohistochemically. SOL (and probably TA) background EMG activity recovered faster in TU rats than in TC rats, and the final recovered SOL H-reflex was significantly larger in TU than in TC rats. TU and TC rats had significantly fewer labeled motoneurons and higher proportions of double-labeled motoneurons than untransected rats. VGLUT1 terminals were significantly more numerous on SOL motoneurons of TU than TC rats. Combined with the larger H-reflexes in TU rats, this anatomical finding supports the hypothesis that SOL H-reflex up-conditioning strengthened primary afferent reinnervation of SOL motoneurons. These results suggest that H-reflex up-conditioning may improve functional recovery after nerve injury and repair.
Collapse
|
33
|
Hamilton SK, Hinkle ML, Nicolini J, Rambo LN, Rexwinkle AM, Rose SJ, Sabatier MJ, Backus D, English AW. Misdirection of regenerating axons and functional recovery following sciatic nerve injury in rats. J Comp Neurol 2011; 519:21-33. [PMID: 21120925 PMCID: PMC3703664 DOI: 10.1002/cne.22446] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Poor functional recovery found after peripheral nerve injury has been attributed to the misdirection of regenerating axons to reinnervate functionally inappropriate muscles. We applied brief electrical stimulation (ES) to the common fibular (CF) but not the tibial (Tib) nerve just prior to transection and repair of the entire rat sciatic nerve, to attempt to influence the misdirection of its regenerating axons. The specificity with which regenerating axons reinnervated appropriate targets was evaluated physiologically using compound muscle action potentials (M responses) evoked from stimulation of the two nerve branches above the injury site. Functional recovery was assayed using the timing of electromyography (EMG) activity recorded from the tibialis anterior (TA) and soleus (Sol) muscles during treadmill locomotion and kinematic analysis of hindlimb locomotor movements. Selective ES of the CF nerve resulted in restored M-responses at earlier times than in unstimulated controls in both TA and Sol muscles. Stimulated CF axons reinnervated inappropriate targets to a greater extent than unstimulated Tib axons. During locomotion, functional antagonist muscles, TA and Sol, were coactivated both in stimulated rats and in unstimulated but injured rats. Hindlimb kinematics in stimulated rats were comparable to untreated rats, but significantly different from intact controls. Selective ES promotes enhanced axon regeneration but does so with decreased fidelity of muscle reinnervation. Functional recovery is neither improved nor degraded, suggesting that compensatory changes in the outputs of the spinal circuits driving locomotion may occur irrespective of the extent of misdirection of regenerating axons in the periphery.
Collapse
Affiliation(s)
- Shirley K. Hamilton
- Division of Physical Therapy, Emory University, School of Medicine, Atlanta, Georgia
| | - Marcus L. Hinkle
- Division of Physical Therapy, Emory University, School of Medicine, Atlanta, Georgia
| | - Jennifer Nicolini
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, Georgia
| | - Lindsay N. Rambo
- Division of Physical Therapy, Emory University, School of Medicine, Atlanta, Georgia
| | - April M. Rexwinkle
- Division of Physical Therapy, Emory University, School of Medicine, Atlanta, Georgia
| | - Sam J. Rose
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, Georgia
| | | | - Deborah Backus
- Division of Physical Therapy, Emory University, School of Medicine, Atlanta, Georgia
| | - Arthur W. English
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, Georgia
| |
Collapse
|
34
|
Zhang X, Mu L, Su H, Sobotka S. Locations of the motor endplate band and motoneurons innervating the sternomastoid muscle in the rat. Anat Rec (Hoboken) 2010; 294:295-304. [PMID: 21235005 DOI: 10.1002/ar.21312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 07/29/2010] [Indexed: 11/12/2022]
Abstract
Sternocleidomastoid (SCM) is a long muscle with two bellies, sternomastoid (SM) and cleidomastoid (CM) in the lateral side of the neck. It has been widely used as muscle and myocutaneous flap for reconstruction of oral cavity and facial defects and as a candidate for reinnervation studies. Therefore, exact neuroanatomy of the SCM is critical for guiding reinnervation procedures. In this study, SM in rats were investigated to document banding pattern of motor endplates (MEPs) using whole-mount acetylcholinesterase (AChE) staining and to determine locations of the motoneurons innervating the muscle using retrograde horseradish peroxidase (HRP) tracing technique. The results showed that the MEPs in the SM and CM were organized into a single band which was located in the middle portion of the muscle. After HRP injections into the MEP band of the SM, ipsilaterally labeled motoneurons were identified in the caudal medulla oblongata (MO), C1, and C2. The SM motoneurons were found to form a single column in lower MO and dorsomedial (DM) nucleus in C1. In contrast, the labeled SM motoneurons in C2 formed either one (DM nucleus), two [DM and ventrolateral (VL) nuclei], or three [DM, VL, and ventromedial (VM)] columns. These findings are important not only for understanding the neural control of the muscle but also for evaluating the success rate of a given reinnervation procedure when the SM is chosen as a target muscle.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Upper Airway Research Laboratory, Department of Research, Hackensack University Medical Center, Hackensack, New Jersey 07601, USA
| | | | | | | |
Collapse
|
35
|
Navarro X, Udina E. Chapter 6 Methods and Protocols in Peripheral Nerve Regeneration Experimental Research. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:105-26. [DOI: 10.1016/s0074-7742(09)87006-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Rupp A, Dornseifer U, Fischer A, Schmahl W, Rodenacker K, Jütting U, Gais P, Biemer E, Papadopulos N, Matiasek K. Electrophysiologic assessment of sciatic nerve regeneration in the rat: Surrounding limb muscles feature strongly in recordings from the gastrocnemius muscle. J Neurosci Methods 2007; 166:266-77. [PMID: 17854904 DOI: 10.1016/j.jneumeth.2007.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/04/2007] [Accepted: 07/11/2007] [Indexed: 12/29/2022]
Abstract
Striking inconsistencies between the results of morphometric and electrophysiologic examinations of the regenerating nerve were observed in a previous study featuring the bridging of a 14 mm gap in the rat sciatic nerve. To shed light on this dichotomy, seven further rats were subjected to permanent sciatic nerve transection and assessed electrophysiologically, histologically and by retrograde axonal tracing at various postoperative intervals (1 h to 8 weeks). The results of the histological examinations and retrograde tracing revealed that in spite of the fact that compound muscle action potentials could be recorded in the gastrocnemius muscle, no reinnervation of the gastrocnemius muscle, either physiological or aberrant, had actually taken place. Furthermore, it was established that the electrical activity recorded in the gastrocnemius muscle after stimulation of the proximal or distal stump is generated by surrounding hind limb muscles unaffected by denervation. These are stimulated either directly, or indirectly due to spreading of the impulse. It is therefore strongly recommended that caution should be exercised when interpreting recordings from the gastrocnemius muscle after stimulation of a regenerating sciatic nerve in laboratory rodents.
Collapse
Affiliation(s)
- Angie Rupp
- Institute of Veterinary Pathology, Chair of General Pathology & Neuropathology, Ludwig-Maximilians University, Veterinärstr. 13, 80539 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|