1
|
Takahashi A, Iuchi S, Sasaki T, Hashimoto Y, Ishizaka R, Minami K, Watanabe T. Working memory load increases movement-related alpha and beta desynchronization. Neuropsychologia 2024; 205:109030. [PMID: 39486757 DOI: 10.1016/j.neuropsychologia.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Working memory (WM) load has been well-documented to impair selective attention and inhibitory control. However, its effects on motor function remain insufficiently explored. To extend the existing literature, we investigated the impact of WM load on force control and movement-related brain activity. Sixteen healthy young participants performed a visual static force matching task using a pinch grip under varying WM loads. The task included low and high WM load conditions (memorizing one digit or six digits), and the precision level required to control force was adjusted by manipulating visual gain (low vs. high visual gains), with higher visual gain necessitating more precise force control. Peri-movement alpha and beta event-related desynchronization (ERD), along with force accuracy and steadiness, were measured using electroencephalography recorded over the central areas during the force control task. Results indicated that while force accuracy and steadiness significantly improved with higher visual gain, there was no significant effect of WM load on these measures. Alpha and beta ERD were greater under high than low visual gain, and also greater under high than low WM load. These findings suggest that in young adults, increased WM load leads to compensatory increases in sensorimotor cortical activity to mitigate potential declines in static force control performance that may result from the depletion of neural resources caused by WM load. Our findings extend current understanding of the interaction between WM and sensorimotor processes by offering new insights into how movement-related brain activity is influenced by heightened WM load.
Collapse
Affiliation(s)
- Aoki Takahashi
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Shugo Iuchi
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Taisei Sasaki
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Yuhei Hashimoto
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Riku Ishizaka
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Kodai Minami
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Tatsunori Watanabe
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Waseda Institute for Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| |
Collapse
|
2
|
Chen YY, Lambert KJM, Madan CR, Singhal A. Motor-related oscillations reveal the involvement of sensorimotor processes during recognition memory. Neurobiol Learn Mem 2024:108003. [PMID: 39481525 DOI: 10.1016/j.nlm.2024.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/12/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Certain object properties may render an item as more memorable than others. One such property is manipulability, or the extent to which an object can be interacted with using our hands. This study sought to determine if the manipulability of an item modulates memory task performance on both a behavioural and neural level. We recorded electroencephalography (EEG) from a large sample of right-handed individuals (N = 53) during a visual item recognition memory task. The task contained stimuli of both high and low manipulability. Analysis focused on activity in the theta rhythm (3.5-7 Hz), which has been implicated in sensorimotor integration, and the mu rhythm (8-14 Hz), the primary oscillation associated with sensorimotor related behaviours. At both encoding and retrieval, theta oscillations were greater over the left motor region for high manipulability stimuli, suggesting that an item's sensorimotor properties are assessed immediately upon presentation. Manipulability did not affect activity in the mu rhythm. However, mu oscillations over the left motor region were lower during the retrieval of old versus new items and response time was faster for old items, aligning with the cortical reinstatement hypothesis. These results collectively reveal an association between motor oscillations and memory processes, highlight the involvement of sensorimotor processing at both encoding and retrieval.
Collapse
Affiliation(s)
- Yvonne Y Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn J M Lambert
- Department of Occupational Therapy, University of Alberta, Edmonton, AB, Canada
| | | | - Anthony Singhal
- Department of Psychology, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Delcamp C, Srinivasan R, Cramer SC. EEG Provides Insights Into Motor Control and Neuroplasticity During Stroke Recovery. Stroke 2024; 55:2579-2583. [PMID: 39171399 PMCID: PMC11421965 DOI: 10.1161/strokeaha.124.048458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In many branches of medicine, treatment is guided by measuring its effects on underlying physiology. In this regard, the efficacy of rehabilitation/recovery therapies could be enhanced if their administration was guided by measurements that directly capture treatment effects on neural function. Measures of brain function via EEG may be useful toward this goal and have advantages such as ease of bedside acquisition, safety, and low cost. This review synthetizes EEG studies during the subacute phase poststroke, when spontaneous recovery is maximal, and focuses on movement. Event-related measures reflect cortical activation and inhibition, while connectivity measures capture the function of cortical networks. Several EEG-based measures are related to motor outcomes poststroke and warrant further evaluation. Ultimately, they may be useful for clinical decision-making and clinical trial design in stroke neurorehabilitation.
Collapse
Affiliation(s)
- Célia Delcamp
- Department of Neurology, University of California Los Angeles (C.D., S.C.C.)
- California Rehabilitation Institute, Los Angeles (C.D., S.C.C.)
| | - Ramesh Srinivasan
- Department of Cognitive Sciences, University of California Irvine (R.S.)
| | - Steven C Cramer
- Department of Neurology, University of California Los Angeles (C.D., S.C.C.)
- California Rehabilitation Institute, Los Angeles (C.D., S.C.C.)
| |
Collapse
|
4
|
Rhodes E, Gaetz W, Marsden J, Hall SD. Post-Movement Beta Synchrony Inhibits Cortical Excitability. Brain Sci 2024; 14:970. [PMID: 39451984 PMCID: PMC11505688 DOI: 10.3390/brainsci14100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates the relationship between movement-related beta synchrony and primary motor cortex (M1) excitability, focusing on the time-dependent inhibition of movement. Voluntary movement induces beta frequency (13-30 Hz) event-related desynchronisation (B-ERD) in M1, followed by post-movement beta rebound (PMBR). Although PMBR is linked to cortical inhibition, its temporal relationship with motor cortical excitability is unclear. This study aims to determine whether PMBR acts as a marker for post-movement inhibition by assessing motor-evoked potentials (MEPs) during distinct phases of the beta synchrony profile. METHODS Twenty-five right-handed participants (mean age: 24 years) were recruited. EMG data were recorded from the first dorsal interosseous muscle, and TMS was applied to the M1 motor hotspot to evoke MEPs. A reaction time task was used to elicit beta oscillations, with TMS delivered at participant-specific time points based on EEG-derived beta power envelopes. MEP amplitudes were compared across four phases: B-ERD, early PMBR, peak PMBR, and late PMBR. RESULTS Our findings demonstrate that MEP amplitude significantly increased during B-ERD compared to rest, indicating heightened cortical excitability. In contrast, MEPs recorded during peak PMBR were significantly reduced, suggesting cortical inhibition. While all three PMBR phases exhibited reduced cortical excitability, a trend toward amplitude-dependent inhibition was observed. CONCLUSIONS This study confirms that PMBR is linked to reduced cortical excitability, validating its role as a marker of motor cortical inhibition. These results enhance the understanding of beta oscillations in motor control and suggest that further research on altered PMBR could be crucial for understanding neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Edward Rhodes
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- UK Dementia Research Institute, Imperial College London, London W1T 7NF, UK
| | - William Gaetz
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Marsden
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- School of Health Professions, University of Plymouth, Plymouth PL6 8BH, UK
| | - Stephen D. Hall
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
| |
Collapse
|
5
|
Ahmed A, Hugo B, Lucas S, Diana R, Etienne O, Pascal G. Distinct and additive effects of visual and vibratory feedback for motor rehabilitation: an EEG study in healthy subjects. J Neuroeng Rehabil 2024; 21:158. [PMID: 39267092 PMCID: PMC11391611 DOI: 10.1186/s12984-024-01453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The use of visual and proprioceptive feedback is a key property of motor rehabilitation techniques. This feedback can be used alone, for example, for vision in mirror or video therapy, for proprioception in focal tendon vibration therapy, or in combination, for example, in robot-assisted training. This Electroencephalographic (EEG) study in healthy subjects explored the distinct neurophysiological impact of adding visual (video therapy), proprioceptive (focal tendinous vibration), or combined feedback (video therapy and focal tendinous vibration) to a motor imagery task. METHODS Sixteen healthy volunteers performed 20 mental imagery (MI) tasks involving right wrist extension and flexion under four conditions: MI alone (IA), MI + video feedback observation (IO), MI + vibratory feedback (IV), and MI + observation + vibratory feedback (IOV). Brain activity was monitored with EEG, and time-frequency neurophysiological markers of movement were computed. The emotions of the patients were also measured during the task. RESULTS In the alpha band, we observed bilateral ERD in the visual feedback conditions (IO, IOV). In the beta band, the ERD was bilateral in the IA, IV and IOV but more lateralized in the IV and IOV. After movement, we observed strong ERS in the IO and IOV but not in the IA or IV. Embodiment was stronger in conditions with vibratory feedback (IOV > IV > IA and IO) CONCLUSION: Conditions with visual feedback (IO, IOV) recruit the mirror neurons system (alpha ERD) and provide more accurate feedback of the task than IA and IV, which triggers motor validation pathways (beta rebound analysis). Vibratory feedback enhances the recruitment of the left sensorimotor areas, with a synergistic effect in the IOV (beta ERD analysis), thus maximizing embodiment. Visual and vibratory feedback recruits the sensorimotor cortex during motor imagery in different ways and can be combined to maximize the benefits of both techniques TRIAL REGISTRATION: https://clinicaltrials.gov/study/NCT04449328 .
Collapse
Affiliation(s)
- Adham Ahmed
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France.
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France.
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France.
| | - Bessaguet Hugo
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Inter-University Laboratory of Human Movement Biology, "Physical Ability and Fatigue in Health and Disease" Team, Saint-Etienne "Jean Monnet" & Lyon 1 & "Savoie Mont- Blanc" Universities, Saint- Etienne, F-42023, France
| | - Struber Lucas
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | - Rimaud Diana
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
| | - Ojardias Etienne
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France
| | - Giraux Pascal
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France
| |
Collapse
|
6
|
Delcamp C, Chalard A, Srinivasan R, Cramer SC. Altered brain function during movement programming is linked with motor deficits after stroke: a high temporal resolution study. Front Neurosci 2024; 18:1415134. [PMID: 39188808 PMCID: PMC11345366 DOI: 10.3389/fnins.2024.1415134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction Stroke leads to motor deficits, requiring rehabilitation therapy that targets mechanisms underlying movement generation. Cortical activity during the planning and execution of motor tasks can be studied using EEG, particularly via the Event Related Desynchronization (ERD). ERD is altered by stroke in a manner that varies with extent of motor deficits. Despite this consensus in the literature, defining precisely the temporality of these alterations during movement preparation and performance may be helpful to better understand motor system pathophysiology and might also inform development of novel therapies that benefit from temporal resolution. Methods Patients with chronic hemiparetic post-stroke (n = 27; age 59 ± 14 years) and age-matched healthy right-handed control subjects (n = 23; 59 ± 12 years) were included. They performed a shoulder rotation task following the onset of a stimulus. Cortical activity was recorded using a 256-electrode EEG cap. ERD was calculated in the beta frequency band (15-30 Hz) in ipsilesional sensorimotor cortex, contralateral to movement. The ERD was compared over time between stroke and control subjects using permutation tests. The correlation between upper extremity motor deficits (assessed by the Fugl-Meyer scale) and ERD over time was studied in stroke patients using Spearman and permutation tests. Results Patients with stroke showed on average less beta ERD amplitude than control subjects in the time window of -350 to 50 ms relative to movement onset (t(46) = 2.8, p = 0.007, Cohen's d = 0.31, 95% CI [0.22: 1.40]). Beta-ERD values correlated negatively with the Fugl-Meyer score during the time window -200 to 400 ms relative to movement onset (Spearman's r = -0.54, p = 0.003, 95% CI [-0.77 to -0.18]). Discussion Our results provide new insights into the precise temporal changes of ERD after hemiparetic stroke and the associations they have with motor deficits. After stroke, the average amplitude of cortical activity is reduced as compared to age-matched controls, and the extent of this decrease is correlated with the severity of motor deficits; both were true during motor programming and during motor performance. Understanding how stroke affects the temporal dynamics of cortical preparation and execution of movement paves the way for more precise restorative therapies. Studying the temporal dynamics of the EEG also strengthens the promising interest of ERD as a biomarker of post-stroke motor function.
Collapse
Affiliation(s)
- Célia Delcamp
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
- California Rehabilitation Institute, Los Angeles, CA, United States
| | - Alexandre Chalard
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
- California Rehabilitation Institute, Los Angeles, CA, United States
| | - Ramesh Srinivasan
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| | - Steven C. Cramer
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
- California Rehabilitation Institute, Los Angeles, CA, United States
| |
Collapse
|
7
|
Iwama S, Tsuchimoto S, Mizuguchi N, Ushiba J. EEG decoding with spatiotemporal convolutional neural network for visualization and closed-loop control of sensorimotor activities: A simultaneous EEG-fMRI study. Hum Brain Mapp 2024; 45:e26767. [PMID: 38923184 PMCID: PMC11199199 DOI: 10.1002/hbm.26767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Closed-loop neurofeedback training utilizes neural signals such as scalp electroencephalograms (EEG) to manipulate specific neural activities and the associated behavioral performance. A spatiotemporal filter for high-density whole-head scalp EEG using a convolutional neural network can overcome the ambiguity of the signaling source because each EEG signal includes information on the remote regions. We simultaneously acquired EEG and functional magnetic resonance images in humans during the brain-computer interface (BCI) based neurofeedback training and compared the reconstructed and modeled hemodynamic responses of the sensorimotor network. Filters constructed with a convolutional neural network captured activities in the targeted network with spatial precision and specificity superior to those of the EEG signals preprocessed with standard pipelines used in BCI-based neurofeedback paradigms. The middle layers of the trained model were examined to characterize the neuronal oscillatory features that contributed to the reconstruction. Analysis of the layers for spatial convolution revealed the contribution of distributed cortical circuitries to reconstruction, including the frontoparietal and sensorimotor areas, and those of temporal convolution layers that successfully reconstructed the hemodynamic response function. Employing a spatiotemporal filter and leveraging the electrophysiological signatures of the sensorimotor excitability identified in our middle layer analysis would contribute to the development of a further effective neurofeedback intervention.
Collapse
Affiliation(s)
- Seitaro Iwama
- Department of Biosciences and Informatics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
| | - Shohei Tsuchimoto
- School of Fundamental Science and TechnologyGraduate School of Keio UniversityYokohamaJapan
- Department of System NeuroscienceNational Institute for Physiological SciencesOkazakiJapan
| | - Nobuaki Mizuguchi
- Research Organization of Science and TechnologyRitsumeikan UniversityKusatsuJapan
- Institute of Advanced Research for Sport and Health ScienceRitsumeikan UniversityKusatsuJapan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
| |
Collapse
|
8
|
Iwama S, Takemi M, Eguchi R, Hirose R, Morishige M, Ushiba J. Two common issues in synchronized multimodal recordings with EEG: Jitter and latency. Neurosci Res 2024; 203:1-7. [PMID: 38141782 DOI: 10.1016/j.neures.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Multimodal recording using electroencephalogram (EEG) and other biological signals (e.g., muscle activities, eye movement, pupil diameters, or body kinematics data) is ubiquitous in human neuroscience research. However, the precise time alignment of multiple data from heterogeneous sources (i.e., devices) is often arduous due to variable recording parameters of commercially available research devices and complex experimental setups. In this review, we introduced the versatility of a Lab Streaming Layer (LSL)-based application that can overcome two common issues in measuring multimodal data: jitter and latency. We discussed the issues of jitter and latency in multimodal recordings and the benefits of time-synchronization when recording with multiple devices. In addition, a computer simulation was performed to highlight how the millisecond-order jitter readily affects the signal-to-noise ratio of the electrophysiological outcome. Together, we argue that the LSL-based system can be used for research requiring precise time-alignment of datasets. Studies that detect stimulus-induced transient neural responses or test hypotheses regarding temporal relationships of different functional aspects with multimodal data would benefit most from LSL-based systems.
Collapse
Affiliation(s)
- Seitaro Iwama
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Japan
| | - Mitsuaki Takemi
- Graduate School of Science and Technology, Keio University, Japan; Japan Science and Technology Agency PRESTO, Japan
| | - Ryo Eguchi
- Graduate School of Science and Technology, Keio University, Japan
| | - Ryotaro Hirose
- Graduate School of Science and Technology, Keio University, Japan
| | - Masumi Morishige
- Graduate School of Science and Technology, Keio University, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Japan.
| |
Collapse
|
9
|
Christova M, Sylwester V, Gallasch E, Fresnoza S. Reduced Cerebellar Brain Inhibition and Vibrotactile Perception in Response to Mechanical Hand Stimulation at Flutter Frequency. CEREBELLUM (LONDON, ENGLAND) 2024; 23:67-81. [PMID: 36502502 PMCID: PMC10864223 DOI: 10.1007/s12311-022-01502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The cerebellum is traditionally considered a movement control structure because of its established afferent and efferent anatomical and functional connections with the motor cortex. In the last decade, studies also proposed its involvement in perception, particularly somatosensory acquisition and prediction of the sensory consequences of movement. However, compared to its role in motor control, the cerebellum's specific role or modulatory influence on other brain areas involved in sensory perception, specifically the primary sensorimotor cortex, is less clear. In the present study, we explored whether peripherally applied vibrotactile stimuli at flutter frequency affect functional cerebello-cortical connections. In 17 healthy volunteers, changes in cerebellar brain inhibition (CBI) and vibration perception threshold (VPT) were measured before and after a 20-min right hand mechanical stimulation at 25 Hz. 5 Hz mechanical stimulation of the right foot served as an active control condition. Performance in a Grooved Pegboard test (GPT) was also measured to assess stimulation's impact on motor performance. Hand stimulation caused a reduction in CBI (13.16%) and increased VPT but had no specific effect on GPT performance, while foot stimulation had no significant effect on all measures. The result added evidence to the functional connections between the cerebellum and primary motor cortex, as shown by CBI reduction. Meanwhile, the parallel increase in VPT indirectly suggests that the cerebellum influences the processing of vibrotactile stimulus through motor-sensory interactions.
Collapse
Affiliation(s)
- Monica Christova
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Neue Stiftingtalstraße 6/D05, 8010, Graz, Austria.
- Institute of Physiotherapy, University of Applied Sciences FH-Joanneum, Graz, Austria.
| | | | - Eugen Gallasch
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Neue Stiftingtalstraße 6/D05, 8010, Graz, Austria
| | - Shane Fresnoza
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
10
|
Bigoni C, Pagnamenta S, Cadic-Melchior A, Bevilacqua M, Harquel S, Raffin E, Hummel FC. MEP and TEP features variability: is it just the brain-state? J Neural Eng 2024; 21:016011. [PMID: 38211341 DOI: 10.1088/1741-2552/ad1dc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Objective.The literature investigating the effects of alpha oscillations on corticospinal excitability is divergent. We believe inconsistency in the findings may arise, among others, from the electroencephalography (EEG) processing for brain-state determination. Here, we provide further insights in the effects of the brain-state on cortical and corticospinal excitability and quantify the impact of different EEG processing.Approach.Corticospinal excitability was measured using motor evoked potential (MEP) peak-to-peak amplitudes elicited with transcranial magnetic stimulation (TMS); cortical responses were studied through TMS-evoked potentials' TEPs features. A TMS-EEG-electromyography (EMG) dataset of 18 young healthy subjects who received 180 single-pulse (SP) and 180 paired pulses (PP) to determine short-intracortical inhibition (SICI) was investigated. To study the effect of different EEG processing, we compared the brain-state estimation deriving from three published methods. The influence of presence of neural oscillations was also investigated. To evaluate the effect of the brain-state on MEP and TEP features variability, we defined the brain-state based on specific EEG phase and power combinations, only in trials where neural oscillations were present. The relationship between TEPs and MEPs was further evaluated.Main results.The presence of neural oscillations resulted in more consistent results regardless of the EEG processing approach. Nonetheless, the latter still critically affected the outcomes, making conclusive claims complex. With our approach, the MEP amplitude was positively modulated by the alpha power and phase, with stronger responses during the trough phase and high power. Power and phase also affected TEP features. Importantly, similar effects were observed in both TMS conditions.Significance.These findings support the view that the brain state of alpha oscillations is associated with the variability observed in cortical and corticospinal responses to TMS, with a tight correlation between the two. The results further highlight the importance of closed-loop stimulation approaches while underlining that care is needed in designing experiments and choosing the analytical approaches, which should be based on knowledge from offline studies to control for the heterogeneity originating from different EEG processing strategies.
Collapse
Affiliation(s)
- Claudia Bigoni
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
| | - Sara Pagnamenta
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
| | - Andéol Cadic-Melchior
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
| | - Michele Bevilacqua
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
| | - Sylvain Harquel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
| | - Estelle Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Sion 1951, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, 1202 Geneva, Switzerland
| |
Collapse
|
11
|
Illman M, Jaatela J, Vallinoja J, Nurmi T, Mäenpää H, Piitulainen H. Altered excitation-inhibition balance in the primary sensorimotor cortex to proprioceptive hand stimulation in cerebral palsy. Clin Neurophysiol 2024; 157:25-36. [PMID: 38039924 DOI: 10.1016/j.clinph.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE Our objective was to clarify the primary sensorimotor (SM1) cortex excitatory and inhibitory alterations in hemiplegic (HP) and diplegic (DP) cerebral palsy (CP) by quantifying SM1 cortex beta power suppression and rebound with magnetoencephalography (MEG). METHODS MEG was recorded from 16 HP and 12 DP adolescents, and their 32 healthy controls during proprioceptive stimulation of the index fingers evoked by a movement actuator. The related beta power changes were computed with Temporal Spectral Evolution (TSE). Peak strengths of beta suppression and rebound were determined from representative channels over the SM1 cortex. RESULTS Beta suppression was stronger contralateral to the stimulus and rebound was weaker ipsilateral to the stimulation in DP compared to controls. Beta modulation strengths did not differ significantly between HP and the control group. CONCLUSIONS The emphasized beta suppression in DP suggests less efficient proprioceptive processing in the SM1 contralateral to the stimulation. Their weak rebound further indicates reduced intra- and/or interhemispheric cortical inhibition, which is a potential neuronal mechanism for their bilateral motor impairments. SIGNIFICANCE The excitation-inhibition balance of the SM1 cortex related to proprioception is impaired in diplegic CP. Therefore, the cortical and behavioral proprioceptive deficits should be better diagnosed and considered to better target individualized effective rehabilitation in CP.
Collapse
Affiliation(s)
- Mia Illman
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O.BOX 35, FI-40014 Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland; Aalto NeuroImaging, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland.
| | - Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland
| | - Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland
| | - Timo Nurmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland
| | - Helena Mäenpää
- Pediatric Neurology, New Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O.BOX 35, FI-40014 Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland; Pediatric Neurology, New Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00029 Helsinki, Finland
| |
Collapse
|
12
|
Guehl D, Guillaud E, Langbour N, Doat E, Auzou N, Courtin E, Branchard O, Engelhardt J, Benazzouz A, Eusebio A, Cuny E, Burbaud P. Usefulness of thalamic beta activity for closed-loop therapy in essential tremor. Sci Rep 2023; 13:22332. [PMID: 38102180 PMCID: PMC10724233 DOI: 10.1038/s41598-023-49511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
A partial loss of effectiveness of deep brain stimulation of the ventral intermediate nucleus of the thalamus (VIM) has been reported in some patients with essential tremor (ET), possibly due to habituation to permanent stimulation. This study focused on the evolution of VIM local-field potentials (LFPs) data over time to assess the long-term feasibility of closed-loop therapy based on thalamic activity. We performed recordings of thalamic LFPs in 10 patients with severe ET using the ACTIVA™ PC + S (Medtronic plc.) allowing both recordings and stimulation in the same region. Particular attention was paid to describing the evolution of LFPs over time from 3 to 24 months after surgery when the stimulation was Off. We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV2/Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV2/Hz during posture/action for N = 7/10 patients; p = 0.014) and 24 months after surgery (2.32 ± 0.35 at rest vs 0.75 ± 0.78 µV2/Hz during posture/action for 4/6 patients; p = 0.017). Among the patients who exhibited a significant decrease of high-beta LFP amplitude when stimulation was Off, this phenomenon was observed at least twice during the follow-up. Although the extent of this decrease in high-beta LFPs amplitude during movements inducing tremor may vary over time, this thalamic biomarker of movement could potentially be usable for closed-loop therapy in the long term.
Collapse
Affiliation(s)
- Dominique Guehl
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France.
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France.
| | - Etienne Guillaud
- Institute of Cognitive and Integrative Neurosciences, Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Nicolas Langbour
- Centre de Recherche en Psychiatrie, CH de la Milétrie, 86000, Poitiers, France
| | - Emilie Doat
- Institute of Cognitive and Integrative Neurosciences, Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Nicolas Auzou
- Institut des Maladies Neurodégénératives Clinique (IMNc), Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Edouard Courtin
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | | | | | - Abdelhamid Benazzouz
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpitaux Universitaire de Marseille, Marseille, France
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Univ, CNRS, Marseille, France
| | - Emmanuel Cuny
- Service de Neurochirurgie, CHU de Bordeaux, Bordeaux, France
| | - Pierre Burbaud
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| |
Collapse
|
13
|
Suzuki Y, Jovanovic LI, Fadli RA, Yamanouchi Y, Marquez-Chin C, Popovic MR, Nomura T, Milosevic M. Evidence That Brain-Controlled Functional Electrical Stimulation Could Elicit Targeted Corticospinal Facilitation of Hand Muscles in Healthy Young Adults. Neuromodulation 2023; 26:1612-1621. [PMID: 35088740 DOI: 10.1016/j.neurom.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Brain-computer interface (BCI)-controlled functional electrical stimulation (FES) has been used in rehabilitation for improving hand motor function. However, mechanisms of improvements are still not well understood. The objective of this study was to investigate how BCI-controlled FES affects hand muscle corticospinal excitability. MATERIALS AND METHODS A total of 12 healthy young adults were recruited in the study. During BCI calibration, a single electroencephalography channel from the motor cortex and a frequency band were chosen to detect event-related desynchronization (ERD) of cortical oscillatory activity during kinesthetic wrist motor imagery (MI). The MI-based BCI system was used to detect active states on the basis of ERD activity in real time and produce contralateral wrist extension movements through FES of the extensor carpi radialis (ECR) muscle. As a control condition, FES was used to generate wrist extension at random intervals. The two interventions were performed on separate days and lasted 25 minutes. Motor evoked potentials (MEPs) in ECR (intervention target) and flexor carpi radialis (FCR) muscles were elicited through single-pulse transcranial magnetic stimulation of the motor cortex to compare corticospinal excitability before (pre), immediately after (post0), and 30 minutes after (post30) the interventions. RESULTS After the BCI-FES intervention, ECR muscle MEPs were significantly facilitated at post0 and post30 time points compared with before the intervention (pre), whereas there were no changes in the FCR muscle corticospinal excitability. Conversely, after the random FES intervention, both ECR and FCR muscle MEPs were unaffected compared with before the intervention (pre). CONCLUSIONS Our results demonstrated evidence that BCI-FES intervention could elicit muscle-specific short-term corticospinal excitability facilitation of the intervention targeted (ECR) muscle only, whereas randomly applied FES was ineffective in eliciting any changes. Notably, these findings suggest that associative cortical and peripheral activations during BCI-FES can effectively elicit targeted muscle corticospinal excitability facilitation, implying possible rehabilitation mechanisms.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Lazar I Jovanovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Rizaldi A Fadli
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Yuki Yamanouchi
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
14
|
Lefebvre J, Hutt A. Induced synchronization by endogenous noise modulation in finite-size random neural networks: A stochastic mean-field study. CHAOS (WOODBURY, N.Y.) 2023; 33:123110. [PMID: 38055720 DOI: 10.1063/5.0167771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Event-related synchronization and desynchronization (ERS/ERD) are well-known features found experimentally in brain signals during cognitive tasks. Their understanding promises to have much better insights into neural information processes in cognition. Under the hypothesis that neural information affects the endogenous neural noise level in populations, we propose to employ a stochastic mean-field model to explain ERS/ERD in the γ-frequency range. The work extends previous mean-field studies by deriving novel effects from finite network size. Moreover, numerical simulations of ERS/ERD and their analytical explanation by the mean-field model suggest several endogenous noise modulation schemes, which may modulate the system's synchronization.
Collapse
Affiliation(s)
- J Lefebvre
- Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - A Hutt
- ICube, MLMS, University of Strasbourg, MIMESIS Team, Inria Nancy-Grand Est, 67000 Strasbourg, France
| |
Collapse
|
15
|
Lee S, Kim H, Kim JB, Kim DJ. Effects of altered functional connectivity on motor imagery brain-computer interfaces based on the laterality of paralysis in hemiplegia patients. Comput Biol Med 2023; 166:107435. [PMID: 37741227 DOI: 10.1016/j.compbiomed.2023.107435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Motor imagery (MI)-based brain-computer interfaces are widely employed for improving the rehabilitation of paralyzed people and their quality of life. It has been well documented that brain activity patterns in the primary motor cortex and sensorimotor cortex during MI are similar to those of motor execution/imagery. However, individuals paralyzed owing to various neurological disorders have debilitated activation of the motor control region. Therefore, the differences in brain activation based on the paralysis location should be considered. We analyzed brain activation patterns using the electroencephalogram (EEG) acquired while performing MI on the right upper limb to investigate hemiplegia-related brain activation patterns. Participants with hemiplegia of the right upper limb (n=7) and left upper limb (n=4) performed the MI task within the right upper limb. EEG signals were acquired using 14 channels based on a 10-20 global system, and analyzed for event-related desynchronization (ERD) based on event-related spectral perturbation and functional connectivity, using the weighted phase-lag index of both hemispheres at the location of hemiplegia. Enhanced ERD was found in the ipsilateral region, compared to the contralateral region, after MI of the affected limb. The reduced difference in the centrality of the channels was observed in all subjects, likely reflecting an altered brain network from increased interhemispheric connections. Furthermore, the tendency of distinct network-based features depending on the MI task on the affected limb was diluted between the inter-hemispheres. Analysis of interaction between inter-region using functional connectivity could provide avenues for further investigation of BCI strategy through the brain state of individuals with hemiplegia.
Collapse
Affiliation(s)
- Seho Lee
- Department of Brain and Cognitive Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Hakseung Kim
- Department of Brain and Cognitive Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Dong-Joo Kim
- Department of Brain and Cognitive Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; Department of Neurology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea; Department of Artificial Intelligence, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
16
|
Pierrieau E, Berret B, Lepage JF, Bernier PM. From Motivation to Action: Action Cost Better Predicts Changes in Premovement Beta-Band Activity than Speed. J Neurosci 2023; 43:5264-5275. [PMID: 37339875 PMCID: PMC10342222 DOI: 10.1523/jneurosci.0213-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
Although premovement beta-band event-related desynchronization (β-ERD; 13-30 Hz) from sensorimotor regions is modulated by movement speed, current evidence does not support a strict monotonic association between the two. Given that β-ERD is thought to increase information encoding capacity, we tested the hypothesis that it might be related to the expected neurocomputational cost of movement, here referred to as action cost. Critically, action cost is greater both for slow and fast movements compared with a medium or "preferred" speed. Thirty-one right-handed participants performed a speed-controlled reaching task while recording their EEG. Results revealed potent modulations of beta power as a function of speed, with β-ERD being significantly greater both for movements performed at high and low speeds compared with medium speed. Interestingly, medium-speed movements were more often chosen by participants than low-speed and high-speed movements, suggesting that they were evaluated as less costly. In line with this, modeling of action cost revealed a pattern of modulation across speed conditions that strikingly resembled the one found for β-ERD. Indeed, linear mixed models showed that estimated action cost predicted variations of β-ERD significantly better than speed. This relationship with action cost was specific to beta power, as it was not found when averaging activity in the mu band (8-12 Hz) and gamma band (31-49 Hz) bands. These results demonstrate that increasing β-ERD may not merely speed up movements, but instead facilitate the preparation of high-speed and low-speed movements through the allocation of additional neural resources, thereby enabling flexible motor control.SIGNIFICANCE STATEMENT Heightened beta activity has been associated with movement slowing in Parkinson's disease, and modulations of beta activity are commonly used to decode movement parameters in brain-computer interfaces. Here we show that premovement beta activity is better explained by the neurocomputational cost of the action rather than its speed. Instead of being interpreted as a mere reflection of changes in movement speed, premovement changes in beta activity might therefore be used to infer the amount of neural resources that are allocated for motor planning.
Collapse
Affiliation(s)
- Emeline Pierrieau
- Programme de Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Bastien Berret
- CIAMS (Complexité, Innovation, Activités, Motrices, et Sportives), Université Paris-Saclay, 91405 Orsay, France
- CIAMS (Complexité, Innovation, Activités, Motrices, et Sportives), Université d'Orléans, 45067 Orléans, France
- Institut Universitaire de France, 75231 Paris, France
| | - Jean-François Lepage
- Programme de Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre-Michel Bernier
- Département de Kinanthropologie, Faculté des Sciences de l'Activité Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
17
|
Iwama S, Morishige M, Kodama M, Takahashi Y, Hirose R, Ushiba J. High-density scalp electroencephalogram dataset during sensorimotor rhythm-based brain-computer interfacing. Sci Data 2023; 10:385. [PMID: 37322080 PMCID: PMC10272177 DOI: 10.1038/s41597-023-02260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Real-time functional imaging of human neural activity and its closed-loop feedback enable voluntary control of targeted brain regions. In particular, a brain-computer interface (BCI), a direct bridge of neural activities and machine actuation is one promising clinical application of neurofeedback. Although a variety of studies reported successful self-regulation of motor cortical activities probed by scalp electroencephalogram (EEG), it remains unclear how neurophysiological, experimental conditions or BCI designs influence variability in BCI learning. Here, we provide the EEG data during using BCIs based on sensorimotor rhythm (SMR), consisting of 4 separate datasets. All EEG data were acquired with a high-density scalp EEG setup containing 128 channels covering the whole head. All participants were instructed to perform motor imagery of right-hand movement as the strategy to control BCIs based on the task-related power attenuation of SMR magnitude, that is event-related desynchronization. This dataset would allow researchers to explore the potential source of variability in BCI learning efficiency and facilitate follow-up studies to test the explicit hypotheses explored by the dataset.
Collapse
Affiliation(s)
- Seitaro Iwama
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Tokyo, Kanagawa, Japan
| | - Masumi Morishige
- Graduate School of Science and Technology, Keio University, Tokyo, Kanagawa, Japan
| | - Midori Kodama
- Graduate School of Science and Technology, Keio University, Tokyo, Kanagawa, Japan
| | - Yoshikazu Takahashi
- Graduate School of Science and Technology, Keio University, Tokyo, Kanagawa, Japan
| | - Ryotaro Hirose
- Graduate School of Science and Technology, Keio University, Tokyo, Kanagawa, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Tokyo, Kanagawa, Japan.
| |
Collapse
|
18
|
Nurmi T, Hakonen M, Bourguignon M, Piitulainen H. Proprioceptive response strength in the primary sensorimotor cortex is invariant to the range of finger movement. Neuroimage 2023; 269:119937. [PMID: 36791896 DOI: 10.1016/j.neuroimage.2023.119937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Proprioception is the sense of body position and movement that relies on afference from the proprioceptors in muscles and joints. Proprioceptive responses in the primary sensorimotor (SM1) cortex can be elicited by stimulating the proprioceptors using evoked (passive) limb movements. In magnetoencephalography (MEG), proprioceptive processing can be quantified by recording the movement evoked fields (MEFs) and movement-induced beta power modulations or by computing corticokinematic coherence (CKC) between the limb kinematics and cortical activity. We examined whether cortical proprioceptive processing quantified with MEF peak strength, relative beta suppression and rebound power and CKC strength is affected by the movement range of the finger. MEG activity was measured from 16 right-handed healthy volunteers while movements were applied to their right-index finger metacarpophalangeal joint with an actuator. Movements were either intermittent, every 3000 ± 250 ms, to estimate MEF or continuous, at 3 Hz, to estimate CKC. In both cases, 4 different ranges of motion of the stimuli were investigated: 15, 18, 22 and 26 mm for MEF and 6, 7, 9 and 13 mm for CKC. MEF amplitude, relative beta suppression and rebound as well as peak CKC strength at the movement frequency were compared between the movement ranges in the source space. Inter-individual variation was also compared between the MEF and CKC strengths. As expected, MEF and CKC responses peaked at the contralateral SM1 cortex. MEF peak, beta suppression and rebound and CKC strengths were similar across all movement ranges. Furthermore, CKC strength showed a lower degree of inter-individual variation compared with MEF strength. Our result of absent modulation by movement range in cortical responses to passive movements of the finger indicates that variability in movement range should not hinder comparability between different studies or participants. Furthermore, our data indicates that CKC is less prone to inter-individual variability than MEFs, and thus more advantageous in what pertains to statistical power.
Collapse
Affiliation(s)
- Timo Nurmi
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland.
| | - Maria Hakonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland; A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Mathieu Bourguignon
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium; Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium; BCBL, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä 40014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland; Aalto NeuroImaging, Aalto University, Espoo 02150, Finland
| |
Collapse
|
19
|
Mykland MS, Uglem M, Bjørk MH, Matre D, Sand T, Omland PM. Effects of insufficient sleep on sensorimotor processing in migraine: A randomised, blinded crossover study of event related beta oscillations. Cephalalgia 2023; 43:3331024221148398. [PMID: 36786371 DOI: 10.1177/03331024221148398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
BACKGROUND Migraine has a largely unexplained connection with sleep and is possibly related to a dysfunction of thalamocortical systems and cortical inhibition. In this study we investigate the effect of insufficient sleep on cortical sensorimotor processing in migraine. METHODS We recorded electroencephalography during a sensorimotor task from 46 interictal migraineurs and 28 controls after two nights of eight-hour habitual sleep and after two nights of four-hour restricted sleep. We compared changes in beta oscillations of the sensorimotor cortex after the two sleep conditions between migraineurs, controls and subgroups differentiating migraine subjects usually having attacks starting during sleep and not during sleep. We included preictal and postictal recordings in a secondary analysis of temporal changes in relation to attacks. RESULTS Interictally, we discovered lower beta synchronisation after sleep restriction in sleep related migraine compared to non-sleep related migraine (p=0.006) and controls (p=0.01). No differences were seen between controls and the total migraine group in the interictal phase. After migraine attacks, we observed lower beta synchronisation (p<0.001) and higher beta desynchronisation (p=0.002) after sleep restriction closer to the end of the attack compared to later after the attack. CONCLUSION The subgroup with sleep related migraine had lower sensorimotor beta synchronisation after sleep restriction, possibly related to dysfunctional GABAergic inhibitory systems. Sufficient sleep during or immediately after migraine attacks may be of importance for maintaining normal cortical excitability.
Collapse
Affiliation(s)
- Martin Syvertsen Mykland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Martin Uglem
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Marte-Helene Bjørk
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Dagfinn Matre
- Division of Research, National Institute of Occupational Health, Oslo, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Petter Moe Omland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| |
Collapse
|
20
|
Kodama M, Iwama S, Morishige M, Ushiba J. Thirty-minute motor imagery exercise aided by EEG sensorimotor rhythm neurofeedback enhances morphing of sensorimotor cortices: a double-blind sham-controlled study. Cereb Cortex 2023:6967448. [PMID: 36600612 DOI: 10.1093/cercor/bhac525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Neurofeedback training using electroencephalogram (EEG)-based brain-computer interfaces (BCIs) combined with mental rehearsals of motor behavior has demonstrated successful self-regulation of motor cortical excitability. However, it remains unclear whether the acquisition of skills to voluntarily control neural excitability is accompanied by structural plasticity boosted by neurofeedback. Here, we sought short-term changes in cortical structures induced by 30 min of BCI-based neurofeedback training, which aimed at the regulation of sensorimotor rhythm (SMR) in scalp EEG. When participants performed kinesthetic motor imagery of right finger movement with online feedback of either event-related desynchronisation (ERD) of SMR magnitude from the contralateral sensorimotor cortex (SM1) or those from other participants (i.e. placebo), the learning rate of SMR-ERD control was significantly different. Although overlapped structural changes in gray matter volumes were found in both groups, significant differences revealed by group-by-group comparison were spatially different; whereas the veritable neurofeedback group exhibited sensorimotor area-specific changes, the placebo exhibited spatially distributed changes. The white matter change indicated a significant decrease in the corpus callosum in the verum group. Furthermore, the learning rate of SMR regulation was correlated with the volume changes in the ipsilateral SM1, suggesting the involvement of interhemispheric motor control circuitries in BCI control tasks.
Collapse
Affiliation(s)
- Midori Kodama
- Graduate School of Science and Technology, Keio University, Kanagawa 108-0073, Japan
| | - Seitaro Iwama
- Graduate School of Science and Technology, Keio University, Kanagawa 108-0073, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0082, Japan
| | - Masumi Morishige
- Graduate School of Science and Technology, Keio University, Kanagawa 108-0073, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa 108-0073, Japan
| |
Collapse
|
21
|
Belkacem AN, Jamil N, Khalid S, Alnajjar F. On closed-loop brain stimulation systems for improving the quality of life of patients with neurological disorders. Front Hum Neurosci 2023; 17:1085173. [PMID: 37033911 PMCID: PMC10076878 DOI: 10.3389/fnhum.2023.1085173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Emerging brain technologies have significantly transformed human life in recent decades. For instance, the closed-loop brain-computer interface (BCI) is an advanced software-hardware system that interprets electrical signals from neurons, allowing communication with and control of the environment. The system then transmits these signals as controlled commands and provides feedback to the brain to execute specific tasks. This paper analyzes and presents the latest research on closed-loop BCI that utilizes electric/magnetic stimulation, optogenetic, and sonogenetic techniques. These techniques have demonstrated great potential in improving the quality of life for patients suffering from neurodegenerative or psychiatric diseases. We provide a comprehensive and systematic review of research on the modalities of closed-loop BCI in recent decades. To achieve this, the authors used a set of defined criteria to shortlist studies from well-known research databases into categories of brain stimulation techniques. These categories include deep brain stimulation, transcranial magnetic stimulation, transcranial direct-current stimulation, transcranial alternating-current stimulation, and optogenetics. These techniques have been useful in treating a wide range of disorders, such as Alzheimer's and Parkinson's disease, dementia, and depression. In total, 76 studies were shortlisted and analyzed to illustrate how closed-loop BCI can considerably improve, enhance, and restore specific brain functions. The analysis revealed that literature in the area has not adequately covered closed-loop BCI in the context of cognitive neural prosthetics and implanted neural devices. However, the authors demonstrate that the applications of closed-loop BCI are highly beneficial, and the technology is continually evolving to improve the lives of individuals with various ailments, including those with sensory-motor issues or cognitive deficiencies. By utilizing emerging techniques of stimulation, closed-loop BCI can safely improve patients' cognitive and affective skills, resulting in better healthcare outcomes.
Collapse
Affiliation(s)
- Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
- *Correspondence: Abdelkader Nasreddine Belkacem
| | - Nuraini Jamil
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
| | - Sumayya Khalid
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
| | - Fady Alnajjar
- Department of Computer Science and Software Engineering, College of Information Technology, UAE University, Al-Ain, United Arab Emirates
- Center for Brain Science, RIKEN, Saitama, Japan
- Fady Alnajjar
| |
Collapse
|
22
|
Patel HH, Berlinberg EJ, Nwachukwu B, Williams RJ, Mandelbaum B, Sonkin K, Forsythe B. Quadriceps Weakness is Associated with Neuroplastic Changes Within Specific Corticospinal Pathways and Brain Areas After Anterior Cruciate Ligament Reconstruction: Theoretical Utility of Motor Imagery-Based Brain-Computer Interface Technology for Rehabilitation. Arthrosc Sports Med Rehabil 2022; 5:e207-e216. [PMID: 36866306 PMCID: PMC9971910 DOI: 10.1016/j.asmr.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 11/09/2022] [Indexed: 12/29/2022] Open
Abstract
Persistent quadriceps weakness is a problematic sequela of anterior cruciate ligament reconstruction (ACLR). The purposes of this review are to summarize neuroplastic changes after ACL reconstruction; provide an overview of a promising interventions, motor imagery (MI), and its utility in muscle activation; and propose a framework using a brain-computer interface (BCI) to augment quadriceps activation. A literature review of neuroplastic changes, MI training, and BCI-MI technology in postoperative neuromuscular rehabilitation was conducted in PubMed, Embase, and Scopus. Combinations of the following search terms were used to identify articles: "quadriceps muscle," "neurofeedback," "biofeedback," "muscle activation," "motor learning," "anterior cruciate ligament," and "cortical plasticity." We found that ACLR disrupts sensory input from the quadriceps, which results in reduced sensitivity to electrochemical neuronal signals, an increase in central inhibition of neurons regulating quadriceps control and dampening of reflexive motor activity. MI training consists of visualizing an action, without physically engaging in muscle activity. Imagined motor output during MI training increases the sensitivity and conductivity of corticospinal tracts emerging from the primary motor cortex, which helps "exercise" the connections between the brain and target muscle tissues. Motor rehabilitation studies using BCI-MI technology have demonstrated increased excitability of the motor cortex, corticospinal tract, spinal motor neurons, and disinhibition of inhibitory interneurons. This technology has been validated and successfully applied in the recovery of atrophied neuromuscular pathways in stroke patients but has yet to be investigated in peripheral neuromuscular insults, such as ACL injury and reconstruction. Well-designed clinical studies may assess the impact of BCI on clinical outcomes and recovery time. Quadriceps weakness is associated with neuroplastic changes within specific corticospinal pathways and brain areas. BCI-MI shows strong potential for facilitating recovery of atrophied neuromuscular pathways after ACLR and may offer an innovative, multidisciplinary approach to orthopaedic care. Level of Evidence V, expert opinion.
Collapse
Affiliation(s)
- Harsh H. Patel
- Department of Orthopaedic Surgery, Midwest Orthopaedics at Rush, Chicago, Illinois
| | - Elyse J. Berlinberg
- Department of Orthopaedic Surgery, Midwest Orthopaedics at Rush, Chicago, Illinois
| | - Benedict Nwachukwu
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York City, New York
| | - Riley J. Williams
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York City, New York
| | - Bert Mandelbaum
- Department of Orthopaedic Surgery, Cedars-Sinai Kerlan-Jobe Institute, Santa Monica, California, U.S.A
| | | | - Brian Forsythe
- Department of Orthopaedic Surgery, Midwest Orthopaedics at Rush, Chicago, Illinois,Address correspondence to Brian Forsythe, M.D., 1611 W. Harrison St, Suite 360, Chicago, IL 60621
| |
Collapse
|
23
|
Brain-machine Interface (BMI)-based Neurorehabilitation for Post-stroke Upper Limb Paralysis. Keio J Med 2022; 71:82-92. [PMID: 35718470 DOI: 10.2302/kjm.2022-0002-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Because recovery from upper limb paralysis after stroke is challenging, compensatory approaches have been the main focus of upper limb rehabilitation. However, based on fundamental and clinical research indicating that the brain has a far greater potential for plastic change than previously thought, functional restorative approaches have become increasingly common. Among such interventions, constraint-induced movement therapy, task-specific training, robotic therapy, neuromuscular electrical stimulation (NMES), mental practice, mirror therapy, and bilateral arm training are recommended in recently published stroke guidelines. For severe upper limb paralysis, however, no effective therapy has yet been established. Against this background, there is growing interest in applying brain-machine interface (BMI) technologies to upper limb rehabilitation. Increasing numbers of randomized controlled trials have demonstrated the effectiveness of BMI neurorehabilitation, and several meta-analyses have shown medium to large effect sizes with BMI therapy. Subgroup analyses indicate higher intervention effects in the subacute group than the chronic group, when using movement attempts as the BMI-training trigger task rather than using motor imagery, and using NMES as the external device compared with using other devices. The Keio BMI team has developed an electroencephalography-based neurorehabilitation system and has published clinical and basic studies demonstrating its effectiveness and neurophysiological mechanisms. For its wider clinical application, the positioning of BMI therapy in upper limb rehabilitation needs to be clarified, BMI needs to be commercialized as an easy-to-use and cost-effective medical device, and training systems for rehabilitation professionals need to be developed. A technological breakthrough enabling selective modulation of neural circuits is also needed.
Collapse
|
24
|
Beta rhythmicity in human motor cortex reflects neural population coupling that modulates subsequent finger coordination stability. Commun Biol 2022; 5:1375. [PMID: 36522455 PMCID: PMC9755311 DOI: 10.1038/s42003-022-04326-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Human behavior is not performed completely as desired, but is influenced by the inherent rhythmicity of the brain. Here we show that anti-phase bimanual coordination stability is regulated by the dynamics of pre-movement neural oscillations in bi-hemispheric primary motor cortices (M1) and supplementary motor area (SMA). In experiment 1, pre-movement bi-hemispheric M1 phase synchrony in beta-band (M1-M1 phase synchrony) was online estimated from 129-channel scalp electroencephalograms. Anti-phase bimanual tapping preceded by lower M1-M1 phase synchrony exhibited significantly longer duration than tapping preceded by higher M1-M1 phase synchrony. Further, the inter-individual variability of duration was explained by the interaction of pre-movement activities within the motor network; lower M1-M1 phase synchrony and spectral power at SMA were associated with longer duration. The necessity of cortical interaction for anti-phase maintenance was revealed by sham-controlled repetitive transcranial magnetic stimulation over SMA in another experiment. Our results demonstrate that pre-movement cortical oscillatory coupling within the motor network unknowingly influences bimanual coordination performance in humans after consolidation, suggesting the feasibility of augmenting human motor ability by covertly monitoring preparatory neural dynamics.
Collapse
|
25
|
Hayashi M, Okuyama K, Mizuguchi N, Hirose R, Okamoto T, Kawakami M, Ushiba J. Spatially bivariate EEG-neurofeedback can manipulate interhemispheric inhibition. eLife 2022; 11:76411. [PMID: 35796537 PMCID: PMC9302968 DOI: 10.7554/elife.76411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Human behavior requires inter-regional crosstalk to employ the sensorimotor processes in the brain. Although external neuromodulation techniques have been used to manipulate interhemispheric sensorimotor activity, a central controversy concerns whether this activity can be volitionally controlled. Experimental tools lack the power to up- or down-regulate the state of the targeted hemisphere over a large dynamic range and, therefore, cannot evaluate the possible volitional control of the activity. We addressed this difficulty by using the recently developed method of spatially bivariate electroencephalography (EEG)-neurofeedback to systematically enable the participants to modulate their bilateral sensorimotor activities. Here, we report that participants learn to up- and down-regulate the ipsilateral excitability to the imagined hand while maintaining constant contralateral excitability; this modulates the magnitude of interhemispheric inhibition (IHI) assessed by the paired-pulse transcranial magnetic stimulation (TMS) paradigm. Further physiological analyses revealed that the manipulation capability of IHI magnitude reflected interhemispheric connectivity in EEG and TMS, which was accompanied by intrinsic bilateral cortical oscillatory activities. Our results show an interesting approach for neuromodulation, which might identify new treatment opportunities, e.g., in patients suffering from a stroke.
Collapse
Affiliation(s)
- Masaaki Hayashi
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Kohei Okuyama
- Department of Rehabilitation Medicine, Keio University, Tokyo, Japan
| | - Nobuaki Mizuguchi
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Ryotaro Hirose
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Taisuke Okamoto
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | | | - Junichi Ushiba
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| |
Collapse
|
26
|
de Souza RFL, Mendes TMAS, Lima LABDA, Brandão DS, Laplagne DA, de Sousa MBC. Effect of the Menstrual Cycle on Electroencephalogram Alpha and Beta Bands During Motor Imagery and Action Observation. Front Hum Neurosci 2022; 16:878887. [PMID: 35601901 PMCID: PMC9119141 DOI: 10.3389/fnhum.2022.878887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Female sex steroids (FSS) can affect the motor system, modulating motor cortex excitability as well as performance in dexterity and coordination tasks. However, it has not yet been explored whether FSS affects the cognitive components of motor behavior. Mu is a sensorimotor rhythm observed by electroencephalography (EEG) in alpha (8–12 Hz) and beta (15–30 Hz) frequency bands in practices such as motor imagery (MI) and action observation (AO). This rhythm represents a window for studying the activity of neural circuits involved in motor cognition. Herein we investigated whether the alpha-mu and beta-mu power in the sensorimotor region (C3 and C4, hypothesis-driven approach) and the alpha and beta power over frontal, parietal, and occipital regions (data-driven approach) are modulated differently in the menstrual, follicular, and luteal phases of menstrual cycles in right-handed dominant women. To do so, these women underwent MI and AO in the three menstrual cycle phases. The spectral activity of the cortical regions for the alpha and beta bands were compared between phases of the menstrual cycle and a correlation analysis was also performed in relation to estrogen and progesterone levels. For the hypothesis-based approach, beta-mu event-related desynchronization (ERD) was significantly stronger in the C3 channel in the follicular phase than in the menstrual and luteal phases. For the data-driven approach, beta ERD during MI was higher in the follicular phase than in the menstrual and luteal phases in the frontal region. These findings suggest the effect of FSS on executive movement control. No effect of menstrual cycle phases was observed in cortical areas investigated during OA, but alpha and beta bands correlated positively with the follicular phase plasma estradiol level. Thus, the attenuation of alpha and beta bands referring to mirror neuron activities appears to be associated with inhibition of cortical activity when estradiol levels are lower, improving cognitive processing of motor action.
Collapse
Affiliation(s)
- Rafaela Faustino Lacerda de Souza
- Behavioral Endocrinology Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- *Correspondence: Rafaela Faustino Lacerda de Souza,
| | | | | | - Daniel Soares Brandão
- Electroencephalography Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Diego Andrés Laplagne
- Behavioral Neurophysiology, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Bernardete Cordeiro de Sousa
- Behavioral Endocrinology Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Brazil
- Maria Bernardete Cordeiro de Sousa,
| |
Collapse
|
27
|
Kulasingham JP, Brodbeck C, Khan S, Marsh EB, Simon JZ. Bilaterally Reduced Rolandic Beta Band Activity in Minor Stroke Patients. Front Neurol 2022; 13:819603. [PMID: 35418932 PMCID: PMC8996122 DOI: 10.3389/fneur.2022.819603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Stroke patients with hemiparesis display decreased beta band (13-25 Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. Abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.
Collapse
Affiliation(s)
- Joshua P. Kulasingham
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
| | - Christian Brodbeck
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Sheena Khan
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Elisabeth B. Marsh
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jonathan Z. Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
- Department of Biology, University of Maryland, College Park, MD, United States
- Institute for Systems Research, University of Maryland, College Park, MD, United States
| |
Collapse
|
28
|
Liu Y, Wang Z, Huang S, Wang W, Ming D. EEG characteristic investigation of the sixth-finger motor imagery and optimal channel selection for classification. J Neural Eng 2022; 19. [PMID: 35008079 DOI: 10.1088/1741-2552/ac49a6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/10/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Supernumerary Robotic Limbs (SRL) are body augmentation robotic devices by adding extra limbs or fingers to the human body different from the traditional wearable robotic devices such as prosthesis and exoskeleton. We proposed a novel MI (Motor imagery)-based BCI paradigm based on the sixth-finger which imagines controlling the extra finger movements. The goal of this work is to investigate the EEG characteristics and the application potential of MI-based BCI systems based on the new imagination paradigm (the sixth finger MI). APPROACH 14 subjects participated in the experiment involving the sixth finger MI tasks and rest state. Event-related spectral perturbation (ERSP) was adopted to analyse EEG spatial features and key-channel time-frequency features. Common spatial patterns (CSP) were used for feature extraction and classification was implemented by support vector machine (SVM). A genetic algorithm (GA) was used to select combinations of EEG channels that maximized classification accuracy and verified EEG patterns based on the sixth finger MI. And we conducted a longitudinal 4-week EEG control experiment based on the new paradigm. MAIN RESULTS ERD (event-related desynchronization) was found in the supplementary motor area (SMA) and primary motor area (M1) with a faint contralateral dominance. Unlike traditional MI based on the human hand, ERD was also found in frontal lobe. GA results showed that the distribution of the optimal 8-channel is similar to EEG topographical distributions, nearing parietal and frontal lobe. And the classification accuracy based on the optimal 8-channel (the highest accuracy of 80% and mean accuracy of 70%) was significantly better than that based on the random 8-channel (p<0.01). SIGNIFICANCE This work provided a new paradigm for MI-based MI system and verified its feasibility, widened the control bandwidth of the BCI system.
Collapse
Affiliation(s)
- Yuan Liu
- Tianjin University, Tianjin University,Tianjin, Tianjin, Tianjin, 300072, CHINA
| | - Zhuang Wang
- Tianjin University, Tianjin University , Tianjin, Tianjin, Tianjin, 300072, CHINA
| | - Shuaifei Huang
- Tianjin University, Tianjin University,tianjin, Tianjin, Tianjin, 300072, CHINA
| | - Wenjie Wang
- Tianjin University, Tianjin University , Tianjin, Tianjin, Tianjin, 300072, CHINA
| | - Dong Ming
- Tianjin University, Tianjin University , Tianjin, Tianjin, 300072, CHINA
| |
Collapse
|
29
|
|
30
|
Nojima I, Sugata H, Takeuchi H, Mima T. Brain-Computer Interface Training Based on Brain Activity Can Induce Motor Recovery in Patients With Stroke: A Meta-Analysis. Neurorehabil Neural Repair 2021; 36:83-96. [PMID: 34958261 DOI: 10.1177/15459683211062895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain-computer interface (BCI) is a procedure involving brain activity in which neural status is provided to the participants for self-regulation. The current review aims to evaluate the effect sizes of clinical studies investigating the use of BCI-based rehabilitation interventions in restoring upper extremity function and effective methods to detect brain activity for motor recovery. METHODS A computerized search of MEDLINE, CENTRAL, Web of Science, and PEDro was performed to identify relevant articles. We selected clinical trials that used BCI-based training for post-stroke patients and provided motor assessment scores before and after the intervention. The pooled standardized mean differences of BCI-based training were calculated using the random-effects model. RESULTS We initially identified 655 potentially relevant articles; finally, 16 articles fulfilled the inclusion criteria, involving 382 participants. A significant effect of neurofeedback intervention for the paretic upper limb was observed (standardized mean difference = .48, [.16-.80], P = .006). However, the effect estimates were moderately heterogeneous among the studies (I2 = 45%, P = .03). Subgroup analysis of the method of measurement of brain activity indicated the effectiveness of the algorithm focusing on sensorimotor rhythm. CONCLUSION This meta-analysis suggested that BCI-based training was superior to conventional interventions for motor recovery of the upper limbs in patients with stroke. However, the results are not conclusive because of a high risk of bias and a large degree of heterogeneity due to the differences in the BCI interventions and the participants; therefore, further studies involving larger cohorts are required to confirm these results.
Collapse
Affiliation(s)
- Ippei Nojima
- Department of Physical Therapy, 84161Shinshu University School of Health Sciences, Matsumoto, Japan
| | - Hisato Sugata
- Faculty of Welfare and Health Science, 6339Oita University, Oita, Japan
| | - Hiroki Takeuchi
- National Hospital Organization, 73721Higashinagoya National Hospital, Nagoya, Japan
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, 316844Ritsumeikan University, Kyoto, Japan
| |
Collapse
|
31
|
Diesburg DA, Greenlee JD, Wessel JR. Cortico-subcortical β burst dynamics underlying movement cancellation in humans. eLife 2021; 10:70270. [PMID: 34874267 PMCID: PMC8691838 DOI: 10.7554/elife.70270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Dominant neuroanatomical models hold that humans regulate their movements via loop-like cortico-subcortical networks, which include the subthalamic nucleus (STN), motor thalamus, and sensorimotor cortex (SMC). Inhibitory commands across these networks are purportedly sent via transient, burst-like signals in the β frequency (15-29 Hz). However, since human depth-recording studies are typically limited to one recording site, direct evidence for this proposition is hitherto lacking. Here, we present simultaneous multi-site recordings from SMC and either STN or motor thalamus in humans performing the stop-signal task. In line with their purported function as inhibitory signals, subcortical β-bursts were increased on successful stop-trials. STN bursts in particular were followed within 50 ms by increased β-bursting over SMC. Moreover, between-site comparisons (including in a patient with simultaneous recordings from SMC, thalamus, and STN) confirmed that β-bursts in STN temporally precede thalamic β-bursts. This highly unique set of recordings provides empirical evidence for the role of β-bursts in conveying inhibitory commands along long-proposed cortico-subcortical networks underlying movement regulation in humans.
Collapse
Affiliation(s)
- Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
| | - Jeremy Dw Greenlee
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States.,Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, United States
| |
Collapse
|
32
|
Dionísio A, Gouveia R, Castelhano J, Duarte IC, Santo GC, Sargento-Freitas J, Duecker F, Castelo-Branco M. The Role of Continuous Theta Burst TMS in the Neurorehabilitation of Subacute Stroke Patients: A Placebo-Controlled Study. Front Neurol 2021; 12:749798. [PMID: 34803887 PMCID: PMC8599133 DOI: 10.3389/fneur.2021.749798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Transcranial magnetic stimulation, in particular continuous theta burst (cTBS), has been proposed for stroke rehabilitation, based on the concept that inhibition of the healthy hemisphere helps promote the recovery of the lesioned one. We aimed to study its effects on cortical excitability, oscillatory patterns, and motor function, the main aim being to identify potentially beneficial neurophysiological effects. Materials and Methods: We applied randomized real or placebo stimulation over the unaffected primary motor cortex of 10 subacute (7 ± 3 days) post-stroke patients. Neurophysiological measurements were performed using electroencephalography and electromyography. Motor function was assessed with the Wolf Motor Function Test. We performed a repeated measure study with the recordings taken pre-, post-cTBS, and at 3 months' follow-up. Results: We investigated changes in motor rhythms during arm elevation and thumb opposition tasks and found significant changes in beta power of the affected thumb's opposition, specifically after real cTBS. Our results are consistent with an excitatory response (increase in event-related desynchronization) in the sensorimotor cortical areas of the affected hemisphere, after stimulation. Neither peak-to-peak amplitude of motor-evoked potentials nor motor performance were significantly altered. Conclusions: Consistently with the theoretical prediction, this contralateral inhibitory stimulation paradigm changes neurophysiology, leading to a significant excitatory impact on the cortical oscillatory patterns of the contralateral hemisphere. These proof-of-concept results provide evidence for the potential role of continuous TBS in the neurorehabilitation of post-stroke patients. We suggest that these changes in ERS/ERD patterns should be further explored in future phase IIb/phase III clinical trials, in larger samples of poststroke patients.
Collapse
Affiliation(s)
- Ana Dionísio
- Institute of Nuclear Sciences Applied to Health ICNAS, Coimbra Institute for Biomedical Imaging and Translational Research CIBIT, University of Coimbra, Coimbra, Portugal.,Faculty of Sciences and Technology FCTUC, Department of Physics, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine FMUC, University of Coimbra, Coimbra, Portugal
| | - Rita Gouveia
- Institute of Nuclear Sciences Applied to Health ICNAS, Coimbra Institute for Biomedical Imaging and Translational Research CIBIT, University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- Institute of Nuclear Sciences Applied to Health ICNAS, Coimbra Institute for Biomedical Imaging and Translational Research CIBIT, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine FMUC, University of Coimbra, Coimbra, Portugal
| | - Isabel Catarina Duarte
- Institute of Nuclear Sciences Applied to Health ICNAS, Coimbra Institute for Biomedical Imaging and Translational Research CIBIT, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine FMUC, University of Coimbra, Coimbra, Portugal
| | - Gustavo C Santo
- Stroke Unit, Neurology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - João Sargento-Freitas
- Stroke Unit, Neurology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Felix Duecker
- Institute of Nuclear Sciences Applied to Health ICNAS, Coimbra Institute for Biomedical Imaging and Translational Research CIBIT, University of Coimbra, Coimbra, Portugal.,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
| | - Miguel Castelo-Branco
- Institute of Nuclear Sciences Applied to Health ICNAS, Coimbra Institute for Biomedical Imaging and Translational Research CIBIT, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine FMUC, University of Coimbra, Coimbra, Portugal.,Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands.,Brain Imaging Network, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
33
|
Sugino H, Ushiyama J. Gymnasts' Ability to Modulate Sensorimotor Rhythms During Kinesthetic Motor Imagery of Sports Non-specific Movements Superior to Non-gymnasts. Front Sports Act Living 2021; 3:757308. [PMID: 34805979 PMCID: PMC8600039 DOI: 10.3389/fspor.2021.757308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Previous psychological studies using questionnaires have consistently reported that athletes have superior motor imagery ability, both for sports-specific and for sports-non-specific movements. However, regarding motor imagery of sports-non-specific movements, no physiological studies have demonstrated differences in neural activity between athletes and non-athletes. The purpose of this study was to examine the differences in sensorimotor rhythms during kinesthetic motor imagery (KMI) of sports-non-specific movements between gymnasts and non-gymnasts. We selected gymnasts as an example population because they are likely to have particularly superior motor imagery ability due to frequent usage of motor imagery, including KMI as part of daily practice. Healthy young participants (16 gymnasts and 16 non-gymnasts) performed repeated motor execution and KMI of sports-non-specific movements (wrist dorsiflexion and shoulder abduction of the dominant hand). Scalp electroencephalogram (EEG) was recorded over the contralateral sensorimotor cortex. During motor execution and KMI, sensorimotor EEG power is known to decrease in the α- (8–15 Hz) and β-bands (16–35 Hz), referred to as event-related desynchronization (ERD). We calculated the maximal peak of ERD both in the α- (αERDmax) and β-bands (βERDmax) as a measure of changes in corticospinal excitability. αERDmax was significantly greater in gymnasts, who subjectively evaluated their KMI as being more vivid in the psychological questionnaire. On the other hand, βERDmax was greater in gymnasts only for shoulder abduction KMI. These findings suggest gymnasts' signature of flexibly modulating sensorimotor rhythms with no movements, which may be the basis of their superior ability of KMI for sports-non-specific movements.
Collapse
Affiliation(s)
- Hirotaka Sugino
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Junichi Ushiyama
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan.,Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Chen S, Shu X, Wang H, Ding L, Fu J, Jia J. The Differences Between Motor Attempt and Motor Imagery in Brain-Computer Interface Accuracy and Event-Related Desynchronization of Patients With Hemiplegia. Front Neurorobot 2021; 15:706630. [PMID: 34803647 PMCID: PMC8602190 DOI: 10.3389/fnbot.2021.706630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Motor attempt and motor imagery (MI) are two common motor tasks used in brain-computer interface (BCI). They are widely researched for motor rehabilitation in patients with hemiplegia. The differences between the motor attempt (MA) and MI tasks of patients with hemiplegia can be used to promote BCI application. This study aimed to explore the accuracy of BCI and event-related desynchronization (ERD) between the two tasks. Materials and Methods: We recruited 13 patients with stroke and 3 patients with traumatic brain injury, to perform MA and MI tasks in a self-control design. The BCI accuracies from the bilateral, ipsilesional, and contralesional hemispheres were analyzed and compared between different tasks. The cortical activation patterns were evaluated with ERD and laterality index (LI). Results: The study showed that the BCI accuracies of MA were significantly (p < 0.05) higher than MI in the bilateral, ipsilesional, and contralesional hemispheres in the alpha-beta (8–30 Hz) frequency bands. There was no significant difference in ERD and LI between the MA and MI tasks in the 8–30 Hz frequency bands. However, in the MA task, there was a negative correlation between the ERD values in the channel CP1 and ipsilesional hemispheric BCI accuracies (r = −0.552, p = 0.041, n = 14) and a negative correlation between the ERD values in channel CP2 and bilateral hemispheric BCI accuracies (r = −0.543, p = 0.045, n = 14). While in the MI task, there were negative correlations between the ERD values in channel C4 and bilateral hemispheric BCI accuracies (r = −0.582, p = 0.029, n = 14) as well as the contralesional hemispheric BCI accuracies (r = −0.657, p = 0.011, n = 14). As for motor dysfunction, there was a significant positive correlation between the ipsilesional BCI accuracies and FMA scores of the hand part in 8–13 Hz (r = 0.565, p = 0.035, n = 14) in the MA task and a significant positive correlation between the ipsilesional BCI accuracies and FMA scores of the hand part in 13–30 Hz (r = 0.558, p = 0.038, n = 14) in the MI task. Conclusion: The MA task may achieve better BCI accuracy but have similar cortical activations with the MI task. Cortical activation (ERD) may influence the BCI accuracy, which should be carefully considered in the BCI motor rehabilitation of patients with hemiplegia.
Collapse
Affiliation(s)
- Shugeng Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaokang Shu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hewei Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Ding
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianghong Fu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
35
|
Garro F, Chiappalone M, Buccelli S, De Michieli L, Semprini M. Neuromechanical Biomarkers for Robotic Neurorehabilitation. Front Neurorobot 2021; 15:742163. [PMID: 34776920 PMCID: PMC8579108 DOI: 10.3389/fnbot.2021.742163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
One of the current challenges for translational rehabilitation research is to develop the strategies to deliver accurate evaluation, prediction, patient selection, and decision-making in the clinical practice. In this regard, the robot-assisted interventions have gained popularity as they can provide the objective and quantifiable assessment of the motor performance by taking the kinematics parameters into the account. Neurophysiological parameters have also been proposed for this purpose due to the novel advances in the non-invasive signal processing techniques. In addition, other parameters linked to the motor learning and brain plasticity occurring during the rehabilitation have been explored, looking for a more holistic rehabilitation approach. However, the majority of the research done in this area is still exploratory. These parameters have shown the capability to become the “biomarkers” that are defined as the quantifiable indicators of the physiological/pathological processes and the responses to the therapeutical interventions. In this view, they could be finally used for enhancing the robot-assisted treatments. While the research on the biomarkers has been growing in the last years, there is a current need for a better comprehension and quantification of the neuromechanical processes involved in the rehabilitation. In particular, there is a lack of operationalization of the potential neuromechanical biomarkers into the clinical algorithms. In this scenario, a new framework called the “Rehabilomics” has been proposed to account for the rehabilitation research that exploits the biomarkers in its design. This study provides an overview of the state-of-the-art of the biomarkers related to the robotic neurorehabilitation, focusing on the translational studies, and underlying the need to create the comprehensive approaches that have the potential to take the research on the biomarkers into the clinical practice. We then summarize some promising biomarkers that are being under investigation in the current literature and provide some examples of their current and/or potential applications in the neurorehabilitation. Finally, we outline the main challenges and future directions in the field, briefly discussing their potential evolution and prospective.
Collapse
Affiliation(s)
- Florencia Garro
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Michela Chiappalone
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Stefano Buccelli
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | | |
Collapse
|
36
|
Ursino M, Ricci G, Astolfi L, Pichiorri F, Petti M, Magosso E. A Novel Method to Assess Motor Cortex Connectivity and Event Related Desynchronization Based on Mass Models. Brain Sci 2021; 11:brainsci11111479. [PMID: 34827478 PMCID: PMC8615480 DOI: 10.3390/brainsci11111479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge of motor cortex connectivity is of great value in cognitive neuroscience, in order to provide a better understanding of motor organization and its alterations in pathological conditions. Traditional methods provide connectivity estimations which may vary depending on the task. This work aims to propose a new method for motor connectivity assessment based on the hypothesis of a task-independent connectivity network, assuming nonlinear behavior. The model considers six cortical regions of interest (ROIs) involved in hand movement. The dynamics of each region is simulated using a neural mass model, which reproduces the oscillatory activity through the interaction among four neural populations. Parameters of the model have been assigned to simulate both power spectral densities and coherences of a patient with left-hemisphere stroke during resting condition, movement of the affected, and movement of the unaffected hand. The presented model can simulate the three conditions using a single set of connectivity parameters, assuming that only inputs to the ROIs change from one condition to the other. The proposed procedure represents an innovative method to assess a brain circuit, which does not rely on a task-dependent connectivity network and allows brain rhythms and desynchronization to be assessed on a quantitative basis.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell’Università 50, 47521 Cesena, Italy; (G.R.); (E.M.)
- Correspondence:
| | - Giulia Ricci
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell’Università 50, 47521 Cesena, Italy; (G.R.); (E.M.)
| | - Laura Astolfi
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185 Roma, Italy; (L.A.); (M.P.)
- Fondazione Santa Lucia, IRCCS Via Ardeatina 306/354, 00179 Roma, Italy;
| | | | - Manuela Petti
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185 Roma, Italy; (L.A.); (M.P.)
- Fondazione Santa Lucia, IRCCS Via Ardeatina 306/354, 00179 Roma, Italy;
| | - Elisa Magosso
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell’Università 50, 47521 Cesena, Italy; (G.R.); (E.M.)
| |
Collapse
|
37
|
Cortical mechanisms underlying variability in intermittent theta-burst stimulation-induced plasticity: A TMS-EEG study. Clin Neurophysiol 2021; 132:2519-2531. [PMID: 34454281 DOI: 10.1016/j.clinph.2021.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To test the hypothesis that intermittent theta burst stimulation (iTBS) variability depends on the ability to engage specific neurons in the primary motor cortex (M1). METHODS In a sham-controlled interventional study on 31 healthy volunteers, we used concomitant transcranial magnetic stimulation (TMS) and electroencephalography (EEG). We compared baseline motor evoked potentials (MEPs), M1 iTBS-evoked EEG oscillations, and resting-state EEG (rsEEG) between subjects who did and did not show MEP facilitation following iTBS. We also investigated whether baseline MEP and iTBS-evoked EEG oscillations could explain inter and intraindividual variability in iTBS aftereffects. RESULTS The facilitation group had smaller baseline MEPs than the no-facilitation group and showed more iTBS-evoked EEG oscillation synchronization in the alpha and beta frequency bands. Resting-state EEG power was similar between groups and iTBS had a similar non-significant effect on rsEEG in both groups. Baseline MEP amplitude and beta iTBS-evoked EEG oscillation power explained both inter and intraindividual variability in MEP modulation following iTBS. CONCLUSIONS The results show that variability in iTBS-associated plasticity depends on baseline corticospinal excitability and on the ability of iTBS to engage M1 beta oscillations. SIGNIFICANCE These observations can be used to optimize iTBS investigational and therapeutic applications.
Collapse
|
38
|
Mihelj E, Bächinger M, Kikkert S, Ruddy K, Wenderoth N. Mental individuation of imagined finger movements can be achieved using TMS-based neurofeedback. Neuroimage 2021; 242:118463. [PMID: 34384910 DOI: 10.1016/j.neuroimage.2021.118463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/09/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022] Open
Abstract
Neurofeedback (NF) in combination with motor imagery (MI) can be used for training individuals to volitionally modulate sensorimotor activity without producing overt movements. However, until now, NF methods were of limited utility for mentally training specific hand and finger actions. Here we employed a novel transcranial magnetic stimulation (TMS) based protocol to probe and detect MI-induced motor activity patterns in the primary motor cortex (M1) with the aim to reinforce selective facilitation of single finger representations. We showed that TMS-NF training but not MI training with uninformative feedback enabled participants to selectively upregulate corticomotor excitability of one finger, while simultaneously downregulating excitability of other finger representations within the same hand. Successful finger individuation during MI was accompanied by strong desynchronization of sensorimotor brain rhythms, particularly in the beta band, as measured by electroencephalography. Additionally, informative TMS-NF promoted more dissociable EEG activation patterns underlying single finger MI, when compared to MI of the control group where no such feedback was provided. Our findings suggest that selective TMS-NF is a new approach for acquiring the ability of finger individuation even if no overt movements are performed. This might offer new treatment modality for rehabilitation after stroke or spinal cord injury.
Collapse
Affiliation(s)
- Ernest Mihelj
- Department of Health Sciences and Technology, Neural Control of Movement Laboratory, ETH Zurich, Auguste-Piccard-Hof 1 Building HPT, Floor EETH, Zurich, Switzerland
| | - Marc Bächinger
- Department of Health Sciences and Technology, Neural Control of Movement Laboratory, ETH Zurich, Auguste-Piccard-Hof 1 Building HPT, Floor EETH, Zurich, Switzerland
| | - Sanne Kikkert
- Department of Health Sciences and Technology, Neural Control of Movement Laboratory, ETH Zurich, Auguste-Piccard-Hof 1 Building HPT, Floor EETH, Zurich, Switzerland
| | - Kathy Ruddy
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland
| | - Nicole Wenderoth
- Department of Health Sciences and Technology, Neural Control of Movement Laboratory, ETH Zurich, Auguste-Piccard-Hof 1 Building HPT, Floor EETH, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Federal Institute of Technology, Zurich, Switzerland; Future Health Technologies, Singapore-ETH Center, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore.
| |
Collapse
|
39
|
Palmer JA, Payne AM, Ting LH, Borich MR. Cortical Engagement Metrics During Reactive Balance Are Associated With Distinct Aspects of Balance Behavior in Older Adults. Front Aging Neurosci 2021; 13:684743. [PMID: 34335230 PMCID: PMC8317134 DOI: 10.3389/fnagi.2021.684743] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Heightened reliance on the cerebral cortex for postural stability with aging is well-known, yet the cortical mechanisms for balance control, particularly in relation to balance function, remain unclear. Here we aimed to investigate motor cortical activity in relation to the level of balance challenge presented during reactive balance recovery and identify circuit-specific interactions between motor cortex and prefrontal or somatosensory regions in relation to metrics of balance function that predict fall risk. Using electroencephalography, we assessed motor cortical beta power, and beta coherence during balance reactions to perturbations in older adults. We found that individuals with greater motor cortical beta power evoked following standing balance perturbations demonstrated lower general clinical balance function. Individual older adults demonstrated a wide range of cortical responses during balance reactions at the same perturbation magnitude, showing no group-level change in prefrontal- or somatosensory-motor coherence in response to perturbations. However, older adults with the highest prefrontal-motor coherence during the post-perturbation, but not pre-perturbation, period showed greater cognitive dual-task interference (DTI) and elicited stepping reactions at lower perturbation magnitudes. Our results support motor cortical beta activity as a potential biomarker for individual level of balance challenge and implicate prefrontal-motor cortical networks in distinct aspects of balance control involving response inhibition of reactive stepping in older adults. Cortical network activity during balance may provide a neural target for precision-medicine efforts aimed at fall prevention with aging.
Collapse
Affiliation(s)
- Jacqueline A. Palmer
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Aiden M. Payne
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Lena H. Ting
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
- Department of Biomedical Engineering, Emory and Georgia Tech, Atlanta, GA, United States
| | - Michael R. Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
40
|
Xiang ZQ, Huang YL, Luo GL, Ma HL, Zhang DL. Decreased Event-Related Desynchronization of Mental Rotation Tasks in Young Tibetan Immigrants. Front Hum Neurosci 2021; 15:664039. [PMID: 34276324 PMCID: PMC8278785 DOI: 10.3389/fnhum.2021.664039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to explore the cortical activity underlying mental rotation in high-altitude immigrants via the event-related desynchronization (ERD), the electroencephalogram time–frequency analysis, and source localization based on electroencephalographic data. When compared with the low-altitude individuals, the reaction time of mental rotation tasks was significantly slower in immigrants who had lived in high-altitude areas for 3 years. The time–frequency analysis showed that the alpha ERD and the beta ERD within the time window (400–700 ms) were decreased during the mental rotation tasks in these immigrants. The decreased ERD was observed at the parietal–occipital regions within the alpha band and at the central–parietal regions within the beta band. The decreased ERD might embody the sensorimotor-related cortical activity from hypoxia, which might be involved in cognitive control function in high-altitude immigrants, which provided insights into the neural mechanism of spatial cognition change on aspect of embodied cognition due to high-altitude exposure.
Collapse
Affiliation(s)
- Zu-Qiang Xiang
- Department of Psychology, School of Education, Guangzhou University, Guangzhou, China
| | - Yi-Lin Huang
- Department of Psychology, School of Education, Guangzhou University, Guangzhou, China
| | - Guang-Li Luo
- Department of Psychology, School of Education, Guangzhou University, Guangzhou, China.,The Fourth Primary School of Qiaotou Town, Dongguan, China
| | - Hai-Lin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, China.,Plateau Brain Science Research Center, South China Normal University, Guangzhou, China
| | - De-Long Zhang
- Plateau Brain Science Research Center, Tibet University, Lhasa, China.,Plateau Brain Science Research Center, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
41
|
Increasing self-other bodily overlap increases sensorimotor resonance to others' pain. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:19-33. [PMID: 31190136 PMCID: PMC7012796 DOI: 10.3758/s13415-019-00724-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Empathy for another person’s pain and feeling pain oneself seem to be accompanied by similar or shared neural responses. Such shared responses could be achieved by mapping the bodily states of others onto our own bodily representations. We investigated whether sensorimotor neural responses to the pain of others are increased when experimentally reducing perceived bodily distinction between the self and the other. Healthy adult participants watched video clips of the hands of ethnic ingroup or outgroup members being painfully penetrated by a needle syringe or touched by a cotton swab. Manipulating the video presentation to create a visuospatial overlap between the observer’s and the target’s hand increased the perceived bodily self-attribution of the target’s hand. For both ingroup and outgroup targets, this resulted in increased neural responses to the painful injections (compared with nonpainful contacts), as indexed by desynchronizations of central mu and beta scalp rhythms recorded using electroencephalography. Furthermore, these empathy-related neural activations were stronger in participants who reported stronger bodily self-attribution of the other person’s hand. Our findings provide further evidence that empathy for pain engages sensorimotor resonance mechanisms. They also indicate that reducing bodily self-other distinction may increase such resonance for ingroup as well as outgroup targets.
Collapse
|
42
|
Uji M, Cross N, Pomares FB, Perrault AA, Jegou A, Nguyen A, Aydin U, Lina JM, Dang-Vu TT, Grova C. Data-driven beamforming technique to attenuate ballistocardiogram artefacts in electroencephalography-functional magnetic resonance imaging without detecting cardiac pulses in electrocardiography recordings. Hum Brain Mapp 2021; 42:3993-4021. [PMID: 34101939 PMCID: PMC8288107 DOI: 10.1002/hbm.25535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a very promising non‐invasive neuroimaging technique. However, EEG data obtained from the simultaneous EEG–fMRI are strongly influenced by MRI‐related artefacts, namely gradient artefacts (GA) and ballistocardiogram (BCG) artefacts. When compared to the GA correction, the BCG correction is more challenging to remove due to its inherent variabilities and dynamic changes over time. The standard BCG correction (i.e., average artefact subtraction [AAS]), require detecting cardiac pulses from simultaneous electrocardiography (ECG) recording. However, ECG signals are also distorted and will become problematic for detecting reliable cardiac peaks. In this study, we focused on a beamforming spatial filtering technique to attenuate all unwanted source activities outside of the brain. Specifically, we applied the beamforming technique to attenuate the BCG artefact in EEG–fMRI, and also to recover meaningful task‐based neural signals during an attentional network task (ANT) which required participants to identify visual cues and respond accurately. We analysed EEG–fMRI data in 20 healthy participants during the ANT, and compared four different BCG corrections (non‐BCG corrected, AAS BCG corrected, beamforming + AAS BCG corrected, beamforming BCG corrected). We demonstrated that the beamforming approach did not only significantly reduce the BCG artefacts, but also significantly recovered the expected task‐based brain activity when compared to the standard AAS correction. This data‐driven beamforming technique appears promising especially for longer data acquisition of sleep and resting EEG–fMRI. Our findings extend previous work regarding the recovery of meaningful EEG signals by an optimized suppression of MRI‐related artefacts.
Collapse
Affiliation(s)
- Makoto Uji
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montréal, Québec, Canada
| | - Nathan Cross
- PERFORM Centre, Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Institut Universitaire de Gériatrie de Montréal and CRIUGM, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Florence B Pomares
- PERFORM Centre, Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Institut Universitaire de Gériatrie de Montréal and CRIUGM, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Aurore A Perrault
- PERFORM Centre, Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Institut Universitaire de Gériatrie de Montréal and CRIUGM, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Aude Jegou
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Aix-Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Alex Nguyen
- PERFORM Centre, Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Institut Universitaire de Gériatrie de Montréal and CRIUGM, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Umit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Jean-Marc Lina
- Departement de Genie Electrique, Ecole de Technologie Superieure, Montreal, Quebec, Canada.,Centre de Recherches Mathematiques, Montréal, Québec, Canada
| | - Thien Thanh Dang-Vu
- PERFORM Centre, Center for Studies in Behavioral Neurobiology, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Institut Universitaire de Gériatrie de Montréal and CRIUGM, CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Centre de Recherches Mathematiques, Montréal, Québec, Canada.,Multimodal Functional Imaging Lab, Biomedical Engineering Department, Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
| |
Collapse
|
43
|
Effects of visual-motor illusion on functional connectivity during motor imagery. Exp Brain Res 2021; 239:2261-2271. [PMID: 34081177 DOI: 10.1007/s00221-021-06136-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to verify whether visual-motor illusion changes the functional connectivity during kinesthetic motor imagery and the vividness of kinesthetic motor imagery. Twelve right-handed healthy adults participated in this study. All participants randomly performed both the illusion and observation conditions in 20 min, respectively. Illusion condition was induced kinesthetic illusion by viewing own finger movement video. Observation condition was observed own finger movement video. Before and after each condition, the brain activity of kinesthetic motor imagery was measured using functional near-infrared spectroscopy. The measure of brain activity under kinesthetic motor imagery was executed in five sets using block design. Under the kinesthetic motor imagery, participants were asked to imagine the movement of their right finger. Functional connectivity was analyzed during the kinesthetic motor imagery. In addition, after performing the task under kinesthetic motor imagery, the vividness of the kinesthetic motor imagery was measured using a visual analog scale. Furthermore, after each condition, the degree of kinesthetic illusion and sense of body ownership measured based on a seven-point Likert scale. Our results indicated that the functional connectivity during kinesthetic motor imagery was changed in the frontal-parietal network of the right hemisphere. The vividness of the kinesthetic motor imagery was significantly higher with the illusion condition compared with the observation condition. The degree of kinesthetic illusion and sense of body ownership were significantly higher with the illusion condition compared with the observation condition. In conclusion, the visual-motor illusion changes the functional connectivity during kinesthetic motor imagery and influences the vividness of kinesthetic motor imagery. The visual-motor illusion provides evidence that it improves motor imagery ability. VMI may be used in patients with impaired motor imagery.
Collapse
|
44
|
Modulation of sensorimotor cortical oscillations in athletes with yips. Sci Rep 2021; 11:10376. [PMID: 33990687 PMCID: PMC8121935 DOI: 10.1038/s41598-021-89947-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/05/2021] [Indexed: 02/05/2023] Open
Abstract
The yips, an involuntary movement impediment that affects performance in skilled athletes, is commonly described as a form of task-specific focal dystonia or as a disorder lying on a continuum with focal dystonia at one end (neurological) and chocking under pressure at the other (psychological). However, its etiology has been remained to be elucidated. In order to understand sensorimotor cortical activity associated with this movement disorder, we examined electroencephalographic oscillations over the bilateral sensorimotor areas during a precision force task in athletes with yips, and compared them with age-, sex-, and years of experience-matched controls. Alpha-band event-related desynchronization (ERD), that occurs during movement execution, was greater in athlete with yips as compared to controls when increasing force output to match a target but not when adjusting the force at around the target. Event-related synchronization that occurs after movement termination was also greater in athletes with yips. There was no significant difference in task performance between groups. The enhanced ERD is suggested to be attributed to dysfunction of inhibitory system or increased allocation of attention to the body part used during the task. Our findings indicate that sensorimotor cortical oscillatory response is increased during movement initiation in athletes with yips.
Collapse
|
45
|
Does pericentral mu-rhythm "power" corticomotor excitability? - A matter of EEG perspective. Brain Stimul 2021; 14:713-722. [PMID: 33848678 DOI: 10.1016/j.brs.2021.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/01/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Electroencephalography (EEG) and single-pulse transcranial magnetic stimulation (spTMS) of the primary motor hand area (M1-HAND) have been combined to explore whether the instantaneous expression of pericentral mu-rhythm drives fluctuations in corticomotor excitability, but this line of research has yielded diverging results. OBJECTIVES To re-assess the relationship between the mu-rhythm power expressed in left pericentral cortex and the amplitude of motor potentials (MEP) evoked with spTMS in left M1-HAND. METHODS 15 non-preselected healthy young participants received spTMS to the motor hot spot of left M1-HAND. Regional expression of mu-rhythm was estimated online based on a radial source at motor hotspot and informed the timing of spTMS which was applied either during epochs belonging to the highest or lowest quartile of regionally expressed mu-power. Using MEP amplitude as dependent variable, we computed a linear mixed-effects model, which included mu-power and mu-phase at the time of stimulation and the inter-stimulus interval (ISI) as fixed effects and subject as a random effect. Mu-phase was estimated by post-hoc sorting of trials into four discrete phase bins. We performed a follow-up analysis on the same EEG-triggered MEP data set in which we isolated mu-power at the sensor level using a Laplacian montage centered on the electrode above the M1-HAND. RESULTS Pericentral mu-power traced as radial source at motor hot spot did not significantly modulate the MEP, but mu-power determined by the surface Laplacian did, showing a positive relation between mu-power and MEP amplitude. In neither case, there was an effect of mu-phase on MEP amplitude. CONCLUSION The relationship between cortical oscillatory activity and cortical excitability is complex and minor differences in the methodological choices may critically affect sensitivity.
Collapse
|
46
|
Suzuki Y, Kaneko N, Sasaki A, Tanaka F, Nakazawa K, Nomura T, Milosevic M. Muscle-specific movement-phase-dependent modulation of corticospinal excitability during upper-limb motor execution and motor imagery combined with virtual action observation. Neurosci Lett 2021; 755:135907. [PMID: 33887382 DOI: 10.1016/j.neulet.2021.135907] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Corticospinal excitability in humans can be facilitated during imagination and/or observation of upper-limb motor tasks. However, it remains unclear to what extent facilitation levels may differ from those elicited during execution of the same tasks. Twelve able-bodied individuals were recruited in this study. Motor evoked potentials (MEPs) in extensor carpi radialis (ECR) and flexor carpi radialis (FCR) muscles were elicited through transcranial magnetic stimulation of the primary motor cortex during: (i) rest; (ii) wrist extension; and (iii) wrist flexion. Responses were compared between: (1) motor imagery combined with virtual action observation (MI + AO; first-person virtual wrist movements shown on a computer display, while participants remained at rest and imagined these movements); and (2) motor execution (ME; participants extended or flexed their wrist). During MI + AO, ECR MEPs were facilitated during the extension phase but not the flexion phase, while FCR MEPs were facilitated during the flexion phase but not extension phase, compared to rest. During the ME condition, same, but greater, modulations were shown as those during MI + AO, while background muscle activities were similar in the rest phase as during extension and flexion phase in the MI + AO condition. Our results demonstrated that kinesthetic MI that included imagination and observation of virtual hands can elicit phase-dependent muscles-specific corticospinal facilitation of wrist muscles, consistent to those during actual hand extension and flexion. Moreover, we showed that MI + AO can contribute considerably to the overall corticospinal facilitation (∼20 % of ME) even without muscle contractions. These findings support utility of computer graphics-based motor imagery, which may have implications for rehabilitation and development of brain-computer interfaces.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Naotsugu Kaneko
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda, Tokyo, 102-0083, Japan
| | - Atsushi Sasaki
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda, Tokyo, 102-0083, Japan
| | - Fumiya Tanaka
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan.
| |
Collapse
|
47
|
Naros G, Lehnertz T, Leão MT, Ziemann U, Gharabaghi A. Brain State-dependent Gain Modulation of Corticospinal Output in the Active Motor System. Cereb Cortex 2021; 30:371-381. [PMID: 31204431 DOI: 10.1093/cercor/bhz093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/18/2019] [Accepted: 04/10/2019] [Indexed: 01/17/2023] Open
Abstract
The communication through coherence hypothesis suggests that only coherently oscillating neuronal groups can interact effectively and predicts an intrinsic response modulation along the oscillatory rhythm. For the motor cortex (MC) at rest, the oscillatory cycle has been shown to determine the brain's responsiveness to external stimuli. For the active MC, however, the demonstration of such a phase-specific modulation of corticospinal excitability (CSE) along the rhythm cycle is still missing. Motor evoked potentials in response to transcranial magnetic stimulation (TMS) over the MC were used to probe the effect of cortical oscillations on CSE during several motor conditions. A brain-machine interface (BMI) with a robotic hand orthosis allowed investigating effects of cortical activity on CSE without the confounding effects of voluntary muscle activation. Only this BMI approach (and not active or passive hand opening alone) revealed a frequency- and phase-specific cortical modulation of CSE by sensorimotor beta-band activity that peaked once per oscillatory cycle and was independent of muscle activity. The active MC follows an intrinsic response modulation in accordance with the communication through coherence hypothesis. Furthermore, the BMI approach may facilitate and strengthen effective corticospinal communication in a therapeutic context, for example, when voluntary hand opening is no longer possible after stroke.
Collapse
Affiliation(s)
- Georgios Naros
- Division of Functional and Restorative Neurosurgery, and Tuebingen NeuroCampus, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Tobias Lehnertz
- Division of Functional and Restorative Neurosurgery, and Tuebingen NeuroCampus, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Maria Teresa Leão
- Division of Functional and Restorative Neurosurgery, and Tuebingen NeuroCampus, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Tuebingen NeuroCampus, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
48
|
Porcaro C, Mayhew SD, Bagshaw AP. Role of the Ipsilateral Primary Motor Cortex in the Visuo-Motor Network During Fine Contractions and Accurate Performance. Int J Neural Syst 2021; 31:2150011. [PMID: 33622198 DOI: 10.1142/s0129065721500118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is widely recognized that continuous sensory feedback plays a crucial role in accurate motor control in everyday life. Feedback information is used to adapt force output and to correct errors. While primary motor cortex contralateral to the movement (cM1) plays a dominant role in this control, converging evidence supports the idea that ipsilateral primary motor cortex (iM1) also directly contributes to hand and finger movements. Similarly, when visual feedback is available, primary visual cortex (V1) and its interactions with the motor network also become important for accurate motor performance. To elucidate this issue, we performed and integrated behavioral and electroencephalography (EEG) measurements during isometric compression of a compliant rubber bulb, at 10% and 30% of maximum voluntary contraction, both with and without visual feedback. We used a semi-blind approach (functional source separation (FSS)) to identify separate functional sources of mu-frequency (8-13[Formula: see text]Hz) EEG responses in cM1, iM1 and V1. Here for the first time, we have used orthogonal FSS to extract multiple sources, by using the same functional constraint, providing the ability to extract different sources that oscillate in the same frequency range but that have different topographic distributions. We analyzed the single-trial timecourses of mu power event-related desynchronization (ERD) in these sources and linked them with force measurements to understand which aspects are most important for good task performance. Whilst the amplitude of mu power was not related to contraction force in any of the sources, it was able to provide information on performance quality. We observed stronger ERDs in both contralateral and ipsilateral motor sources during trials where contraction force was most consistently maintained. This effect was most prominent in the ipsilateral source, suggesting the importance of iM1 to accurate performance. This ERD effect was sustained throughout the duration of visual feedback trials, but only present at the start of no feedback trials, consistent with more variable performance in the absence of feedback. Overall, we found that the behavior of the ERD in iM1 was the most informative aspect concerning the accuracy of the contraction performance, and the ability to maintain a steady level of contraction. This new approach of using FSS to extract multiple orthogonal sources provides the ability to investigate both contralateral and ipsilateral nodes of the motor network without the need for additional information (e.g. electromyography). The enhanced signal-to-noise ratio provided by FSS opens the possibility of extracting complex EEG features on an individual trial basis, which is crucial for a more nuanced understanding of fine motor performance, as well as for applications in brain-computer interfacing.
Collapse
Affiliation(s)
- Camillo Porcaro
- Institute of Cognitive Sciences and Technologies, (ISTC) - National Research Council (CNR), Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK.,S. Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy.,Department of Information Engineering - Università Politecnica delle Marche, Ancona, Italy.,Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium
| | - Stephen D Mayhew
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Andrew P Bagshaw
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Zhang JJ, Fong KNK. The Effects of Priming Intermittent Theta Burst Stimulation on Movement-Related and Mirror Visual Feedback-Induced Sensorimotor Desynchronization. Front Hum Neurosci 2021; 15:626887. [PMID: 33584232 PMCID: PMC7878678 DOI: 10.3389/fnhum.2021.626887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022] Open
Abstract
The potential benefits of priming intermittent theta burst stimulation (iTBS) with continuous theta burst stimulation (cTBS) have not been examined in regard to sensorimotor oscillatory activities recorded in electroencephalography (EEG). The objective of this study was to investigate the modulatory effect of priming iTBS (cTBS followed by iTBS) delivered to the motor cortex on movement-related and mirror visual feedback (MVF)-induced sensorimotor event-related desynchronization (ERD), compared with iTBS alone, on healthy adults. Twenty participants were randomly allocated into Group 1: priming iTBS—cTBS followed by iTBS, and Group 2: non-priming iTBS—sham cTBS followed by iTBS. The stimulation was delivered to the right primary motor cortex daily for 4 consecutive days. EEG was measured before and after 4 sessions of stimulation. Movement-related ERD was evaluated during left-index finger tapping and MVF-induced sensorimotor ERD was evaluated by comparing the difference between right-index finger tapping with and without MVF. After stimulation, both protocols increased movement-related ERD and MVF-induced sensorimotor ERD in high mu and low beta bands, indicated by significant time effects. A significant interaction effect favoring Group 1 in enhancing movement-related ERD was observed in the high mu band [F(1,18) = 4.47, p = 0.049], compared with Group 2. Our experiment suggests that among healthy adults priming iTBS with cTBS delivered to the motor cortex yields similar effects with iTBS alone on enhancing ERD induced by MVF-based observation, while movement-related ERD was more enhanced in the priming iTBS condition, specifically in the high mu band.
Collapse
Affiliation(s)
- Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
50
|
Okawada M, Kaneko F, Shindo K, Yoneta M, Sakai K, Okuyama K, Akaboshi K, Liu M. Kinesthetic illusion induced by visual stimulation influences sensorimotor event-related desynchronization in stroke patients with severe upper-limb paralysis: A pilot study. Restor Neurol Neurosci 2021; 38:455-465. [PMID: 33325415 DOI: 10.3233/rnn-201030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Repetition of motor imagery improves the motor function of patients with stroke. However, patients who develop severe upper-limb paralysis after chronic stroke often have an impaired ability to induce motor imagery. We have developed a method to passively induce kinesthetic perception using visual stimulation (kinesthetic illusion induced by visual stimulation [KINVIS]). OBJECTIVE This pilot study further investigated the effectiveness of KINVIS in improving the induction of kinesthetic motor imagery in patients with severe upper-limb paralysis after stroke. METHODS Twenty participants (11 with right hemiplegia and 9 with left hemiplegia; mean time from onset [±standard deviation], 67.0±57.2 months) with severe upper-limb paralysis who could not extend their paretic fingers were included in this study. The ability to induce motor imagery was evaluated using the event-related desynchronization (ERD) recorded during motor imagery before and after the application of KINVIS for 20 min. The alpha- and beta-band ERDs around the premotor, primary sensorimotor, and posterior parietal cortices of the affected and unaffected hemispheres were evaluated during kinesthetic motor imagery of finger extension and before and after the intervention. RESULTS Beta-band ERD recorded from the affected hemisphere around the sensorimotor area showed a significant increase after the intervention, while the other ERDs remained unchanged. CONCLUSIONS In patients with chronic stroke who were unable to extend their paretic fingers for a prolonged period of time, the application of KINVIS, which evokes kinesthetic perception, improved their ability to induce motor imagery. Our findings suggest that although KINVIS is a passive intervention, its short-term application can induce changes related to the motor output system.
Collapse
Affiliation(s)
- Megumi Okawada
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan.,Hokuto Social Medical Corporation, Kisen, Inada-cho, Obihiro, Hokkaido, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan
| | - Keiichiro Shindo
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan
| | - Masaki Yoneta
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan.,Hokuto Social Medical Corporation, Kisen, Inada-cho, Obihiro, Hokkaido, Japan
| | - Katsuya Sakai
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan
| | - Kohei Okuyama
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kazuto Akaboshi
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan.,Hokuto Social Medical Corporation, Kisen, Inada-cho, Obihiro, Hokkaido, Japan
| | - Meigen Liu
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|