1
|
Kurioka T, Mizutari K. Gap detection ability declines with central auditory neurodegeneration following age-related cochlear synaptopathy. Eur J Neurosci 2024; 60:5861-5875. [PMID: 39237477 DOI: 10.1111/ejn.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Age-related hearing impairment (ARHI) is commonly associated with decreased auditory temporal resolution caused by auditory neurodegeneration. Age-related deterioration in gap detection ability, resulting in poor temporal auditory processing, is often attributed to pathophysiological changes in both the peripheral and central auditory systems. This study aimed to investigate whether the gap detection ability declines in the early stages of ageing and to determine its usefulness in detecting peripheral and central auditory degeneration. The study used 1-month-old (1 M), 6-month-old (6 M) and 12-month-old (12 M) mice to examine changes in gap detection ability and associated auditory pathophysiology. Although hearing thresholds did not significantly differ between the groups, the amplitude of auditory brainstem response (ABR) wave I decreased significantly in an age-dependent manner, consistent with age-related cochlear synaptopathy. The relative ABR amplitude ratio of waves 2 and 5 to wave 1 was significantly increased in 12 M mice, indicating that the central auditory system had increased in relative neuroactivity. A significant increase in gap detection thresholds was observed in 12 M mice compared to 1 M mice. Although cochlear synaptopathy and central hyperactivity were positively correlated with gap detection thresholds, central hyperactivity strongly influenced gap detection ability. In the cochlear nucleus and auditory cortex, the inhibitory synaptic expression of GAD65 and the expression of parvalbumin were significantly decreased in 12 M mice, consistent with central hyperactivity. Evaluating gap detection performance may allow the identification of decreased auditory temporal resolution in the early stages of ARHI, which is strongly associated with auditory neurodegeneration.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Kunio Mizutari
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| |
Collapse
|
2
|
Postolache M, Connelly Graham CJ, Burke K, Lauer AM, Xu-Friedman MA. Effects of Age on Responses of Principal Cells of the Mouse Anteroventral Cochlear Nucleus in Quiet and Noise. eNeuro 2024; 11:ENEURO.0215-24.2024. [PMID: 39134409 PMCID: PMC11320020 DOI: 10.1523/eneuro.0215-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Older listeners often report difficulties understanding speech in noisy environments. It is important to identify where in the auditory pathway hearing-in-noise deficits arise to develop appropriate therapies. We tested how encoding of sounds is affected by masking noise at early stages of the auditory pathway by recording responses of principal cells in the anteroventral cochlear nucleus (AVCN) of aging CBA/CaJ and C57BL/6J mice in vivo. Previous work indicated that masking noise shifts the dynamic range of single auditory nerve fibers (ANFs), leading to elevated tone thresholds. We hypothesized that such threshold shifts could contribute to increased hearing-in-noise deficits with age if susceptibility to masking increased in AVCN units. We tested this by recording the responses of AVCN principal neurons to tones in the presence and absence of masking noise. Surprisingly, we found that masker-induced threshold shifts decreased with age in primary-like units and did not change in choppers. In addition, spontaneous activity decreased in primary-like and chopper units of old mice, with no change in dynamic range or tuning precision. In C57 mice, which undergo early-onset hearing loss, units showed similar changes in threshold and spontaneous rate at younger ages, suggesting they were related to hearing loss and not simply aging. These findings suggest that sound information carried by AVCN principal cells remains largely unchanged with age. Therefore, hearing-in-noise deficits may result from other changes during aging, such as distorted across-channel input from the cochlea and changes in sound coding at later stages of the auditory pathway.
Collapse
Affiliation(s)
- Maggie Postolache
- Department of Biological Sciences, University at Buffalo, State University of NewYork, Buffalo, New York 14260
| | - Catherine J Connelly Graham
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kali Burke
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Dept. of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of NewYork, Buffalo, New York 14260
| |
Collapse
|
3
|
Yang L, Wang S, Chen Y, Liang Y, Chen T, Wang Y, Fu X, Wang S. Effects of Age on the Auditory Cortex During Speech Perception in Noise: Evidence From Functional Near-Infrared Spectroscopy. Ear Hear 2024; 45:742-752. [PMID: 38268081 PMCID: PMC11008455 DOI: 10.1097/aud.0000000000001460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVES Age-related speech perception difficulties may be related to a decline in central auditory processing abilities, particularly in noisy or challenging environments. However, how the activation patterns related to speech stimulation in different noise situations change with normal aging has yet to be elucidated. In this study, we aimed to investigate the effects of noisy environments and aging on patterns of auditory cortical activation. DESIGN We analyzed the functional near-infrared spectroscopy signals of 20 young adults, 21 middle-aged adults, and 21 elderly adults, and evaluated their cortical response patterns to speech stimuli under five different signal to noise ratios (SNRs). In addition, we analyzed the behavior score, activation intensity, oxyhemoglobin variability, and dominant hemisphere, to investigate the effects of aging and noisy environments on auditory cortical activation. RESULTS Activation intensity and oxyhemoglobin variability both showed a decreasing trend with aging at an SNR of 0 dB; we also identified a strong correlation between activation intensity and age under this condition. However, we observed an inconsistent activation pattern when the SNR was 5 dB. Furthermore, our analysis revealed that the left hemisphere may be more susceptible to aging than the right hemisphere. Activation in the right hemisphere was more evident in older adults than in the left hemisphere; in contrast, younger adults showed leftward lateralization. CONCLUSIONS Our analysis showed that with aging, auditory cortical regions gradually become inflexible in noisy environments. Furthermore, changes in cortical activation patterns with aging may be related to SNR conditions, and that understandable speech with a low SNR ratio but still understandable may induce the highest level of activation. We also found that the left hemisphere was more affected by aging than the right hemisphere in speech perception tasks; the left-sided dominance observed in younger individuals gradually shifted to the right hemisphere with aging.
Collapse
Affiliation(s)
- Liu Yang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- These authors contributed equally to this work
| | - Songjian Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- These authors contributed equally to this work
| | - Younuo Chen
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yuan Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xinxing Fu
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Wang S, Chen Y, Liu Y, Yang L, Wang Y, Fu X, Hu J, Pugh E, Wang S. Aging effects on dual-route speech processing networks during speech perception in noise. Hum Brain Mapp 2024; 45:e26577. [PMID: 38224542 PMCID: PMC10789214 DOI: 10.1002/hbm.26577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Healthy aging leads to complex changes in the functional network of speech processing in a noisy environment. The dual-route neural architecture has been applied to the study of speech processing. Although evidence suggests that senescent increases activity in the brain regions across the dorsal and ventral stream regions to offset reduced periphery, the regulatory mechanism of dual-route functional networks underlying such compensation remains largely unknown. Here, by utilizing functional near-infrared spectroscopy (fNIRS), we investigated the compensatory mechanism of the dual-route functional connectivity, and its relationship with healthy aging by using a speech perception task at varying signal-to-noise ratios (SNR) in healthy individuals (young adults, middle-aged adults, and older adults). Results showed that the speech perception scores showed a significant age-related decrease with the reduction of the SNR. The analysis results of dual-route speech processing networks showed that the functional connection of Wernicke's area and homolog Wernicke's area were age-related increases. Further to clarify the age-related characteristics of the dual-route speech processing networks, graph-theoretical network analysis revealed an age-related increase in the efficiency of the networks, and the age-related differences in nodal characteristics were found both in Wernicke's area and homolog Wernicke's area under noise environment. Thus, Wernicke's area might be a key network hub to maintain efficient information transfer across the speech process network with healthy aging. Moreover, older adults would recruit more resources from the homologous Wernicke's area in a noisy environment. The recruitment of the homolog of Wernicke's area might provide a means of compensation for older adults for decoding speech in an adverse listening environment. Together, our results characterized dual-route speech processing networks at varying noise environments and provided new insight for the compensatory theories of how aging modulates the dual-route speech processing functional networks.
Collapse
Affiliation(s)
- Songjian Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Younuo Chen
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Yi Liu
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Yuan Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Xinxing Fu
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Jiong Hu
- Department of AudiologyUniversity of the PacificSan FranciscoCaliforniaUSA
| | | | - Shuo Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Regev J, Zaar J, Relaño-Iborra H, Dau T. Age-related reduction of amplitude modulation frequency selectivity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2298. [PMID: 37092934 DOI: 10.1121/10.0017835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The perception of amplitude modulations (AMs) has been characterized by a frequency-selective process in the temporal envelope domain and simulated in computational auditory processing and perception models using a modulation filterbank. Such AM frequency-selective processing has been argued to be critical for the perception of complex sounds, including speech. This study aimed at investigating the effects of age on behavioral AM frequency selectivity in young (n = 11, 22-29 years) versus older (n = 10, 57-77 years) listeners with normal hearing, using a simultaneous AM masking paradigm with a sinusoidal carrier (2.8 kHz), target modulation frequencies of 4, 16, 64, and 128 Hz, and narrowband-noise modulation maskers. A reduction of AM frequency selectivity by a factor of up to 2 was found in the older listeners. While the observed AM selectivity co-varied with the unmasked AM detection sensitivity, the age-related broadening of the masked threshold patterns remained stable even when AM sensitivity was similar across groups for an extended stimulus duration. The results from the present study might provide a valuable basis for further investigations exploring the effects of age and reduced AM frequency selectivity on complex sound perception as well as the interaction of age and hearing impairment on AM processing and perception.
Collapse
Affiliation(s)
- Jonathan Regev
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Johannes Zaar
- Eriksholm Research Centre, Snekkersten, 3070, Denmark
| | - Helia Relaño-Iborra
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
6
|
Mafi AM, Tokar N, Russ MG, Barat O, Mellott JG. Age-related ultrastructural changes in the lateral cortex of the inferior colliculus. Neurobiol Aging 2022; 120:43-59. [PMID: 36116395 PMCID: PMC10276896 DOI: 10.1016/j.neurobiolaging.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
Temporal precision, a key component of sound and speech processing in the inferior colliculus (IC), depends on a balance of inhibition and excitation, and this balance degrades during aging. The cause of disrupted excitatory-inhibitory balance in aging is unknown, however changes at the synapse are a likely candidate. We sought to determine whether synaptic changes occur in the lateral cortex of the IC (IClc), a multimodal nucleus that processes lemniscal, intrinsic, somatosensory, and descending auditory input. Using electron microscopic techniques across young, middle age and old Fisher Brown Norway rats, our results demonstrate minimal loss of synapses in middle age, but significant (∼28%) loss during old age. However, in middle age, targeting of GABAergic dendrites by GABAergic synapses is increased and the active zones of excitatory synapses (that predominantly target GABA-negative dendrites) are lengthened. These synaptic changes likely result in a net increase of excitation in the IClc during middle age. Thus, disruption of excitatory-inhibitory balance in the aging IClc may be due to synaptic changes that begin in middle age.
Collapse
Affiliation(s)
- Amir M Mafi
- The Ohio State College of Medicine, The Ohio State, Columbus, OH, USA
| | - Nick Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew G Russ
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Oren Barat
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
7
|
Farahani ED, Wouters J, van Wieringen A. Age-related hearing loss is associated with alterations in temporal envelope processing in different neural generators along the auditory pathway. Front Neurol 2022; 13:905017. [PMID: 35989932 PMCID: PMC9389009 DOI: 10.3389/fneur.2022.905017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
People with age-related hearing loss suffer from speech understanding difficulties, even after correcting for differences in hearing audibility. These problems are not only attributed to deficits in audibility but are also associated with changes in central temporal processing. The goal of this study is to obtain an understanding of potential alterations in temporal envelope processing for middle-aged and older persons with and without hearing impairment. The time series of activity of subcortical and cortical neural generators was reconstructed using a minimum-norm imaging technique. This novel technique allows for reconstructing a wide range of neural generators with minimal prior assumptions regarding the number and location of the generators. The results indicated that the response strength and phase coherence of middle-aged participants with hearing impairment (HI) were larger than for normal-hearing (NH) ones. In contrast, for the older participants, a significantly smaller response strength and phase coherence were observed in the participants with HI than the NH ones for most modulation frequencies. Hemispheric asymmetry in the response strength was also altered in middle-aged and older participants with hearing impairment and showed asymmetry toward the right hemisphere. Our brain source analyses show that age-related hearing loss is accompanied by changes in the temporal envelope processing, although the nature of these changes varies with age.
Collapse
|
8
|
JA R, Lovelace JW, Kokash J, Hussain A, KA R. Nicotine reduces age-related changes in cortical neural oscillations without affecting auditory brainstem responses. Neurobiol Aging 2022; 120:10-26. [DOI: 10.1016/j.neurobiolaging.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
|
9
|
Lin RL, Frazier HN, Anderson KL, Case SL, Ghoweri AO, Thibault O. Sensitivity of the S1 neuronal calcium network to insulin and Bay-K 8644 in vivo: Relationship to gait, motivation, and aging processes. Aging Cell 2022; 21:e13661. [PMID: 35717599 PMCID: PMC9282843 DOI: 10.1111/acel.13661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
Neuronal hippocampal Ca2+ dysregulation is a critical component of cognitive decline in brain aging and Alzheimer's disease and is suggested to impact communication and excitability through the activation of a larger after hyperpolarization. However, few studies have tested for the presence of Ca2+ dysregulation in vivo, how it manifests, and whether it impacts network function across hundreds of neurons. Here, we tested for neuronal Ca2+ network dysregulation in vivo in the primary somatosensory cortex (S1) of anesthetized young and aged male Fisher 344 rats using single‐cell resolution techniques. Because S1 is involved in sensory discrimination and proprioception, we tested for alterations in ambulatory performance in the aged animal and investigated two potential pathways underlying these central aging‐ and Ca2+‐dependent changes. Compared to young, aged animals displayed increased overall activity and connectivity of the network as well as decreased ambulatory speed. In aged animals, intranasal insulin (INI) increased network synchronicity and ambulatory speed. Importantly, in young animals, delivery of the L‐type voltage‐gated Ca2+ channel modifier Bay‐K 8644 altered network properties, replicating some of the changes seen in the older animal. These results suggest that hippocampal Ca2+ dysregulation may be generalizable to other areas, such as S1, and might engage modalities that are associated with locomotor stability and motivation to ambulate. Further, given the safety profile of INI in the clinic and the evidence presented here showing that this central dysregulation is sensitive to insulin, we suggest that these processes can be targeted to potentially increase motivation and coordination while also reducing fall frequency with age.
Collapse
Affiliation(s)
- Ruei-Lung Lin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hilaree N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Sami L Case
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Adam O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Dheerendra P, Baumann S, Joly O, Balezeau F, Petkov CI, Thiele A, Griffiths TD. The Representation of Time Windows in Primate Auditory Cortex. Cereb Cortex 2021; 32:3568-3580. [PMID: 34875029 PMCID: PMC9376871 DOI: 10.1093/cercor/bhab434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Whether human and nonhuman primates process the temporal dimension of sound similarly remains an open question. We examined the brain basis for the processing of acoustic time windows in rhesus macaques using stimuli simulating the spectrotemporal complexity of vocalizations. We conducted functional magnetic resonance imaging in awake macaques to identify the functional anatomy of response patterns to different time windows. We then contrasted it against the responses to identical stimuli used previously in humans. Despite a similar overall pattern, ranging from the processing of shorter time windows in core areas to longer time windows in lateral belt and parabelt areas, monkeys exhibited lower sensitivity to longer time windows than humans. This difference in neuronal sensitivity might be explained by a specialization of the human brain for processing longer time windows in speech.
Collapse
Affiliation(s)
- Pradeep Dheerendra
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G128QB, UK
| | - Simon Baumann
- National Institute of Mental Health, NIH, Bethesda, MD 20892-1148, USA.,Department of Psychology, University of Turin, Torino 10124, Italy
| | - Olivier Joly
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Fabien Balezeau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
11
|
Rumschlag JA, Razak KA. Age-related changes in event related potentials, steady state responses and temporal processing in the auditory cortex of mice with severe or mild hearing loss. Hear Res 2021; 412:108380. [PMID: 34758398 DOI: 10.1016/j.heares.2021.108380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
Age-related changes in auditory processing affect the quality of life of older adults with and without hearing loss. To distinguish between the effects of sensorineural hearing loss and aging on cortical processing, the main goal of the present study was to compare cortical responses using the same stimulus paradigms and recording conditions in two strains of mice (C57BL/6J and FVB) that differ in the degree of age-related hearing loss. Electroencephalogram (EEG) recordings were obtained from freely moving young and old mice using epidural screw electrodes. We measured event related potentials (ERP) and 40 Hz auditory steady-state responses (ASSR). We used a novel stimulus, termed the gap-ASSR stimulus, which elicits an ASSR by rapidly presenting short gaps in continuous noise. By varying the gap widths and modulation depths, we probed the limits of temporal processing in young and old mice. Temporal fidelity of ASSR and gap-ASSR responses were measured as phase consistency across trials (inter-trial phase clustering; ITPC). The old C57 mice, which show severe hearing loss, produced larger ERP amplitudes compared to young mice. Despite robust ERPs, the old C57 mice showed significantly diminished ITPC in the ASSR and gap-ASSR responses, even with 100% modulation depth. The FVB mice, which show mild hearing loss with age, generated similar ERP amplitudes and ASSR ITPC across the age groups tested. However, the old FVB mice showed decreased gap-ASSR responses compared to young mice, particularly for modulation depths <100%. The C57 mice data suggest that severe presbycusis leads to increased gain in the auditory cortex, but with reduced temporal fidelity. The FVB mice data suggest that with mild hearing loss, age-related changes in temporal processing become apparent only when tested with more challenging sounds (shorter gaps and shallower modulation).
Collapse
Affiliation(s)
| | - Khaleel A Razak
- Graduate Neuroscience Program, Riverside, United States; Psychology Department, University of California, Riverside, United States.
| |
Collapse
|
12
|
Herrmann B, Maess B, Johnsrude IS. A neural signature of regularity in sound is reduced in older adults. Neurobiol Aging 2021; 109:1-10. [PMID: 34634748 DOI: 10.1016/j.neurobiolaging.2021.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023]
Abstract
Sensitivity to repetitions in sound amplitude and frequency is crucial for sound perception. As with other aspects of sound processing, sensitivity to such patterns may change with age, and may help explain some age-related changes in hearing such as segregating speech from background sound. We recorded magnetoencephalography to characterize differences in the processing of sound patterns between younger and older adults. We presented tone sequences that either contained a pattern (made of a repeated set of tones) or did not contain a pattern. We show that auditory cortex in older, compared to younger, adults is hyperresponsive to sound onsets, but that sustained neural activity in auditory cortex, indexing the processing of a sound pattern, is reduced. Hence, the sensitivity of neural populations in auditory cortex fundamentally differs between younger and older individuals, overresponding to sound onsets, while underresponding to patterns in sounds. This may help to explain some age-related changes in hearing such as increased sensitivity to distracting sounds and difficulties tracking speech in the presence of other sound.
Collapse
Affiliation(s)
- Björn Herrmann
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON, Canada; Rotman Research Institute, Baycrest, North York, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Burkhard Maess
- Brain Networks Unit, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ingrid S Johnsrude
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON, Canada; School of Communication Sciences & Disorders, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
13
|
Bures Z, Pysanenko K, Syka J. The influence of developmental noise exposure on the temporal processing of acoustical signals in the auditory cortex of rats. Hear Res 2021; 409:108306. [PMID: 34311267 DOI: 10.1016/j.heares.2021.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Previous experiments have acknowledged that inappropriate or missing auditory inputs during the critical period of development cause permanent changes of the structure and function of the auditory system (Bures et al., 2017). We explore in this study how developmental noise exposure influences the coding of temporally structured stimuli in the neurons of the primary auditory cortex (AC) in Long Evans rats. The animals were exposed on postnatal day 14 (P14) for 12 minutes to a loud (125 dB SPL) broad-band noise. The responses to an amplitude-modulated (AM) noise, frequency-modulated (FM) tones, and click trains, were recorded from the right AC of rats of two age groups: young-adult (ca. 6 months old) and adult (ca. 2 years old), both in the exposed animals and in control unexposed rats. The neonatal exposure resulted in a higher synchronization ability (phase-locking) of the AC neurons for all three stimuli; furthermore, the similarity of neuronal response patterns to repetitive stimulation was higher in the exposed rats. On the other hand, the exposed animals showed a steeper decline of modulation-transfer functions towards higher modulation frequencies/repetition rates. Differences between the two age groups were also apparent; in general, aging had qualitatively the same effect as the developmental exposure. The current results demonstrate that brief noise exposure during the maturation of the auditory system influences both the temporal and the rate coding of periodically modulated sounds in the AC of rats; the changes are permanent and observable up to late adulthood.
Collapse
Affiliation(s)
- Zbynek Bures
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic; Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Jugoslávských partyzánů 1580/3, 160 00 Prague 6, Czech Republic.
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
14
|
Herrmann B, Butler BE. Hearing loss and brain plasticity: the hyperactivity phenomenon. Brain Struct Funct 2021; 226:2019-2039. [PMID: 34100151 DOI: 10.1007/s00429-021-02313-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
Many aging adults experience some form of hearing problems that may arise from auditory peripheral damage. However, it has been increasingly acknowledged that hearing loss is not only a dysfunction of the auditory periphery but also results from changes within the entire auditory system, from periphery to cortex. Damage to the auditory periphery is associated with an increase in neural activity at various stages throughout the auditory pathway. Here, we review neurophysiological evidence of hyperactivity, auditory perceptual difficulties that may result from hyperactivity, and outline open conceptual and methodological questions related to the study of hyperactivity. We suggest that hyperactivity alters all aspects of hearing-including spectral, temporal, spatial hearing-and, in turn, impairs speech comprehension when background sound is present. By focusing on the perceptual consequences of hyperactivity and the potential challenges of investigating hyperactivity in humans, we hope to bring animal and human electrophysiologists closer together to better understand hearing problems in older adulthood.
Collapse
Affiliation(s)
- Björn Herrmann
- Rotman Research Institute, Baycrest, Toronto, ON, M6A 2E1, Canada. .,Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Blake E Butler
- Department of Psychology & The Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,National Centre for Audiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Anderson S, Bieber R, Schloss A. Peripheral deficits and phase-locking declines in aging adults. Hear Res 2021; 403:108188. [PMID: 33581668 DOI: 10.1016/j.heares.2021.108188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Age-related difficulties in speech understanding may arise from a decrease in the neural representation of speech sounds. A loss of outer hair cells or decrease in auditory nerve fibers may lead to a loss of temporal precision that can affect speech clarity. This study's purpose was to evaluate the peripheral contributors to phase-locking strength, a measure of temporal precision, in recordings to a sustained vowel in 30 younger and 30 older listeners with normal to near normal audiometric thresholds. Thresholds were obtained for pure tones and distortion-product otoacoustic emissions (DPOAEs). Auditory brainstem responses (ABRs) were recorded in quiet and in three levels of continuous white noise (+30, +20, and +10 dB SNR). Absolute amplitudes and latencies of Wave I in quiet and of Wave V across presentation conditions, in addition to the slope of Wave V amplitude and latency changes in noise, were calculated from these recordings. Frequency-following responses (FFRs) were recorded to synthesized /ba/ syllables of two durations, 170 and 260 ms, to determine whether age-related phase-locking deficits are more pronounced for stimuli that are sustained for longer durations. Phase locking was calculated for the early and late regions of the steady-state vowel for both syllables. Group differences were found for nearly every measure except for the slopes of Wave V latency and amplitude changes in noise. We found that outer hair cell function (DPOAEs) contributed to the variance in phase locking. However, the ABR and FFR differences were present after covarying for DPOAEs, suggesting the existence of temporal processing deficits in older listeners that are somewhat independent of outer hair cell function.
Collapse
Affiliation(s)
- Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, United States.
| | - Rebecca Bieber
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, United States.
| | - Alanna Schloss
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
16
|
Gray DT, De La Peña NM, Umapathy L, Burke SN, Engle JR, Trouard TP, Barnes CA. Auditory and Visual System White Matter Is Differentially Impacted by Normative Aging in Macaques. J Neurosci 2020; 40:8913-8923. [PMID: 33051354 PMCID: PMC7659446 DOI: 10.1523/jneurosci.1163-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/06/2020] [Accepted: 10/04/2020] [Indexed: 11/21/2022] Open
Abstract
Deficits in auditory and visual processing are commonly encountered by older individuals. In addition to the relatively well described age-associated pathologies that reduce sensory processing at the level of the cochlea and eye, multiple changes occur along the ascending auditory and visual pathways that further reduce sensory function in each domain. One fundamental question that remains to be directly addressed is whether the structure and function of the central auditory and visual systems follow similar trajectories across the lifespan or sustain the impacts of brain aging independently. The present study used diffusion magnetic resonance imaging and electrophysiological assessments of auditory and visual system function in adult and aged macaques to better understand how age-related changes in white matter connectivity at multiple levels of each sensory system might impact auditory and visual function. In particular, the fractional anisotropy (FA) of auditory and visual system thalamocortical and interhemispheric corticocortical connections was estimated using probabilistic tractography analyses. Sensory processing and sensory system FA were both reduced in older animals compared with younger adults. Corticocortical FA was significantly reduced only in white matter of the auditory system of aged monkeys, while thalamocortical FA was lower only in visual system white matter of the same animals. Importantly, these structural alterations were significantly associated with sensory function within each domain. Together, these results indicate that age-associated deficits in auditory and visual processing emerge in part from microstructural alterations to specific sensory white matter tracts, and not from general differences in white matter condition across the aging brain.SIGNIFICANCE STATEMENT Age-associated deficits in sensory processing arise from structural and functional alterations to both peripheral sensory organs and central brain regions. It remains unclear whether different sensory systems undergo similar or distinct trajectories in function across the lifespan. To provide novel insights into this question, this study combines electrophysiological assessments of auditory and visual function with diffusion MRI in aged macaques. The results suggest that age-related sensory processing deficits in part result from factors that impact the condition of specific white matter tracts, and not from general decreases in connectivity between sensory brain regions. Such anatomic specificity argues for a framework aimed at understanding vulnerabilities with relatively local influence and brain region specificity.
Collapse
Affiliation(s)
- Daniel T Gray
- Division of Neural System, Memory and Aging, University of Arizona, Tucson, Arizona 85724
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
| | - Nicole M De La Peña
- Division of Neural System, Memory and Aging, University of Arizona, Tucson, Arizona 85724
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
| | - Lavanya Umapathy
- Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85724
| | - Sara N Burke
- Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, Florida 32609
| | - James R Engle
- Division of Neural System, Memory and Aging, University of Arizona, Tucson, Arizona 85724
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
| | - Theodore P Trouard
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724
| | - Carol A Barnes
- Division of Neural System, Memory and Aging, University of Arizona, Tucson, Arizona 85724
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
- Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, Arizona 85724
| |
Collapse
|
17
|
Anderson S, Karawani H. Objective evidence of temporal processing deficits in older adults. Hear Res 2020; 397:108053. [PMID: 32863099 PMCID: PMC7669636 DOI: 10.1016/j.heares.2020.108053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
The older listener's ability to understand speech in challenging environments may be affected by impaired temporal processing. This review summarizes objective evidence of degraded temporal processing from studies that have used the auditory brainstem response, auditory steady-state response, the envelope- or frequency-following response, cortical auditory-evoked potentials, and neural tracking of continuous speech. Studies have revealed delayed latencies and reduced amplitudes/phase locking in subcortical responses in older vs. younger listeners, in contrast to enhanced amplitudes of cortical responses in older listeners. Reconstruction accuracy of responses to continuous speech (e.g., cortical envelope tracking) shows over-representation in older listeners. Hearing loss is a factor in many of these studies, even though the listeners would be considered to have clinically normal hearing thresholds. Overall, the ability to draw definitive conclusions regarding these studies is limited by the use of multiple stimulus conditions, small sample sizes, and lack of replication. Nevertheless, these objective measures suggest a need to incorporate new clinical measures to provide a more comprehensive assessment of the listener's speech understanding ability, but more work is needed to determine the most efficacious measure for clinical use.
Collapse
Affiliation(s)
- Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD 20742, United States.
| | - Hanin Karawani
- Department of Communication Sciences and Disorders, University of Haifa, Haifa, Israel.
| |
Collapse
|
18
|
Johnson JS, Niwa M, O'Connor KN, Sutter ML. Amplitude modulation encoding in the auditory cortex: comparisons between the primary and middle lateral belt regions. J Neurophysiol 2020; 124:1706-1726. [PMID: 33026929 DOI: 10.1152/jn.00171.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In macaques, the middle lateral auditory cortex (ML) is a belt region adjacent to the primary auditory cortex (A1) and believed to be at a hierarchically higher level. Although ML single-unit responses have been studied for several auditory stimuli, the ability of ML cells to encode amplitude modulation (AM)-an ability that has been widely studied in A1-has not yet been characterized. Here, we compared the responses of A1 and ML neurons to amplitude-modulated (AM) noise in awake macaques. Although several of the basic properties of A1 and ML responses to AM noise were similar, we found several key differences. ML neurons were less likely to phase lock, did not phase lock as strongly, and were more likely to respond in a nonsynchronized fashion than A1 cells, consistent with a temporal-to-rate transformation as information ascends the auditory hierarchy. ML neurons tended to have lower temporally (phase-locking) based best modulation frequencies than A1 neurons. Neurons that decreased their firing rate in response to AM noise relative to their firing rate in response to unmodulated noise became more common at the level of ML than they were in A1. In both A1 and ML, we found a prevalent class of neurons that usually have enhanced rate responses relative to responses to the unmodulated noise at lower modulation frequencies and suppressed rate responses relative to responses to the unmodulated noise at middle modulation frequencies.NEW & NOTEWORTHY ML neurons synchronized less than A1 neurons, consistent with a hierarchical temporal-to-rate transformation. Both A1 and ML had a class of modulation transfer functions previously unreported in the cortex with a low-modulation-frequency (MF) peak, a middle-MF trough, and responses similar to unmodulated noise responses at high MFs. The results support a hierarchical shift toward a two-pool opponent code, where subtraction of neural activity between two populations of oppositely tuned neurons encodes AM.
Collapse
Affiliation(s)
- Jeffrey S Johnson
- Center for Neuroscience, University of California, Davis, California
| | - Mamiko Niwa
- Center for Neuroscience, University of California, Davis, California
| | - Kevin N O'Connor
- Center for Neuroscience, University of California, Davis, California.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Mitchell L Sutter
- Center for Neuroscience, University of California, Davis, California.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| |
Collapse
|
19
|
Zan P, Presacco A, Anderson S, Simon JZ. Exaggerated cortical representation of speech in older listeners: mutual information analysis. J Neurophysiol 2020; 124:1152-1164. [PMID: 32877288 DOI: 10.1152/jn.00002.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aging is associated with an exaggerated representation of the speech envelope in auditory cortex. The relationship between this age-related exaggerated response and a listener's ability to understand speech in noise remains an open question. Here, information-theory-based analysis methods are applied to magnetoencephalography recordings of human listeners, investigating their cortical responses to continuous speech, using the novel nonlinear measure of phase-locked mutual information between the speech stimuli and cortical responses. The cortex of older listeners shows an exaggerated level of mutual information, compared with younger listeners, for both attended and unattended speakers. The mutual information peaks for several distinct latencies: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). For the late component, the neural enhancement of attended over unattended speech is affected by stimulus signal-to-noise ratio, but the direction of this dependency is reversed by aging. Critically, in older listeners and for the same late component, greater cortical exaggeration is correlated with decreased behavioral inhibitory control. This negative correlation also carries over to speech intelligibility in noise, where greater cortical exaggeration in older listeners is correlated with worse speech intelligibility scores. Finally, an age-related lateralization difference is also seen for the ∼100 ms latency peaks, where older listeners show a bilateral response compared with younger listeners' right lateralization. Thus, this information-theory-based analysis provides new, and less coarse-grained, results regarding age-related change in auditory cortical speech processing, and its correlation with cognitive measures, compared with related linear measures.NEW & NOTEWORTHY Cortical representations of natural speech are investigated using a novel nonlinear approach based on mutual information. Cortical responses, phase-locked to the speech envelope, show an exaggerated level of mutual information associated with aging, appearing at several distinct latencies (∼50, ∼100, and ∼200 ms). Critically, for older listeners only, the ∼200 ms latency response components are correlated with specific behavioral measures, including behavioral inhibition and speech comprehension.
Collapse
Affiliation(s)
- Peng Zan
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland
| | - Alessandro Presacco
- Institute for Systems Research, University of Maryland, College Park, Maryland
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland.,Institute for Systems Research, University of Maryland, College Park, Maryland.,Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
20
|
Age-related changes in the temporal processing of acoustical signals in the auditory cortex of rats. Hear Res 2020; 402:108025. [PMID: 32709399 DOI: 10.1016/j.heares.2020.108025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
Age-related hearing loss is manifested primarily by a decreased sensitivity to faint sounds, that is, by elevation of the hearing thresholds. Nevertheless, aging also affects the ability of the auditory system to process temporal parameters of the sound stimulus. To explore the precision and reliability of auditory temporal processing during aging, responses to several types of sound stimuli were recorded from neurons of the auditory cortex (AC) of young and aged anaesthetized Fischer 344 rats. In response to broad-band noise bursts, the aged rats exhibited larger response magnitudes, a higher proportion of monotonic units, and also a larger variability of response magnitudes, suggesting a lower stability of the rate code. Of primary interest were the responses to temporally structured stimuli (amplitude-modulated (AM) noise, frequency-modulated (FM) tones, and click trains) recorded separately in the right and left AC. Significant differences of temporal processing were already found between the neuronal responses in the left and right AC in the young animals: for the click trains, the left hemisphere exhibited a greater responsiveness to higher repetition rates, lower vector strength values, and a lower similarity of responses. The two hemispheres were also affected differently by aging. In the right hemisphere, neurons in the aged animals displayed worse synchronization with the AM noise and clicks, but better synchronization with the FM tone. In the left hemisphere, neuronal synchronization with the stimulus modulation improved at a higher age for all three stimuli. The results show that the ability of the aging auditory system to process temporal parameters of the stimulus strongly depends on the stimulus type and on laterality. Furthermore, the commonly reported age-related decline in the temporal processing ability cannot be regarded as general as, at least at the neuronal level in the AC, objective measures of the temporal representation often exhibit age-related improvement instead of deterioration.
Collapse
|
21
|
Erb J, Schmitt LM, Obleser J. Temporal selectivity declines in the aging human auditory cortex. eLife 2020; 9:55300. [PMID: 32618270 PMCID: PMC7410487 DOI: 10.7554/elife.55300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/02/2020] [Indexed: 12/03/2022] Open
Abstract
Current models successfully describe the auditory cortical response to natural sounds with a set of spectro-temporal features. However, these models have hardly been linked to the ill-understood neurobiological changes that occur in the aging auditory cortex. Modelling the hemodynamic response to a rich natural sound mixture in N = 64 listeners of varying age, we here show that in older listeners’ auditory cortex, the key feature of temporal rate is represented with a markedly broader tuning. This loss of temporal selectivity is most prominent in primary auditory cortex and planum temporale, with no such changes in adjacent auditory or other brain areas. Amongst older listeners, we observe a direct relationship between chronological age and temporal-rate tuning, unconfounded by auditory acuity or model goodness of fit. In line with senescent neural dedifferentiation more generally, our results highlight decreased selectivity to temporal information as a hallmark of the aging auditory cortex. It can often be difficult for an older person to understand what someone is saying, particularly in noisy environments. Exactly how and why this age-related change occurs is not clear, but it is thought that older individuals may become less able to tune in to certain features of sound. Newer tools are making it easier to study age-related changes in hearing in the brain. For example, functional magnetic resonance imaging (fMRI) can allow scientists to ‘see’ and measure how certain parts of the brain react to different features of sound. Using fMRI data, researchers can compare how younger and older people process speech. They can also track how speech processing in the brain changes with age. Now, Erb et al. show that older individuals have a harder time tuning into the rhythm of speech. In the experiments, 64 people between the ages of 18 to 78 were asked to listen to speech in a noisy setting while they underwent fMRI. The researchers then tested a computer model using the data. In the older individuals, the brain’s tuning to the timing or rhythm of speech was broader, while the younger participants were more able to finely tune into this feature of sound. The older a person was the less able their brain was to distinguish rhythms in speech, likely making it harder to understand what had been said. This hearing change likely occurs because brain cells become less specialised overtime, which can contribute to many kinds of age-related cognitive decline. This new information about why understanding speech becomes more difficult with age may help scientists develop better hearing aids that are individualised to a person’s specific needs.
Collapse
Affiliation(s)
- Julia Erb
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | | | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
22
|
Ramamurthy DL, Recanzone GH. Age-related changes in sound onset and offset intensity coding in auditory cortical fields A1 and CL of rhesus macaques. J Neurophysiol 2020; 123:1015-1025. [PMID: 31995426 DOI: 10.1152/jn.00373.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibition plays a key role in shaping sensory processing in the central auditory system and has been implicated in sculpting receptive field properties such as sound intensity coding and also in shaping temporal patterns of neuronal firing such as onset- or offset-evoked responses. There is substantial evidence supporting a decrease in inhibition throughout the ascending auditory pathway in geriatric animals. We therefore examined intensity coding of onset (ON) and offset (OFF) responses in auditory cortex of aged and young monkeys. A large proportion of cells in the primary auditory cortex (A1) and the caudolateral field (CL) displayed nonmonotonic rate-level functions for OFF responses in addition to nonmonotonic coding of ON responses. Aging differentially affected ON and OFF responses; the magnitude of effects was generally greater for ON responses. In addition to higher firing rates, neurons in old monkeys exhibited a significant increase in the proportion of monotonic rate-level functions and had higher best intensities than those in young monkeys. OFF responses in young monkeys displayed a range of intensity coding relationships with ON responses of the same cells, ranging from highly similar to highly dissimilar. Dissimilarity in ON/OFF coding was greater in CL and was reduced with aging, which was largely explained by a preferential decrease in the percentage of cells with nonmonotonic coding of ON and OFF responses. The changes we observed are consistent with previously demonstrated alterations in inhibition in the ascending auditory pathway of primates and could be involved in age-related deficits in the temporal processing of sounds.NEW & NOTEWORTHY Aging has a major impact on intensity coding of neurons in auditory cortex of rhesus macaques. Neural responses to sound onset and offset were affected to different extents, and their rate-level functions became more mutually similar, which could be accounted for by the loss of nonmonotonic intensity coding in geriatric monkeys. These findings were consistent with weakened inhibition in the central auditory system and could contribute to auditory processing deficits in elderly subjects.
Collapse
Affiliation(s)
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, California.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| |
Collapse
|
23
|
Heeringa AN, Zhang L, Ashida G, Beutelmann R, Steenken F, Köppl C. Temporal Coding of Single Auditory Nerve Fibers Is Not Degraded in Aging Gerbils. J Neurosci 2020. [PMID: 31719164 DOI: 10.1101/2020.02.10.942011] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
People suffering from age-related hearing loss typically present with deficits in temporal processing tasks. Temporal processing deficits have also been shown in single-unit studies at the level of the auditory brainstem, midbrain, and cortex of aged animals. In this study, we explored whether temporal coding is already affected at the level of the input to the central auditory system. Single-unit auditory nerve fiber recordings were obtained from 41 Mongolian gerbils of either sex, divided between young, middle-aged, and old gerbils. Temporal coding quality was evaluated as vector strength in response to tones at best frequency, and by constructing shuffled and cross-stimulus autocorrelograms, and reverse correlations, from responses to 1 s noise bursts at 10-30 dB sensation level (dB above threshold). At comparable sensation levels, all measures showed that temporal coding was not altered in auditory nerve fibers of aging gerbils. Furthermore, both temporal fine structure and envelope coding remained unaffected. However, spontaneous rates were decreased in aging gerbils. Importantly, despite elevated pure tone thresholds, the frequency tuning of auditory nerve fibers was not affected. These results suggest that age-related temporal coding deficits arise more centrally, possibly due to a loss of auditory nerve fibers (or their peripheral synapses) but not due to qualitative changes in the responses of remaining auditory nerve fibers. The reduced spontaneous rate and elevated thresholds, but normal frequency tuning, of aged auditory nerve fibers can be explained by the well known reduction of endocochlear potential due to strial dysfunction in aged gerbils.SIGNIFICANCE STATEMENT As our society ages, age-related hearing deficits become ever more prevalent. Apart from decreased hearing sensitivity, elderly people often suffer from a reduced ability to communicate in daily settings, which is thought to be caused by known age-related deficits in auditory temporal processing. The current study demonstrated, using several different stimuli and analysis techniques, that these putative temporal processing deficits are not apparent in responses of single-unit auditory nerve fibers of quiet-aged gerbils. This suggests that age-related temporal processing deficits may develop more central to the auditory nerve, possibly due to a reduced population of active auditory nerve fibers, which will be of importance for the development of treatments for age-related hearing disorders.
Collapse
Affiliation(s)
- Amarins N Heeringa
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Lichun Zhang
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Go Ashida
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Rainer Beutelmann
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Friederike Steenken
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
24
|
Komatsu M, Ichinohe N. Effects of Ketamine Administration on Auditory Information Processing in the Neocortex of Nonhuman Primates. Front Psychiatry 2020; 11:826. [PMID: 32973576 PMCID: PMC7466740 DOI: 10.3389/fpsyt.2020.00826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts broad effects on consciousness and perception. Since NMDA receptor antagonists induce cognitive impairments, ketamine has been used for translational research on several psychiatric diseases, such as schizophrenia. Whereas the effects of ketamine on cognitive functions have been extensively studied, studies on the effects of ketamine on simple sensory information processing remain limited. In this study, we investigated the cortex-wide effects of ketamine administration on auditory information processing in nonhuman primates using whole-cortical electrocorticography (ECoG). We first recorded ECoG from awake monkeys on presenting auditory stimuli of different frequencies or different durations. We observed auditory evoked responses (AERs) across the cortex, including in frontal, parietal, and temporal areas, while feature-specific responses were obtained around the temporal sulcus. Next, we examined the effects of ketamine on cortical auditory information processing. We conducted ECoG recordings from monkeys that had been administered anesthetic doses of ketamine from 10 to 180 min following administration. We observed significant changes in stimulus feature-specific responses. Electrodes showing a frequency preference or offset responses were altered following ketamine administration, while those of the AERs were not strongly influenced. However, the frequency preference of a selected electrode was not significantly altered by ketamine administration over time following administration, while the imbalances in the onset and offset persisted over the course of 150 min following ketamine administration in all three monkeys. These results suggest that ketamine affects the ability to distinguish between sound frequency and duration in different ways. In conclusion, future research on the NMDA sensitivity of cortical wide sensory information processing may provide a new perspective into the development of nonhuman primate models of psychiatric disorders.
Collapse
Affiliation(s)
- Misako Komatsu
- Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Center for Brain Science, Saitama, Japan.,Department of Ultrastructural Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noritaka Ichinohe
- Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Center for Brain Science, Saitama, Japan.,Department of Ultrastructural Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
25
|
Ng CW, Recanzone GH. Age-Related Changes in Temporal Processing of Rapidly-Presented Sound Sequences in the Macaque Auditory Cortex. Cereb Cortex 2019; 28:3775-3796. [PMID: 29040403 DOI: 10.1093/cercor/bhx240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
The mammalian auditory cortex is necessary to resolve temporal features in rapidly-changing sound streams. This capability is crucial for speech comprehension in humans and declines with normal aging. Nonhuman primate studies have revealed detrimental effects of normal aging on the auditory nervous system, and yet the underlying influence on temporal processing remains less well-defined. Therefore, we recorded from the core and lateral belt areas of auditory cortex when awake young and old monkeys listened to tone-pip and noise-burst sound sequences. Elevated spontaneous and stimulus-driven activity were the hallmark characteristics in old monkeys. These old neurons showed isomorphic-like discharge patterns to stimulus envelopes, though their phase-locking was less precise. Functional preference in temporal coding between the core and belt existed in the young monkeys but was mostly absent in the old monkeys, in which old belt neurons showed core-like response profiles. Finally, the analysis of population activity patterns indicated that the aged auditory cortex demonstrated a homogenous, distributed coding strategy, compared to the selective, sparse coding strategy observed in the young monkeys. Degraded temporal fidelity and highly-responsive, broadly-tuned cortical responses could underlie how aged humans have difficulties to resolve and track dynamic sounds leading to speech processing deficits.
Collapse
Affiliation(s)
- Chi-Wing Ng
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, CA, USA.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| |
Collapse
|
26
|
Temporal Coding of Single Auditory Nerve Fibers Is Not Degraded in Aging Gerbils. J Neurosci 2019; 40:343-354. [PMID: 31719164 DOI: 10.1523/jneurosci.2784-18.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 02/03/2023] Open
Abstract
People suffering from age-related hearing loss typically present with deficits in temporal processing tasks. Temporal processing deficits have also been shown in single-unit studies at the level of the auditory brainstem, midbrain, and cortex of aged animals. In this study, we explored whether temporal coding is already affected at the level of the input to the central auditory system. Single-unit auditory nerve fiber recordings were obtained from 41 Mongolian gerbils of either sex, divided between young, middle-aged, and old gerbils. Temporal coding quality was evaluated as vector strength in response to tones at best frequency, and by constructing shuffled and cross-stimulus autocorrelograms, and reverse correlations, from responses to 1 s noise bursts at 10-30 dB sensation level (dB above threshold). At comparable sensation levels, all measures showed that temporal coding was not altered in auditory nerve fibers of aging gerbils. Furthermore, both temporal fine structure and envelope coding remained unaffected. However, spontaneous rates were decreased in aging gerbils. Importantly, despite elevated pure tone thresholds, the frequency tuning of auditory nerve fibers was not affected. These results suggest that age-related temporal coding deficits arise more centrally, possibly due to a loss of auditory nerve fibers (or their peripheral synapses) but not due to qualitative changes in the responses of remaining auditory nerve fibers. The reduced spontaneous rate and elevated thresholds, but normal frequency tuning, of aged auditory nerve fibers can be explained by the well known reduction of endocochlear potential due to strial dysfunction in aged gerbils.SIGNIFICANCE STATEMENT As our society ages, age-related hearing deficits become ever more prevalent. Apart from decreased hearing sensitivity, elderly people often suffer from a reduced ability to communicate in daily settings, which is thought to be caused by known age-related deficits in auditory temporal processing. The current study demonstrated, using several different stimuli and analysis techniques, that these putative temporal processing deficits are not apparent in responses of single-unit auditory nerve fibers of quiet-aged gerbils. This suggests that age-related temporal processing deficits may develop more central to the auditory nerve, possibly due to a reduced population of active auditory nerve fibers, which will be of importance for the development of treatments for age-related hearing disorders.
Collapse
|
27
|
Herrmann B, Buckland C, Johnsrude IS. Neural signatures of temporal regularity processing in sounds differ between younger and older adults. Neurobiol Aging 2019; 83:73-85. [DOI: 10.1016/j.neurobiolaging.2019.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023]
|
28
|
Parthasarathy A, Bartlett EL, Kujawa SG. Age-related Changes in Neural Coding of Envelope Cues: Peripheral Declines and Central Compensation. Neuroscience 2019; 407:21-31. [DOI: 10.1016/j.neuroscience.2018.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022]
|
29
|
Robinson LC, Barat O, Mellott JG. GABAergic and glutamatergic cells in the inferior colliculus dynamically express the GABA AR γ 1 subunit during aging. Neurobiol Aging 2019; 80:99-110. [PMID: 31112831 DOI: 10.1016/j.neurobiolaging.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 01/20/2023]
Abstract
Age-related hearing loss may result, in part, from declining levels of γ-amino butyric acid (GABA) in the aging inferior colliculus (IC). An upregulation of the GABAAR γ1 subunit, which has been shown to increase sensitivity to GABA, occurs in the aging IC. We sought to determine whether the upregulation of the GABAAR γ1 subunit was specific to GABAergic or glutamatergic IC cells. We used immunohistochemistry for glutamic acid decarboxylase and the GABAAR γ1 subunit at 4 age groups in the IC of Fisher Brown Norway rats. The percentage of somas that expressed the γ1 subunit and the number of subunits on each soma were quantified. Our results show that GABAergic and glutamatergic IC cells increasingly expressed the γ1 subunit from young age until expression peaked during middle age. At old age (∼77% of life span), the number of GABAAR γ1 subunits per cell sharply decreased for both cell types. These results, along with previous studies, suggest inhibitory and excitatory IC circuits may express the GABAAR γ1 subunit in response to the age-related decline of available GABA.
Collapse
Affiliation(s)
- Lauren C Robinson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Oren Barat
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA; Department of Biology, Kent State University, Kent, OH, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
30
|
Presacco A, Simon JZ, Anderson S. Speech-in-noise representation in the aging midbrain and cortex: Effects of hearing loss. PLoS One 2019; 14:e0213899. [PMID: 30865718 PMCID: PMC6415857 DOI: 10.1371/journal.pone.0213899] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 03/04/2019] [Indexed: 01/24/2023] Open
Abstract
Age-related deficits in speech-in-noise understanding pose a significant problem for older adults. Despite the vast number of studies conducted to investigate the neural mechanisms responsible for these communication difficulties, the role of central auditory deficits, beyond peripheral hearing loss, remains unclear. The current study builds upon our previous work that investigated the effect of aging on normal-hearing individuals and aims to estimate the effect of peripheral hearing loss on the representation of speech in noise in two critical regions of the aging auditory pathway: the midbrain and cortex. Data from 14 hearing-impaired older adults were added to a previously published dataset of 17 normal-hearing younger adults and 15 normal-hearing older adults. The midbrain response, measured by the frequency-following response (FFR), and the cortical response, measured with the magnetoencephalography (MEG) response, were recorded from subjects listening to speech in quiet and noise conditions at four signal-to-noise ratios (SNRs): +3, 0, -3, and -6 dB sound pressure level (SPL). Both groups of older listeners showed weaker midbrain response amplitudes and overrepresentation of cortical responses compared to younger listeners. No significant differences were found between the two older groups when the midbrain and cortical measurements were analyzed independently. However, significant differences between the older groups were found when investigating the midbrain-cortex relationships; that is, only hearing-impaired older adults showed significant correlations between midbrain and cortical measurements, suggesting that hearing loss may alter reciprocal connections between lower and higher levels of the auditory pathway. The overall paucity of differences in midbrain or cortical responses between the two older groups suggests that age-related temporal processing deficits may contribute to older adults' communication difficulties beyond what might be predicted from peripheral hearing loss alone; however, hearing loss does seem to alter the connectivity between midbrain and cortex. These results may have important ramifications for the field of audiology, as it indicates that algorithms in clinical devices, such as hearing aids, should consider age-related temporal processing deficits to maximize user benefit.
Collapse
Affiliation(s)
- Alessandro Presacco
- Department of Otolaryngology, University of California, Irvine, CA, United States of America
- Center for Hearing Research, University of California, Irvine, CA, United States of America
- * E-mail:
| | - Jonathan Z. Simon
- Department of Electrical & Computer Engineering, University of Maryland, College Park, MD, United States of America
- Department of Biology, University of Maryland, College Park, MD, United States of America
- Institute for Systems Research, University of Maryland, College Park, MD, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, United States of America
| | - Samira Anderson
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, United States of America
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
31
|
Recanzone G. The effects of aging on auditory cortical function. Hear Res 2018; 366:99-105. [PMID: 29853323 PMCID: PMC6103827 DOI: 10.1016/j.heares.2018.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/12/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023]
Abstract
Age-related hearing loss is a prominent deficit, afflicting approximately half of the geriatric population. In many cases, the person may have no deficits in detecting sounds, but nonetheless suffers from a reduced ability to understand speech, particularly in a noisy environment. While rodent models have shown that there are a variety of age-related changes throughout the auditory neuraxis, far fewer studies have investigated the effects at the cortical level. Here I review recent evidence from a non-human primate model of age-related hearing loss at the level of the core (primary auditory cortex, A1) and belt (caudolateral field, CL) in young and aged animals with normal detection thresholds. The findings are that there is an increase in both the spontaneous and driven activity, an increase in spatial tuning, and a reduction in the temporal fidelity of the response in aged animals. These results are consistent with an age-related imbalance of excitation and inhibition in the auditory cortex. These spatial and temporal processing deficits could underlie the major complaint of geriatrics, that it is difficult to understand speech in noise.
Collapse
Affiliation(s)
- Gregg Recanzone
- Center for Neuroscience and Department of Neurobiology, Physiology and Behavior, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
32
|
Brodbeck C, Presacco A, Anderson S, Simon JZ. Over-representation of speech in older adults originates from early response in higher order auditory cortex. ACTA ACUST UNITED AC 2018; 104:774-777. [PMID: 30686956 DOI: 10.3813/aaa.919221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous research has found that, paradoxically, while older adults have more difficulty comprehending speech in challenging circumstances than younger adults, their brain responses track the envelope of the acoustic signal more robustly. Here we investigate this puzzle by using magnetoencephalography (MEG) source localization to determine the anatomical origin of this difference. Our results indicate that this robust tracking in older adults does not arise merely from having the same responses as younger adults but with larger amplitudes; instead, they recruit additional regions, inferior to core auditory cortex, with a short latency of ~30 ms relative to the acoustic signal.
Collapse
Affiliation(s)
- Christian Brodbeck
- Institute for Systems Research, University of Maryland, College Park, Maryland
| | | | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland
| | - Jonathan Z Simon
- Institute for Systems Research, University of Maryland, College Park, Maryland
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
33
|
Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing. J Neurosci 2018; 38:7108-7119. [PMID: 29976623 DOI: 10.1523/jneurosci.3240-17.2018] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Aging listeners, even in the absence of overt hearing loss measured as changes in hearing thresholds, often experience impairments processing temporally complex sounds such as speech in noise. Recent evidence has shown that normal aging is accompanied by a progressive loss of synapses between inner hair cells and auditory nerve fibers. The role of this cochlear synaptopathy in degraded temporal processing with age is not yet understood. Here, we used population envelope following responses, along with other hair cell- and neural-based measures from an age-graded series of male and female CBA/CaJ mice to study changes in encoding stimulus envelopes. By comparing responses obtained before and after the application of the neurotoxin ouabain to the inner ear, we demonstrate that we can study changes in temporal processing on either side of the cochlear synapse. Results show that deficits in neural coding with age emerge at the earliest neural stages of auditory processing and are correlated with the degree of cochlear synaptopathy. These changes are seen before losses in neural thresholds and particularly affect the suprathreshold processing of sound. Responses obtained from more central sources show smaller differences with age, suggesting compensatory gain. These results show that progressive cochlear synaptopathy is accompanied by deficits in temporal coding at the earliest neural generators and contribute to the suprathreshold sound processing deficits observed with age.SIGNIFICANCE STATEMENT Aging listeners often experience difficulty hearing and understanding speech in noisy conditions. The results described here suggest that age-related loss of cochlear synapses may be a significant contributor to those performance declines. We observed aberrant neural coding of sounds in the early auditory pathway, which was accompanied by and correlated with an age-progressive loss of synapses between the inner hair cells and the auditory nerve. Deficits first appeared before changes in hearing thresholds and were largest at higher sound levels relevant to real world communication. The noninvasive tests described here may be adapted to detect cochlear synaptopathy in the clinical setting.
Collapse
|
34
|
Aushana Y, Souffi S, Edeline JM, Lorenzi C, Huetz C. Robust Neuronal Discrimination in Primary Auditory Cortex Despite Degradations of Spectro-temporal Acoustic Details: Comparison Between Guinea Pigs with Normal Hearing and Mild Age-Related Hearing Loss. J Assoc Res Otolaryngol 2018; 19:163-180. [PMID: 29302822 PMCID: PMC5878150 DOI: 10.1007/s10162-017-0649-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/11/2017] [Indexed: 01/04/2023] Open
Abstract
This study investigated to which extent the primary auditory cortex of young normal-hearing and mild hearing-impaired aged animals is able to maintain invariant representation of critical temporal-modulation features when sounds are submitted to degradations of fine spectro-temporal acoustic details. This was achieved by recording ensemble of cortical responses to conspecific vocalizations in guinea pigs with either normal hearing or mild age-related sensorineural hearing loss. The vocalizations were degraded using a tone vocoder. The neuronal responses and their discrimination capacities (estimated by mutual information) were analyzed at single recording and population levels. For normal-hearing animals, the neuronal responses decreased as a function of the number of the vocoder frequency bands, so did their discriminative capacities at the single recording level. However, small neuronal populations were found to be robust to the degradations induced by the vocoder. Similar robustness was obtained when broadband noise was added to exacerbate further the spectro-temporal distortions produced by the vocoder. A comparable pattern of robustness to degradations in fine spectro-temporal details was found for hearing-impaired animals. However, the latter showed an overall decrease in neuronal discrimination capacities between vocalizations in noisy conditions. Consistent with previous studies, these results demonstrate that the primary auditory cortex maintains robust neural representation of temporal envelope features for communication sounds under a large range of spectro-temporal degradations.
Collapse
Affiliation(s)
- Yonane Aushana
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Orsay, France
- Université Paris-Sud, 91405 Orsay cedex, France
- Université Paris-Saclay, 91405 Orsay cedex, France
| | - Samira Souffi
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Orsay, France
- Université Paris-Sud, 91405 Orsay cedex, France
- Université Paris-Saclay, 91405 Orsay cedex, France
| | - Jean-Marc Edeline
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Orsay, France
- Université Paris-Sud, 91405 Orsay cedex, France
- Université Paris-Saclay, 91405 Orsay cedex, France
| | - Christian Lorenzi
- Laboratoire des Systèmes Perceptifs, UMR CNRS 8248, Département d’Etudes Cognitives, Ecole Normale Supérieure (ENS), Paris Sciences & Lettres Research University, 75005 Paris, France
| | - Chloé Huetz
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Orsay, France
- Université Paris-Sud, 91405 Orsay cedex, France
- Université Paris-Saclay, 91405 Orsay cedex, France
| |
Collapse
|
35
|
States and traits of neural irregularity in the age-varying human brain. Sci Rep 2017; 7:17381. [PMID: 29234128 PMCID: PMC5727296 DOI: 10.1038/s41598-017-17766-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
Sensory representations, and thus human percepts, of the physical world are susceptible to fluctuations in brain state or “neural irregularity”. Furthermore, aging brains display altered levels of neural irregularity. We here show that a single, within-trial, information-theoretic measure (weighted permutation entropy) captures neural irregularity in the human electroencephalogram as a proxy for both, trait-like differences between individuals of varying age, and state-like fluctuations that bias perceptual decisions. First, the overall level of neural irregularity increased with participants’ age, paralleled by a decrease in variability over time, likely indexing age-related changes at structural and functional levels of brain activity. Second, states of higher neural irregularity were associated with optimized sensory encoding and a subsequently increased probability of choosing the first of two physically identical stimuli to be higher in pitch. In sum, neural irregularity not only characterizes behaviourally relevant brain states, but also can identify trait-like changes that come with age.
Collapse
|
36
|
Positive impacts of early auditory training on cortical processing at an older age. Proc Natl Acad Sci U S A 2017; 114:6364-6369. [PMID: 28559351 DOI: 10.1073/pnas.1707086114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Progressive negative behavioral changes in normal aging are paralleled by a complex series of physical and functional declines expressed in the cerebral cortex. In studies conducted in the auditory domain, these degrading physical and functional cortical changes have been shown to be broadly reversed by intensive progressive training that improves the spectral and temporal resolution of acoustic inputs and suppresses behavioral distractors. Here we found older rats that were intensively trained on an attentionally demanding modulation-rate recognition task in young adulthood substantially retained training-driven improvements in temporal rate discrimination abilities over a subsequent 18-mo epoch-that is, forward into their older age. In parallel, this young-adult auditory training enduringly enhanced temporal and spectral information processing in their primary auditory cortices (A1). Substantially greater numbers of parvalbumin- and somatostatin-labeled inhibitory neurons (closer to the numbers recorded in young vigorous adults) were recorded in the A1 and hippocampus in old trained versus untrained age-matched rats. These results show that a simple form of training in young adulthood in this rat model enduringly delays the otherwise expected deterioration of the physical status and functional operations of the auditory nervous system, with evident training impacts generalized to the hippocampus.
Collapse
|
37
|
Downer JD, Niwa M, Sutter ML. Hierarchical differences in population coding within auditory cortex. J Neurophysiol 2017; 118:717-731. [PMID: 28446588 PMCID: PMC5539454 DOI: 10.1152/jn.00899.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 01/04/2023] Open
Abstract
Most models of auditory cortical (AC) population coding have focused on primary auditory cortex (A1). Thus our understanding of how neural coding for sounds progresses along the cortical hierarchy remains obscure. To illuminate this, we recorded from two AC fields: A1 and middle lateral belt (ML) of rhesus macaques. We presented amplitude-modulated (AM) noise during both passive listening and while the animals performed an AM detection task ("active" condition). In both fields, neurons exhibit monotonic AM-depth tuning, with A1 neurons mostly exhibiting increasing rate-depth functions and ML neurons approximately evenly distributed between increasing and decreasing functions. We measured noise correlation (rnoise) between simultaneously recorded neurons and found that whereas engagement decreased average rnoise in A1, engagement increased average rnoise in ML. This finding surprised us, because attentive states are commonly reported to decrease average rnoise We analyzed the effect of rnoise on AM coding in both A1 and ML and found that whereas engagement-related shifts in rnoise in A1 enhance AM coding, rnoise shifts in ML have little effect. These results imply that the effect of rnoise differs between sensory areas, based on the distribution of tuning properties among the neurons within each population. A possible explanation of this is that higher areas need to encode nonsensory variables (e.g., attention, choice, and motor preparation), which impart common noise, thus increasing rnoise Therefore, the hierarchical emergence of rnoise-robust population coding (e.g., as we observed in ML) enhances the ability of sensory cortex to integrate cognitive and sensory information without a loss of sensory fidelity.NEW & NOTEWORTHY Prevailing models of population coding of sensory information are based on a limited subset of neural structures. An important and under-explored question in neuroscience is how distinct areas of sensory cortex differ in their population coding strategies. In this study, we compared population coding between primary and secondary auditory cortex. Our findings demonstrate striking differences between the two areas and highlight the importance of considering the diversity of neural structures as we develop models of population coding.
Collapse
Affiliation(s)
- Joshua D Downer
- Center for Neuroscience and Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Mamiko Niwa
- Center for Neuroscience and Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Mitchell L Sutter
- Center for Neuroscience and Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| |
Collapse
|
38
|
Presacco A, Simon JZ, Anderson S. Effect of informational content of noise on speech representation in the aging midbrain and cortex. J Neurophysiol 2016; 116:2356-2367. [PMID: 27605531 PMCID: PMC5110638 DOI: 10.1152/jn.00373.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/07/2016] [Indexed: 11/22/2022] Open
Abstract
The ability to understand speech is significantly degraded by aging, particularly in noisy environments. One way that older adults cope with this hearing difficulty is through the use of contextual cues. Several behavioral studies have shown that older adults are better at following a conversation when the target speech signal has high contextual content or when the background distractor is not meaningful. Specifically, older adults gain significant benefit in focusing on and understanding speech if the background is spoken by a talker in a language that is not comprehensible to them (i.e., a foreign language). To understand better the neural mechanisms underlying this benefit in older adults, we investigated aging effects on midbrain and cortical encoding of speech when in the presence of a single competing talker speaking in a language that is meaningful or meaningless to the listener (i.e., English vs. Dutch). Our results suggest that neural processing is strongly affected by the informational content of noise. Specifically, older listeners' cortical responses to the attended speech signal are less deteriorated when the competing speech signal is an incomprehensible language rather than when it is their native language. Conversely, temporal processing in the midbrain is affected by different backgrounds only during rapid changes in speech and only in younger listeners. Additionally, we found that cognitive decline is associated with an increase in cortical envelope tracking, suggesting an age-related over (or inefficient) use of cognitive resources that may explain their difficulty in processing speech targets while trying to ignore interfering noise.
Collapse
Affiliation(s)
- Alessandro Presacco
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland;
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland
| | - Jonathan Z Simon
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland
- Department of Biology, University of Maryland, College Park, Maryland; and
- Institute for Systems Research, University of Maryland, College Park, Maryland
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland
| |
Collapse
|
39
|
Presacco A, Simon JZ, Anderson S. Evidence of degraded representation of speech in noise, in the aging midbrain and cortex. J Neurophysiol 2016; 116:2346-2355. [PMID: 27535374 DOI: 10.1152/jn.00372.2016] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/12/2016] [Indexed: 01/28/2023] Open
Abstract
Humans have a remarkable ability to track and understand speech in unfavorable conditions, such as in background noise, but speech understanding in noise does deteriorate with age. Results from several studies have shown that in younger adults, low-frequency auditory cortical activity reliably synchronizes to the speech envelope, even when the background noise is considerably louder than the speech signal. However, cortical speech processing may be limited by age-related decreases in the precision of neural synchronization in the midbrain. To understand better the neural mechanisms contributing to impaired speech perception in older adults, we investigated how aging affects midbrain and cortical encoding of speech when presented in quiet and in the presence of a single-competing talker. Our results suggest that central auditory temporal processing deficits in older adults manifest in both the midbrain and in the cortex. Specifically, midbrain frequency following responses to a speech syllable are more degraded in noise in older adults than in younger adults. This suggests a failure of the midbrain auditory mechanisms needed to compensate for the presence of a competing talker. Similarly, in cortical responses, older adults show larger reductions than younger adults in their ability to encode the speech envelope when a competing talker is added. Interestingly, older adults showed an exaggerated cortical representation of speech in both quiet and noise conditions, suggesting a possible imbalance between inhibitory and excitatory processes, or diminished network connectivity that may impair their ability to encode speech efficiently.
Collapse
Affiliation(s)
- Alessandro Presacco
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland; .,Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland
| | - Jonathan Z Simon
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland.,Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland.,Department of Biology, University of Maryland, College Park, Maryland; and.,Institute for Systems Research, University of Maryland, College Park, Maryland
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland
| |
Collapse
|