1
|
Abbott EM, Stephens JD, Simha SN, Wood L, Nardelli P, Cope TC, Sawicki GS, Ting LH. Attenuation of muscle spindle firing with artificially increased series compliance during stretch of relaxed muscle. Exp Physiol 2024; 109:148-158. [PMID: 37856330 PMCID: PMC10841431 DOI: 10.1113/ep090872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Muscle spindles relay vital mechanosensory information for movement and posture, but muscle spindle feedback is coupled to skeletal motion by a compliant tendon. Little is known about the effects of tendon compliance on muscle spindle feedback during movement, and the complex firing of muscle spindles makes these effects difficult to predict. Our goal was to investigate changes in muscle spindle firing using added series elastic elements (SEEs) to mimic a more compliant tendon, and to characterize the accompanying changes in firing with respect to muscle-tendon unit (MTU) and muscle fascicle displacements (recorded via sonomicrometry). Sinusoidal, ramp-and-hold and triangular stretches were analysed to examine potential changes in muscle spindle instantaneous firing rates (IFRs) in locomotor- and perturbation-like stretches as well as serial history dependence. Added SEEs effectively reduced overall MTU stiffness and generally reduced muscle spindle firing rates, but the effect differed across stretch types. During sinusoidal stretches, peak and mean firing rates were not reduced and IFR was best-correlated with fascicle velocity. During ramp stretches, SEEs reduced the initial burst, dynamic and static responses of the spindle. Notably, IFR was negatively related to fascicle displacement during the hold phase. During triangular stretches, SEEs reduced the mean IFR during the first and second stretches, affecting the serial history dependence of mean IFR. Overall, these results demonstrate that tendon compliance may attenuate muscle spindle feedback during movement, but these changes cannot be fully explained by reduced muscle fascicle length or velocity, or MTU force.
Collapse
Affiliation(s)
- Emily M. Abbott
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Jacob D. Stephens
- Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Surabhi N. Simha
- Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Leo Wood
- School of PhysicsGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Paul Nardelli
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Timothy C. Cope
- Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Gregory S. Sawicki
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Lena H. Ting
- Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGeorgiaUSA
- Department of Rehabilitation MedicineEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Simha SN, Ting LH. Intrafusal cross-bridge dynamics shape history-dependent muscle spindle responses to stretch. Exp Physiol 2024; 109:112-124. [PMID: 37428622 PMCID: PMC10776813 DOI: 10.1113/ep090767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Computational models can be critical to linking complex properties of muscle spindle organs to the sensory information that they encode during behaviours such as postural sway and locomotion where few muscle spindle recordings exist. Here, we augment a biophysical muscle spindle model to predict the muscle spindle sensory signal. Muscle spindles comprise several intrafusal muscle fibres with varied myosin expression and are innervated by sensory neurons that fire during muscle stretch. We demonstrate how cross-bridge dynamics from thick and thin filament interactions affect the sensory receptor potential at the spike initiating region. Equivalent to the Ia afferent's instantaneous firing rate, the receptor potential is modelled as a linear sum of the force and rate change of force (yank) of a dynamic bag1 fibre and the force of a static bag2/chain fibre. We show the importance of inter-filament interactions in (i) generating large changes in force at stretch onset that drive initial bursts and (ii) faster recovery of bag fibre force and receptor potential following a shortening. We show how myosin attachment and detachment rates qualitatively alter the receptor potential. Finally, we show the effect of faster recovery of receptor potential on cyclic stretch-shorten cycles. Specifically, the model predicts history-dependence in muscle spindle receptor potentials as a function of inter-stretch interval (ISI), pre-stretch amplitude and the amplitude of sinusoidal stretches. This model provides a computational platform for predicting muscle spindle response in behaviourally relevant stretches and can link myosin expression seen in healthy and diseased intrafusal muscle fibres to muscle spindle function.
Collapse
Affiliation(s)
- Surabhi N. Simha
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and The Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Lena H. Ting
- Wallace H. Coulter Department of Biomedical EngineeringEmory University and The Georgia Institute of TechnologyAtlantaGeorgiaUSA
- Department of Rehabilitation Medicine, Division of Physical TherapyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Housley SN, Powers RK, Nardelli P, Lee S, Blum K, Bewick GS, Banks RW, Cope TC. Biophysical model of muscle spindle encoding. Exp Physiol 2024; 109:55-65. [PMID: 36966478 PMCID: PMC10988694 DOI: 10.1113/ep091099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
Muscle spindles encode mechanosensory information by mechanisms that remain only partially understood. Their complexity is expressed in mounting evidence of various molecular mechanisms that play essential roles in muscle mechanics, mechanotransduction and intrinsic modulation of muscle spindle firing behaviour. Biophysical modelling provides a tractable approach to achieve more comprehensive mechanistic understanding of such complex systems that would be difficult/impossible by more traditional, reductionist means. Our objective here was to construct the first integrative biophysical model of muscle spindle firing. We leveraged current knowledge of muscle spindle neuroanatomy and in vivo electrophysiology to develop and validate a biophysical model that reproduces key in vivo muscle spindle encoding characteristics. Crucially, to our knowledge, this is the first computational model of mammalian muscle spindle that integrates the asymmetric distribution of known voltage-gated ion channels (VGCs) with neuronal architecture to generate realistic firing profiles, both of which seem likely to be of great biophysical importance. Results predict that particular features of neuronal architecture regulate specific characteristics of Ia encoding. Computational simulations also predict that the asymmetric distribution and ratios of VGCs is a complementary and, in some instances, orthogonal means to regulate Ia encoding. These results generate testable hypotheses and highlight the integral role of peripheral neuronal structure and ion channel composition and distribution in somatosensory signalling.
Collapse
Affiliation(s)
| | - Randal K. Powers
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Paul Nardelli
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGA
| | - Sebinne Lee
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGA
| | - Kyle Blum
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Guy S. Bewick
- Institute of Medical ScienceUniversity of AberdeenAberdeenUK
| | | | - Timothy C. Cope
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGA
- W. H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of Technology, Georgia Institute of TechnologyAtlantaGA
| |
Collapse
|
4
|
Abbott EM, Stephens JD, Simha SN, Wood L, Nardelli P, Cope TC, Sawicki GS, Ting LH. Attenuation of muscle spindle firing with artificially increased series compliance during stretch of relaxed muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539853. [PMID: 37215007 PMCID: PMC10197546 DOI: 10.1101/2023.05.08.539853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Muscle spindles relay vital mechanosensory information for movement and posture, but muscle spindle feedback is coupled to skeletal motion by a compliant tendon. Little is known about the effects of tendon compliance on muscle spindle feedback during movement, and the complex firing of muscle spindles make these effects difficult to predict. Our goal was to investigate changes in muscle spindle firing using added series elastic elements (SEEs) to mimic a more compliant tendon, and to characterize the accompanying changes in firing with respect to muscle-tendon unit (MTU) and muscle fascicle displacements (recorded via sonomicrometry). Sinusoidal, ramp-hold-release, and triangular stretches were analyzed to examine potential changes in muscle spindle instantaneous firing rates (IFRs) in locomotor- and perturbation-like stretches as well as history dependence. Added SEEs effectively reduced overall MTU stiffness and generally reduced muscle spindle firing rates, but the effect differed across stretch types. During sinusoidal stretches, peak firing rates were reduced and IFR was strongly correlated with fascicle velocity. During ramp stretches, SEEs reduced the dynamic and static responses of the spindle during lengthening but had no effect on initial bursts at the onset of stretch. Notably, IFR was negatively related to fascicle displacement during the hold phase. During triangular stretches, SEEs reduced the mean IFR during the first and second stretches, affecting the history dependence of mean IFR. Overall, these results demonstrate that tendon compliance may attenuate muscle spindle feedback during movement, but these changes cannot be fully explained by reduced muscle fascicle length and velocity.
Collapse
Affiliation(s)
| | - Jacob D Stephens
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology
| | - Surabhi N Simha
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology
| | - Leo Wood
- School of Physics, Georgia Institute of Technology
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology
| | - Timothy C Cope
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology
- School of Biological Sciences, Georgia Institute of Technology
| | - Gregory S Sawicki
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology
| | - Lena H Ting
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology
- Department of Rehabilitation Medicine, Emory University
| |
Collapse
|
5
|
Beck ON, Shepherd MK, Rastogi R, Martino G, Ting LH, Sawicki GS. Exoskeletons need to react faster than physiological responses to improve standing balance. Sci Robot 2023; 8:eadf1080. [PMID: 36791215 PMCID: PMC10169237 DOI: 10.1126/scirobotics.adf1080] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Maintaining balance throughout daily activities is challenging because of the unstable nature of the human body. For instance, a person's delayed reaction times limit their ability to restore balance after disturbances. Wearable exoskeletons have the potential to enhance user balance after a disturbance by reacting faster than physiologically possible. However, "artificially fast" balance-correcting exoskeleton torque may interfere with the user's ensuing physiological responses, consequently hindering the overall reactive balance response. Here, we show that exoskeletons need to react faster than physiological responses to improve standing balance after postural perturbations. Delivering ankle exoskeleton torque before the onset of physiological reactive joint moments improved standing balance by 9%, whereas delaying torque onset to coincide with that of physiological reactive ankle moments did not. In addition, artificially fast exoskeleton torque disrupted the ankle mechanics that generate initial local sensory feedback, but the initial reactive soleus muscle activity was only reduced by 18% versus baseline. More variance of the initial reactive soleus muscle activity was accounted for using delayed and scaled whole-body mechanics [specifically center of mass (CoM) velocity] versus local ankle-or soleus fascicle-mechanics, supporting the notion that reactive muscle activity is commanded to achieve task-level goals, such as maintaining balance. Together, to elicit symbiotic human-exoskeleton balance control, device torque may need to be informed by mechanical estimates of global sensory feedback, such as CoM kinematics, that precede physiological responses.
Collapse
Affiliation(s)
- Owen N Beck
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA.,Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Max K Shepherd
- Department of Physical Therapy and Rehabilitation Science, Northeastern University, Boston, MA, USA.,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Rish Rastogi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Giovanni Martino
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.,Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, USA
| | - Gregory S Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
6
|
Housley SN, Nardelli P, Rotterman TM, Reed J, Cope TC. Mechanosensory encoding dysfunction emerges from cancer-chemotherapy interaction. Front Mol Biosci 2022; 9:1017427. [PMID: 36504708 PMCID: PMC9729348 DOI: 10.3389/fmolb.2022.1017427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Persistent sensory, motor and cognitive disabilities comprise chemotherapy-induced neural disorders (CIND) that limit quality of life with little therapeutic relief for cancer survivors. Our recent preclinical study provides new insight into a condition impacting the severity of chronic CIND. We find that sensorimotor disability observed following cancer treatment exceeds that attributable to chemotherapy alone. A possible explanation for intensified disability emerged from evidence that codependent effects of cancer and chemotherapy amplify defective firing in primary sensory neurons supplying one type of low threshold mechanosensory receptor (LTMR). Here we test whether cancer's modification of chemotherapy-induced sensory defects generalizes across eight LTMR submodalities that collectively generate the signals of origin for proprioceptive and tactile perception and guidance of body movement. Preclinical study enabled controlled comparison of the independent contributions of chemotherapy and cancer to their clinically relevant combined effects. We compared data sampled from rats that were otherwise healthy or bearing colon cancer and treated, or not, with human-scaled, standard-of-care chemotherapy with oxaliplatin. Action potential firing patterns encoding naturalistic mechanical perturbations of skeletal muscle and skin were measured electrophysiologically in vivo from multiple types of LTMR neurons. All expressed aberrant encoding of dynamic and/or static features of mechanical stimuli in healthy rats treated with chemotherapy, and surprisingly also by some LTMRs in cancer-bearing rats that were not treated. By comparison, chemotherapy and cancer in combination worsened encoding aberrations, especially in slowly adapting LTMRs supplying both muscle and glabrous skin. Probabilistic modeling best predicted observed encoding defects when incorporating interaction effects of cancer and chemotherapy. We conclude that for multiple mechanosensory submodalities, the severity of encoding defects is modulated by a codependence of chemotherapy side effects and cancer's systemic processes. We propose that the severity of CIND might be reduced by therapeutically targeting the mechanisms, yet to be determined, by which cancer magnifies chemotherapy's neural side effects as an alternative to reducing chemotherapy and its life-saving benefits.
Collapse
Affiliation(s)
- Stephen N. Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States,Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, United States,*Correspondence: Stephen N. Housley, ; Timothy C. Cope,
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Travis M. Rotterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - J’Ana Reed
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Timothy C. Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States,Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, United States,W. H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Georgia Institute of Technology, Atlanta, GA, United States,*Correspondence: Stephen N. Housley, ; Timothy C. Cope,
| |
Collapse
|
7
|
Liss DJ, Carey HD, Yakovenko S, Allen JL. Young adults perceive small disturbances to their walking balance even when distracted. Gait Posture 2022; 91:198-204. [PMID: 34740056 PMCID: PMC8671331 DOI: 10.1016/j.gaitpost.2021.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The ability to perceive disturbances to ongoing locomotion (e.g., slips and trips) may play an important role in walking balance control. However, how well young adults can perceive such disturbances is unknown. RESEARCH QUESTION The purpose of this study was to identify the perception threshold in young adults to subtle slip-like locomotor disturbances. METHODS Subjects (n = 12) walked on a split-belt treadmill performing a perturbation discrimination task at their preferred walking speed while randomly experiencing locomotor balance disturbances every 8-12 strides. Balance disturbances were imposed through a short-duration decrease in velocity of a single treadmill belt triggered at heel-strike. The treadmill belt returned to the subject's preferred walking speed during the subsequent swing phase. Locomotor disturbances were given with eight different velocity changes ranging from 0 to 0.4 m/s and were randomized and repeated 5 times. Subjects were prompted to respond when asked if they perceived each disturbance. Using a psychophysical approach, we determined the perception thresholds of slip-like locomotor disturbances (i.e., just noticeable difference). The perturbation discrimination task was repeated with subjects performing a secondary cognitive distraction (counting backward by threes). RESULTS Subjects perceived small locomotor disturbances during both normal walking (dominant: 0.07 ± 0.03 m/s, non-dominant: 0.08 ± 0.03 m/s) and while performing the secondary cognitive task (dominant: 0.08 ± 0.01 m/s, non-dominant: 0.09 ± 0.02 m/s). There was no significant difference between legs (p = 0.466), with the addition of the cognitive task (p = 0.08), or interaction between leg and task (p = 0.994). SIGNIFICANCE The ability to perceive subtle slip-like locomotor disturbances was maintained even when performing a cognitively distracting task, suggesting that young adults can perceive very small locomotor disturbances.
Collapse
Affiliation(s)
- Daniel J Liss
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Hannah D Carey
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Sergiy Yakovenko
- Department of Exercise Physiology, West Virginia University, Morgantown, WV, USA
| | - Jessica L Allen
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
8
|
Housley SN, Nardelli P, Rotterman TM, Cope TC. Neural circuit mechanisms of sensorimotor disability in cancer treatment. Proc Natl Acad Sci U S A 2021; 118:e2100428118. [PMID: 34911753 PMCID: PMC8713769 DOI: 10.1073/pnas.2100428118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Cancer survivors rank sensorimotor disability among the most distressing, long-term consequences of chemotherapy. Disorders in gait, balance, and skilled movements are commonly assigned to chemotoxic damage of peripheral sensory neurons without consideration of the deterministic role played by the neural circuits that translate sensory information into movement. This oversight precludes sufficient, mechanistic understanding and contributes to the absence of effective treatment for reversing chemotherapy-induced disability. We rectified this omission through the use of a combination of electrophysiology, behavior, and modeling to study the operation of a spinal sensorimotor circuit in vivo in a rat model of chronic, oxaliplatin (chemotherapy)-induced neuropathy (cOIN). Key sequential events were studied in the encoding of propriosensory information and its circuit translation into the synaptic potentials produced in motoneurons. In cOIN rats, multiple classes of propriosensory neurons expressed defective firing that reduced accurate sensory representation of muscle mechanical responses to stretch. Accuracy degraded further in the translation of propriosensory signals into synaptic potentials as a result of defective mechanisms residing inside the spinal cord. These sequential, peripheral, and central defects compounded to drive the sensorimotor circuit into a functional collapse that was consequential in predicting the significant errors in propriosensory-guided movement behaviors demonstrated here in our rat model and reported for people with cOIN. We conclude that sensorimotor disability induced by cancer treatment emerges from the joint expression of independent defects occurring in both peripheral and central elements of sensorimotor circuits.
Collapse
Affiliation(s)
- Stephen N Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332;
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30309
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30309
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Travis M Rotterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Timothy C Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332;
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30309
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30309
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
9
|
Blum KP, Campbell KS, Horslen BC, Nardelli P, Housley SN, Cope TC, Ting LH. Diverse and complex muscle spindle afferent firing properties emerge from multiscale muscle mechanics. eLife 2020; 9:e55177. [PMID: 33370235 PMCID: PMC7769569 DOI: 10.7554/elife.55177] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Despite decades of research, we lack a mechanistic framework capable of predicting how movement-related signals are transformed into the diversity of muscle spindle afferent firing patterns observed experimentally, particularly in naturalistic behaviors. Here, a biophysical model demonstrates that well-known firing characteristics of mammalian muscle spindle Ia afferents - including movement history dependence, and nonlinear scaling with muscle stretch velocity - emerge from first principles of muscle contractile mechanics. Further, mechanical interactions of the muscle spindle with muscle-tendon dynamics reveal how motor commands to the muscle (alpha drive) versus muscle spindle (gamma drive) can cause highly variable and complex activity during active muscle contraction and muscle stretch that defy simple explanation. Depending on the neuromechanical conditions, the muscle spindle model output appears to 'encode' aspects of muscle force, yank, length, stiffness, velocity, and/or acceleration, providing an extendable, multiscale, biophysical framework for understanding and predicting proprioceptive sensory signals in health and disease.
Collapse
Affiliation(s)
- Kyle P Blum
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | | | - Brian C Horslen
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Stephen N Housley
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Timothy C Cope
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Lena H Ting
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of TechnologyAtlantaUnited States
- Department of Rehabilitation Medicine, Emory UniversityAtlantaUnited States
| |
Collapse
|
10
|
Housley SN, Nardelli P, Powers RK, Rich MM, Cope TC. Chronic defects in intraspinal mechanisms of spike encoding by spinal motoneurons following chemotherapy. Exp Neurol 2020; 331:113354. [PMID: 32511953 PMCID: PMC7937189 DOI: 10.1016/j.expneurol.2020.113354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/11/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Chemotherapy-induced sensorimotor disabilities, including gait and balance disorders, as well as physical fatigue often persist for months and sometimes years into disease free survival from cancer. While associated with impaired sensory function, chronic sensorimotor disorders might also depend on chemotherapy-induced defects in other neuron types. In this report, we extend consideration to motoneurons, which, if chronically impaired, would necessarily degrade movement behavior. The present study was undertaken to determine whether motoneurons qualify as candidate contributors to chronic sensorimotor disability independently from sensory impairment. We tested this possibility in vivo from rats 5 weeks following human-scaled treatment with one of the platinum-based compounds, oxaliplatin, widely used in chemotherapy for a variety of cancers. Action potential firing of spinal motoneurons responding to different fixed levels of electrode-current injection was measured in order to assess the neurons' intrinsic capacity for stimulus encoding. The encoding of stimulus duration and intensity corroborated in untreated control rats was severely degraded in oxaliplatin treated rats, in which motoneurons invariably exhibited erratic firing that was unsustained, unpredictable from one stimulus trial to the next, and unresponsive to changes in current strength. Direct measurements of interspike oscillations in membrane voltage combined with computer modeling pointed to aberrations in subthreshold conductances as a plausible contributor to impaired firing behavior. These findings authenticate impaired spike encoding as a candidate contributor to, in the case of motoneurons, deficits in mobility and fatigue. Aberrant firing also becomes a deficit worthy of testing in other CNS neurons as a potential contributor to perceptual and cognitive disorders induced by chemotherapy in patients.
Collapse
Affiliation(s)
- Stephen N Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Randal K Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Timothy C Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA.
| |
Collapse
|
11
|
Chowdhury RH, Glaser JI, Miller LE. Area 2 of primary somatosensory cortex encodes kinematics of the whole arm. eLife 2020; 9:e48198. [PMID: 31971510 PMCID: PMC6977965 DOI: 10.7554/elife.48198] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/15/2019] [Indexed: 12/23/2022] Open
Abstract
Proprioception, the sense of body position, movement, and associated forces, remains poorly understood, despite its critical role in movement. Most studies of area 2, a proprioceptive area of somatosensory cortex, have simply compared neurons' activities to the movement of the hand through space. Using motion tracking, we sought to elaborate this relationship by characterizing how area 2 activity relates to whole arm movements. We found that a whole-arm model, unlike classic models, successfully predicted how features of neural activity changed as monkeys reached to targets in two workspaces. However, when we then evaluated this whole-arm model across active and passive movements, we found that many neurons did not consistently represent the whole arm over both conditions. These results suggest that 1) neural activity in area 2 includes representation of the whole arm during reaching and 2) many of these neurons represented limb state differently during active and passive movements.
Collapse
Affiliation(s)
- Raeed H Chowdhury
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonUnited States
- Systems Neuroscience InstituteUniversity of PittsburghPittsburghUnited States
| | - Joshua I Glaser
- Interdepartmental Neuroscience ProgramNorthwestern UniversityChicagoUnited States
- Department of StatisticsColumbia UniversityNew YorkUnited States
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkUnited States
| | - Lee E Miller
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonUnited States
- Department of PhysiologyNorthwestern UniversityChicagoUnited States
- Department of Physical Medicine and RehabilitationNorthwestern UniversityChicagoUnited States
- Shirley Ryan AbilityLabChicagoUnited States
| |
Collapse
|
12
|
Blum KP, Nardelli P, Cope TC, Ting LH. Elastic tissue forces mask muscle fiber forces underlying muscle spindle Ia afferent firing rates in stretch of relaxed rat muscle. J Exp Biol 2019; 222:jeb196287. [PMID: 31324662 PMCID: PMC6703702 DOI: 10.1242/jeb.196287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/12/2019] [Indexed: 11/20/2022]
Abstract
Stretches of relaxed cat and rat muscle elicit similar history-dependent muscle spindle Ia firing rates that resemble history-dependent forces seen in single activated muscle fibers ( Nichols and Cope, 2004). Owing to thixotropy, whole musculotendon forces and muscle spindle firing rates are history dependent during stretch of relaxed cat muscle, where both muscle force and muscle spindle firing rates are elevated in the first stretch in a series of stretch-shorten cycles ( Blum et al., 2017). By contrast, rat musculotendon exhibits only mild thixotropy, such that the measured forces when stretched cannot explain history-dependent muscle spindle firing rates in the same way ( Haftel et al., 2004). We hypothesized that history-dependent muscle spindle firing rates elicited in stretch of relaxed rat muscle mirror history-dependent muscle fiber forces, which are masked at the level of whole musculotendon force by extracellular tissue force. We removed estimated extracellular tissue force contributions from recorded musculotendon force using an exponentially elastic tissue model. We then showed that the remaining estimated muscle fiber force resembles history-dependent muscle spindle firing rates recorded simultaneously. These forces also resemble history-dependent forces recorded in stretch of single activated fibers that are attributed to muscle cross-bridge mechanisms ( Campbell and Moss, 2000). Our results suggest that history-dependent muscle spindle firing in both rats and cats arise from history-dependent forces owing to thixotropy in muscle fibers.
Collapse
Affiliation(s)
- Kyle P Blum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Timothy C Cope
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA 30322, USA
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Andrews MAW. Stretch Receptor and Somatic Dysfunction: A Narrative Review. J Osteopath Med 2019; 119:511-519. [PMID: 31355890 DOI: 10.7556/jaoa.2019.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
From its founding by Andrew Taylor Still, MD, DO, through the work of many contributors, one of the cornerstones of osteopathic medicine has been its ability to aid health by promoting neuromuscular homeostasis. As part of the understanding of osteopathic medicine since the time of Still, the proper functioning of stretch receptor organs (SROs) of skeletal muscle have been recognized as having a central role in this homeostasis. In doing so, the complexities of these numerous and vital sensors are described, including recent findings regarding their structure, function, and the nature of their neural connections. In their homeostatic role, SROs conduct information centrally for integration in proprioceptive and autonomic reflexes. By virtue of their integral role in muscle reflexes, they are putatively involved in somatic dysfunction and segmental facilitation. In reviewing some well-established knowledge regarding the SRO and introducing more recent scientific findings, an attempt is made to offer insights on how this knowledge may be applied to better understand somatic dysfunction.
Collapse
|
14
|
Nichols TR. Distributed force feedback in the spinal cord and the regulation of limb mechanics. J Neurophysiol 2018; 119:1186-1200. [PMID: 29212914 PMCID: PMC5899305 DOI: 10.1152/jn.00216.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/03/2023] Open
Abstract
This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.
Collapse
Affiliation(s)
- T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
15
|
Vincent JA, Gabriel HM, Deardorff AS, Nardelli P, Fyffe REW, Burkholder T, Cope TC. Muscle proprioceptors in adult rat: mechanosensory signaling and synapse distribution in spinal cord. J Neurophysiol 2017; 118:2687-2701. [PMID: 28814636 PMCID: PMC5672542 DOI: 10.1152/jn.00497.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/23/2022] Open
Abstract
The characteristic signaling and intraspinal projections of muscle proprioceptors best described in the cat are often generalized across mammalian species. However, species-dependent adaptations within this system seem necessary to accommodate asymmetric scaling of length, velocity, and force information required by the physics of movement. In the present study we report mechanosensory responses and intraspinal destinations of three classes of muscle proprioceptors. Proprioceptors from triceps surae muscles in adult female Wistar rats anesthetized with isoflurane were physiologically classified as muscle spindle group Ia or II or as tendon organ group Ib afferents, studied for their firing responses to passive-muscle stretch, and in some cases labeled and imaged for axon projections and varicosities in spinal segments. Afferent projections and the laminar distributions of provisional synapses in rats closely resembled those found in the cat. Afferent signaling of muscle kinematics was also similar to reports in the cat, but rat Ib afferents fired robustly during passive-muscle stretch and Ia afferents displayed an exaggerated dynamic response, even after locomotor scaling was accounted for. These differences in mechanosensory signaling by muscle proprioceptors may represent adaptations for movement control in different animal species.NEW & NOTEWORTHY Muscle sensory neurons signal information necessary for controlling limb movements. The information encoded and transmitted by muscle proprioceptors to networks in the spinal cord is known in detail only for the cat, but differences in size and behavior of other species challenge the presumed generalizability. This report presents the first findings detailing specializations in mechanosensory signaling and intraspinal targets for functionally identified subtypes of muscle proprioceptors in the rat.
Collapse
Affiliation(s)
- Jacob A Vincent
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio
| | - Hanna M Gabriel
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio
| | - Adam S Deardorff
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio
| | - Paul Nardelli
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia; and
| | - Robert E W Fyffe
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio
| | - Thomas Burkholder
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia; and
| | - Timothy C Cope
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio;
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia; and
- School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
16
|
Matsubara S, Igasaki T, Iiyama J, Murayama N. Information processing of passive joint motion to spinal nervous system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1038-1041. [PMID: 29060051 DOI: 10.1109/embc.2017.8037004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this work was to investigate the information processing of passive joint motion of the rat hindlimb in the spinal nervous system in vivo. Action potentials using intracellular recordings and joint kinematics using video analysis were measured. The results show that the action potentials of the spinal nervous system-evoked passive joint motion were significantly changed. Therefore, physical therapy is one of the useful methods for the treatment of joint position and angular position sensitivity and spinal nervous system disorders.
Collapse
|
17
|
Blum KP, Lamotte D’Incamps B, Zytnicki D, Ting LH. Force encoding in muscle spindles during stretch of passive muscle. PLoS Comput Biol 2017; 13:e1005767. [PMID: 28945740 PMCID: PMC5634630 DOI: 10.1371/journal.pcbi.1005767] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/10/2017] [Accepted: 09/05/2017] [Indexed: 12/03/2022] Open
Abstract
Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position.
Collapse
Affiliation(s)
- Kyle P. Blum
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Boris Lamotte D’Incamps
- Center for Neurophysics, Physiology and Pathophysiology, Université Paris Descartes, Paris, France
| | - Daniel Zytnicki
- Center for Neurophysics, Physiology and Pathophysiology, Université Paris Descartes, Paris, France
| | - Lena H. Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Niu CM, Jalaleddini K, Sohn WJ, Rocamora J, Sanger TD, Valero-Cuevas FJ. Neuromorphic meets neuromechanics, part I: the methodology and implementation. J Neural Eng 2017; 14:025001. [PMID: 28084217 PMCID: PMC5540665 DOI: 10.1088/1741-2552/aa593c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE One goal of neuromorphic engineering is to create 'realistic' robotic systems that interact with the physical world by adopting neuromechanical principles from biology. Critical to this is the methodology to implement the spinal circuitry responsible for the behavior of afferented muscles. At its core, muscle afferentation is the closed-loop behavior arising from the interactions among populations of muscle spindle afferents, alpha and gamma motoneurons, and muscle fibers to enable useful behaviors. APPROACH We used programmable very- large-scale-circuit (VLSI) hardware to implement simple models of spiking neurons, skeletal muscles, muscle spindle proprioceptors, alpha-motoneuron recruitment, gamma motoneuron control of spindle sensitivity, and the monosynaptic circuitry connecting them. This multi-scale system of populations of spiking neurons emulated the physiological properties of a pair of antagonistic afferented mammalian muscles (each simulated by 1024 alpha- and gamma-motoneurones) acting on a joint via long tendons. MAIN RESULTS This integrated system was able to maintain a joint angle, and reproduced stretch reflex responses even when driving the nonlinear biomechanics of an actual cadaveric finger. Moreover, this system allowed us to explore numerous values and combinations of gamma-static and gamma-dynamic gains when driving a robotic finger, some of which replicated some human pathological conditions. Lastly, we explored the behavioral consequences of adopting three alternative models of isometric muscle force production. We found that the dynamic responses to rate-coded spike trains produce force ramps that can be very sensitive to tendon elasticity, especially at high force output. SIGNIFICANCE Our methodology produced, to our knowledge, the first example of an autonomous, multi-scale, neuromorphic, neuromechanical system capable of creating realistic reflex behavior in cadaveric fingers. This research platform allows us to explore the mechanisms behind healthy and pathological sensorimotor function in the physical world by building them from first principles, and it is a precursor to neuromorphic robotic systems.
Collapse
Affiliation(s)
- Chuanxin M Niu
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Day J, Bent LR, Birznieks I, Macefield VG, Cresswell AG. Muscle spindles in human tibialis anterior encode muscle fascicle length changes. J Neurophysiol 2017; 117:1489-1498. [PMID: 28077660 DOI: 10.1152/jn.00374.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 11/22/2022] Open
Abstract
Muscle spindles provide exquisitely sensitive proprioceptive information regarding joint position and movement. Through passively driven length changes in the muscle-tendon unit (MTU), muscle spindles detect joint rotations because of their in-parallel mechanical linkage to muscle fascicles. In human microneurography studies, muscle fascicles are assumed to follow the MTU and, as such, fascicle length is not measured in such studies. However, under certain mechanical conditions, compliant structures can act to decouple the fascicles, and, therefore, the spindles, from the MTU. Such decoupling may reduce the fidelity by which muscle spindles encode joint position and movement. The aim of the present study was to measure, for the first time, both the changes in firing of single muscle spindle afferents and changes in muscle fascicle length in vivo from the tibialis anterior muscle (TA) during passive rotations about the ankle. Unitary recordings were made from 15 muscle spindle afferents supplying TA via a microelectrode inserted into the common peroneal nerve. Ultrasonography was used to measure the length of an individual fascicle of TA. We saw a strong correlation between fascicle length and firing rate during passive ankle rotations of varying rates (0.1-0.5 Hz) and amplitudes (1-9°). In particular, we saw responses observed at relatively small changes in muscle length that highlight the sensitivity of the TA muscle to small length changes. This study is the first to measure spindle firing and fascicle dynamics in vivo and provides an experimental basis for further understanding the link between fascicle length, MTU length, and spindle firing patterns.NEW & NOTEWORTHY Muscle spindles are exquisitely sensitive to changes in muscle length, but recordings from human muscle spindle afferents are usually correlated with joint angle rather than muscle fascicle length. In this study, we monitored both muscle fascicle length and spindle firing from the human tibialis anterior muscle in vivo. Our findings are the first to measure these signals in vivo and provide an experimental basis for exploring this link further.
Collapse
Affiliation(s)
- James Day
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Leah R Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ingvars Birznieks
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.,School of Science and Health, Western Sydney University, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, Australia; and.,Neuroscience Research Australia, Sydney, Australia
| | - Andrew G Cresswell
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Queensland, Australia;
| |
Collapse
|
20
|
Romer SH, Deardorff AS, Fyffe REW. Activity-dependent redistribution of Kv2.1 ion channels on rat spinal motoneurons. Physiol Rep 2016; 4:e13039. [PMID: 27884958 PMCID: PMC5358001 DOI: 10.14814/phy2.13039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/24/2022] Open
Abstract
Homeostatic plasticity occurs through diverse cellular and synaptic mechanisms, and extensive investigations over the preceding decade have established Kv2.1 ion channels as key homeostatic regulatory elements in several central neuronal systems. As in these cellular systems, Kv2.1 channels in spinal motoneurons (MNs) localize within large somatic membrane clusters. However, their role in regulating motoneuron activity is not fully established in vivo. We have previously demonstrated marked Kv2.1 channel redistribution in MNs following in vitro glutamate application and in vivo peripheral nerve injury (Romer et al., 2014, Brain Research, 1547:1-15). Here, we extend these findings through the novel use of a fully intact, in vivo rat preparation to show that Kv2.1 ion channels in lumbar MNs rapidly and reversibly redistribute throughout the somatic membrane following 10 min of electrophysiological sensory and/or motor nerve stimulation. These data establish that Kv2.1 channels are remarkably responsive in vivo to electrically evoked and synaptically driven action potentials in MNs, and strongly implicate motoneuron Kv2.1 channels in the rapid homeostatic response to altered neuronal activity.
Collapse
Affiliation(s)
- Shannon H Romer
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Adam S Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Robert E W Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| |
Collapse
|
21
|
Vincent JA, Wieczerzak KB, Gabriel HM, Nardelli P, Rich MM, Cope TC. A novel path to chronic proprioceptive disability with oxaliplatin: Distortion of sensory encoding. Neurobiol Dis 2016; 95:54-65. [PMID: 27397106 DOI: 10.1016/j.nbd.2016.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/06/2016] [Accepted: 07/03/2016] [Indexed: 02/08/2023] Open
Abstract
Persistent neurotoxic side effects of oxaliplatin (OX) chemotherapy, including sensory ataxia, limit the efficacy of treatment and significantly diminish patient quality of life. The common explanation for neurotoxicity is neuropathy, however the degree of neuropathy varies greatly among patients and appears insufficient in some cases to fully account for disability. We recently identified an additional mechanism that might contribute to sensory ataxia following OX treatment. In the present study, we tested whether that mechanism, selective modification of sensory signaling by muscle proprioceptors might result in behavioral deficits in rats. OX was administered once per week for seven weeks (cumulative dose i.p. 70mg/kg) to adult female Wistar rats. Throughout and for three weeks following treatment, behavioral analysis was performed daily on OX and sham control rats. Compared to controls, OX rats demonstrated errors in placing their hind feet securely and/or correctly during a horizontal ladder rung task. These behavioral deficits occurred together with modification of proprioceptor signaling that eliminated sensory encoding of static muscle position while having little effect on encoding of dynamic changes in muscle length. Selective inability to sustain repetitive firing in response to static muscle stretch led us to hypothesize that OX treatment impairs specific ionic currents, possibly the persistent inward Na currents (NaPIC) that are known to support repetitive firing during static stimulation in several neuron types, including the class of large diameter dorsal root ganglion cells that includes muscle proprioceptors. We tested this hypothesis by determining whether the chronic effects of OX on the firing behavior of muscle proprioceptors in vivo were mimicked by acute injection of NaPIC antagonists. Both riluzole and phenytoin, each having multiple drug actions but having only antagonist action on NaPIC in common, reproduced selective modification of proprioceptor signaling observed in OX rats. Taken together, these findings lead us to propose that OX chemotherapy contributes to movement disability by modifying sensory encoding, possibly via a chronic neurotoxic effect on NaPIC in the sensory terminals of muscle proprioceptors.
Collapse
Affiliation(s)
- Jacob A Vincent
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States
| | - Krystyna B Wieczerzak
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States
| | - Hanna M Gabriel
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States
| | - Paul Nardelli
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, United States
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States
| | - Timothy C Cope
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, United States.
| |
Collapse
|
22
|
Smilde HA, Vincent JA, Baan GC, Nardelli P, Lodder JC, Mansvelder HD, Cope TC, Maas H. Changes in muscle spindle firing in response to length changes of neighboring muscles. J Neurophysiol 2016; 115:3146-55. [PMID: 27075540 DOI: 10.1152/jn.00937.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/05/2016] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles.
Collapse
Affiliation(s)
- Hiltsje A Smilde
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio
| | - Jake A Vincent
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio
| | - Guus C Baan
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul Nardelli
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; School of Applied Physiology and Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; and
| | - Johannes C Lodder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tim C Cope
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio; School of Applied Physiology and Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; and
| | - Huub Maas
- Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands;
| |
Collapse
|
23
|
Nichols TR, Bunderson NE, Lyle MA. Neural Regulation of Limb Mechanics: Insights from the Organization of Proprioceptive Circuits. NEUROMECHANICAL MODELING OF POSTURE AND LOCOMOTION 2016. [DOI: 10.1007/978-1-4939-3267-2_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Niu CM, Nandyala SK, Sanger TD. Emulated muscle spindle and spiking afferents validates VLSI neuromorphic hardware as a testbed for sensorimotor function and disease. Front Comput Neurosci 2014; 8:141. [PMID: 25538613 PMCID: PMC4255602 DOI: 10.3389/fncom.2014.00141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 10/17/2014] [Indexed: 11/13/2022] Open
Abstract
The lack of multi-scale empirical measurements (e.g., recording simultaneously from neurons, muscles, whole body, etc.) complicates understanding of sensorimotor function in humans. This is particularly true for the understanding of development during childhood, which requires evaluation of measurements over many years. We have developed a synthetic platform for emulating multi-scale activity of the vertebrate sensorimotor system. Our design benefits from Very Large Scale Integrated-circuit (VLSI) technology to provide considerable scalability and high-speed, as much as 365× faster than real-time. An essential component of our design is the proprioceptive sensor, or muscle spindle. Here we demonstrate an accurate and extremely fast emulation of a muscle spindle and its spiking afferents, which are computationally expensive but fundamental for reflex functions. We implemented a well-known rate-based model of the spindle (Mileusnic et al., 2006) and a simplified spiking sensory neuron model using the Izhikevich approximation to the Hodgkin–Huxley model. The resulting behavior of our afferent sensory system is qualitatively compatible with classic cat soleus recording (Crowe and Matthews, 1964b; Matthews, 1964, 1972). Our results suggest that this simplified structure of the spindle and afferent neuron is sufficient to produce physiologically-realistic behavior. The VLSI technology allows us to accelerate this behavior beyond 365× real-time. Our goal is to use this testbed for predicting years of disease progression with only a few days of emulation. This is the first hardware emulation of the spindle afferent system, and it may have application not only for emulation of human health and disease, but also for the construction of compliant neuromorphic robotic systems.
Collapse
Affiliation(s)
- Chuanxin M Niu
- Department of Rehabilitation, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Sirish K Nandyala
- Department of Biomedical Engineering, University of Southern California Los Angeles, CA, USA
| | - Terence D Sanger
- Department of Biomedical Engineering, University of Southern California Los Angeles, CA, USA ; Biokinesiology, University of Southern California Los Angeles, CA, USA ; Neurology, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
25
|
Finley JM, Dhaher YY, Perreault EJ. Acceleration dependence and task-specific modulation of short- and medium-latency reflexes in the ankle extensors. Physiol Rep 2013; 1:e00051. [PMID: 24303134 PMCID: PMC3835007 DOI: 10.1002/phy2.51] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/10/2013] [Accepted: 07/14/2013] [Indexed: 12/13/2022] Open
Abstract
Involuntary responses to muscle stretch are often composed of a short-latency reflex (SLR) and more variable responses at longer latencies such as the medium-latency (MLR) and long-latency stretch reflex (LLR). Although longer latency reflexes are enhanced in the upper limb during stabilization of external loads, it remains unknown if they have a similar role in the lower limb. This uncertainty results in part from the inconsistency with which longer latency reflexes have been observed in the lower limb. A review of the literature suggests that studies that only observe SLRs have used perturbations with large accelerations, possibly causing a synchronization of motoneuron refractory periods or an activation of force-dependent inhibition. We therefore hypothesized that the amplitude of longer latency reflexes would vary with perturbation acceleration. We further hypothesized that if longer latency reflexes were elicited, they would increase in amplitude during control of an unstable load, as has been observed in the upper limb. These hypotheses were tested at the ankle while subjects performed a torque or position control task. SLR and MLR reflex components were elicited by ankle flexion perturbations with a fixed peak velocity and variable acceleration. Both reflex components initially scaled with acceleration, however, while the SLR continued to increase at high accelerations, the MLR weakened. At accelerations that reliably elicited MLRs, both the SLR and MLR were reduced during control of the unstable load. These findings clarify the conditions required to elicit MLRs in the ankle extensors and provide additional evidence that rapid feedback pathways are downregulated when stability is compromised in the lower limb.
Collapse
Affiliation(s)
- James M Finley
- Department of Biomedical Engineering, Northwestern University Evanston, Illinois, USA ; Sensory Motor Performance Program, Rehabilitation Institute of Chicago Chicago, Illinois, USA
| | | | | |
Collapse
|
26
|
Deardorff AS, Romer SH, Deng Z, Bullinger KL, Nardelli P, Cope TC, Fyffe REW. Expression of postsynaptic Ca2+-activated K+ (SK) channels at C-bouton synapses in mammalian lumbar -motoneurons. J Physiol 2013; 591:875-97. [PMID: 23129791 PMCID: PMC3591704 DOI: 10.1113/jphysiol.2012.240879] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/31/2012] [Indexed: 01/27/2023] Open
Abstract
Small-conductance calcium-activated potassium (SK) channels mediate medium after-hyperpolarization (AHP) conductances in neurons throughout the central nervous system. However, the expression profile and subcellular localization of different SK channel isoforms in lumbar spinal α-motoneurons (α-MNs) is unknown. Using immunohistochemical labelling of rat, mouse and cat spinal cord, we reveal a differential and overlapping expression of SK2 and SK3 isoforms across specific types of α-MNs. In rodents, SK2 is expressed in all α-MNs, whereas SK3 is expressed preferentially in small-diameter α-MNs; in cats, SK3 is expressed in all α-MNs. Function-specific expression of SK3 was explored using post hoc immunostaining of electrophysiologically characterized rat α-MNs in vivo. These studies revealed strong relationships between SK3 expression and medium AHP properties. Motoneurons with SK3-immunoreactivity exhibit significantly longer AHP half-decay times (24.67 vs. 11.02 ms) and greater AHP amplitudes (3.27 vs. 1.56 mV) than MNs lacking SK3-immunoreactivity. We conclude that the differential expression of SK isoforms in rat and mouse spinal cord may contribute to the range of medium AHP durations across specific MN functional types and may be a molecular factor distinguishing between slow- and fast-type α-MNs in rodents. Furthermore, our results show that SK2- and SK3-immunoreactivity is enriched in distinct postsynaptic domains that contain Kv2.1 channel clusters associated with cholinergic C-boutons on the soma and proximal dendrites of α-MNs. We suggest that this remarkably specific subcellular membrane localization of SK channels is likely to represent the basis for a cholinergic mechanism for effective regulation of channel function and cell excitability.
Collapse
Affiliation(s)
- Adam S Deardorff
- Department of Neuroscience, Cell Biology & Physiology, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Nishikawa KC, Monroy JA, Powers KL, Gilmore LA, Uyeno TA, Lindstedt SL. A Molecular Basis for Intrinsic Muscle Properties: Implications for Motor Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 782:111-25. [DOI: 10.1007/978-1-4614-5465-6_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Safavynia SA, Ting LH. Sensorimotor feedback based on task-relevant error robustly predicts temporal recruitment and multidirectional tuning of muscle synergies. J Neurophysiol 2012; 109:31-45. [PMID: 23100133 DOI: 10.1152/jn.00684.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We hypothesized that motor outputs are hierarchically organized such that descending temporal commands based on desired task-level goals flexibly recruit muscle synergies that specify the spatial patterns of muscle coordination that allow the task to be achieved. According to this hypothesis, it should be possible to predict the patterns of muscle synergy recruitment based on task-level goals. We demonstrated that the temporal recruitment of muscle synergies during standing balance control was robustly predicted across multiple perturbation directions based on delayed sensorimotor feedback of center of mass (CoM) kinematics (displacement, velocity, and acceleration). The modulation of a muscle synergy's recruitment amplitude across perturbation directions was predicted by the projection of CoM kinematic variables along the preferred tuning direction(s), generating cosine tuning functions. Moreover, these findings were robust in biphasic perturbations that initially imposed a perturbation in the sagittal plane and then, before sagittal balance was recovered, perturbed the body in multiple directions. Therefore, biphasic perturbations caused the initial state of the CoM to differ from the desired state, and muscle synergy recruitment was predicted based on the error between the actual and desired upright state of the CoM. These results demonstrate that that temporal motor commands to muscle synergies reflect task-relevant error as opposed to sensory inflow. The proposed hierarchical framework may represent a common principle of motor control across motor tasks and levels of the nervous system, allowing motor intentions to be transformed into motor actions.
Collapse
Affiliation(s)
- Seyed A Safavynia
- Neuroscience Program, Emory University, Atlanta, Georgia 30332-0535, USA
| | | |
Collapse
|
29
|
Wilkinson KA, Kloefkorn HE, Hochman S. Characterization of muscle spindle afferents in the adult mouse using an in vitro muscle-nerve preparation. PLoS One 2012; 7:e39140. [PMID: 22745708 PMCID: PMC3380032 DOI: 10.1371/journal.pone.0039140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
We utilized an in vitro adult mouse extensor digitorum longus (EDL) nerve-attached preparation to characterize the responses of muscle spindle afferents to ramp-and-hold stretch and sinusoidal vibratory stimuli. Responses were measured at both room (24°C) and muscle body temperature (34°C). Muscle spindle afferent static firing frequencies increased linearly in response to increasing stretch lengths to accurately encode the magnitude of muscle stretch (tested at 2.5%, 5% and 7.5% of resting length [Lo]). Peak firing frequency increased with ramp speeds (20% Lo/sec, 40% Lo/sec, and 60% Lo/sec). As a population, muscle spindle afferents could entrain 1:1 to sinusoidal vibrations throughout the frequency (10-100 Hz) and amplitude ranges tested (5-100 µm). Most units preferentially entrained to vibration frequencies close to their baseline steady-state firing frequencies. Cooling the muscle to 24°C decreased baseline firing frequency and units correspondingly entrained to slower frequency vibrations. The ramp component of stretch generated dynamic firing responses. These responses and related measures of dynamic sensitivity were not able to categorize units as primary (group Ia) or secondary (group II) even when tested with more extreme length changes (10% Lo). We conclude that the population of spindle afferents combines to encode stretch in a smoothly graded manner over the physiological range of lengths and speeds tested. Overall, spindle afferent response properties were comparable to those seen in other species, supporting subsequent use of the mouse genetic model system for studies on spindle function and dysfunction in an isolated muscle-nerve preparation.
Collapse
Affiliation(s)
- Katherine A Wilkinson
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, United States of America.
| | | | | |
Collapse
|
30
|
Honeycutt CF, Nardelli P, Cope TC, Nichols TR. Muscle spindle responses to horizontal support surface perturbation in the anesthetized cat: insights into the role of autogenic feedback in whole body postural control. J Neurophysiol 2012; 108:1253-61. [PMID: 22673334 DOI: 10.1152/jn.00929.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intact cats and humans respond to support surface perturbations with broadly tuned, directionally sensitive muscle activation. These muscle responses are further sensitive to initial stance widths (distance between feet) and perturbation velocity. The sensory origins driving these responses are not known, and conflicting hypotheses are prevalent in the literature. We hypothesize that the direction-, stance-width-, and velocity-sensitive muscle response during support surface perturbations is driven largely by rapid autogenic proprioceptive pathways. The primary objective of this study was to obtain direct evidence for our hypothesis by establishing that muscle spindle receptors in the intact limb can provide appropriate information to drive the muscle response to whole body postural perturbations. Our second objective was to determine if spindle recordings from the intact limb generate the heightened sensitivity to small perturbations that has been reported in isolated muscle experiments. Maintenance of this heightened sensitivity would indicate that muscle spindles are highly proficient at detecting even small disturbances, suggesting they can provide efficient feedback about changing postural conditions. We performed intraaxonal recordings from muscle spindles in anesthetized cats during horizontal, hindlimb perturbations. We indeed found that muscle spindle afferents in the intact limb generate broadly tuned but directionally sensitive activation patterns. These afferents were also sensitive to initial stance widths and perturbation velocities. Finally, we found that afferents in the intact limb have heightened sensitivity to small perturbations. We conclude that muscle spindle afferents provide an array of important information about biomechanics and perturbation characteristics highlighting their potential importance in generating appropriate muscular response during a postural disturbance.
Collapse
Affiliation(s)
- Claire F Honeycutt
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
31
|
Nakanishi ST, Whelan PJ. A decerebrate adult mouse model for examining the sensorimotor control of locomotion. J Neurophysiol 2011; 107:500-15. [PMID: 21994265 DOI: 10.1152/jn.00699.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As wild-type and genetically modified mice are progressively becoming the predominant models for studying locomotor physiology, the technical ability to record sensory and motor components from adult mice, in vivo, are expected to contribute to a better understanding of sensorimotor spinal cord networks. Here, specific technical and surgical details are presented on how to produce an adult decerebrate mouse preparation that can reliably produce sustained bouts of stepping, in vivo, in the absence of anesthetic drugs. Data are presented demonstrating the ability of this preparation to produce stepping during treadmill locomotion, adaptability in its responses to changes in the treadmill speed, and left-right alternation. Furthermore, intracellular recordings from motoneurons and interneurons in the spinal cord are presented from preparations where muscle activity was blocked. Intraaxonal recordings are also presented demonstrating that individual afferents can be recorded using this preparation. These data demonstrate that the adult decerebrate mouse is a tractable preparation for the study of sensorimotor systems.
Collapse
Affiliation(s)
- Stan T Nakanishi
- Hotchkiss Brain Institute, Univ. of Calgary, Calgary, Alberta, Canada T2N4N1
| | | |
Collapse
|
32
|
Alvarez FJ, Titus-Mitchell HE, Bullinger KL, Kraszpulski M, Nardelli P, Cope TC. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons. J Neurophysiol 2011; 106:2450-70. [PMID: 21832035 DOI: 10.1152/jn.01095.2010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75-95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. II. Loss of functional connectivity with motoneurons. J Neurophysiol 2011; 106:2471-85. [PMID: 21832030 DOI: 10.1152/jn.01097.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regeneration of a cut muscle nerve fails to restore the stretch reflex, and the companion paper to this article [Alvarez FJ, Titus-Mitchell HE, Bullinger KL, Kraszpulski M, Nardelli P, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01095.2010] suggests an important central contribution from substantial and persistent disassembly of synapses between regenerated primary afferents and motoneurons. In the present study we tested for physiological correlates of synaptic disruption. Anesthetized adult rats were studied 6 mo or more after a muscle nerve was severed and surgically rejoined. We recorded action potentials (spikes) from individual muscle afferents classified as IA like (*IA) by several criteria and tested for their capacity to produce excitatory postsynaptic potentials (EPSPs) in homonymous motoneurons, using spike-triggered averaging (STA). Nearly every paired recording from a *IA afferent and homonymous motoneuron (93%) produced a STA EPSP in normal rats, but that percentage was only 17% in rats with regenerated nerves. In addition, the number of motoneurons that produced aggregate excitatory stretch synaptic potentials (eSSPs) in response to stretch of the reinnervated muscle was reduced from 100% normally to 60% after nerve regeneration. The decline in functional connectivity was not attributable to synaptic depression, which returned to its normally low level after regeneration. From these findings and those in the companion paper, we put forward a model in which synaptic excitation of motoneurons by muscle stretch is reduced not only by misguided axon regeneration that reconnects afferents to the wrong receptor type but also by retraction of synapses with motoneurons by spindle afferents that successfully reconnect with spindle receptors in the periphery.
Collapse
Affiliation(s)
- Katie L Bullinger
- Dept. of Neuroscience, Cell Biology, and Physiology, Wright State Univ. School of Medicine, 3640 Colonel Glenn Hwy., Dayton OH 45435, USA
| | | | | | | | | |
Collapse
|
34
|
Bullinger KL, Nardelli P, Wang Q, Rich MM, Cope TC. Oxaliplatin neurotoxicity of sensory transduction in rat proprioceptors. J Neurophysiol 2011; 106:704-9. [PMID: 21593386 DOI: 10.1152/jn.00083.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurotoxic effects of oxaliplatin chemotherapy, including proprioceptive impairments, are debilitating and dose limiting. Here, we sought to determine whether oxaliplatin interrupts normal proprioceptive feedback by impairing sensory transduction of muscle length and force by neurons that are not damaged by dying-back neuropathy. Oxaliplatin was administered over 4 wk to rats in doses that produced systemic changes, e.g., decreased platelets and stunted weight gain, but no significant abnormality in the terminal ends of primary muscle spindle sensory neurons. The absence of neuropathy enabled the determination of whether oxaliplatin caused functional deficits in sensory encoding without the confounding issue of axon death. Rats were anesthetized, and action potentials encoding muscle stretch and contraction were recorded intra-axonally from dorsal roots. In striking contrast with normal proprioceptors, those from oxaliplatin-treated rats typically failed to sustain firing during static muscle stretch. The ability of spindle afferents to sustain and centrally conduct trains of action potentials in response to rapidly repeated transient stimuli, i.e., vibration, demonstrated functional competence of the parent axons. These data provide the first evidence that oxaliplatin causes persistent and selective deficits in sensory transduction that are not due to axon degeneration. Our findings raise the possibility that even those axons that do not degenerate after oxaliplatin treatment may have functional deficits that worsen outcome.
Collapse
Affiliation(s)
- Katie L Bullinger
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
35
|
Garrison MK, Yates CC, Reese NB, Skinner RD, Garcia-Rill E. Wind-up of stretch reflexes as a measure of spasticity in chronic spinalized rats: The effects of passive exercise and modafinil. Exp Neurol 2011; 227:104-9. [PMID: 20932828 PMCID: PMC3019091 DOI: 10.1016/j.expneurol.2010.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/18/2010] [Accepted: 09/23/2010] [Indexed: 01/29/2023]
Abstract
Spasticity is a common disorder following spinal cord injury that can impair function and quality of life. While a number of mechanisms are thought to play a role in spasticity, the role of motoneuron persistent inward currents (PICs) is emerging as pivotal. The presence of PICs can be evidenced by temporal summation or wind-up of reflex responses to brief afferent inputs. In this study, a combined neurophysiological and novel biomechanical approach was used to assess the effects of passive exercise and modafinil administration on hyper-reflexia and spasticity following complete T-10 transection in the rat. Animals were divided into 3 groups (n=8) and provided daily passive cycling exercise, oral modafinil, or no intervention. After 6weeks, animals were tested for wind-up of the stretch reflex (SR) during repeated dorsiflexion stretches of the ankle. H-reflexes were tested in a subset of animals. Both torque and gastrocnemius electromyography showed evidence of SR wind-up in the transection only group that was significantly different from both treatment groups (p<0.05). H-reflex frequency dependent depression was also restored to normal levels in both treatment groups. The results provide support for the use of passive cycling exercise and modafinil in the treatment of spasticity and provide insight into the possible contribution of PICs.
Collapse
Affiliation(s)
- M Kevin Garrison
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72035, USA.
| | | | | | | | | |
Collapse
|
36
|
Welch TDJ, Ting LH. A feedback model explains the differential scaling of human postural responses to perturbation acceleration and velocity. J Neurophysiol 2009; 101:3294-309. [PMID: 19357335 PMCID: PMC2694108 DOI: 10.1152/jn.90775.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 04/01/2009] [Indexed: 11/22/2022] Open
Abstract
Although the neural basis of balance control remains unknown, recent studies suggest that a feedback law on center-of-mass (CoM) kinematics determines the temporal patterning of muscle activity during human postural responses. We hypothesized that the same feedback law would also explain variations in muscle activity to support-surface translation as perturbation characteristics vary. Subject CoM motion was experimentally modulated using 34 different anterior-posterior support-surface translations of varying peak acceleration and velocity but the same total displacement. Electromyographic (EMG) recordings from several muscles of the lower limbs and trunk were compared to predicted EMG patterns from an inverted pendulum model under delayed feedback control. In both recorded and predicted EMG patterns, the initial burst of muscle activity scaled linearly with peak acceleration, whereas the tonic "plateau" region scaled with peak velocity. The relatively invariant duration of the initial burst was modeled by incorporating a transient, time-limited encoding of CoM acceleration inspired by muscle spindle primary afferent dynamic responses. The entire time course of recorded and predicted muscle activity compared favorably across all conditions, suggesting that the initial burst of muscle activity is not generated by feedforward neural mechanisms. Perturbation conditions were presented randomly and subjects maintained relatively constant feedback gains across all conditions. In contrast, an optimal feedback solution based on a trade-off between CoM stabilization and energy expenditure predicted that feedback gains should change with perturbation characteristics. These results suggest that an invariant feedback law was used to generate the entire time course of muscle activity across a variety of postural disturbances.
Collapse
Affiliation(s)
- Torrence D J Welch
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332-0535, USA
| | | |
Collapse
|
37
|
The implications of force feedback for the lambda model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 629:663-79. [PMID: 19227527 DOI: 10.1007/978-0-387-77064-2_36] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
It is argued here that length and force feedback play important but distinct roles in motor coordination. Length feedback compensates for several nonlinear properties of muscle and therefore simplifies its behavior, but in addition promotes the nonlinear relationship between force and stiffness that is essential to the mechanism for modulating joint stiffness. Excitatory force feedback is also primarily autogenic. Under conditions of level treadmill stepping in cat walking, positive force feedback is restricted in the distal hindlimb to a few and perhaps only one ankle extensor, the gastrocnemius muscle group. Based on the anatomy of this group, positive force feedback provides a stiff linkage that reinforces proportional coordination between ankle and knee joints. In terms of the lambda model, excitatory force feedback can reinforce muscular force generation and stiffness, but should have no significant effect on activation threshold. Inhibitory force feedback projects mainly to muscles that span different joints and axes of rotation than the parent muscle. This heterogenic force feedback is thought to promote interjoint coordination and thought to influence stiffness of the joints and limbs. During locomotion, the inhibitory influences appear to be focused on the distal musculature. Since the inhibitory force feedback is heterogenic, it also influences the threshold for activation of relevant musculature. Threshold is therefore not entirely a control variable and independent of feedback. It is proposed that the actuators for movement consist of systems of muscles or motor units that are linked by feedback and that receive control signals from elsewhere in the nervous system.
Collapse
|
38
|
Ross KT, Nichols TR. Heterogenic feedback between hindlimb extensors in the spontaneously locomoting premammillary cat. J Neurophysiol 2008; 101:184-97. [PMID: 19005003 DOI: 10.1152/jn.90338.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrophysiological studies in anesthetized animals have revealed that pathways carrying force information from Golgi tendon organs in antigravity muscles mediate widespread inhibition among other antigravity muscles in the feline hindlimb. More recent evidence in paralyzed or nonparalyzed decerebrate cats has shown that some inhibitory pathways are suppressed and separate excitatory pathways from Golgi tendon organ afferents are opened on the transition from steady force production to locomotor activity. To obtain additional insight into the functions of these pathways during locomotion, we investigated the distribution of force-dependent inhibition and excitation during spontaneous locomotion and during constant force exertion in the premammillary decerebrate cat. We used four servo-controlled stretching devices to apply controlled stretches in various combinations to the gastrocnemius muscles (G), plantaris muscle (PLAN), flexor hallucis longus muscle (FHL), and quadriceps muscles (QUADS) during treadmill stepping and the crossed-extension reflex (XER). We recorded the force responses from the same muscles and were therefore able to evaluate autogenic (intramuscular) and heterogenic (intermuscular) reflexes among this set of muscles. In previous studies using the intercollicular decerebrate cat, heterogenic inhibition among QUADS, G, FHL, and PLAN was bidirectional. During treadmill stepping, heterogenic feedback from QUADS onto G and G onto PLAN and FHL remained inhibitory and was force-dependent. However, heterogenic inhibition from PLAN and FHL onto G, and from G onto QUADS, was weaker than during the XER. We propose that pathways mediating heterogenic inhibition may remain inhibitory under some forms of locomotion on a level surface but that the strengths of these pathways change to result in a proximal to distal gradient of inhibition. The potential contributions of heterogenic inhibition to interjoint coordination and limb stability are discussed.
Collapse
Affiliation(s)
- Kyla T Ross
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr., Atlanta, GA 30332, USA.
| | | |
Collapse
|
39
|
van Soest AJK, Rozendaal LA. The inverted pendulum model of bipedal standing cannot be stabilized through direct feedback of force and contractile element length and velocity at realistic series elastic element stiffness. BIOLOGICAL CYBERNETICS 2008; 99:29-41. [PMID: 18584202 DOI: 10.1007/s00422-008-0240-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 04/09/2008] [Indexed: 05/26/2023]
Abstract
Control of bipedal standing is typically analyzed in the context of a single-segment inverted pendulum model. The stiffness K (SE) of the series elastic element that transmits the force generated by the contractile elements of the ankle plantarflexors to the skeletal system has been reported to be smaller in magnitude than the destabilizing gravitational stiffness K ( g ). In this study, we assess, in case K (SE) + K ( g ) < 0, if bipedal standing can be locally stable under direct feedback of contractile element length, contractile element velocity (both sensed by muscle spindles) and muscle force (sensed by Golgi tendon organs) to alpha-motoneuron activity. A theoretical analysis reveals that even though positive feedback of force may increase the stiffness of the muscle-tendon complex to values well over the destabilizing gravitational stiffness, dynamic instability makes it impossible to obtain locally stable standing under the conditions assumed.
Collapse
Affiliation(s)
- A J Knoek van Soest
- Faculty of Human Movement Sciences and Research Institute MOVE, VU University, Van der Boechorststraat 9, Amsterdam, The Netherlands.
| | | |
Collapse
|
40
|
Enhanced transmission at a spinal synapse triggered in vivo by an injury signal independent of altered synaptic activity. J Neurosci 2007; 27:12851-9. [PMID: 18032657 DOI: 10.1523/jneurosci.1997-07.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peripheral nerve crush initiates a robust increase in transmission strength at spinal synapses made by axotomized group IA primary sensory neurons. To study the injury signal that initiates synaptic enhancement in vivo, we designed experiments to manipulate the enlargement of EPSPs produced in spinal motoneurons (MNs) by IA afferents 3 d after nerve crush in anesthetized adult rats. If nerve crush initiates IA EPSP enlargement as proposed by reducing impulse-evoked transmission in crushed IA afferents, then restoring synaptic activity should eliminate enlargement. Daily electrical stimulation of the nerve proximal to the crush site did, in fact, eliminate enlargement but was, surprisingly, just as effective when the action potentials evoked in crushed afferents were prevented from propagating into the spinal cord. Consistent with its independence from altered synaptic activity, we found that IA EPSP enlargement was also eliminated by colchicine blockade of axon transport in the crushed nerve. Together with the observation that colchicine treatment of intact nerves had no short-term effect on IA EPSPs, we conclude that enhancement of IA-MN transmission is initiated by some yet to be identified positive injury signal generated independent of altered synaptic activity. The results establish a new set of criteria that constrain candidate signaling molecules in vivo to ones that develop quickly at the peripheral injury site, move centrally by axon transport, and initiate enhanced transmission at the central synapses of crushed primary sensory afferents through a mechanism that can be modulated by action potential activity restricted to the axons of crushed afferents.
Collapse
|
41
|
Mileusnic MP, Brown IE, Lan N, Loeb GE. Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. J Neurophysiol 2006; 96:1772-88. [PMID: 16672301 DOI: 10.1152/jn.00868.2005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We constructed a physiologically realistic model of a lower-limb, mammalian muscle spindle composed of mathematical elements closely related to the anatomical components found in the biological spindle. The spindle model incorporates three nonlinear intrafusal fiber models (bag(1), bag(2), and chain) that contribute variously to action potential generation of primary and secondary afferents. A single set of model parameters was optimized on a number of data sets collected from feline soleus muscle, accounting accurately for afferent activity during a variety of ramp, triangular, and sinusoidal stretches. We also incorporated the different temporal properties of fusimotor activation as observed in the twitchlike chain fibers versus the toniclike bag fibers. The model captures the spindle's behavior both in the absence of fusimotor stimulation and during activation of static or dynamic fusimotor efferents. In the case of simultaneous static and dynamic fusimotor efferent stimulation, we demonstrated the importance of including the experimentally observed effect of partial occlusion. The model was validated against data that originated from the cat's medial gastrocnemius muscle and were different from the data used for the parameter determination purposes. The validation record included recently published experiments in which fusimotor efferent and spindle afferent activities were recorded simultaneously during decerebrate locomotion in the cat. This model will be useful in understanding the role of the muscle spindle and its fusimotor control during both natural and pathological motor behavior.
Collapse
Affiliation(s)
- Milana P Mileusnic
- Department of Biomedical Engineering, Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA 90089-1112, USA.
| | | | | | | |
Collapse
|
42
|
Hornby TG, Kahn JH, Wu M, Schmit BD. Temporal facilitation of spastic stretch reflexes following human spinal cord injury. J Physiol 2006; 571:593-604. [PMID: 16540600 PMCID: PMC1805801 DOI: 10.1113/jphysiol.2005.102046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent evidence suggests that alterations in ionic conductances in spinal motoneurones, specifically the manifestation of persistent inward currents, may be partly responsible for the appearance of hyperexcitable reflexes following spinal cord injury (SCI). We hypothesized that such alterations would manifest as temporal facilitation of stretch reflexes in human SCI. Controlled, triangular wave, ankle joint rotations applied at variable velocities (30-120 deg s(-1)) and intervals between stretches (0.25-5.0 s) were performed on 14 SCI subjects with velocity-dependent, hyperexcitable plantarflexors. Repeated stretch elicited significant increases in plantarflexion torques and electromyographic (EMG) activity from the soleus (SOL) and medial gastrocnemius (MG). At higher velocities (> or = 90 deg s(-1)), reflex torques declined initially, but subsequently increased to levels exceeding the initial response, while mean EMG responses increased throughout the joint perturbations. At lower velocities (< or = 60 deg s(-1)), both joint torques and EMGs increased gradually. Throughout a range of angular velocities, reflex responses increased significantly only at intervals < or = 1 s between stretches and following at least four rotations. Ramp-and-hold perturbations used to elicit tonic stretch reflexes revealed significantly prolonged EMG responses following one or two triangular stretches, as compared to single ramp-and-hold excursions. Post hoc analyses revealed reduced reflex facilitation in subjects using baclofen to control spastic behaviours. Evidence of stretch reflex facilitation post-SCI may reflect changes in underlying neuronal properties and provide insight into the mechanisms underlying spastic reflexes.
Collapse
Affiliation(s)
- T George Hornby
- Department of Physical Therapy, University of Illinois at Chicago, 1919 W. Taylor St 4th floor, M/C 898, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
43
|
Haftel VK, Bichler EK, Wang QB, Prather JF, Pinter MJ, Cope TC. Central suppression of regenerated proprioceptive afferents. J Neurosci 2006; 25:4733-42. [PMID: 15888649 PMCID: PMC6724774 DOI: 10.1523/jneurosci.4895-04.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long after a cut peripheral nerve reinnervates muscle and restores force production in adult cats, the muscle does not respond reflexively to stretch. Motivated by the likelihood that stretch areflexia is related to problems with sensing and controlling limb position after peripheral neuropathies, we sought to determine the underlying mechanism. Electrophysiological and morphological measurements were made in anesthetized rats having one of the nerves to the triceps surae muscles either untreated or cut and immediately rejoined surgically many months earlier. First, it was established that reinnervated muscles failed to generate stretch reflexes, extending observations of areflexia to a second species. Next, multiple elements in the sensorimotor circuit of the stretch reflex were examined in both the PNS and CNS. Encoding of muscle stretch by regenerated proprioceptive afferents was remarkably similar to normal, although we observed some expected abnormalities, e.g., increased length threshold. However, the robust stretch-evoked sensory response that arrived concurrently at the CNS in multiple proprioceptive afferents produced synaptic responses that were either smaller than normal or undetectable. Muscle stretch failed to evoke detectable synaptic responses in 13 of 22 motoneurons, although electrical stimulation generated monosynaptic excitatory postsynaptic potentials that were indistinguishable from normal. The ineffectiveness of muscle stretch was not attributable therefore to dysfunction at synapses made between regenerated Ia afferents and motoneurons. Among multiple candidate mechanisms, we suggest that centrally controlled neural circuits may actively suppress the sensory information encoded by regenerated proprioceptive afferents to prevent recovery of the stretch reflex.
Collapse
Affiliation(s)
- Valerie K Haftel
- Department of Physiology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
44
|
Durbaba R, Taylor A, Ellaway PH, Rawlinson S. Classification of longissimus lumborum muscle spindle afferents in the anaesthetized cat. J Physiol 2006; 571:489-98. [PMID: 16410280 PMCID: PMC1796785 DOI: 10.1113/jphysiol.2005.102731] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 01/07/2006] [Indexed: 11/08/2022] Open
Abstract
Recordings have been made from 127 single muscle spindle afferents from the longissimus lumborum muscles of anaesthetized cats. They have been characterized by their responses to passive muscle stretch and the effects of succinylcholine (SCh) and by their sensitivity to vibration. The use of SCh permitted the assessment for each afferent of the influence of bag1 (b1) and bag2 (b2) intrafusal muscle fibres. From this, on the assumption that all afferents were affected by chain (c) fibres, they were classified in four groups: b1b2c (41.9%), b2c (51.4%), b1c (1.3%) and c (5.4%). All the afferents with b1 influence were able to respond one to one to vibration at frequencies above 100 Hz and were considered to belong to primary endings. On the basis of the vibration test, 64% of the b2c type afferents appeared to be primaries and 36% secondaries. Of the units classified as primaries, 41% were designated as b2c and would not therefore be able to respond to dynamic fusimotor activity. The significance of this relatively high proportion of b2c-type spindle primary afferents is discussed in relation to the specialized postural function of the back muscles.
Collapse
Affiliation(s)
- R Durbaba
- Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, Charing Cross Campus, St Dunstan's Road, London W6 8RP, UK
| | | | | | | |
Collapse
|
45
|
Rosant C, Pérot C. An index of spindle efficacy obtained by measuring electroneurographic activity and passive tension in the rat soleus muscle. J Neurosci Methods 2006; 150:272-8. [PMID: 16122808 DOI: 10.1016/j.jneumeth.2005.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 06/27/2005] [Accepted: 07/10/2005] [Indexed: 11/27/2022]
Abstract
While muscle spindle afferent discharges are known to change with altered muscle use, the way in which the changes in spindle discharge are affected by modifications to the elastic properties of the muscle-tendon unit remains to analyze. This paper describes a methodology to define, in the rat, a spindle efficacy index. This index relates the spindle afferent discharges recorded from electroneurograms (ENG) due to muscle stretch to the passive elastic properties of the muscle-tendon unit quantified during the stretch imposed for the ENGs recordings. The stretches were applied to the rat soleus muscle after the Achilles tendon was severed. The spindle afferent discharges were characterized from the root mean square (RMS) values of electroneurograms (ENGs) recorded from the soleus nerve. The first step of the study was to validate the definition of dynamic and static indices (DI and SI) of spindle discharges from RMS-ENG as classically done when isolated afferents are studied. The slopes of the DI-stretch velocity or SI-stretch amplitude relationships gave the indices of spindle sensitivity under dynamic and static conditions, respectively. Incremental stiffness was calculated to describe the passive elastic properties during the dynamic and static phases of ramp and hold stretches applied at different amplitudes and velocities. The spindle efficacy index (SEI) is the ratio between the indices of spindle sensitivity and incremental stiffness values. Both spindle discharges and incremental stiffness increased with stretch amplitude under dynamic and static conditions. The corresponding SEI values were constant whatever the stretch amplitude. This result validates the relationship between spindle discharges and passive incremental stiffness. This method can be proposed to study, in the rat, the spindle function when the muscles are suspected to present changes in their neuromechanical properties.
Collapse
Affiliation(s)
- Cédric Rosant
- Laboratoire de Biomécanique et Génie Biomédical, UMR-CNRS 6600, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne, France
| | | |
Collapse
|
46
|
Lewis GN, Perreault EJ, MacKinnon CD. The influence of perturbation duration and velocity on the long-latency response to stretch in the biceps muscle. Exp Brain Res 2005; 163:361-9. [PMID: 15654583 DOI: 10.1007/s00221-004-2182-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 10/18/2004] [Indexed: 10/25/2022]
Abstract
Different neural pathways are proposed to mediate the long-latency stretch reflex response (M2) in muscles spanning distal and proximal joints of the upper limb. The M2 at the wrist joint is present only if the duration of the perturbation exceeds a critical time. Lee and Tatton put forward a converging input hypothesis, requiring an interaction of excitatory volleys at the spinal cord, to account for this feature. The goal of the present study was to examine the influence of the duration of perturbation on M2 responses elicited in a muscle spanning the elbow joint. Reflex responses were induced in the biceps brachii muscle by applying ramp-and-hold position displacements to the elbow. It was found that the M2 was strongly dependent on the duration of the perturbation. On average, responses were not elicited following perturbations of less than 35+/-5 ms. Using a novel double-movement paradigm, we were unable to provide support for the converging input hypothesis. The effect of the duration of perturbation on the M2 may account for the conflicting characteristics of the M2 that have been provided by previous studies applying mechanical or electrical perturbations of varying time durations.
Collapse
Affiliation(s)
- Gwyn N Lewis
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, 345 E Superior St, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
47
|
Nichols TR, Cope TC. Cross-bridge mechanisms underlying the history-dependent properties of muscle spindles and stretch reflexes. Can J Physiol Pharmacol 2004; 82:569-76. [PMID: 15523514 DOI: 10.1139/y04-074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of prior movement on the force responses of skeletal muscle are compared with the effects of movement history on the changes in firing rate of muscle spindle receptors. Prior release results in the linearization of the mechanical properties of skeletal muscles, which can be provisionally explained by cross-bridge models of muscular contraction. The history-dependence of responses of muscle spindle receptors in unanesthetized decerebrate preparations appears to result from the kinetics of cycling and noncycling cross-bridges. The results of this comparison indicate that the integration of mechanical properties of muscle and spindle receptor promotes stiffness regulation.Key words: predictive control, muscular stiffness, muscle receptors, reflex compensation, cross-bridge cycling, nonlinear mechanical properties, feline motor control.
Collapse
Affiliation(s)
- T Richard Nichols
- Department of Physiology, Emory University, 615 Michael Street, Atlanta, GA 30322, USA.
| | | |
Collapse
|