1
|
Siwiec M, Bobula B, Kielbinski M, Multan N, Hess G, Tokarski K. Activation of 5-HT 7 receptors in the mouse dentate gyrus does not affect theta-burst-induced plasticity at the perforant path synapse. Pharmacol Rep 2024:10.1007/s43440-024-00674-6. [PMID: 39487932 DOI: 10.1007/s43440-024-00674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND The study examined the effects of 5-HT7 receptor activation on GABAergic transmission within the dentate gyrus and plasticity at the glutamatergic perforant path input. METHODS Immunofluorescence imaging was performed using transverse hippocampal slices from transgenic mice expressing green fluorescent protein (GFP) under the Htr7 promoter. This was followed by whole-cell patch clamp electrophysiological recordings assessing the effects of pharmacologically activating 5-HT7 receptors on spontaneous inhibitory postsynaptic currents recorded from dentate granule cells and hilar mossy cells-two glutamatergic neuron types present in the dentate gyrus. Extracellular recordings of field excitatory postsynaptic potentials were then performed to assess whether 5-HT7 receptor activation influenced theta-burst stimulation-evoked plasticity of the perforant path synaptic input. RESULTS It was found that parvalbumin and somatostatin interneurons in the dentate gyrus expressed GFP, which suggests they express 5-HT7 receptors. However, activation of 5-HT7 receptors had no effect on GABAergic transmission targeting mossy cells or granule cells. There was also no effect of 5-HT7 receptor activation on perforant path plasticity either with intact or blocked GABAA receptor signaling. CONCLUSION The presence of 5-HT7 receptors in a subset of parvalbumin and somatostatin interneurons in the mouse dentate gyrus could mean that they are involved in the inhibitory control of dentate gyrus activity. However, this potential effect was not evident in slice recordings of inhibitory transmission targeting principal cells and did not affect perforant path plasticity. Further experiments are needed to fully elucidate the functional role of these receptors in the dentate gyrus.
Collapse
Affiliation(s)
- Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Michal Kielbinski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Nikola Multan
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
2
|
Sayahi Z, Komaki A, Saidi Jam M, Karimi SA, Raoufi S, Mardani P, Naderishahab M, Sarihi A, Mirnajafi-Zadeh J. Effect of ramosetron, a 5-HT 3 receptor antagonist on the severity of seizures and memory impairment in electrical amygdala kindled rats. J Physiol Sci 2022; 72:1. [PMID: 35034601 PMCID: PMC10717980 DOI: 10.1186/s12576-022-00825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
The entorhinal cortex (EC) plays a pivotal role in epileptogenesis and seizures. EC expresses high density of serotonergic receptors, especially 5-HT3 receptors. Cognitive impairment is common among people with epilepsy. The present study investigated the role of 5-HT3 receptor on the severity of seizures and learning and memory impairment by electrical kindling of amygdala in rats. The amygdala kindling was conducted in a chronic kindling manner in male Wistar rats. In fully kindled animals, ramosetron (as a potent and selective 5-HT3 receptor antagonist) was microinjected unilaterally (ad doses of 1, 10 or 100 µg/0.5 µl) into the EC 5 min before the novel object recognition (NOR) and Y-maze tests or kindling stimulations. Applying ramosetron at the concentration of 100 μg/0.5 µl (but not at 1 and 10 µg/0.5 µl) reduced afterdischarge (AD) duration and increased stage 4 latency in the kindled rats. Moreover, the obtained data from the NOR test showed that treatment by ramosetron (10 and 100 µg/0.5 µl) increased the discrimination index in the fully kindled animals. Microinjection of ramosetron (10 and 100 µg/0.5 µl) in fully kindled animals reversed the kindling induced changes in the percentage of spontaneous alternation in Y-maze task. The findings demonstrated an anticonvulsant role for a selective 5-HT3 receptor antagonist microinjected into the EC, therefore, suggesting an excitatory role for the EC 5-HT3 receptors in the amygdala kindling model of epilepsy. This anticonvulsive effect was accompanied with a restoring effect on cognitive behavior in NOR and Y-maze tests.
Collapse
Affiliation(s)
- Zeynab Sayahi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Saidi Jam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Parastoo Mardani
- Department of Biology, Faculty of Sciences, Payame Noor University, Sanandaj, Iran
| | - Marzieh Naderishahab
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran.
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, 1411713116, Tehran, Iran.
| |
Collapse
|
3
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
4
|
Zhang J, Chen X, Kårbø M, Zhao Y, An L, Wang R, Wang K, Huang Z. Anticonvulsant effect of dipropofol by enhancing native GABA currents in cortical neurons in mice. J Neurophysiol 2018; 120:1404-1414. [DOI: 10.1152/jn.00241.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Temporal lobe epilepsy (TLE), the most common pharmacoresistant focal epilepsy disorder, remains a major unmet medical need. Propofol is used as a short-acting medication for general anesthesia and refractory status epilepticus with issues of decreased consciousness and memory loss. Dipropofol, a derivative of propofol, has been reported to exert antioxidative and antibacterial activities. Here we report that dipropofol exerted anticonvulsant activity in a mouse model of kainic acid-induced seizures. Whole cell patch-clamp recordings of brain slices from the medial entorhinal cortex (mEC) revealed that dipropofol hyperpolarized the resting membrane potential and reduced the number of action potential firings, resulting in suppression of cortical neuronal excitability. Furthermore, dipropofol activated native tonic GABAA currents of mEC layer II stellate neurons in a dose-dependent manner with an EC50 value of 9.3 ± 1.6 μM (mean ± SE). Taken together, our findings show that dipropofol activated GABAA currents and exerted anticonvulsant activities in mice, thus possessing developmental potential for new anticonvulsant therapy. NEW & NOTEWORTHY The anticonvulsant effect of dipropofol was shown in a mouse model of kainic acid-induced seizures. Whole cell patch-clamp recordings of brain slices showed suppression of cortical neuronal excitability by dipropofol. Dipropofol activated the native tonic GABAA currents in a dose-dependent manner.
Collapse
Affiliation(s)
- Jingliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoling Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Matti Kårbø
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Zhao
- Tech-Development Department, Xi’an Libang Pharmaceutical Company, Xi’an, China
| | - Long An
- Tech-Development Department, Xi’an Libang Pharmaceutical Company, Xi’an, China
| | - Rutao Wang
- Tech-Development Department, Xi’an Libang Pharmaceutical Company, Xi’an, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Tirassa P, Rosso P, Iannitelli A. Ocular Nerve Growth Factor (NGF) and NGF Eye Drop Application as Paradigms to Investigate NGF Neuroprotective and Reparative Actions. Methods Mol Biol 2018; 1727:19-38. [PMID: 29222770 DOI: 10.1007/978-1-4939-7571-6_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The eye is a central nervous system structure that is uniquely accessible to local treatment. Through the ocular surface, it is possible to access the retina, optic nerve, and brain. Animal models of retina degeneration or optic nerve crush could thus serve as tools to investigate whether and how factors, which are anterogradely or retrogradely transported through the optic nerve, might contribute to activate neuroprotection and eventually regeneration. Among these factors, nerve growth factor (NGF) plays a crucial role during development of the visual system, as well as during the entire life span, and in pathological conditions. The ability of NGF to exert survival and trophic actions on the retina and brain cells when applied intraocularly and topically as eye drops is critically reviewed here, together with the effects of ocular neurotrophins on neuronal pathways influencing body rhythm, cognitions, and behavioral functions. The latest data from animal models and humans are presented, and the mechanism of action of ocularly administered NGF is discussed. NGF eye drops are proposed as an experimental strategy to investigate the role and cellular targets of neurotrophins in the mechanism(s) underlying neurodegeneration/regeneration and their involvement in the regulation of neurological and behavioral dysfunctions.
Collapse
Affiliation(s)
- Paola Tirassa
- National Research Council (CNR), Institute of Cell Biology & Neurobiology, Rome, Italy.
| | - Pamela Rosso
- National Research Council (CNR), Institute of Cell Biology & Neurobiology, Rome, Italy.,Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Angela Iannitelli
- Department of Human Sciences, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
6
|
Wu ZM, Yang LH, Cui R, Ni GL, Wu FT, Liang Y. Contribution of Hippocampal 5-HT 3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats. Cell Mol Neurobiol 2017; 37:595-606. [PMID: 27324798 DOI: 10.1007/s10571-016-0395-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/13/2016] [Indexed: 02/01/2023]
Abstract
One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT3 receptor in the development of PTSD, even though 5-HT3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.
Collapse
Affiliation(s)
- Zhong-Min Wu
- Department of Anatomy, Medical College of Taizhou University, 1139 Taizhou city government Avenue, Taizhou, 318000, China
- Department of Neurology, First People's Hospital of Linhai City, Linhai, 317000, China
| | - Li-Hua Yang
- Department of Neurology, Taizhou Hospital, Taizhou, 317000, China
| | - Rong Cui
- Department of Neurology, First People's Hospital of Linhai City, Linhai, 317000, China
| | - Gui-Lian Ni
- Department of Neurology, First People's Hospital of Linhai City, Linhai, 317000, China
| | - Feng-Tian Wu
- City College of Zhejiang University, Hangzhou, 310015, China
| | - Yong Liang
- Department of Anatomy, Medical College of Taizhou University, 1139 Taizhou city government Avenue, Taizhou, 318000, China.
| |
Collapse
|
7
|
Kondo M. Molecular mechanisms of experience-dependent structural and functional plasticity in the brain. Anat Sci Int 2016; 92:1-17. [DOI: 10.1007/s12565-016-0358-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/16/2016] [Indexed: 11/24/2022]
|
8
|
Abstract
The hippocampus plays an important role in emotional and cognitive processing, and both of these domains are affected in patients with major depressive disorder (MDD). Extensive preclinical research and the notion that modulation of serotonin (5-HT) neurotransmission plays a key role in the therapeutic efficacy of selective serotonin reuptake inhibitors (SSRIs) support the view that 5-HT is important for hippocampal function in normal and disease-like conditions. The hippocampus is densely innervated by serotonergic fibers, and the majority of 5-HT receptor subtypes are expressed there. Furthermore, hippocampal cells often co-express multiple 5-HT receptor subtypes that can have either complementary or opposing effects on cell function, adding to the complexity of 5-HT neurotransmission. Here we review the current knowledge of how 5-HT, through its various receptor subtypes, modulates hippocampal output and the activity of hippocampal pyramidal cells in rodents. In addition, we discuss the relevance of 5-HT modulation for cognitive processing in rodents and possible clinical implications of these results in patients with MDD. Finally, we review the data on how SSRIs and vortioxetine, an antidepressant with multimodal activity, affect hippocampal function, including cognitive processing, from both a preclinical and clinical perspective.
Collapse
|
9
|
Leiser SC, Iglesias-Bregna D, Westrich L, Pehrson AL, Sanchez C. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism. J Psychopharmacol 2015; 29:1092-105. [PMID: 26174134 PMCID: PMC4579402 DOI: 10.1177/0269881115592347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences.
Collapse
|
10
|
5-HT receptor-mediated modulation of granule cell inhibition after juvenile stress recovers after a second exposure to adult stress. Neuroscience 2015; 293:67-79. [DOI: 10.1016/j.neuroscience.2015.02.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/30/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
|
11
|
Li B, Shao D, Luo Y, Wang P, Liu C, Zhang X, Cui R. Role of 5-HT3 receptor on food intake in fed and fasted mice. PLoS One 2015; 10:e0121473. [PMID: 25789930 PMCID: PMC4366218 DOI: 10.1371/journal.pone.0121473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/16/2015] [Indexed: 12/15/2022] Open
Abstract
Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem.
Collapse
Affiliation(s)
- Bingjin Li
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
| | - Dongyuan Shao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yungang Luo
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
| | - Pu Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Changhong Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Xingyi Zhang
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
| | - Ranji Cui
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
- * E-mail:
| |
Collapse
|
12
|
Dale E, Zhang H, Leiser SC, Xiao Y, Lu D, Yang CR, Plath N, Sanchez C. Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus. J Psychopharmacol 2014; 28:891-902. [PMID: 25122043 PMCID: PMC4230848 DOI: 10.1177/0269881114543719] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vortioxetine, a novel antidepressant with multimodal action, is a serotonin (5-HT)3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist and a 5-HT transporter (SERT) inhibitor. Vortioxetine has been shown to improve cognitive performance in several preclinical rat models and in patients with major depressive disorder. Here we investigated the mechanistic basis for these effects by studying the effect of vortioxetine on synaptic transmission, long-term potentiation (LTP), a cellular correlate of learning and memory, and theta oscillations in the rat hippocampus and frontal cortex. Vortioxetine was found to prevent the 5-HT-induced increase in inhibitory post-synaptic potentials recorded from CA1 pyramidal cells, most likely by 5-HT3 receptor antagonism. Vortioxetine also enhanced LTP in the CA1 region of the hippocampus. Finally, vortioxetine increased fronto-cortical theta power during active wake in whole animal electroencephalographic recordings. In comparison, the selective SERT inhibitor escitalopram showed no effect on any of these measures. Taken together, our results indicate that vortioxetine can increase pyramidal cell output, which leads to enhanced synaptic plasticity in the hippocampus. Given the central role of the hippocampus in cognition, these findings may provide a cellular correlate to the observed preclinical and clinical cognition-enhancing effects of vortioxetine.
Collapse
Affiliation(s)
| | | | | | - Yixin Xiao
- Shanghai Chempartner Co. Ltd., Shanghai, China
| | - Dunguo Lu
- Shanghai Chempartner Co. Ltd., Shanghai, China
| | | | | | | |
Collapse
|
13
|
Cui Y, Kataoka Y, Watanabe Y. Role of cortical spreading depression in the pathophysiology of migraine. Neurosci Bull 2014; 30:812-22. [PMID: 25260797 PMCID: PMC5562594 DOI: 10.1007/s12264-014-1471-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/21/2014] [Indexed: 10/24/2022] Open
Abstract
A migraine is a recurring neurological disorder characterized by unilateral, intense, and pulsatile headaches. In one-third of migraine patients, the attacks are preceded by a visual aura, such as a slowly-propagating scintillating scotoma. Migraine aura is thought to be a result of the neurovascular phenomenon of cortical spreading depression (SD), a self-propagating wave of depolarization that spreads across the cerebral cortex. Several animal experiments have demonstrated that cortical SD causes intracranial neurogenic inflammation around the meningeal blood vessels, such as plasma protein extravasation and pro-inflammatory peptide release. Cortical SD has also been reported to activate both peripheral and central trigeminal nociceptive pathways. Although several issues remain to be resolved, recent evidence suggests that cortical SD could be the initial trigger of intracranial neurogenic inflammation, which then contributes to migraine headaches via subsequent activation of trigeminal afferents.
Collapse
Affiliation(s)
- Yilong Cui
- Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan,
| | | | | |
Collapse
|
14
|
Spilman P, Descamps O, Gorostiza O, Peters-Libeu C, Poksay KS, Matalis A, Campagna J, Patent A, Rao R, John V, Bredesen DE. The multi-functional drug tropisetron binds APP and normalizes cognition in a murine Alzheimer's model. Brain Res 2013; 1551:25-44. [PMID: 24389031 DOI: 10.1016/j.brainres.2013.12.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/22/2013] [Accepted: 12/23/2013] [Indexed: 12/31/2022]
Abstract
Tropisetron was identified in a screen for candidates that increase the ratio of the trophic, neurite-extending peptide sAPPα to the anti-trophic, neurite-retractive peptide Aβ, thus reversing this imbalance in Alzheimer's disease (AD). We describe here a hierarchical screening approach to identify such drug candidates, moving from cell lines to primary mouse hippocampal neuronal cultures to in vivo studies. By screening a clinical compound library in the primary assay using CHO-7W cells stably transfected with human APPwt, we identified tropisetron as a candidate that consistently increased sAPPα. Secondary assay testing in neuronal cultures from J20 (PDAPP, huAPP(Swe/Ind)) mice showed that tropisetron consistently increased the sAPPα/Aβ 1-42 ratio. In in vivo studies in J20 mice, tropisetron improved the sAPPα/Aβ ratio along with spatial and working memory in mice, and was effective both during the symptomatic, pre-plaque phase (5-6 months) and in the late plaque phase (14 months). This ameliorative effect occurred at a dose of 0.5mg/kg/d (mkd), translating to a human-equivalent dose of 5mg/day, the current dose for treatment of postoperative nausea and vomiting (PONV). Although tropisetron is a 5-HT3 receptor antagonist and an α7nAChR partial agonist, we found that it also binds to the ectodomain of APP. Direct comparison of tropisetron to the current AD therapeutics memantine (Namenda) and donepezil (Aricept), using similar doses for each, revealed that tropisetron induced greater improvements in memory and the sAPPα/Aβ1-42 ratio. The improvements observed with tropisetron in the J20 AD mouse model, and its known safety profile, suggest that it may be suitable for transition to human trials as a candidate therapeutic for mild cognitive impairment (MCI) and AD, and therefore it has been approved for testing in clinical trials beginning in 2014.
Collapse
Affiliation(s)
- Patricia Spilman
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Olivier Descamps
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Olivia Gorostiza
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Clare Peters-Libeu
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Karen S Poksay
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Alexander Matalis
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Jesus Campagna
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Alexander Patent
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Rammohan Rao
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Varghese John
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Dominican University of California, San Rafael, CA 94901, USA
| | - Dale E Bredesen
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Department of Neurology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Kondo M, Nakamura Y, Ishida Y, Yamada T, Shimada S. The 5-HT3A receptor is essential for fear extinction. Learn Mem 2013; 21:1-4. [PMID: 24344177 PMCID: PMC3867712 DOI: 10.1101/lm.032193.113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The 5-HT3 receptor, the only ionotropic 5-HT receptor, is expressed in limbic regions, including the hippocampus, amygdala, and cortex. However, it is not known whether it has a role in fear memory processes. Analysis of 5-HT3A receptor knockout mice in fear conditioning paradigms revealed that the 5-HT3A receptor is not required for the acquisition or retention of fear memory but is essential for the extinction of contextual and tone-cued fear. Our data suggest that the 5-HT3A receptor could be a key molecule regulating fear memory processes and a potential therapeutic target for fear disorders.
Collapse
Affiliation(s)
- Makoto Kondo
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
16
|
The role of different serotonin receptor subtypes in seizure susceptibility. Exp Brain Res 2013; 232:347-67. [PMID: 24232860 DOI: 10.1007/s00221-013-3757-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 10/27/2013] [Indexed: 10/26/2022]
Abstract
5-Hydroxytryptamine (5-HT) has the most diverse set of receptors in comparison with any other neurotransmitter or hormone in the body. To date, seven families of 5-HT receptors have been characterized. A great number of studies have been published regarding the role of 5-HT and its receptors in seizures. However, with a few exceptions, the net effect of activating or inhibiting each 5-HT receptor subtype on the development or severity of seizures remains controversial. Additionally, the results of studies, which have used knockout animals to investigate the role of 5-HT receptors in seizures, have sometimes been contradictory to those which have used pharmacological tools. The present study aims to review the available data regarding the influence of each receptor subtype on seizure development and, when possible, reconcile between the apparently different results obtained in these studies.
Collapse
|
17
|
Cui Y, Li QH, Yamada H, Watanabe Y, Kataoka Y. Chronic degeneration of dorsal raphe serotonergic neurons modulates cortical spreading depression: a possible pathophysiology of migraine. J Neurosci Res 2013; 91:737-44. [PMID: 23456883 DOI: 10.1002/jnr.23209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/12/2012] [Accepted: 12/28/2012] [Indexed: 11/12/2022]
Abstract
The vascular serotonergic system in the brain has been implicated in the pathophysiology of migraine, however, involvement of the serotonergic nervous system of the brain parenchyma in the pathophysiology remains unclear. To investigate whether the brain parenchymal serotonergic nervous system is involved in the etiology of migraine, we prepared an experimental model of migraine by generation of cortical spreading depression (SD), characterized by spreading of neuronal/glial membrane depolarization accompanied by temporal elevation of the cerebral blood flow (CBF) throughout the cerebral cortical hemisphere in rats, which underwent pharmacological treatment for degeneration of serotonergic neurons in the dorsal raphe nucleus. We show here that (1) significant degeneration of serotonergic neurons in the dorsal raphe nucleus and serotonergic fibers in the cerebral cortex was observed in treated rats, (2) spreading velocity of the CBF changes was significantly increased in these rats, and (3) calculated width of the depolarization wave was significantly extended in these rats. These results indicate that the dorsal raphe serotonergic neurons modulate cortical spreading depression and might be involved in migraine pathology via a similar mechanism.
Collapse
Affiliation(s)
- Yilong Cui
- Cellular Function Imaging Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Japan.
| | | | | | | | | |
Collapse
|
18
|
Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN, Wiborg O, Jensen K. Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 2011; 21:422-33. [PMID: 20087886 DOI: 10.1002/hipo.20758] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In major depression, one line of research indicates that a dysfunctional GABAergic inhibitory system is linked to the appearance of depressive symptoms. However, as the mechanistic details of such GABAergic deficit are largely unknown, we undertook a functional investigation of the GABAergic system in the rat chronic mild stress model of depression. Adult rats were exposed to an eight-week long stress protocol leading to anhedonic-like behavior. In hippocampal brain slices, phasic, and tonic GABA(A) receptor-mediated currents in dentate gyrus granule cells were examined using patch-clamp recordings. In granule cells, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was reduced to 41% in anhedonic-like rats, which was associated with a reduced probability of evoked GABA release. Using immunohistochemical analysis, there was no change in the number of parvalbumin-positive interneurons in the dentate gyrus. Notably, we observed a 60% increase in THIP-activated tonic GABA(A) mediated current in anhedonic-like rats, suggesting an upregulation of extrasynaptic GABA(A) receptors. Finally, five weeks treatment with the antidepressant escitalopram partially reversed the sIPSCs frequency. In summary, we have revealed a hippocampal dysfunction in the GABAergic system in the chronic mild stress model of depression in rats, caused by a reduction in action potential-dependent GABA release. Since the function of the GABAergic system was improved by antidepressant treatment, in parallel with behavioral read outs, it suggests a role of the GABAergic system in the pathophysiology of depression.
Collapse
Affiliation(s)
- Mai Marie Holm
- Department of Physiology and Biophysics, Synaptic Physiology Laboratory, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
19
|
Oostland M, Sellmeijer J, van Hooft JA. Transient expression of functional serotonin 5-HT3 receptors by glutamatergic granule cells in the early postnatal mouse cerebellum. J Physiol 2011; 589:4837-46. [PMID: 21878518 DOI: 10.1113/jphysiol.2011.217307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The serotonin 5-HT(3) receptor is the only ligand-gated ion channel activated by serotonin and is expressed by GABAergic interneurons in many brain regions, including the cortex, amygdala and hippocampus. Furthermore, 5-HT(3) receptors are expressed by glutamatergic Cajal-Retzius cells in the cerebral cortex. We used 5-HT(3A)/enhanced green fluorescent protein (EGFP) transgenic mice to show that 5-HT(3) receptors are also ubiquitously expressed by glutamatergic granule cells in the cerebellum during the first three postnatal weeks. Using whole-cell patch clamp recordings, we show that local application of either serotonin or the selective 5-HT(3) receptor agonist SR57227A to granule cells results in a small inward current, demonstrating a post- and/or extrasynaptic localisation of the 5-HT(3) receptors. Functional 5-HT(3) receptors were also observed presynaptically at the parallel fibre-Purkinje cell synapse. Pharmacological block using the selective 5-HT(3) receptor antagonist tropisetron induced a reduction in the frequency of miniature synaptic events recorded from Purkinje cells. Paired-pulse stimulation of parallel fibres on whole-cell voltage clamped Purkinje cells from 1-week-old mice did not yet show synaptic plasticity. In the presence of tropisetron, the parallel fibre-Purkinje cell synapse showed paired-pulse depression. Taken together, these results show that functional 5-HT(3) receptors are present during early postnatal development in the cerebellum, where they modulate synaptic plasticity.
Collapse
Affiliation(s)
- Marlies Oostland
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
20
|
Abstract
Serotonin (5-HT)3 receptors are the only ligand-gated ion channel of the 5-HT receptors family. They are present both in the peripheral and central nervous system and are localized in several areas involved in mood regulation (e.g., hippocampus or prefrontal cortex). Moreover, they are involved in regulation of neurotransmitter systems implicated in the pathophysiology of major depression (e.g., dopamine or GABA). Clinical and preclinical studies have suggested that 5-HT3 receptors may be a relevant target in the treatment of affective disorders. 5-HT3 receptor agonists seem to counteract the effects of antidepressants in non-clinical models, whereas 5-HT3 receptor antagonists, such as ondansetron, present antidepressant-like activities. In addition, several antidepressants, such as mirtazapine, also target 5-HT3 receptors. In this review, we will report major advances in the research of 5-HT3 receptor's roles in neuropsychiatric disorders, with special emphasis on mood and anxiety disorders.
Collapse
|
21
|
Christensen T, Bisgaard C, Nielsen H, Wiborg O. Transcriptome differentiation along the dorso–ventral axis in laser-captured microdissected rat hippocampal granular cell layer. Neuroscience 2010; 170:731-41. [DOI: 10.1016/j.neuroscience.2010.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 12/31/2022]
|
22
|
Peters JA, Cooper MA, Carland JE, Livesey MR, Hales TG, Lambert JJ. Novel structural determinants of single channel conductance and ion selectivity in 5-hydroxytryptamine type 3 and nicotinic acetylcholine receptors. J Physiol 2010; 588:587-96. [PMID: 19933751 PMCID: PMC2828133 DOI: 10.1113/jphysiol.2009.183137] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nicotinic acetylcholine (nACh) and 5-hydroxytryptamine type 3 (5-HT(3)) receptors are cation-selective ion channels of the pentameric ligand-gated ion channel (pLGIC) superfamily. Multiple lines of evidence adduced over the last 30 years indicate that the lining of the channel of such receptors is formed by the alpha-helical second transmembrane (TM2) domain and flanking sequences contributed by each of the five subunits present within the receptor complex. Specific amino acid residues within, and adjacent to, the TM2 domain influence single channel conductance, ion selectivity, and other aspects of receptor function that include gating and desensitization. However, more recent work has revealed important structural determinants of single channel conductance and ion selectivity that are not associated with the TM2 domain. Direct experimental evidence indicates that the intracellular domain of eukaryotic pLGICs, in particular a region of the loop linking TM3 and TM4 termed the membrane-associated (MA) stretch, exerts a strong influence upon ion channel biophysics. Moreover, recent computational approaches, complemented by experimentation, implicate the extracellular domain as an additional important determinant of ion conduction. This brief review describes how our knowledge of ion conduction and selectivity in cation-selective pLGICs has evolved beyond TM2.
Collapse
Affiliation(s)
- John A Peters
- Centre for Neuroscience, Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Electrophysiology of Serotonin Receptors. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1569-7339(10)70077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Gholipour T, Ghasemi M, Riazi K, Ghaffarpour M, Dehpour AR. Seizure susceptibility alteration through 5-HT(3) receptor: modulation by nitric oxide. Seizure 2009; 19:17-22. [PMID: 19942458 DOI: 10.1016/j.seizure.2009.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 11/16/2022] Open
Abstract
There is some evidence that epileptic seizures could be induced or increased by 5-hydroxytryptamine (5-HT) attenuation, while augmentation of serotonin functions within the brain (e.g. by SSRIs) has been reported to be anticonvulsant. This study was performed to determine the effect of selective 5-HT(3) channel/receptor antagonist granisetron and agonist SR57227 hydrochloride on the pentylenetetrazole (PTZ)-induced seizure threshold in mice. The possible interaction of this effect with nitrergic system was also examined using the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) and the NO precursor l-arginine. SR57227 (10mg/kg, i.p.) significantly increased the seizure threshold compared to control group, while high dose granisetron (10mg/kg, i.p.) proved proconvulsant. Co-administration of sub-effective doses of the 5-HT(3) agonist with l-NAME (5 and 60mg/kg, i.p., respectively) exerted a significant anticonvulsive effect, while sub-effective doses of granisetron (3mg/kg) was observed to have a proconvulsive action with the addition of l-arginine (75mg/kg, i.p.). Our data demonstrate that enhancement of 5-HT(3) receptor function results in as anticonvulsant effect in the PTZ-induced seizure model, and that selective antagonism at the 5-HT(3) receptor yields proconvulsive effects. Furthermore, the NO system may play a role in 5-HT(3) receptor function.
Collapse
Affiliation(s)
- Taha Gholipour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | | | | | | | | |
Collapse
|
25
|
Sil’kis IG. Characteristics of the functioning of the hippocampal formation in waking and paradoxical sleep. ACTA ACUST UNITED AC 2009; 39:523-34. [DOI: 10.1007/s11055-009-9163-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 11/12/2007] [Indexed: 10/20/2022]
|
26
|
Fukushima T, Ohtsubo T, Tsuda M, Yanagawa Y, Hori Y. Facilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn. J Neurophysiol 2009; 102:1459-71. [PMID: 19369358 DOI: 10.1152/jn.91160.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Analgesic effects of serotonin (5-hydroxytryptamine [5-HT]) type 3 (5-HT3) receptors may involve the release of gamma-aminobutyric acid (GABA) in the spinal dorsal horn. However, the precise synaptic mechanisms for 5-HT3 receptor-mediated spinal analgesia are not clear. In this study, we investigated whether GABAergic neurons in the superficial dorsal horn (SDH) express functional 5-HT3 receptors and how these 5-HT3 receptors affect GABAergic inhibitory synaptic transmission in the SDH, by using slice preparations from adult glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mice. Tight-seal whole cell recordings from GFP-positive and -negative neurons showed that 5-HT3 receptor-specific agonist 2-methyl-serotonin (2-Me-5-HT) induced inward currents in a substantial population of both GFP-positive and -negative neurons. Additionally, we confirmed expression of 5-HT3 receptors in both types of neurons by single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis. Further, GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs)-both those evoked by electrical stimulation and those occurring spontaneously in tetrodotoxin (i.e., miniature IPSCs [mIPSCs])-were recorded from GFP-negative neurons. 2-Me-5-HT increased the amplitude of the evoked IPSCs and the frequency of mIPSCs. The amplitude of mIPSCs was not affected by 2-Me-5-HT, suggesting that 5-HT augments GABAergic synaptic transmission via presynaptic mechanisms. The present observations indicate that 5-HT3 receptors are expressed on both somadendritic regions and presynaptic terminals of GABAergic neurons and regulate GABAA receptor-mediated inhibitory synaptic transmission in the SDH. Taken together, these results provide clues for the underlying mechanisms of the antinociceptive actions of 5-HT3 receptors in the spinal dorsal horn.
Collapse
Affiliation(s)
- Teruyuki Fukushima
- Department of Physiology and Biological Information, Dokkyo Medical University School of Medicine, Kitakobayashi 880, Mibu, Tochigi 321-0293, Japan
| | | | | | | | | |
Collapse
|
27
|
Barnes NM, Hales TG, Lummis SC, Peters JA. The 5-HT3 receptor--the relationship between structure and function. Neuropharmacology 2009; 56:273-84. [PMID: 18761359 PMCID: PMC6485434 DOI: 10.1016/j.neuropharm.2008.08.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 12/15/2022]
Abstract
The 5-hydroxytryptamine type-3 (5-HT3) receptor is a cation-selective ion channel of the Cys-loop superfamily. 5-HT3 receptor activation in the central and peripheral nervous systems evokes neuronal excitation and neurotransmitter release. Here, we review the relationship between the structure and the function of the 5-HT3 receptor. 5-HT3A and 5-HT3B subunits are well established components of 5-HT3 receptors but additional HTR3C, HTR3D and HTR3E genes expand the potential for molecular diversity within the family. Studies upon the relationship between subunit structure and the ionic selectivity and single channel conductances of 5-HT3 receptors have identified a novel domain (the intracellular MA-stretch) that contributes to ion permeation and selectivity. Conventional and unnatural amino acid mutagenesis of the extracellular domain of the receptor has revealed residues, within the principle (A-C) and complementary (D-F) loops, which are crucial to ligand binding. An area requiring much further investigation is the subunit composition of 5-HT3 receptors that are endogenous to neurones, and their regional expression within the central nervous system. We conclude by describing recent studies that have identified numerous HTR3A and HTR3B gene polymorphisms that impact upon 5-HT3 receptor function, or expression, and consider their relevance to (patho)physiology.
Collapse
Affiliation(s)
- Nicholas M. Barnes
- Cellular and Molecular Neuropharmacology Research Group, Department of Pharmacology, Division of Neuroscience, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim G. Hales
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | - Sarah C.R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - John A. Peters
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, The University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
28
|
Morales M, Hein K, Vogel Z. Hippocampal interneurons co-express transcripts encoding the alpha7 nicotinic receptor subunit and the cannabinoid receptor 1. Neuroscience 2008; 152:70-81. [PMID: 18222041 DOI: 10.1016/j.neuroscience.2007.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/21/2007] [Accepted: 12/12/2007] [Indexed: 12/26/2022]
Abstract
The notion of functional interactions between the alpha7 nicotinic acetylcholine (alpha7 nACh) and the cannabinoid systems is emerging from recent in vitro and in vivo studies. Both the alpha7 nACh receptor and the cannabinoid receptor 1 (CB1) are highly expressed in the hippocampus. To begin addressing possible anatomical interactions between the alpha7 nACh and the cannabinoid systems in the rat hippocampus, we investigated the distribution of neurons expressing alpha7 nACh mRNA in relation to those containing CB1 mRNA. By in situ hybridization we found that the alpha7 nACh mRNA is diffusely expressed in principal neurons and is highly expressed in a subset of interneurons. We observed that the pattern of distribution of hippocampal interneurons co-expressing transcripts encoding alpha7 nACh and glutamate decarboxylase (GAD; synthesizing enzyme of GABA) closely resembles the one displayed by interneurons expressing CB1 mRNA. By double in situ hybridization we established that the majority of hippocampal interneurons expressing alpha7 nACh mRNA have high levels of CB1 mRNA. As CB1 interneurons contain cholecystokinin (CCK), we investigated the degree of cellular co-expression of alpha7 nACh mRNA and CCK, and found that the cellular co-existence of alpha7 nACh and CCK varies within the different layers of the hippocampus. In summary, we established that most of the hippocampal alpha7 nACh expressing interneurons are endowed with CB1 mRNA. We found that these alpha7 nACh/CB1 interneurons are the major subpopulation of hippocampal interneurons expressing CB1 mRNA. The alpha7 nACh expressing interneurons represent half of the detected population of CCK containing neurons in the hippocampus. Since it is well established that the vast majority of hippocampal interneurons expressing CB1 mRNA have 5-HT type 3 (5-HT3) receptors, we conclude that these hippocampal alpha7 nACh/5HT3/CB1/CCK interneurons correspond to those previously postulated to relay inputs from diverse cortical and subcortical regions about emotional, motivational, and physiological states.
Collapse
Affiliation(s)
- M Morales
- National Institute on Drug Abuse, Intramural Research Program, Cellular Neurophysiology Section, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
29
|
Noam Y, Wadman WJ, van Hooft JA. On the voltage-dependent Ca2+ block of serotonin 5-HT3 receptors: a critical role of intracellular phosphates. J Physiol 2008; 586:3629-38. [PMID: 18566001 DOI: 10.1113/jphysiol.2008.153486] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Natively expressed serotonin 5-HT(3) receptors typically possess a negative-slope conductance region in their I-V curve, due to a voltage-dependent block by external Ca(2+) ions. However, in almost all studies performed with heterologously expressed 5-HT(3) receptors, this feature was not observed. Here we show that mere addition of ATP to the pipette solution is sufficient to reliably observe a voltage-dependent block in homomeric (h5-HT(3A)) and heteromeric (h5-HT(3AB)) receptors expressed in HEK293 cells. A similar block was observed with a plethora of molecules containing a phosphate moiety, thus excluding a role of phosphorylation. A substitution of three arginines in the intracellular vestibule of 5-HT(3A) with their counterpart residues from the 5-HT(3B) subunit (RRR-QDA) was previously shown to dramatically increase single channel conductance. We find this mutant to have a linear I-V curve that is unaffected by the presence of ATP, with a fractional Ca(2+) current (Pf%) that is reduced (1.8 +/- 0.2%) compared to that of the homomeric receptor (4.1 +/- 0.2%), and similar to that of the heteromeric form (2.0 +/- 0.3%). Moreover, whereas ATP decreased the Pf% of the homomeric receptor, this was not observed with the RRR-QDA mutant. Finally, ATP was found to be critical for voltage-dependent channel block also in hippocampal interneurons that natively express 5-HT(3) receptors. Taken together, our results indicate a novel mechanism by which ATP, and similar molecules, modulate 5-HT(3) receptors via interactions with the intracellular vestibule of the receptor.
Collapse
Affiliation(s)
- Yoav Noam
- Swammerdam Institute for Life Sciences, Center for NeuroScience, University of Amsterdam, PO Box 94084, NL-1090 GB Amsterdam, The Netherlands
| | | | | |
Collapse
|
30
|
Abstract
The release of transmitters through vesicle exocytosis from nerve terminals is not constant but is subject to modulation by various mechanisms, including prior activity at the synapse and the presence of neurotransmitters or neuromodulators in the synapse. Instantaneous responses of postsynaptic cells to released transmitters are mediated by ionotropic receptors. In contrast to metabotropic receptors, ionotropic receptors mediate the actions of agonists in a transient manner within milliseconds to seconds. Nevertheless, transmitters can control vesicle exocytosis not only via slowly acting metabotropic, but also via fast acting ionotropic receptors located at the presynaptic nerve terminals. In fact, members of the following subfamilies of ionotropic receptors have been found to control transmitter release: ATP P2X, nicotinic acetylcholine, GABA(A), ionotropic glutamate, glycine, 5-HT(3), andvanilloid receptors. As these receptors display greatly diverging structural and functional features, a variety of different mechanisms are involved in the regulation of transmitter release via presynaptic ionotropic receptors. This text gives an overview of presynaptic ionotropic receptors and briefly summarizes the events involved in transmitter release to finally delineate the most important signaling mechanisms that mediate the effects of presynaptic ionotropic receptor activation. Finally, a few examples are presented to exemplify the physiological and pharmacological relevance of presynaptic ionotropic receptors.
Collapse
Affiliation(s)
- M M Dorostkar
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitäts-platz 4, Graz, Austria
| | | |
Collapse
|
31
|
Choi IS, Cho JH, Kim JT, Park EJ, Lee MG, Shin HI, Choi BJ, Jang IS. Serotoninergic modulation of GABAergic synaptic transmission in developing rat CA3 pyramidal neurons. J Neurochem 2007; 103:2342-53. [PMID: 17931361 DOI: 10.1111/j.1471-4159.2007.04945.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serotoninergic modulation of GABAergic mIPSCs was investigated in immature (postnatal 12-16-days old) rat CA3 pyramidal neurons using a conventional whole-cell patch clamp technique. Serotonin or 5-hydroxytryptamine (5-HT) (10 micromol/L) transiently and explosively increased mIPSC frequency with a small increase in the current amplitude. However, 5-HT did not affect the GABA-induced postsynaptic currents, indicating that 5-HT acts presynaptically to facilitate the probability of spontaneous GABA release. The 5-HT action on GABAergic mIPSC frequency was completely blocked by 100 nmol/L MDL72222, a selective 5-HT(3) receptor antagonist, and mimicked by mCPBG, a selective 5-HT(3) receptor agonist. The 5-HT action on GABAergic mIPSC frequency was completely occluded either in the presence of 200 mumol/L Cd2+ or in the Na+-free external solution, suggesting that the 5-HT(3) receptor-mediated facilitation of mIPSC frequency requires a Ca2+ influx passing through voltage-dependent Ca2+ channels from the extracellular space, and that presynaptic 5-HT(3) receptors are less permeable to Ca2+. The 5-HT action on mIPSC frequency in the absence or presence of extracellular Na+ gradually increased with postnatal development. Such a developmental change in the 5-HT(3) receptor-mediated facilitation of GABAergic transmission would play important roles in the regulation of excitability as well as development in CA3 pyramidal neurons.
Collapse
Affiliation(s)
- In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mascagni F, McDonald AJ. A novel subpopulation of 5-HT type 3A receptor subunit immunoreactive interneurons in the rat basolateral amygdala. Neuroscience 2006; 144:1015-24. [PMID: 17150309 PMCID: PMC1828605 DOI: 10.1016/j.neuroscience.2006.10.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 10/11/2006] [Accepted: 10/13/2006] [Indexed: 11/25/2022]
Abstract
The amygdalar basolateral nuclear complex (BLC) has very high levels of the 5-HT type 3 receptor (5-HT(3)R). Previous studies have reported that 5-HT(3)R protein in the BLC is expressed in interneurons and that 5-HT(3)R mRNA is coexpressed with GABA and certain neuropeptides or calcium-binding proteins in these cells. However, there have been no detailed descriptions of the distribution of 5-HT(3)R+ neurons in the rat amygdala, and no quantitative studies of overlap of neurons expressing 5-HT(3)R protein with distinct interneuronal subpopulations in the BLC. The present investigation employed dual-labeling immunohistochemistry using antibodies to the 5-HT-3A receptor subunit (5-HT(3A)R) and specific interneuronal markers to address these questions. These studies revealed that there was a moderate density of nonpyramidal 5-HT(3A)R+ neurons in the BLC at all levels of the amygdala. In addition, immunostained cells were also seen in anterior portions of the cortical and medial nuclei. Although virtually all 5-HT(3A)R+ neurons in the BLC were GABA+, very few expressed neuropeptide or calcium-binding protein markers for individual subpopulations. The main interneuronal marker expressed by 5-HT(3A)R+ neurons was cholecystokinin (CCK), but only 8-16% of 5-HT(3)R+ neurons in the BLC, depending on the nucleus, were CCK+. Most of these CCK+/5-HT(3A)R+ double-labeled neurons appeared to belong to the subpopulation of large type L CCK+ interneurons. Very few 5-HT(3A)R+ neurons expressed calretinin, vasoactive intestinal peptide, or parvalbumin, and none expressed somatostatin or calbindin. Thus, the great majority of neurons expressing 5-HT(3A)R protein appear to constitute a previously unrecognized subpopulation of GABAergic interneurons in the BLC.
Collapse
|
33
|
Chameau P, van Hooft JA. Serotonin 5-HT3 receptors in the central nervous system. Cell Tissue Res 2006; 326:573-81. [PMID: 16826372 DOI: 10.1007/s00441-006-0255-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/19/2006] [Indexed: 12/20/2022]
Abstract
The 5-HT(3) receptor is a ligand-gated ion channel activated by serotonin (5-HT). Although originally identified in the peripheral nervous system, the 5-HT(3) receptor is also ubiquitously expressed in the central nervous system. Sites of expression include several brain stem nuclei and higher cortical areas such as the amygdala, hippocampus, and cortex. On the subcellular level, both presynaptic and postsynaptic 5-HT(3) receptors can be found. Presynaptic 5-HT(3) receptors are involved in mediating or modulating neurotransmitter release. Postsynaptic 5-HT(3) receptors are preferentially expressed on interneurons. In view of this specific expression pattern and of the well-established role of 5-HT as a neurotransmitter shaping development, we speculate that 5-HT(3) receptors play a role in the formation and function of cortical circuits.
Collapse
Affiliation(s)
- Pascal Chameau
- Swammerdam Institute for Life Sciences, Center for NeuroScience, University of Amsterdam, P.O. Box 94084, NL-1090 GB, Amsterdam, The Netherlands
| | | |
Collapse
|
34
|
Jensen TN, Nielsen J, Frederiksen K, Ebert B. Molecular cloning and pharmacological characterization of serotonin 5-HT(3A) receptor subtype in dog. Eur J Pharmacol 2006; 538:23-31. [PMID: 16647053 DOI: 10.1016/j.ejphar.2006.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 02/28/2006] [Accepted: 03/20/2006] [Indexed: 11/22/2022]
Abstract
In order to establish if the canine 5-hydroxytryptamine type 3A (5-HT(3A)) receptors share the pharmacological profile with human 5-HT(3A) receptors, we cloned and performed a molecular pharmacological characterization of the canine 5-HT(3A) receptor. The 5-HT(3A) cDNA was cloned from canine brain by polymerase chain reaction amplification. It encodes a 483 amino acid peptide that exhibits from 80% (mice) to 90% (ferrets) identity to other sequenced mammalian 5-HT(3A) receptors. The receptor agonists 5-hydroxytryptamine (5-HT) and meta-chlorophenylbiguanide (mCPBG) showed little differences between the two species, whereas 2-methyl-5-hydroxytryptamine (2-Me-5-HT) was ten times weaker at canine receptors than at human receptors. The potencies at the canine 5-HT(3) receptors were 9.9 microM (5-HT), 79 microM (2-Me-5-HT) and 0.8 microM (mCPBG). The selective, competitive receptor antagonist ondansetron was ten times more potent at human receptors compared to canine receptors (K(b)=0.9 nM), while (+)-tubocurarine was 1000-fold more potent at canine receptors (K(b)=3.0 nM) than at human receptors. Examination of the presumed ligand binding extracellular domain revealed one residue, where the canine receptor differs from all previously characterized 5-HT(3A) receptors, i.e. other species contain a conserved Trp(195), whereas the canine orthologue contains a Leu(195). To address the differences in potencies at the human and canine 5-HT(3A) receptors seen in this study, we introduced a L195W point mutation in the canine orthologue. Data showed that the 195 residue can affect receptor agonist potency and efficacy as well as antagonist potency, but did produce a pharmacological profile identical to the human orthologue. We therefore conclude that position 195 is strongly involved in the receptor-ligand interaction, but additional residues must contribute to the overall pharmacological profile.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biguanides/pharmacology
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dogs/genetics
- Dose-Response Relationship, Drug
- Female
- Membrane Potentials/drug effects
- Molecular Sequence Data
- Mutation
- Ondansetron/pharmacology
- Oocytes/drug effects
- Oocytes/metabolism
- Oocytes/physiology
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/physiology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Serotonin/pharmacology
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Xenopus
Collapse
Affiliation(s)
- Thomas N Jensen
- Department of Electrophysiology, H. Lundbeck A/S, 9 Ottiliavej, DK-2500 Valby, Denmark
| | | | | | | |
Collapse
|
35
|
Xiang Z, Wang L, Kitai ST. Modulation of spontaneous firing in rat subthalamic neurons by 5-HT receptor subtypes. J Neurophysiol 2005; 93:1145-57. [PMID: 15738272 DOI: 10.1152/jn.00561.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The subthalamic nucleus (STN) is considered to be one of the driving forces in the basal ganglia circuit. The STN is innervated by serotonergic afferents from the raphe nucleus and expresses a variety of 5-HT receptor subtypes. We investigated the effects of 5-HT and 5-HT receptor subtype agonists and antagonists on the firing properties of STN neurons in rat brain slices. We used cell-attached, perforated-patch, and whole cell recording techniques to detect changes in firing frequency and pattern and electrical membrane properties. Due to the depolarization of membrane potential caused by reduced potassium conductance, 5-HT (10 microM) increased the firing frequency of STN neurons without changing their firing pattern. Cadmium failed to occlude the effect of 5-HT on firing frequency. 5-HT had no effect on afterhyperpolarization current. These results indicated that the 5-HT action was not mediated by high-voltage-activated calcium channel currents and calcium-dependent potassium currents. 5-HT had no effect on hyperpolarization-activated cation current (I(H)) amplitude and voltage-dependence of I(H) activation, suggesting that I(H) was not involved in 5-HT-induced excitation. The increased firing by 5-HT was mimicked by 5-HT(2/4) receptor agonist alpha-methyl-5-HT and was partially mimicked by 5-HT2 receptor agonist DOI or 5-HT4 receptor agonist cisapride. The 5-HT action was partially reversed by 5-HT4 receptor antagonist SB 23597-190, 5-HT2 receptor antagonist ketanserin, and 5-HT2C receptor antagonist RS 102221. Our data indicate that 5-HT has significant ability to modulate membrane excitability in STN neurons; modulation is accomplished by decreasing potassium conductance by activating 5-HT4 and 5-HT2C receptors.
Collapse
Affiliation(s)
- Zixiu Xiang
- Deptartment of Neurosurgery, University of Tennessee, Neuroscience Institute, Health Science Center, 847 Monroe Ave., Johnson Bldg., Rm. 427, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
36
|
Turner TJ, Mokler DJ, Luebke JI. Calcium influx through presynaptic 5-HT3 receptors facilitates GABA release in the hippocampus: in vitro slice and synaptosome studies. Neuroscience 2005; 129:703-18. [PMID: 15541891 DOI: 10.1016/j.neuroscience.2004.08.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
Serotonin 5-hydroxytryptamine type 3 receptors (5HT3R) are Ca2+-permeant, non-selective cation channels that have been localized to presynaptic terminals and demonstrated to modulate neurotransmitter release. In the present study the effect of 5-HT on GABA release in the hippocampus was characterized using both electrophysiological and biochemical techniques. 5-HT elicited a burst-like, 6- to 10-fold increase in the frequency of GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) measured with whole-cell voltage-clamp recordings of CA1 neurons in hippocampal slices. When tetrodotoxin was used to block action potential propagation, the 5-HT-induced burst of IPSCs was still observed. Stimulation of hippocampal synaptosomes with 5-HT resulted in a significant increase in the amount of [3H]GABA released by hyperosmotic saline. In both preparations, the 5-HT effect was shown to be mediated by 5HT3Rs, as it was mimicked by the selective 5HT3R agonist m-chlorophenyl biguanide and blocked by the selective 5HT3R antagonist 3-tropanylindole-3-carboxylate hydrochloride. The 5HT3R-mediated increase in GABA release was blocked by 100 microM cadmium or by omitting Ca2+ in external solutions, indicating the Ca2+-dependence of the effect. The high voltage-activated Ca2+ channel blockers omega-conotoxin GVIA and omega-conotoxin MVIIC and 10 microM cadmium had no significant effect on the 5-HT3R-mediated enhancement of GABA release, indicating that Ca2+ influx through the 5-HT3R facilitates GABA release. Taken together, these data provide direct evidence that Ca2+ entry via presynaptic 5HT3Rs facilitates the release of GABA from hippocampal interneurons.
Collapse
Affiliation(s)
- T J Turner
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
37
|
Sil'kis IG. A possible mechanism for the effect of neuromodulators and modifiable inhibition on long-term potentiation and depression of the excitatory inputs to hippocampal principal cells. ACTA ACUST UNITED AC 2003; 33:529-41. [PMID: 14552546 DOI: 10.1023/a:1023960402109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A postsynaptic mechanism for the influences of various neuromodulators and modifiable disynaptic inhibition on long-term potentiation and depression of the excitatory inputs to granule and pyramidal neurons in the hippocampus is described. According to this mechanism, facilitation of the induction of long-term depression/potentiation at the excitatory input to the inhibitory interneuron induced by the action of a neuromodulator on a receptor bound to a G(i/0)/(Gs or G(q/11)) protein can lead to decreases/increases in GABA release, weakening/strengthening of the inhibitory action on the target cell, and improvement in the conditions for induction of long-term potentiation/depression of the excitatory input to this cell. In the absence of inhibition, the same neuromodulator, activating the same type of receptors on the target cell, would facilitate induction of long-term depression/potentiation in that cell. The resultant effect of the action of the neuromodulator on the target cell depends on the ratio of the "strengths" of the excitatory and inhibitory inputs to the cell, on the presence on the interneuron and the target cell of the same or different types of receptors sensitive to this neurumodulator, and on the concentration of the neurumodulator, because of its different affinities for the receptors through which its differently directed effects on postsynaptic processes are mediated. Predictions based on this mechanism are in agreement with known experimental data.
Collapse
Affiliation(s)
- I G Sil'kis
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow
| |
Collapse
|
38
|
Van Hooft JA, Wadman WJ. Ca2+ ions block and permeate serotonin 5-HT3 receptor channels in rat hippocampal interneurons. J Neurophysiol 2003; 89:1864-9. [PMID: 12611954 DOI: 10.1152/jn.00948.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The serotonin 5-HT(3) receptor native to rat hippocampal CA1 stratum radiatum interneurons is blocked by Ca(2+) ions in a dose- and voltage-dependent manner, which is reflected by a region of negative slope conductance in the I-V curve. The steep dependence on the extracellular Ca(2+) concentration suggests that the channel contains more than one binding site for Ca(2+). A three barrier-two site model, based on Eyring rate theory, was used to describe the I-V curves. When extra- and intracellular K(+) and Cs(+) were substituted with Na(+), the I-V curves were accurately fit by the model, unlike the I-V curves recorded under standard ionic conditions. This suggests that the K(+) and Cs(+) permeabilities are small compared with that of Na(+). The distribution of the energy barriers and binding sites for Ca(2+) and Na(+) showed that the binding sites are located at approximately the 13' and the -4' position in the ion channel. The model predicts that at large hyperpolarized membrane potentials (more negative than -120 mV), the fractional Ca(2+) current amounts to approximately 1% of the total ion current. However, at physiologically relevant membrane potentials, the fractional Ca(2+) current is smaller (<0.1%) and the relative Ca(2+) permeability (P(Ca)/P(Na)) is estimated to be 0.10 at -60 mV.
Collapse
Affiliation(s)
- Johannes A Van Hooft
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section Neurobiology, NL-1090 GB Amsterdam, The Netherlands.
| | | |
Collapse
|
39
|
Morales M, Bäckman C. Coexistence of serotonin 3 (5-HT3) and CB1 cannabinoid receptors in interneurons of hippocampus and dentate gyrus. Hippocampus 2003; 12:756-64. [PMID: 12542227 DOI: 10.1002/hipo.10025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using in situ hybridization histochemistry, a high degree of coexpression of the functional 5-HT3A subunit of the 5-HT3 receptor and the central CB1 cannabinoid receptor was detected in all subfields of the hippocampus and subgranular layer of the dentate gyrus (DG). Semi-quantitative analysis demonstrated that, depending on the hippocampal layer, 72-88% of CB1-expressing interneurons coexpress the 5-HT3A subunit. Within the DG, 5-HT3A/CB1 double-labeled neurons were confined to the subgranular layer, where close to 80% of all CB1-expressing basket neurons were found to contain 5-HT3A subunit transcripts. These results provide the first evidence indicating that the only ion channel receptor for serotonin and central CB1 cannabinoid receptor coexist in neurons containing the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). These findings suggest possible interactions between the cannabinoid and serotonergic systems at the level of GABA neurotransmission. However, activation of 5-HT3- or CB1-receptors are likely to have opposing regulatory effects on GABA neurotransmission, as 5-HT3 receptor activation by serotonin results in the release of GABA, while CB1 activation by cannabinoids results in inhibition of GABA release.
Collapse
Affiliation(s)
- Marisela Morales
- National Institute on Drug Abuse, Cellular Neurophysiology, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
40
|
Xiang Z, Prince DA. Heterogeneous actions of serotonin on interneurons in rat visual cortex. J Neurophysiol 2003; 89:1278-87. [PMID: 12626611 DOI: 10.1152/jn.00533.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of serotonin (5-HT) on excitability of two cortical interneuronal subtypes, fast-spiking (FS) and low threshold spike (LTS) cells, and on spontaneous inhibitory postsynaptic currents (sIPSCs) in layer V pyramidal cells were studied in rat visual cortical slices using whole-cell recording techniques. Twenty-two of 28 FS and 26 of 35 LTS interneurons responded to local application of 5-HT. In the group of responsive neurons, 5-HT elicited an inward current in 50% of FS cells and 15% of LTS cells, an outward current was evoked in 41% of FS cells and 81% of LTS cells, and an inward current followed by an outward current in 9% of FS cells and 4% LTS cells. The inward and outward currents were blocked by a 5-HT(3) receptor antagonist, tropisetron, and a 5-HT(1A) receptor antagonist, NAN-190, respectively. The 5-HT-induced inward and outward currents were both associated with an increase in membrane conductance. The estimated reversal potential was more positive than -40 mV for the inward current and close to the calculated K(+) equilibrium potential for the outward current. The 5-HT application caused an increase, a decrease, or an increase followed by a decrease in the frequency of sIPSCs in pyramidal cells. The 5-HT(3) receptor agonist 1-(m-chlorophenyl) biguanide increased the frequency of larger and fast-rising sIPSCs, whereas the 5-HT(1A) receptor agonist (+/-)8-hydroxydipropylaminotetralin hydrobromide elicited opposite effects and decreased the frequency of large events. These data indicate that serotonergic activation imposes complex actions on cortical inhibitory networks, which may lead to changes in cortical information processing.
Collapse
Affiliation(s)
- Zixiu Xiang
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, California 94305, USA
| | | |
Collapse
|
41
|
Morales M, Wang SD, Diaz-Ruiz O, Jho DHJ. Cannabinoid CB1 receptor and serotonin 3 receptor subunit A (5-HT3A) are co-expressed in GABA neurons in the rat telencephalon. J Comp Neurol 2003; 468:205-16. [PMID: 14648680 DOI: 10.1002/cne.10968] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among all described serotonin (5-HT) receptors in mammals, the type three (5-HT3) is the only ligand-gated ion channel receptor for serotonin. By using double in situ hybridization histochemistry, we found co-expression of the functional 5-HT3A subunit of the 5-HT3 receptor and the central CB1 cannabinoid receptor in neurons of the rat telencephalon. Double-labeled 5-HT3A/CB1 neurons were found in the anterior olfactory nucleus, superficial and deep layers of the cortex, hippocampal formation (hippocampus, dentate gyrus, subiculum, and entorhinal cortex) and amygdala. Analysis of the proportion of neurons co-expressing 5-HT3A and CB1 receptors in the cortex and amygdala showed that, depending on the brain region, 37-53% of all neurons expressing the 5-HT3A subunit also expressed CB1 transcripts; 16-72% of the total population of neurons expressing CB1 mRNA co-expressed the 5-HT3A subunit. By using a combination of double in situ hybridization and immunohistochemistry, we demonstrated that 5-HT3A/CB1-expressing neurons contained the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). These results imply that in distinct regions of the telencephalon, GABA neurons that react to cannabinoids may also be responsive to serotonin through 5-HT3 receptors. Cellular coexistence of 5-HT3A and CB1 transcripts in interneurons of the cortex, hippocampal formation, and amygdala suggest possible interactions between the cannabinoid and serotonergic systems at the level of GABA neurotransmission in brain areas involved in cognition, memory, and emotion.
Collapse
MESH Headings
- Animals
- Cannabinoids/analysis
- Cannabinoids/biosynthesis
- Cannabinoids/genetics
- Gene Expression Regulation/physiology
- Male
- Neurons/chemistry
- Neurons/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/analysis
- Receptor, Cannabinoid, CB1/biosynthesis
- Receptor, Cannabinoid, CB1/genetics
- Receptors, Serotonin, 5-HT3/analysis
- Receptors, Serotonin, 5-HT3/biosynthesis
- Receptors, Serotonin, 5-HT3/genetics
- Telencephalon/chemistry
- Telencephalon/metabolism
- gamma-Aminobutyric Acid/analysis
- gamma-Aminobutyric Acid/biosynthesis
- gamma-Aminobutyric Acid/genetics
Collapse
Affiliation(s)
- Marisela Morales
- National Institute on Drug Abuse, Intramural Research Program, Cellular Neurophysiology, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
Numerous observations suggest diverse and modulatory roles for serotonin (5-HT) in cortex. Because of the diversity of cell types and multiple receptor subtypes and actions of 5-HT, it has proven difficult to determine the overall role of 5-HT in cortical function. To provide a broader perspective of cellular actions, we studied the effects of 5-HT on morphologically and physiologically identified pyramidal and nonpyramidal neurons from layers I-III of primary somatosensory and motor cortex. We found cell type-specific differences in response to 5-HT. Four cell types were observed in layer I: Cajal Retzius, pia surface, vertical axon, and horizontal axon cells. The physiology of these cells ranged from fast spiking (FS) to regular spiking (RS). In layers II-III, we observed interneurons with FS, RS, and late spiking physiology. Morphologically, these cells varied from bipolar to multipolar and included basket-like and chandelier cells. 5-HT depolarized or hyperpolarized pyramidal neurons and reduced the slow afterhyperpolarization and spike frequency. Consistent with a role in facilitating tonic inhibition, 5-HT2 receptor activation increased the frequency of spontaneous IPSCs in pyramidal neurons. In layers II-III, 70% of interneurons were depolarized by 5-HT. In layer I, 57% of cells with axonal projections to layers II-III (vertical axon) were depolarized by 5-HT, whereas 63% of cells whose axons remain in layer I (horizontal axon) were hyperpolarized by 5-HT. We propose a functional segregation of 5-HT effects on cortical information processing, based on the pattern of axonal arborization.
Collapse
|
43
|
5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J Neurosci 2002. [PMID: 12196560 DOI: 10.1523/jneurosci.22-17-07389.2002] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neocortical neurons expressing the serotonin 5-HT3 receptor (5-HT3R) were characterized in rat acute slices by using patch-clamp recordings combined with single-cell RT-PCR and histochemical labeling. The 5-HT3A receptor subunit was expressed selectively in a subset of GABAergic interneurons coexpressing cholecystokinin (CCK) and vasoactive intestinal peptide (VIP). The 5-HT3B subunit was never detected, indicating that 5-HT3Rs expressed by neocortical interneurons did not contain this subunit. In 5-HT3A-expressing VIP/CCK interneurons, serotonin induced fast membrane potential depolarizations by activating an inward current that was blocked by the selective 5-HT3R antagonist tropisetron. Furthermore, we observed close appositions between serotonergic fibers and the dendrites and somata of 5-HT3R-expressing neurons, suggestive of possible synaptic contacts. Indeed, in interneurons exhibiting rapid excitation by serotonin, local electrical stimulations evoked fast EPSCs of large amplitude that were blocked by tropisetron. Finally, 5-HT3R-expressing neurons were also excited by a nicotinic agonist, indicating that serotonergic and cholinergic fast synaptic transmission could converge onto VIP/CCK interneurons. Our results establish a clear correlation between the presence of the 5-HT3A receptor subunit in neocortical VIP/CCK GABAergic interneurons, its functional expression, and its synaptic activation by serotonergic afferent fibers from the brainstem raphe nuclei.
Collapse
|
44
|
Butt SJB, Pitman RM. Modulation by 5-hydroxytryptamine of nicotinic acetylcholine responses recorded from an identified cockroach (Periplaneta americana) motoneuron. Eur J Neurosci 2002; 15:429-38. [PMID: 11876770 DOI: 10.1046/j.0953-816x.2001.01863.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recordings from the soma of the cockroach (Periplaneta americana) fast coxal depressor motoneuron (Df) were made while acetylcholine (ACh) was regularly pressure-applied locally from a micropipette. The modulatory effects upon these nicotinic ACh responses of bath-applied 5-hydroxytryptamine (5-HT, serotonin), dopamine and octopamine were investigated under either current-clamp or voltage-clamp conditions. The biogenic amines reversibly suppressed, but never totally abolished, ACh responses, 5-HT being the most potent, with a threshold near 10(-6) m (EC50 = 5 x 10(-5) m). Occlusion experiments indicate that the amines share a common mechanism at the level of either receptors or second messenger pathways. The amines also modulated responses to nicotine or carbachol (each of which resists hydrolysis by acetylcholinesterases), indicating that the amines did not act by accelerating ACh degradation. Pharmacological antagonists were used in an attempt to characterize the receptor responsible for amine-mediated modulation. Although a number of antagonists mimicked the action of amines rather than producing blockade, the antagonistic actions of LSD and RS23597 pointed strongly to a receptor-mediated mechanism, but did not allow receptor identification. The magnitude of the modulatory effect of 5-HT was significantly reduced by intracellular guanosine-5'-O-(2-thiodiphosphate) (GDP-beta-S), indicating involvement of a G-protein. Intracellular injection of the calcium chelator BAPTA did not block the modulatory effect of 5-HT, showing that the amines do not operate through the calcium-dependent pathway by which muscarinic receptors act on nicotinic currents. The adenylate cyclase inhibitor dideoxyadenosine (DDA), on the other hand, did attenuate the action of 5-HT, suggesting involvement of cyclic AMP.
Collapse
Affiliation(s)
- Simon J B Butt
- School of Biomedical Sciences, Gatty Marine Laboratory, University of St Andrews, Fife KY16 8LB, UK
| | | |
Collapse
|
45
|
Niemeyer MI, Lummis SC. The role of the agonist binding site in Ca(2+) inhibition of the recombinant 5-HT(3A) receptor. Eur J Pharmacol 2001; 428:153-61. [PMID: 11675031 DOI: 10.1016/s0014-2999(01)01251-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism and site of action of Ca(2+) at the recombinant murine 5-hydroxytryptamine (5-HT)(3A) receptor were investigated using whole-cell voltage clamp, radioligand binding and single-cell Ca(2+) imaging. Inhibition of the 5-HT (3 microM)-induced response by 10 mM Ca(2+) reached a plateau at 68.5% inhibition, with half-maximal effect at 2.6 mM. This was due to an increase in EC(50) from 2.35 to 3.87 microM and a 30% reduction in I(max). Ca(2+) also resulted in the inhibition of binding of both 5-HT(3) receptor agonist [3H]m-chlorophenylbiguanide and antagonist [3H]granisetron due to an increase in K(d), with no change in B(max). An increase in EC(50) from 2.6 (1 mM Ca(2+)) to 4.7 microM (10 mM Ca(2+)), with no change in maximal [Ca(2+)](i), was observed from Ca(2+) imaging studies. Largely similar effects were observed with Mg(2+). The combined data suggest that Ca(2+) acting at a site that directly or indirectly influences the agonist binding site plays a significant role in its inhibitory effect at the 5-HT(3) receptor.
Collapse
MESH Headings
- Binding Sites/physiology
- Binding, Competitive/drug effects
- Calcium/metabolism
- Calcium/pharmacology
- Cations, Divalent/pharmacology
- Cell Line
- DNA, Recombinant/genetics
- Dose-Response Relationship, Drug
- Humans
- Magnesium/pharmacology
- Membrane Potentials/drug effects
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/genetics
- Receptors, Serotonin/physiology
- Receptors, Serotonin, 5-HT3
- Serotonin/metabolism
- Serotonin/pharmacology
- Serotonin Receptor Agonists/metabolism
- Serotonin Receptor Agonists/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M I Niemeyer
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | | |
Collapse
|
46
|
Mott DD, Erreger K, Banke TG, Traynelis SF. Open probability of homomeric murine 5-HT3A serotonin receptors depends on subunit occupancy. J Physiol 2001; 535:427-43. [PMID: 11533135 PMCID: PMC2278792 DOI: 10.1111/j.1469-7793.2001.00427.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
1. The time course of macroscopic current responses of homomeric murine serotonin 5-HT3A receptors was studied in whole cells and excised membrane patches under voltage clamp in response to rapid application of serotonin. 2. Serotonin activated whole cell currents with an EC(50) value for the peak response of 2 microM and a Hill slope of 3.0 (n = 12), suggesting that the binding of at least three agonist molecules is required to open the channel. 3. Homomeric 5-HT3A receptors in excised membrane patches had a slow activation time course (mean +/- S.E.M. 10-90 % rise time 12.5 +/- 1.6 ms; n = 9 patches) for 100 microM serotonin. The apparent activation rate was estimated by fitting an exponential function to the rising phase of responses to supramaximal serotonin to be 136 s(-1). 4. The 5-HT3A receptor response to 100 microM serotonin in outside-out patches (n = 19) and whole cells (n = 41) desensitized with a variable rate that accelerated throughout the experiment. The time course for desensitization was described by two exponential components (for patches tau(slow) 1006 +/- 139 ms, amplitude 31 %; tau(fast) 176 +/- 25 ms, amplitude 69 %). 5. Deactivation of the response following serotonin removal from excised membrane patches (n = 8) and whole cells (n = 29) was described by a dual exponential time course with time constants similar to those for desensitization (for patches tau(slow) 838 +/- 217 ms, 55 % amplitude; tau(fast) 213 +/- 44 ms, 45 % amplitude). 6. In most patches (6 of 8), the deactivation time course in response to a brief 1-5 ms pulse of serotonin was similar to or slower than desensitization. This suggests that the continued presence of agonist can induce desensitization with a similar or more rapid time course than agonist unbinding. The difference between the time course for deactivation and desensitization was voltage independent over the range -100 to -40 mV in patches (n = 4) and -100 to +50 mV in whole cells (n = 4), suggesting desensitization of these receptors in the presence of serotonin does not reflect a voltage-dependent block of the channel by agonist. 7. Simultaneously fitting the macroscopic 5-HT3A receptor responses in patches to submaximal (2 microM) and maximal (100 microM) concentrations of serotonin to a variety of state models suggests that homomeric 5-HT3A receptors require the binding of three agonists to open and possess a peak open probability greater than 0.8. Our modelling also suggests that channel open probability varies with the number of serotonin molecules bound to the receptor, with a reduced open probability for fully liganded receptors. Increasing the desensitization rate constants in this model can generate desensitization that is more rapid than deactivation, as observed in a subpopulation of our patches.
Collapse
Affiliation(s)
- D D Mott
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322-3090, USA
| | | | | | | |
Collapse
|
47
|
Karten YJ, Stienstra CM, Joëls M. Corticosteroid effects on serotonin responses in granule cells of the rat dentate gyrus. J Neuroendocrinol 2001; 13:233-8. [PMID: 11207937 DOI: 10.1046/j.1365-2826.2001.00616.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Granule cells in the rat dentate gyrus contain mineralocorticoid and glucocorticoid receptors to which the adrenal hormone corticosterone binds with differential affinity. These cells also express various receptor-subtypes for serotonin (5-HT), including the 5-HT1A receptor which mediates a membrane hyperpolarization accompanied by a decrease in membrane resistance. Earlier studies have shown that removal of corticosterone by adrenalectomy, particularly in the dentate gyrus, results in enhanced expression of the 5-HT1A receptor mRNA and increased 5-HT1A receptor binding capacity. This was normalized by activation of mineralocorticoid receptors or concurrent activation of both receptor types. In the present, intracellular recording study in vitro, we examined if the altered levels of 5-HT1A receptor mRNA and protein are associated with changes in the response to 5-HT. We found that the hyperpolarization and resistance decrease induced in granule cells by a submaximal (10 microM) dose of 5-HT were unaltered 2-4 days after adrenalectomy, indicating a dissociation between corticosteroid actions on 5-HT1A receptor mRNA/protein levels and functional responses to 5-HT. Subsequent occupation of mineralocorticoid receptors in vitro significantly suppressed the 5-HT induced change in resistance, 1-4 h after steroid application. Compared to this, concurrent activation of glucocorticoid receptors led to large responses to 5-HT. This modulation by steroids was not observed with a higher dose of 5-HT (30 microM). The data suggest that with moderate amounts of 5-HT, corticosteroids affect the information flow through the dentate gyrus such that excitatory transmission is promoted with predominant mineralocorticoid receptor activation and attenuated with additional glucocorticoid receptor occupation.
Collapse
Affiliation(s)
- Y J Karten
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GB Amsterdam, The Netherlands
| | | | | |
Collapse
|
48
|
Koyama S, Matsumoto N, Kubo C, Akaike N. Presynaptic 5-HT3 receptor-mediated modulation of synaptic GABA release in the mechanically dissociated rat amygdala neurons. J Physiol 2000; 529 Pt 2:373-83. [PMID: 11101647 PMCID: PMC2270199 DOI: 10.1111/j.1469-7793.2000.00373.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Nystatin-perforated patch recordings were made from mechanically dissociated basolateral amygdala neurons with preserved intact native presynaptic nerve terminals to study the mechanism of 5-HT3 receptor-mediated serotonergic modulation of GABAergic inhibition. The specific 5-HT3 agonist mCPBG (1 microM) rapidly facilitated the frequency of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and this facilitation desensitized within 1 min. Tropisetron (30 nM), a specific 5-HT3 antagonist, blocked the mCPBG effect. mCPBG augmented mIPSC amplitude. However, no direct postsynaptic serotonergic currents were evoked by mCPBG. Neither GABA-evoked current amplitude nor the kinetics of individual GABAergic mIPSCs were affected by mCPBG. Therefore, the augmentation is unlikely to be due to postsynaptic effects evoked by mCPBG. At higher concentrations mCPBG produced shorter-duration facilitation of miniature events. While mCPBG increased the mIPSC frequency in calcium-containing solution with Cd2+, this increase was absent in Ca2+-free external solution. It appears that the Ca2+ influx through voltage-dependent calcium channels was not as crucial as that through 5-HT3 receptors for synaptic GABA release. When two pulses of mCPBG (each 1 microM, 1 min) were given, the response to the second pulse elicited full recovery when the interval between pulses was at least 9 min. Protein kinase A (PKA) activation by 8-Br-cAMP (300 microM) shortened and PKA inhibition by Rp-cAMP (100 microM) prolonged the recovery time. PKA activity did not affect the time course of fast desensitization. Our results suggest that a 5-HT3-specific agonist acts on presynaptic nerve terminals facilitating synaptic GABA release without postsynaptic effects. The facilitation requires calcium influx through presynaptic 5-HT3 receptors. PKA modulates the recovery process from desensitization of presynaptic 5-HT3 receptor-mediated regulation of synaptic GABA release.
Collapse
Affiliation(s)
- S Koyama
- Cellular and System Physiology, Graduate School of Medical Sciences and Department of Psychosomatic Medicines, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
49
|
Abstract
An emerging concept of cortical network organization is that distinct segments of the pyramidal neuron tree are controlled by functionally diverse inhibitory microcircuits. We compared the expression of two serotonin receptor subtypes, the G-protein-coupled 5-hydroxytryptamine2A receptors and the ion-channel gating 5-HT3 receptors, in cortical neuron types, which control these microcircuits. Here we show, using light and electron microscopic immunocytochemical techniques, that 5-HT2A receptors are segregated from 5-HT3 receptors in the macaque cerebral cortex. 5-HT2A receptor immunolabel was found in pyramidal cells and also in GABAergic interneurons known to specialize in the perisomatic inhibition of pyramidal cells: large and medium-size parvalbumin- and calbindin-containing interneurons. In contrast, 5-HT3 label was only present in small GABA-, substance P receptor-, and calbindin-containing neurons and in medium-size calretinin-containing neurons: interneurons known to preferentially target the dendrites of pyramidal cells. This cellular segregation indicates a serotonin-receptor-specific segmentation of the GABAergic inhibitory actions along the pyramidal neuron tree.
Collapse
Affiliation(s)
- R L Jakab
- Section of Neurobiology, Yale University, School of Medicine, New Haven, CT 06520-8001, USA.
| | | |
Collapse
|
50
|
Mayeux-Portas V, File SE, Stewart CL, Morris RJ. Mice lacking the cell adhesion molecule Thy-1 fail to use socially transmitted cues to direct their choice of food. Curr Biol 2000; 10:68-75. [PMID: 10662668 DOI: 10.1016/s0960-9822(99)00278-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Thy-1 is a major cell-surface glycoprotein of mature neurons and certain other cells, including those of the lymphoreticular system. Despite being the simplest member of the immunoglobulin superfamily, the biological role of Thy-1 has proved elusive. Analysis of Thy-1 null mice has shown the presence of excessive GABAergic inhibition of neurotransmission in the dentate gyrus of the hippocampal formation selectively, without any neurological or behavioural effects being apparent. RESULTS We show here that Thy-1 null mice are unable to make the appropriate dietary choice in the test for social transmission of food preference, despite showing a normal level of social interaction with the demonstrator mouse, normal neophobia, and normal learning in a T-maze using scented food as cues. The mice also performed normally in tests of anxiety, locomotor activity, exploration of a novel environment, habituation to novelty and spatial learning. This phenotype is maintained on two different strain backgrounds, is rescued by transgenic expression of Thy-1 and by administration of the GABA(A) receptor antagonist pentylenetetrazole. CONCLUSIONS The test for social transmission of food preference is based on the normal ability of mice in a colony to learn from each other which foods are safe to eat. The lack of this key survival behaviour in Thy-1 null mice could act as an evolutionary pressure point to conserve expression of Thy-1. Furthermore, the specific cognitive defect caused by inactivation of the Thy-1 gene suggests that it would be worthwhile to determine the role of Thy-1 in certain human familial forms of mental retardation that map to chromosome 11q22-23 in the region of the Thy-1 locus rather than the nearby ataxia telangiectasia locus.
Collapse
Affiliation(s)
- V Mayeux-Portas
- Molecular Neurobiology Group, Laboratoire Physiopathologie Neuromusculaire, GKT Medical School, EPI 99-30, Institut de Biologie, London, Montpellier, SE1 1UL, 34060, UK, France
| | | | | | | |
Collapse
|