1
|
Pradier B, McCormick SJ, Tsuda AC, Chen RW, Atkinson AL, Westrick MR, Buckholtz CL, Kauer JA. Properties of neurons in the superficial laminae of trigeminal nucleus caudalis. Physiol Rep 2020; 7:e14112. [PMID: 31215180 PMCID: PMC6581829 DOI: 10.14814/phy2.14112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023] Open
Abstract
The trigeminal nucleus caudalis (TNc) receives extensive afferent innervation from peripheral sensory neurons of the trigeminal ganglion (TG), and is the first central relay in the circuitry underpinning orofacial pain. Despite the initial characterization of the neurons in the superficial laminae, many questions remain. Here we report on electrophysiological properties of 535 superficial lamina I/II TNc neurons. Based on their firing pattern, we assigned these cells to five main groups, including (1) tonic, (2) phasic, (3) delayed, (4) H‐current, and (5) tonic‐phasic neurons, groups that exhibit distinct intrinsic properties and share some similarity with groups identified in the spinal dorsal horn. Driving predominantly nociceptive TG primary afferents using optogenetic stimulation in TRPV1/ChR2 animals, we found that tonic and H‐current cells are most likely to receive pure monosynaptic input, whereas delayed neurons are more likely to exhibit inputs that appear polysynaptic. Finally, for the first time in TNc neurons, we used unsupervised clustering analysis methods and found that the kinetics of the action potentials and other intrinsic properties of these groups differ significantly from one another. Unsupervised spectral clustering based solely on a single voltage response to rheobase current was sufficient to group cells with shared properties independent of action potential discharge pattern, indicating that this approach can be effectively applied to identify functional neuronal subclasses. Together, our data illustrate that cells in the TNc with distinct patterns of TRPV1/ChR2 afferent innervation are physiologically diverse, but can be understood as a few major groups of cells having shared functional properties.
Collapse
Affiliation(s)
- Bruno Pradier
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Samuel J McCormick
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Ayumi C Tsuda
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Rudy W Chen
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Abigail L Atkinson
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Mollie R Westrick
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Caroline L Buckholtz
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| | - Julie A Kauer
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Carney Institute for Brain Science, Providence, Rhode Island
| |
Collapse
|
2
|
Bai Y, Li MY, Ma JB, Li JN, Teng XY, Chen YB, Yin JB, Huang J, Chen J, Zhang T, Qiu XT, Chen T, Li H, Wu SX, Peng YN, Li X, Kou ZZ, Li YQ. Enkephalinergic Circuit Involved in Nociceptive Modulation in the Spinal Dorsal Horn. Neuroscience 2020; 429:78-91. [PMID: 31917345 DOI: 10.1016/j.neuroscience.2019.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]
Abstract
Enkephalin (ENK) has been implicated in pain modulation within the spinal dorsal horn (SDH). Revealing the mechanisms underlying ENK analgesia entails the anatomical and functional knowledge of spinal ENK-ergic circuits. Herein, we combined morphological and electrophysiological studies to unravel local ENK-ergic circuitry within the SDH. First, the distribution pattern of spinal ENK-ergic neurons was observed in adult preproenkephalin (PPE)-GFP knock-in mice. Next, the retrograde tracer tetramethylrhodamine (TMR) or horseradish peroxidase (HRP) was injected into the parabrachial nucleus (PBN) in PPE-GFP mice. Immunofluorescent staining showed I-isolectin B4 (IB4) labeled non-peptidergic afferents were in close apposition to TMR-labeled PBN-projecting neurons within lamina I as well as PPE-immunoreactivity (-ir) neurons within lamina II. Some TMR-labeled neurons were simultaneously in close association with both IB4 and PPE-ir terminals. Synaptic connections of these components were further confirmed by electron microscopy. Finally, TMR was injected into the PBN in adult C57BL/6 mice. Whole-cell patch recordings showed that δ-opioid receptor (DOR) agonist, [D-Pen2,5]-enkephalin (DPDPE, 1 µM), significantly reduced the frequency of miniature excitatory postsynaptic current (mEPSC) and decreased the activity of TMR-labeled neurons. In conclusion, spinal ENKergic neurons receive direct excitatory inputs from primary afferents, which might be directly recruited to release ENK under the condition of noxious stimuli; ENK could inhibit the glutamatergic transmission towards projecting neurons via presynaptic and postsynaptic DORs. These morphological and functional evidence may explain the mechanisms underlying the analgesic effects exerted by ENK within the SDH.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Meng-Ying Li
- Department of Endocrinology and Metabolism, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiang-Bo Ma
- Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Yu Teng
- Department of Anatomy, Guangxi Medical University, Nanning, China
| | - Ying-Biao Chen
- Department of Anatomy, Fujian Health College, Fuzhou, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jing Huang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Sheng-Xi Wu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, China
| | - Ya-Nan Peng
- Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China
| | - Xiang Li
- Department of Orthopaedics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China; Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China.
| |
Collapse
|
3
|
Is more always better? How different 'doses' of exercise after incomplete spinal cord injury affects the membrane properties of deep dorsal horn interneurons. Exp Neurol 2017; 300:201-211. [PMID: 29146456 DOI: 10.1016/j.expneurol.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/22/2017] [Accepted: 11/12/2017] [Indexed: 01/12/2023]
Abstract
Interneurons in the deep dorsal horn (DDH) of the spinal cord process somatosensory input, and form an important link between upper and lower motoneurons to subsequently shape motor output. Exercise training after SCI is known to improve functional motor recovery, but little is known about the mechanisms within spinal cord neurons that underlie these improvements. Here we investigate how the properties of DDH interneurons are affected by spinal cord injury (SCI) alone, and SCI in combination with different 'doses' of treadmill exercise training (3, 6, and 9wks). In an adult mouse hemisection model of SCI we used whole-cell patch-clamp electrophysiology to record intrinsic, AP firing and gain modulation properties from DDH interneurons in a horizontal spinal cord slice preparation. We find that neurons within two segments of the injury, both ipsi- and contralateral to the hemisection, are similarly affected by SCI and SCI plus exercise. The passive intrinsic membrane properties input resistance (Rin) and rheobase are sensitive to the effects of recovery time and exercise training after SCI thus altering DDH interneuron excitability. Conversely, select active membrane properties are largely unaffected by either SCI or exercise training. SCI itself causes a mismatch in the expression of voltage-gated subthreshold currents and AP discharge firing type. Over time after SCI, and especially with exercise training (9wks), this mismatched expression is exacerbated. Lastly, amplification properties (i.e. gain of frequency-current relationship) of DDH interneurons are altered by SCI alone and recover spontaneously with no clear effect of exercise training. These results suggest a larger 'dose' of exercise training (9wks) has a strong and selective effect on specific membrane properties, and on the output of interneurons in the vicinity of a SCI. These electrophysiological data provide new insights into the plasticity of DDH interneurons and the mechanisms by which exercise therapy after SCI can improve recovery.
Collapse
|
4
|
Tramadol and Tramadol+Caffeine Synergism in the Rat Formalin Test Are Mediated by Central Opioid and Serotonergic Mechanisms. BIOMED RESEARCH INTERNATIONAL 2015; 2015:686424. [PMID: 26146627 PMCID: PMC4471251 DOI: 10.1155/2015/686424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/08/2023]
Abstract
Different analgesic combinations with caffeine have shown this drug to be capable of increasing the analgesic effect. Many combinations with nonsteroidal anti-inflammatory drugs (NSAIDs) have been carried out, but, in regard to opioids, only combinations with morphine and tramadol have been reported. The antinociceptive synergism mechanism of these combinations is not well understood. The purpose of the present study was to determine the participation of spinal and supraspinal opioidergic and serotonergic systems in the synergic effect of the tramadol+caffeine combination in the rat formalin test. At the supraspinal level, the opioid antagonist, naloxone, completely reversed the effect of the drug combination, whereas ketanserin, a 5-HT2 receptor antagonist, inhibited the effect by 60%; however, ondansetron, a 5-HT3 receptor antagonist, did not alter the combination effect. When the antagonists were intrathecally administered, there was a significant reduction in all tramadol-caffeine combination effects. With respect to tramadol alone, there was significant participation of the opioid system at the supraspinal level, whereas it was the serotonergic system that participated at the spinal level by means of the two receptors studied. In conclusion, the tramadol+caffeine combination synergically activated the opioid and serotonergic systems at the supraspinal level, as well as at the spinal level, to produce the antinociception.
Collapse
|
5
|
Petitjean H, Hugel S, Barthas F, Bohren Y, Barrot M, Yalcin I, Schlichter R. Activation of transient receptor potential vanilloid 2-expressing primary afferents stimulates synaptic transmission in the deep dorsal horn of the rat spinal cord and elicits mechanical hyperalgesia. Eur J Neurosci 2014; 40:3189-201. [PMID: 25104469 DOI: 10.1111/ejn.12688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/30/2014] [Accepted: 07/10/2014] [Indexed: 11/29/2022]
Abstract
Probenecid, an agonist of transient receptor vanilloid (TRPV) type 2, was used to evaluate the effects of TRPV2 activation on excitatory and inhibitory synaptic transmission in the dorsal horn (DH) of the rat spinal cord and on nociceptive reflexes induced by thermal heat and mechanical stimuli. The effects of probenecid were compared with those of capsaicin, a TRPV1 agonist. Calcium imaging experiments on rat dorsal root ganglion (DRG) and DH cultures indicated that functional TRPV2 and TRPV1 were expressed by essentially non-overlapping subpopulations of DRG neurons, but were absent from DH neurons and DH and DRG glial cells. Pretreatment of DRG cultures with small interfering RNAs against TRPV2 suppressed the responses to probenecid. Patch-clamp recordings from spinal cord slices showed that probenecid and capsaicin increased the frequencies of spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents in a subset of laminae III-V neurons. In contrast to capsaicin, probenecid failed to stimulate synaptic transmission in lamina II. Intrathecal or intraplantar injections of probenecid induced mechanical hyperalgesia/allodynia without affecting nociceptive heat responses. Capsaicin induced both mechanical hyperalgesia/allodynia and heat hyperalgesia. Activation of TRPV1 or TRPV2 in distinct sets of primary afferents increased the sEPSC frequencies in a largely common population of DH neurons in laminae III-V, and might underlie the development of mechanical hypersensitivity following probenecid or capsaicin treatment. However, only TRPV1-expressing afferents facilitated excitatory and/or inhibitory transmission in a subpopulation of lamina II neurons, and this phenomenon might be correlated with the induction of thermal heat hyperalgesia.
Collapse
Affiliation(s)
- Hugues Petitjean
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212 Centre National de la Recherche Scientifique, Strasbourg, France; Universite de Strasbourg, 5 rue Blaise Pascal, F-67084, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Hugel S, Kadiri N, Rodeau JL, Gaillard S, Schlichter R. pH-dependent inhibition of native GABA(A) receptors by HEPES. Br J Pharmacol 2012; 166:2402-16. [PMID: 22452286 DOI: 10.1111/j.1476-5381.2012.01956.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Artificial buffers such as HEPES are extensively used to control extracellular pH (pH(e) ) to investigate the effect of H(+) ions on GABA(A) receptor function. EXPERIMENTAL APPROACH In neurones cultured from spinal cord dorsal horn (DH), dorsal root ganglia (DRG) and cerebellar granule cells (GC) of neonatal rats, we studied the effect of pH(e) on currents induced by GABA(A) receptor agonists, controlling pH(e) with HCO(3) (-) or different concentrations of HEPES. KEY RESULTS Changing HEPES concentration from 1 to 20 mM at constant pH(e) strongly inhibited the currents induced by submaximal GABA applications, but not those induced by glycine or glutamate, on DH, DRG or GC neurones, increasing twofold the EC(50) for GABA in DH neurones and GC. Submaximal GABA(A) receptor-mediated currents were also inhibited by piperazine-N,N'-bis(2-ethanesulfonic acid) (PIPES), 3-(N-morpholino)propanesulfonic acid, tris(hydroxymethyl)aminomethane or imidazole. PIPES and HEPES, both piperazine derivatives, similarly inhibited GABA(A) receptors, whereas the other buffers had weaker effects and 2-(N-morpholino)ethanesulfonic acid had no effect. HEPES-induced inhibition of submaximal GABA(A) receptor-mediated currents was unaffected by diethylpyrocarbonate, a histidine-modifying reagent. HEPES-induced inhibition of GABA(A) receptors was independent of membrane potential, HCO(3) (-) and intracellular Cl(-) concentration and was not modified by flumazenil, which blocks the benzodiazepine binding site. However, it strongly depended on pH(e) . CONCLUSIONS AND IMPLICATIONS Inhibition of GABA(A) receptors by HEPES depended on pH(e) , leading to an apparent H(+) -induced inhibition of DH GABA(A) receptors, unrelated to the pH sensitivity of these receptors in both low and physiological buffering conditions, suggesting that protonated HEPES caused this inhibition.
Collapse
Affiliation(s)
- S Hugel
- Nociception et Douleur, INCI, UPR3212 CNRS, Université de Strasbourg, Strasbourg, France.
| | | | | | | | | |
Collapse
|
7
|
Kadiri N, Rodeau JL, Schlichter R, Hugel S. Neurotensin inhibits background K+ channels and facilitates glutamatergic transmission in rat spinal cord dorsal horn. Eur J Neurosci 2011; 34:1230-40. [PMID: 21936876 DOI: 10.1111/j.1460-9568.2011.07846.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotensin (NT) is a neuropeptide involved in the modulation of nociception. We have investigated the actions of NT on cultured postnatal rat spinal cord dorsal horn (DH) neurons. NT induced an inward current associated with a decrease in membrane conductance in 46% of the neurons and increased the frequency of glutamatergic miniature excitatory synaptic currents in 37% of the neurons. Similar effects were observed in acute slices. Both effects of NT were reproduced by the selective NTS1 agonist JMV449 and blocked by the NTS1 antagonist SR48692 and the NTS1/NTS2 antagonist SR142948A. The NTS2 agonist levocabastine had no effect. The actions of NT persisted after inactivation of G(i/o) proteins by pertussis toxin but were absent after inactivation of protein kinase C (PKC) by chelerythrine or inhibition of the MAPK (ERK1/2) pathway by PD98059. Pre- and postsynaptic effects of NT were insensitive to classical voltage- and Ca(2+) -dependent K(+) channel blockers. The K(+) conductance inhibited by NT was blocked by Ba(2+) and displayed no or little inward rectification, despite the presence of strongly rectifying Ba(2+) -sensitive K(+) conductance in these neurons. This suggested that NT blocked two-pore domain (K2P) background K(+) -channels rather than inwardly rectifying K(+) channels. Zn(2+) ions, which inhibit TRESK and TASK-3 K2P channels, decreased NT-induced current. Our results indicate that in DH neurons NT activates NTS1 receptors which, via the PKC-dependent activation of the MAPK (ERK1/2) pathway, depolarize the postsynaptic neuron and increase the synaptic release of glutamate. These actions of NT might modulate the transfer and the integration of somatosensory information in the DH.
Collapse
Affiliation(s)
- Nabila Kadiri
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 21 rue René Descartes, Strasbourg, France
| | | | | | | |
Collapse
|
8
|
Fukushima T, Tsuda M, Kofuji T, Hori Y. Physiological properties of enkephalin-containing neurons in the spinal dorsal horn visualized by expression of green fluorescent protein in BAC transgenic mice. BMC Neurosci 2011; 12:36. [PMID: 21548966 PMCID: PMC3115906 DOI: 10.1186/1471-2202-12-36] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 05/07/2011] [Indexed: 11/10/2022] Open
Abstract
Background Enkephalins are endogenous opiates that are assumed to modulate nociceptive information by mediating synaptic transmission in the central nervous system, including the spinal dorsal horn. Results To develop a new tool for the identification of in vitro enkephalinergic neurons and to analyze enkephalin promoter activity, we generated transgenic mice for a bacterial artificial chromosome (BAC). Enkephalinergic neurons from these mice expressed enhanced green fluorescent protein (eGFP) under the control of the preproenkephalin (PPE) gene (penk1) promoter. eGFP-positive neurons were distributed throughout the gray matter of the spinal cord, and were primarily observed in laminae I-II and V-VII, in a pattern similar to the distribution pattern of enkephalin-containing neurons. Double immunostaining analysis using anti-enkephalin and anti-eGFP antibodies showed that all eGFP-expressing neurons contained enkephalin. Incubation in the presence of forskolin, an activator of adenylate cyclase, increased the number of eGFP-positive neurons. These results indicate that eGFP expression is controlled by the penk1 promoter, which contains cyclic AMP-responsive elements. Sections obtained from sciatic nerve-ligated mice exhibited increased eGFP-positive neurons on the ipsilateral (nerve-ligated side) compared with the contralateral (non-ligated side). These data indicate that PPE expression is affected by peripheral nerve injury. Additionally, single-neuron RT-PCR analysis showed that several eGFP positive-neurons in laminae I-II expressed glutamate decarboxylase 67 mRNA and that some expressed serotonin type 3 receptors. Conclusions These results suggest that eGFP-positive neurons in laminae I-II coexpress enkephalin and γ-aminobutyric acid (GABA), and are activated by forskolin and in conditions of nerve injury. The penk1-eGFP BAC transgenic mouse contributes to the further characterization of enkephalinergic neurons in the transmission and modulation of nociceptive information.
Collapse
Affiliation(s)
- Teruyuki Fukushima
- Department of Physiology and Biological Information, Dokkyo Medical University, School of Medicine, Kitakobayashi 880, Mibu, Tochigi 321-0293, Japan.
| | | | | | | |
Collapse
|
9
|
Nociceptive stimulation induces expression of Arc/Arg3.1 in the spinal cord with a preference for neurons containing enkephalin. Mol Pain 2010; 6:43. [PMID: 20653942 PMCID: PMC2920254 DOI: 10.1186/1744-8069-6-43] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/23/2010] [Indexed: 02/02/2023] Open
Abstract
Background In pain processing, long term synaptic changes play an important role, especially during chronic pain. The immediate early gene Arc/Arg3.1 has been widely implicated in mediating long-term plasticity in telencephalic regions, such as the hippocampus and cortex. Accordingly, Arc/Arg3.1 knockout (KO) mice show a deficit in long-term memory consolidation. Here, we identify expression of Arc/Arg3.1 in the rat spinal cord using immunohistochemistry and in situ hybridization following pain stimuli. Results We found that Arc/Arg3.1 is not present in naïve or vehicle treated animals, and is de novo expressed in dorsal horn neurons after nociceptive stimulation. Expression of Arc/Arg3.1 was induced in an intensity dependent manner in neurons that were located in laminae I (14%) and II (85%) of the spinal dorsal horn. Intrathecal injection of brain derived neurotrophic factor (BDNF) also induced expression of Arc/Arg3.1. Furthermore, 90% of Arc/Arg3.1 expressing neurons also contained the activity marker c-Fos, which was expressed more abundantly. Preproenkephalin mRNA was found in the majority (68%) of the Arc/Arg3.1 expressing neurons, while NK-1 was found in only 19% and GAD67 mRNA in 3.6%. Finally, pain behavior in Arc/Arg3.1 KO mice was not significantly different from their wild type littermates after application of formalin or after induction of chronic inflammatory pain. Conclusions We conclude that Arc/Arg3.1 is preferentially expressed in spinal enkephalinergic neurons after nociceptive stimulation. Therefore, our data suggest that Arc/Arg3.1 dependent long term synaptic changes in spinal pain transmission are a feature of anti-nociceptive, i.e. enkephalinergic, rather than pro-nociceptive neurons.
Collapse
|
10
|
Huang J, Chen J, Wang W, Wang W, Koshimizu Y, Wei YY, Kaneko T, Li YQ, Wu SX. Neurochemical properties of enkephalinergic neurons in lumbar spinal dorsal horn revealed by preproenkephalin-green fluorescent protein transgenic mice. J Neurochem 2010; 113:1555-64. [PMID: 20367750 DOI: 10.1111/j.1471-4159.2010.06715.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Enkephalin (ENK) has been implicated in nociceptive transmission in the spinal cord while its functional role is not clear because of difficulties in ideally visualizing ENKergic neurons. We thus developed preproenkephalin-green fluorescent protein transgenic mice to better identify ENKergic neurons. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) together with immunohistochemistry and in situ hybridization were first employed to confirm the successful transgenic manipulation and its application in showing spinal ENKergic neurons. The proportions of ENKergic neurons in the spinal cord laminae I, II, III and IV-VI among dorsal horn neurons were 15.8 +/- 3.1%, 39.5 +/- 3.3%, 11.8 +/- 1.9% and 10.7 +/- 2.1%, respectively. Double labeling with other molecules was then performed to further clarify the neurochemical properties of spinal ENKergic neurons. GABA was found to exist in 42.9 +/- 2.8% of ENKergic neurons that were mainly located in lamina I-III. The proportions of parvalbumin-, calretinin-, calbindin- and neuronal nitric oxide synthase-positive cells among the ENKergic neurons were 5.2 +/- 0.7%, 42.6 +/- 2.3%, 25.8 +/- 2.2% and 11.1 +/- 1.6%, respectively. Compared with previously findings obtained with ENK antibody labeling, this line of newly generated mice can be a reliable tool for the study of specific spinal ENKergic neuronal population.
Collapse
Affiliation(s)
- Jing Huang
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Hyperalgesia and allodynia are frequent symptoms of disease and may be useful adaptations to protect vulnerable tissues. Both may, however, also emerge as diseases in their own right. Considerable progress has been made in developing clinically relevant animal models for identifying the most significant underlying mechanisms. This review deals with experimental models that are currently used to measure (sect. II) or to induce (sect. III) hyperalgesia and allodynia in animals. Induction and expression of hyperalgesia and allodynia are context sensitive. This is discussed in section IV. Neuronal and nonneuronal cell populations have been identified that are indispensable for the induction and/or the expression of hyperalgesia and allodynia as summarized in section V. This review focuses on highly topical spinal mechanisms of hyperalgesia and allodynia including intrinsic and synaptic plasticity, the modulation of inhibitory control (sect. VI), and neuroimmune interactions (sect. VII). The scientific use of language improves also in the field of pain research. Refined definitions of some technical terms including the new definitions of hyperalgesia and allodynia by the International Association for the Study of Pain are illustrated and annotated in section I.
Collapse
Affiliation(s)
- Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Fukushima T, Ohtsubo T, Tsuda M, Yanagawa Y, Hori Y. Facilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn. J Neurophysiol 2009; 102:1459-71. [PMID: 19369358 DOI: 10.1152/jn.91160.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Analgesic effects of serotonin (5-hydroxytryptamine [5-HT]) type 3 (5-HT3) receptors may involve the release of gamma-aminobutyric acid (GABA) in the spinal dorsal horn. However, the precise synaptic mechanisms for 5-HT3 receptor-mediated spinal analgesia are not clear. In this study, we investigated whether GABAergic neurons in the superficial dorsal horn (SDH) express functional 5-HT3 receptors and how these 5-HT3 receptors affect GABAergic inhibitory synaptic transmission in the SDH, by using slice preparations from adult glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mice. Tight-seal whole cell recordings from GFP-positive and -negative neurons showed that 5-HT3 receptor-specific agonist 2-methyl-serotonin (2-Me-5-HT) induced inward currents in a substantial population of both GFP-positive and -negative neurons. Additionally, we confirmed expression of 5-HT3 receptors in both types of neurons by single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis. Further, GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs)-both those evoked by electrical stimulation and those occurring spontaneously in tetrodotoxin (i.e., miniature IPSCs [mIPSCs])-were recorded from GFP-negative neurons. 2-Me-5-HT increased the amplitude of the evoked IPSCs and the frequency of mIPSCs. The amplitude of mIPSCs was not affected by 2-Me-5-HT, suggesting that 5-HT augments GABAergic synaptic transmission via presynaptic mechanisms. The present observations indicate that 5-HT3 receptors are expressed on both somadendritic regions and presynaptic terminals of GABAergic neurons and regulate GABAA receptor-mediated inhibitory synaptic transmission in the SDH. Taken together, these results provide clues for the underlying mechanisms of the antinociceptive actions of 5-HT3 receptors in the spinal dorsal horn.
Collapse
Affiliation(s)
- Teruyuki Fukushima
- Department of Physiology and Biological Information, Dokkyo Medical University School of Medicine, Kitakobayashi 880, Mibu, Tochigi 321-0293, Japan
| | | | | | | | | |
Collapse
|
13
|
Condés-Lara M, Rojas-Piloni G, Martínez-Lorenzana G, López-Hidalgo M, Rodríguez-Jiménez J. Hypothalamospinal oxytocinergic antinociception is mediated by GABAergic and opiate neurons that reduce A-delta and C fiber primary afferent excitation of spinal cord cells. Brain Res 2008; 1247:38-49. [PMID: 18996098 DOI: 10.1016/j.brainres.2008.10.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/02/2008] [Accepted: 10/05/2008] [Indexed: 11/18/2022]
Abstract
Recent results implicate a new original mechanism involving oxytocin (OT), as a mediator via descending fibers of the paraventricular hypothalamic nucleus (PVN), in antinociception and analgesia. In rats electrical stimulation of the PVN or topical application of OT selectively inhibits A-delta and C fiber responses in superficial dorsal horn neurons, and this inhibition is reversed by a selective OT antagonist. However, little is known about the mechanisms and the spinal elements participating in this phenomenon. Here we show that topical application of bicuculline blocks the effects produced by PVN electrical stimulation or OT application. PVN electrical stimulation also activates a subpopulation of neurons in lamina II. These PVN-On cells are responsible for the amplification of local GABAergic inhibition. This result reinforces the suggestion that a supraspinal descending control of pain processing uses a specific neuronal pathway in the spinal cord in order to produce antinociception involving a GABAergic interneuron. Moreover, the topical administration of naloxone or a mu-opiate receptor antagonist beta-funaltrexamine only partially blocks the inhibitory effects produced by OT application or PVN electrical stimulation. Thus, this OT mechanism only involves opiate participation to a minor extent. The OT-specific, endogenous descending pathway represents an interesting mechanism to resolve chronic pain problems in special the neuropathic pain.
Collapse
Affiliation(s)
- Miguel Condés-Lara
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro 76230, Mexico.
| | | | | | | | | |
Collapse
|
14
|
Huang J, Wang Y, Wang W, Wei Y, Li Y, Wu S. Preproenkephalin mRNA is Expressed in a Subpopulation of GABAergic Neurons in the Spinal Dorsal Horn of the GAD67-GFP Knock-In Mouse. Anat Rec (Hoboken) 2008; 291:1334-41. [DOI: 10.1002/ar.20755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Huang J, Wang YY, Wang W, Li YQ, Tamamaki N, Wu SX. 5-HT(3A) receptor subunit is expressed in a subpopulation of GABAergic and enkephalinergic neurons in the mouse dorsal spinal cord. Neurosci Lett 2008; 441:1-6. [PMID: 18586398 DOI: 10.1016/j.neulet.2008.04.105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
5-Hydroxytryptamine (5-HT)(3) receptors have been proposed to modulate nociception and pain responses at the spinal level. To gain insight into the cellular mechanism of 5-HT(3) receptors, we examined their expression in GABAergic and enkephalinergic (ENKergic) neurons in the spinal dorsal horn (SDH) using single-cell reverse transcription-polymerase chain reaction (RT-PCR). The glutamic acid decarboxylase (GAD)(67)-green fluorescent protein (GFP) knock-in mouse was used in which all GABAergic neurons were fluorescent. The general tissue RT-PCR results showed that 5-HT(3A) receptor subunit mRNA was present in the mouse SDH, while 5-HT(3B) receptor subunit was absent. Single-cell RT-PCR results showed that 76.2% (16/21) and 33.3% (7/21) of the total 5-HT(3A)-expressing neurons were positive for GAD(67) and preproenkephalin (PPE, a precursor of ENK), respectively. 5-HT(3A) receptor subunit was detected in 28.1% (16/57) of GABAergic neurons and 22.6% (7/31) of ENKergic neurons. About 40.4% (23/57) of GABAergic neurons expressed PPE mRNA. Of the neurons that co-express GAD(67) mRNA and PPE mRNA, about 22% expressed 5-HT(3A) mRNA. These observations indicate that 5-HT(3A) receptor co-localizes with GABA and ENK in the SDH, suggesting that serotonin may activate GABAergic and ENKergic neurons via 5-HT(3A) receptor subunit and therefore affect the release of GABA and ENK. The different cellular localization of 5-HT(3A) receptor subunit suggest the complex participation of this receptor in the inhibitory neuronal circuits of the SDH neurons.
Collapse
Affiliation(s)
- Jing Huang
- Department of Anatomy and KK Leung Brain Research Centre, Faculty of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
16
|
Greenwell TN, Martin-Schild S, Inglis FM, Zadina JE. Colocalization and shared distribution of endomorphins with substance P, calcitonin gene-related peptide, gamma-aminobutyric acid, and the mu opioid receptor. J Comp Neurol 2007; 503:319-33. [PMID: 17492626 DOI: 10.1002/cne.21374] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The endomorphins are endogenous opioids with high affinity and selectivity for the mu opioid receptor (MOR, MOR-1, MOP). Endomorphin-1 (Tyr-Pro-Trp-Phe-NH(2); EM1) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH(2); EM2) have been localized to many regions of the central nervous system (CNS), including those that regulate antinociception, autonomic function, and reward. Colocalization or shared distribution (overlap) of two neurotransmitters, or a transmitter and its cognate receptor, may imply an interaction of these elements in the regulation of functions mediated in that region. For example, previous evidence of colocalization of EM2 with substance P (SP), calcitonin gene-related peptide (CGRP), and MOR in primary afferent neurons suggested an interaction of these peptides in pain modulation. We therefore investigated the colocalization of EM1 and EM2 with SP, CGRP, and MOR in other areas of the CNS. EM2 was colocalized with SP and CGRP in the nucleus of the solitary tract (NTS) and with SP, CGRP and MOR in the parabrachial nucleus. Several areas in which EM1 and EM2 showed extensive shared distributions, but no detectable colocalization with other signaling molecules, are also described.
Collapse
Affiliation(s)
- Thomas N Greenwell
- Neuroscience Program, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
17
|
Schneider SP, Walker TM. Morphology and electrophysiological properties of hamster spinal dorsal horn neurons that express VGLUT2 and enkephalin. J Comp Neurol 2007; 501:790-809. [PMID: 17299755 DOI: 10.1002/cne.21292] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The excitatory amino acid glutamate mediates transmission at spinal synapses, including those formed by sensory afferent fibers and by intrinsic interneurons. The identity and physiological properties of glutamatergic dorsal horn neurons are poorly characterized despite their importance in spinal sensory circuits. Moreover, many intrinsic spinal glutamatergic synapses colocalize the opioid peptide enkephalin (ENK), but the neurons to which they belong are yet to be identified. Therefore, we used immunohistochemistry and confocal microscopy to investigate expression of the VGLUT2 vesicular glutamate transporter, an isoform reported in nonprimary afferent spinal synapses, and ENK in electrophysiologically identified neurons of hamster spinal dorsal horn. VGLUT2 immunoreactivity was localized in restricted fashion to axon varicosities of neurons recorded from laminae II-V, although the occurrence of immunolabeling in individual varicosities varied widely between cells (39 +/- 36%, n = 31 neurons). ENK colocalized with VGLUT2 in up to 77% of varicosities (17 +/- 21%, n = 21 neurons). The majority of neurons expressing VGLUT2 and/or ENK had axons with dense local terminations or projections consistent with propriospinal functions. VGLUT2 and ENK labeling were not correlated with cellular morphology, intrinsic membrane properties, firing patterns, or synaptic responses to sensory afferent stimulation. However, VGLUT2 expression was significantly higher in neurons with depolarized resting membrane potential. The results are new evidence for a population of dual-function dorsal horn interneurons that might provide another mechanism for limiting excitation within dorsal horn circuits during periods of strong sensory activation.
Collapse
Affiliation(s)
- Stephen P Schneider
- Department of Physiology and Neuroscience Program, Michigan State University, E. Lansing, Michigan 48824-3320, USA.
| | | |
Collapse
|
18
|
Abstract
Throughout the mammalian spinal cord, interneurones have been shown to exhibit distinct firing patterns in response to a step of injected current. In this study of ventral horn interneurones in a thick slice preparation of the lumbar cord of 11-19-day-old-rats, four distinct firing patterns were observed and classified as repetitive-firing, repetitive/burst, initial-burst or single-spiking. The hypothesis that a persistent sodium current was the predominant determinant of cell firing behaviour was investigated. A slow voltage ramp was used to assess persistent inward currents (PICs). Cells with repetitive-firing patterns had significantly larger PICs than cells displaying repetitive/burst, initial-burst or single-spiking patterns. Repetitive-firing, repetitive/burst and initial-burst-firing cells were reduced to a single-spiking pattern with the application of riluzole, which also markedly reduced the persistent sodium current. Persistent sodium current was found to account for most of the PIC with only a small contribution from L-type calcium current. These results suggest that the persistent sodium current plays a major role in determining firing patterns in these cells.
Collapse
Affiliation(s)
- Renée D Theiss
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
19
|
Schoffnegger D, Heinke B, Sommer C, Sandkühler J. Physiological properties of spinal lamina II GABAergic neurons in mice following peripheral nerve injury. J Physiol 2006; 577:869-78. [PMID: 17053034 PMCID: PMC1890379 DOI: 10.1113/jphysiol.2006.118034] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aberrant GABAergic inhibition in spinal dorsal horn may underlie some forms of neuropathic pain. Potential, but yet unexplored, mechanisms include reduced excitability, abnormal discharge patterns or altered synaptic input of spinal GABAergic neurons. To test these hypotheses, we quantitatively compared active and passive membrane properties, firing patterns in response to depolarizing current steps and synaptic input of GABAergic neurons in spinal dorsal horn lamina II of neuropathic and of control animals. Transgenic mice were used which expressed enhanced green fluorescent protein (EGFP) controlled by the GAD67 promoter, thereby labelling one-third of all spinal GABAergic neurons. In all neuropathic mice included in this study, chronic constriction injury of one sciatic nerve led to tactile allodynia and thermal hyperalgesia. Control mice were sham-operated. Membrane excitability of GABAergic neurons from neuropathic or sham-treated animals was indistinguishable. The most frequent firing patterns observed in neuropathic and sham-operated animals were the initial burst (neuropathic: 46%, sham-treated: 42%), the gap (neuropathic: 31%, sham-treated: 29%) and the tonic firing pattern (neuropathic: 16%, sham-treated: 24%). The synaptic input from dorsal root afferents was similar in neuropathic and in control animals. Thus, a reduced membrane excitability, altered firing patterns or changes in synaptic input of this group of GABAergic neurons in lamina II of the spinal cord dorsal horn are unlikely causes for neuropathic pain.
Collapse
Affiliation(s)
- Doris Schoffnegger
- Center for Brain Research, Department of Neurophysiology, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
20
|
Anelli R, Heckman CJ. The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord. ACTA ACUST UNITED AC 2006; 34:369-85. [PMID: 16902759 DOI: 10.1007/s11068-006-8724-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 11/22/2004] [Accepted: 11/22/2004] [Indexed: 12/18/2022]
Abstract
Calcium binding proteins (CBPs) regulate intracellular levels of calcium (Ca(2+)) ions. CBPs are particularly interesting from a morphological standpoint, because they are differentially expressed in certain sub-populations of cells in the nervous system of various species of vertebrate animals. However, knowledge on the cellular regulation governing such cell-specific CBP expression is still incomplete. In this work on the L7 segment of the cat spinal cord, we analyzed the localization and morphology of neurons expressing the CBPs calbindin-28 KD (CB), parvalbumin (PV), and calretinin (CR), and co-expressing CB and PV, CB and CR, and PV and CR. Single CBP-positive ((+)) neurons showed specific distributions: (1) CB was present in small neurons localized in laminae I, II, III and X, in small to medium size neurons in laminae III-VI, and in medium to large neurons in laminae VI-VIII; (2) PV was present in small size neurons in laminae III and IV and in medial portions of laminae V and VI, medium neurons and in lamina X at the border with lamina VII, in medium to large neurons in laminae VII and VIII; (3) CR labeling was detected in small size neurons in laminae I, II, III and VIII, in medium to large size neurons in laminae I and III-VII, and in small to medium size neurons in lamina X. Double labeled neurons were a small minority of the CBP(+) cells. Co-expression of CB and PV was seen in 1 to 2% of the CBP(+) cells, and they were detected in the ventral and intermediate portions of lamina VII and in lamina X. Co-localization of CB and CR was present in 0.3% of the cells and these cells were localized in lamina II. Double labeling for PV and CR occurred in 6% of the cells, and the cells were localized in ventral part of lamina VII and in lamina VIII. Overall, these results revealed distinct and reproducible patterns of localization of the neurons expressing single CBPs and co-expressing two of them. Distinct differences of CBP expression between cat and other species are discussed. Possible relations between the cat L7 neurons expressing different CBPs with the neurons previously analyzed in cat and other animals are suggested.
Collapse
Affiliation(s)
- Roberta Anelli
- Department of Physiology, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA.
| | | |
Collapse
|
21
|
Prescott SA, De Koninck Y. Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization. J Neurosci 2006; 25:4743-54. [PMID: 15888650 PMCID: PMC6724767 DOI: 10.1523/jneurosci.0356-05.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lamina I of the spinal dorsal horn plays an important role in processing and relaying nociceptive information to the brain. It comprises physiologically distinct cell types that process information in fundamentally different ways: tonic neurons fire repetitively during stimulation and display prolonged EPSPs, suggesting operation as integrators, whereas single-spike neurons act like coincidence detectors. Using whole-cell recordings from a rat spinal slice preparation, we set out to determine the basis for prolonged EPSPs in tonic cells and the implications for signal processing. Kinetics of synaptic currents could not explain differences in EPSP kinetics. Instead, tonic neurons were found to express a persistent sodium current, I(Na,P), that amplified and prolonged depolarization in response to brief stimulation. Tonic neurons also expressed a persistent calcium current, I(Ca,P), that contributed to prolongation but not to amplification. Simulations using NEURON software demonstrated that I(Na,P) was necessary and sufficient to explain amplification, whereas I(Na,P) and I(Ca,P) acted synergistically to prolong depolarization: initial activation of the slower current (I(Ca,P)) depended on the faster current (I(Na,P)) but maintained activation of the faster current likewise depended on the slower current. Additional investigation revealed that I(Na,P) and I(Ca,P) could dramatically increase integration time (>30x) and thereby encourage temporal summation but at the expense of spike time precision. Thus, by prolonging subthreshold depolarization, intrinsic inward currents allow tonic neurons in spinal lamina I to specialize as integrators that are optimally suited to encode stimulus intensity.
Collapse
Affiliation(s)
- Steven A Prescott
- Division de Neurobiologie Cellulaire, Centre de Recherche Université Laval Robert-Giffard, Québec, Québec, Canada
| | | |
Collapse
|
22
|
Dugué GP, Dumoulin A, Triller A, Dieudonné S. Target-dependent use of co-released inhibitory transmitters at central synapses. J Neurosci 2006; 25:6490-8. [PMID: 16014710 PMCID: PMC6725433 DOI: 10.1523/jneurosci.1500-05.2005] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Corelease of GABA and glycine by mixed neurons is a prevalent mode of inhibitory transmission in the vertebrate hindbrain. However, little is known of the functional organization of mixed inhibitory networks. Golgi cells, the main inhibitory interneurons of the cerebellar granular layer, have been shown to contain GABA and glycine. We show here that, in the vestibulocerebellum, Golgi cells contact both granule cells and unipolar brush cells, which are excitatory relay interneurons for vestibular afferences. Whereas IPSCs in granule cells are mediated by GABA(A) receptors only, Golgi cell inhibition of unipolar brush cells is dominated by glycinergic currents. We further demonstrate that a single Golgi cell can perform pure GABAergic inhibition of granule cells and pure glycinergic inhibition of unipolar brush cells. This specialization results from the differential expression of GABA(A) and glycine receptors by target cells and not from a segregation of GABA and glycine in presynaptic terminals. Thus, postsynaptic selection of coreleased fast transmitters is used in the CNS to increase the diversity of individual neuronal outputs and achieve target-specific signaling in mixed inhibitory networks.
Collapse
Affiliation(s)
- Guillaume P Dugué
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8544, Ecole Normale Supérieure, 75005 Paris, France
| | | | | | | |
Collapse
|
23
|
Fukushima T, Tomitori H, Iwata H, Maekawa M, Hori Y. Differential expression of NMDA receptor subunits between neurons containing and not containing enkephalin in the mouse embryo spinal cord. Neurosci Lett 2005; 391:11-6. [PMID: 16154691 DOI: 10.1016/j.neulet.2005.08.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 08/12/2005] [Accepted: 08/14/2005] [Indexed: 11/27/2022]
Abstract
We transfected cultures of mouse spinal cord slices with the enhanced green fluorescent protein (GFP) gene driven by the promoter for preproenkephalin, using the particle-mediated gene transfer system adapted for small neurons in the superficial dorsal horn, and observations were made after 4-6 days in vitro. A considerable number of cells in the superficial dorsal horn were observed to express GFP fluorescence, reminiscent of the previously reported distribution of enkephalinergic neurons in the spinal cord. The number of GFP-expressing neurons increased in response to forskolin application. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of single neurons revealed that the N-methyl-d-aspartate (NMDA) receptor NR2B subunit is expressed more frequently in enkephalinergic neurons, and the NR2A subunit more frequently in non-enkephalinergic neurons. These observations suggest that expression of NMDA receptor subunits is controlled differentially in distinct populations of neurochemically identified neurons in the spinal cord. Biolistic particle-mediated gene transfection seems useful for identifying neuronal phenotypes in organotypic cultures of the spinal cord.
Collapse
Affiliation(s)
- Teruyuki Fukushima
- Department of Physiology and Biological Information, Dokkyo University School of Medicine, Kitakobayashi 880, Mibu, Tochigi 321-0293, Japan
| | | | | | | | | |
Collapse
|
24
|
Safiulina VF, Kasyanov AM, Giniatullin R, Cherubini E. Adenosine down-regulates giant depolarizing potentials in the developing rat hippocampus by exerting a negative control on glutamatergic inputs. J Neurophysiol 2005; 94:2797-804. [PMID: 16093335 DOI: 10.1152/jn.00445.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine is a widespread neuromodulator that can be directly released in the extracellular space during sustained network activity or can be generated as the breakdown product of adenosine triphosphate (ATP). Whole cell patch-clamp recordings were performed from CA3 principal cells and interneurons in hippocampal slices obtained from P2-P7 neonatal rats to study the modulatory effects of adenosine on giant depolarizing potentials (GDPs) that constitute the hallmark of developmental networks. We found that GDPs were extremely sensitive to the inhibitory action of adenosine (IC(50) = 0.52 microM). Adenosine also contributed to the depressant effect of ATP as indicated by DPCPX-sensitive changes of ATP-induced reduction of GDP frequency. Similarly, adenosine exerted a strong inhibitory action on spontaneous glutamatergic synaptic events recorded from GABAergic interneurons and on interictal bursts that developed in CA3 principal cells after blockade of gamma-aminobutyric acid type A (GABA(A)) receptors with bicuculline. All these effects were prevented by DPCPX, indicating the involvement of inhibitory A1 receptors. In contrast, GABAergic synaptic events were not changed by adenosine. Consistent with the endogenous role of adenosine on network activity, DPCPX per se increased the frequency of GDPs, interictal bursts, and spontaneous glutamatergic synaptic events recorded from GABAergic interneurons. Moreover, the adenosine transport inhibitor NBTI and the adenosine deaminase blocker EHNA decreased the frequency of GDPs, thus providing further evidence that endogenous adenosine exerts a powerful control on GDP generation. We conclude that, in the neonatal rat hippocampus, the inhibitory action of adenosine on GDPs arises from the negative control of glutamatergic, but not GABAergic, inputs.
Collapse
Affiliation(s)
- Victoria F Safiulina
- Neuroscience Programme, International School for Advanced Studies, Trieste, Italy
| | | | | | | |
Collapse
|
25
|
Safiulina VF, Kasyanov AM, Sokolova E, Cherubini E, Giniatullin R. ATP contributes to the generation of network-driven giant depolarizing potentials in the neonatal rat hippocampus. J Physiol 2005; 565:981-92. [PMID: 15845583 PMCID: PMC1464567 DOI: 10.1113/jphysiol.2005.085621] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the immature hippocampus, the so-called 'giant depolarizing potentials' (GDPs) are network-driven synaptic events generated by the synergistic action of glutamate and GABA. Here we tested the hypothesis that ATP, a widely distributed neurotransmitter, directly contributes to the network activity during the first postnatal week. We found that in CA3 pyramidal cells, in the presence of the adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), ATP produced a transient facilitation of GDPs followed by a depressant effect. A similar biphasic effect was produced by blockade of the ectoATPase activity with 6-N,N-diethyl-D-beta,gamma-dibromomethylene ATP (ARL-67156). The effects of exogenous and endogenous ATP on GDPs were prevented by the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS). On pyramidal cells, ATP upregulated spontaneous action-potential-dependent GABA(A)-mediated synaptic events (GABA-SPSPs), suggesting a network-driven effect. Recordings from interneurones allowed comparison of ATP effects on GABAergic and glutamatergic synaptic activity. While ATP depressed GABA-SPSPs via metabotropic P2Y(1) receptors, it up- and downregulated glutamatergic SPSPs via PPADS-sensitive receptors. Thus, ATP exerts an excitatory action on CA3 pyramidal cells via facilitation of GDPs and SPSPs. This excitatory drive is propagated to pyramidal cells by interneurons that represent the 'common pathway' for generation of GDPs and SPSPs. Our results show that ATP operating via distinct P2X and P2Y receptors directly contributes to modulate network activity at the early stages of postnatal development.
Collapse
Affiliation(s)
- Victoria F Safiulina
- Neuroscience Programme, International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | |
Collapse
|
26
|
Cordero-Erausquin M, Pons S, Faure P, Changeux JP. Nicotine differentially activates inhibitory and excitatory neurons in the dorsal spinal cord. Pain 2004; 109:308-318. [PMID: 15157692 DOI: 10.1016/j.pain.2004.01.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 01/07/2004] [Accepted: 01/26/2004] [Indexed: 11/21/2022]
Abstract
Nicotinic agonists have well-documented antinociceptive properties when administered subcutaneously or intrathecally in mice. However, secondary mild to toxic effects are observed at analgesic doses, as a consequence of the activation of the large family of differentially expressed nicotinic receptors (nAChRs). In order to elucidate the action of nicotinic agonists on spinal local circuits, we have investigated the expression and function of nAChRs in functionally identified neurons of neonate mice spinal cord. Molecular markers, amplified at the single-cell level by RT-PCR, distinguished two neuronal populations in the dorsal horn of the spinal cord: GABAergic/glycinergic inhibitory interneurons, and calbindin (CA) or NK1 receptor (NK1-R) expressing, excitatory interneurons and projection neurons. The nicotinic response to acetylcholine of single cells was examined, as well as the pattern of expression of nAChR subunit transcripts in the same neuron. Beside the most expressed subunits alpha4, beta2 and alpha7, the alpha2 subunit transcript was found in 19% of neurons, suggesting that agonists targeting alpha2* nAChRs may have specific actions at a spinal level without major supra-spinal effects. Both inhibitory and excitatory neurons responded to nicotinic stimulation, however, the nAChRs involved were markedly different. Whereas GABA/glycine interneurons preferentially expressed alpha4alpha6beta2* nAChRs, alpha3beta2alpha7* nAChRs were preferentially expressed by CA or NK1-R expressing neurons. Recorded neurons were also classified by firing pattern, for comparison to results from single-cell RT-PCR studies. Altogether, our results identify distinct sites of action of nicotinic agonists in circuits of the dorsal horn, and lead us closer to an understanding of mechanisms of nicotinic spinal analgesia.
Collapse
Affiliation(s)
- Matilde Cordero-Erausquin
- Récepteurs et Cognition, CNRS URA2182, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
27
|
Heinke B, Ruscheweyh R, Forsthuber L, Wunderbaldinger G, Sandkühler J. Physiological, neurochemical and morphological properties of a subgroup of GABAergic spinal lamina II neurones identified by expression of green fluorescent protein in mice. J Physiol 2004; 560:249-66. [PMID: 15284347 PMCID: PMC1665197 DOI: 10.1113/jphysiol.2004.070540] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The processing of sensory, including nociceptive, information in spinal dorsal horn is critically modulated by spinal GABAergic neurones. For example, blockade of spinal GABA(A) receptors leads to pain evoked by normally innocuous tactile stimulation (tactile allodynia) in rats. GABAergic dorsal horn neurones have been classified neurochemically and morphologically, but little is known about their physiological properties. We used a transgenic mouse strain coexpressing enhanced green fluorescent protein (EGFP) and the GABA-synthesizing enzyme GAD67 to investigate the properties of a subgroup of GABAergic neurones. Immunohistochemistry showed that EGFP-expressing neurones accounted for about one-third of the GABAergic neurones in lamina II of the spinal dorsal horn. They constituted a neurochemically rather heterogeneous group where 27% of the neurones coexpressed glycine, 23% coexpressed parvalbumin and 14% coexpressed neuronal nitric oxide synthase (nNOS). We found almost no expression of protein kinase Cgamma (PKCgamma) in EGFP-labelled neurones but a high costaining with PKCbetaII (78%). The whole-cell patch-clamp technique was used to intracellularly label and physiologically characterize EGFP- and non-EGFP-expressing lamina II neurones in spinal cord slices. Sixty-two per cent of the EGFP-labelled neurones were islet cells while the morphology of non-EGFP-labelled neurones was more variable. When stimulated by rectangular current injections, EGFP-expressing neurones typically exhibited an initial bursting firing pattern while non-EGFP-expressing neurones were either of the gap or the delayed firing type. EGFP-expressing neurones received a greater proportion of monosynaptic input from the dorsal root, especially from primary afferent C-fibres. In conclusion, EGFP expression defined a substantial but, with respect to the measured parameters, rather inhomogeneous subgroup of GABAergic neurones in spinal lamina II. These results provide a base to elucidate the functional roles of this subgroup of GABAergic lamina II neurones, e.g. for nociception.
Collapse
Affiliation(s)
- Bernhard Heinke
- Centre for Brain Research, Department of Neurophysiology, Medical University Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
28
|
Milligan ED, Maier SF, Watkins LR. Sciatic inflammatory neuropathy in the rat: surgical procedures, induction of inflammation, and behavioral testing. METHODS IN MOLECULAR MEDICINE 2004; 99:67-89. [PMID: 15131330 DOI: 10.1385/1-59259-770-x:067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Peripheral nerve damage involves inflammation, and is frequently causal to the development of neuropathic pain. However, inflammatory neuropathies often occur in the absence of trauma. We have recently developed an animal model of neuropathic pain where allodynia is induced by nerve inflammation rather than injury. This sciatic inflammatory neuropathy (SIN) model was developed to understand immunologic, neuropathic, and spinal mechanisms underlying allodynia in the territory of the sciatic nerve as well as in extraterritorial and contralateral ("mirror image") sites. A specially designed indwelling catheter system allows immune activators to be selectively injected around one healthy sciatic nerve in awake, behaving rats. Here, we provide detailed procedures on the construction and implantation of chronic indwelling perisciatic catheters used to create SIN. Detailed procedures for implantation of intrathecal catheters via a lumbar vertebra 5 and 6 approach in the same rat are also provided. Methods for testing allodynia and for data analysis are additionally described so to provide all the steps needed for behavioral experimentation.
Collapse
Affiliation(s)
- Erin D Milligan
- Department of Psychology and Center for Neuroscience, University of Colorado, Boulder, USA
| | | | | |
Collapse
|
29
|
Hugel S, Schlichter R. Convergent control of synaptic GABA release from rat dorsal horn neurones by adenosine and GABA autoreceptors. J Physiol 2003; 551:479-89. [PMID: 12844515 PMCID: PMC2343215 DOI: 10.1113/jphysiol.2003.047894] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Perforated patch clamp recordings were performed on cultured superficial neonatal rat dorsal horn (DH) spinal cord neurones in order to study the presynaptic modulation of GABA release at unitary synaptic connections. Since ATP can be coreleased with GABA at about two-thirds of GABAergic synapses between DH neurones, and can be rapidly metabolized to adenosine in the extracellular space, we investigated the potential role of A1 adenosine receptors and GABAB receptors which might function as inhibitory autoreceptors. Adenosine and GABAB receptor agonists reduced the amplitude of electrically evoked GABAergic inhibitory postsynaptic currents (eIPSCs) as well as the frequency of GABAergic miniature IPSCs, suggesting a presynaptic action of these substances. The actions of adenosine were blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The effects of adenosine and GABAB agonists were occlusive, indicating a functional convergence of the signalling pathways engaged by A1 and GABAB receptors. A1 and GABAB antagonists increased the amplitude of eIPSCs in a supra-additive manner, suggesting a tonic activation of these receptors by ambient adenosine and GABA. Moreover, using trains of electrical stimulations, we were able to unravel a phasic (activity-dependent) activation of presynaptic A1 and GABAB autoreceptors only in the case of neurones coreleasing ATP and GABA, despite the presence of functional presynaptic A1 and GABAB receptors on all GABAergic DH neurones. This selective, convergent and activity-dependent inhibition of GABA release by A1 and GABAB autoreceptors might modulate the integrative properties of postsynaptic DH neurones under physiological conditions and/or during the development of pathological pain states.
Collapse
Affiliation(s)
- Sylvain Hugel
- Laboratoire de Neurophysiologie Cellulaire et Intégrée, UMR 7519-CNRS, Université Louis Pasteur, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
30
|
Szûcs P, Odeh F, Szokol K, Antal M. Neurons with distinctive firing patterns, morphology and distribution in laminae V-VII of the neonatal rat lumbar spinal cord. Eur J Neurosci 2003; 17:537-44. [PMID: 12581171 DOI: 10.1046/j.1460-9568.2003.02484.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is generally accepted that neurons in the ventral spinal grey matter, a substantial proportion of which can be regarded as constituents of the spinal motor apparatus, receive and integrate synaptic inputs arising from various peripheral, spinal and supraspinal sources. Thus, a profound knowledge concerning the integrative properties of interneurons in the spinal ventral grey matter appears to be essential for a fair understanding of operational principles of spinal motor neural assemblies. Using the whole cell patch clamp configuration in a correlative physiological and morphological experimental approach, here we demonstrate that the intrinsic membrane properties of neurons vary widely in laminae V-VII of the ventral grey matter of the neonatal rat lumbar spinal cord. Based on their firing patterns in response to depolarizing current steps, we have classified the recorded neurons into four categories: 'phasic', 'repetitive', 'single' and 'slow'. Neurons with firing properties characteristic of the 'phasic', 'repetitive' and 'single' cells have previously been reported also in the superficial and deep spinal dorsal horn, but this is the first account in the literature in which 'slow' neurons have been recovered and described in the spinal cord. The physiological heterogeneity in conjunction with the morphological correlation and distribution of neurons argues that different components of motor neural assemblies in the spinal ventral grey matter possess different signal processing characteristics.
Collapse
Affiliation(s)
- Péter Szûcs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical & Health Science Centre, University of Debrecen, H-4012 Hungary.
| | | | | | | |
Collapse
|
31
|
Ruscheweyh R, Sandkühler J. Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. J Physiol 2002; 541:231-44. [PMID: 12015432 PMCID: PMC2290304 DOI: 10.1113/jphysiol.2002.017756] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Membrane and discharge properties determine the input-output relationship of neurones and are therefore of paramount importance for the functions of neural circuits. Here, we have tested the hypothesis that neurones in different laminae of the spinal dorsal horn differ in their electrophysiological properties. Whole-cell patch-clamp recordings from dorsal horn neurones in a rat transverse spinal cord slice preparation were used to record active and passive membrane properties. Neurones from superficial dorsal horn laminae had higher membrane resistances and broader action potentials than deep dorsal horn neurones. Action potential thresholds were highest in lamina II neurones, representing low membrane excitability. Five types of firing patterns were identified in response to depolarising current injections. Tonic-firing neurones discharged action potentials at regular intervals throughout the current pulse. Delayed-firing neurones showed a delayed onset of firing in response to current injections that was due to activation of a transient voltage-dependent outward current, presumably an A-current. Another group of neurones fired a short initial burst of action potentials. Single-spiking neurones discharged only one action potential at the onset of a depolarising pulse. Phasic-bursting neurones showed irregular bursts of action potentials. Firing patterns were unequally distributed among laminae. Tonic-firing neurones were numerous in lamina I and deeper laminae but were not found in lamina II. Delayed-firing neurones were encountered in laminae I and II but not in deeper laminae. Most of the neurones showing an initial burst were found in lamina II. These differences in membrane and discharge properties probably contribute to lamina-specific processing of sensory, including nociceptive, information.
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
32
|
Prescott SA, De Koninck Y. Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat. J Physiol 2002; 539:817-36. [PMID: 11897852 PMCID: PMC2290183 DOI: 10.1113/jphysiol.2001.013437] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lamina I of the spinal dorsal horn plays an important role in the processing and relay of nociceptive information. Signal processing depends, in part, on neuronal membrane properties. Intrinsic membrane properties of lamina I neurons were therefore investigated using whole cell patch clamp recordings in a slice preparation of adult rat spinal cord. Based on responses to somatic current injection, four cell types were identified: tonic, which fire comparatively slowly but continuously throughout stimulation; phasic, which fire a high frequency burst of variable duration; delayed onset, which fire irregularly and with a marked delay to the first spike; and single spike, which typically fire only one action potential even when strongly depolarised. Classification by spiking pattern was further refined by identification of characteristic stimulus-response curves and quantification of several response parameters. Objectivity of the classification was confirmed by cluster analysis. Responses to stimulus trains and synaptic input as well as the kinetics of spontaneous synaptic events revealed differences in the signal processing characteristics of the cell types: tonic and delayed onset cells appeared to act predominantly as integrators whereas phasic and single spike cells acted as coincidence detectors. Intracellular labelling revealed a significant correlation between morphological and physiological cell types: tonic cells were typically fusiform, phasic cells were pyramidal, and delayed onset and single spike cells were multipolar. Thus, there are multiple physiological cells types in lamina I with specific morphological correlates and distinctive signal processing characteristics that confer significant differences in the transduction of input into spike trains.
Collapse
Affiliation(s)
- Steven A Prescott
- Neurobiologie Cellulaire, Centre de recherche Université Laval Robert-Giffard, 2601 Chemin de la Canardière, Beauport, G1J 2G3 Québec, Canada
| | | |
Collapse
|
33
|
Vikman KS, Backström E, Kristensson K, Hill RH. A two-compartment in vitro model for studies of modulation of nociceptive transmission. J Neurosci Methods 2001; 105:175-84. [PMID: 11275274 DOI: 10.1016/s0165-0270(00)00360-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Here we present a two-compartment in vitro model in which embryonic rat dorsal root ganglia (DRG) neurons are cultured separately from their target dorsal horn neurons. Although separated, synaptic contact can be established between the peripheral and central neurons since the system allows the DRG axons to project into the other compartment, which contains a network of dorsal horn neurons. The efficacy of the model was evaluated by immunocytochemical, calcium imaging and electrophysiological experiments. The results showed that a subpopulation of the DRG neurons had nociceptor characteristics and that these made synaptic contact with the dorsal horn network. Application of current pulses, according to the stimulus paradigm used, evoked action potentials in DRG axons selectively. This in turn gave rise to increased postsynaptic activity in the network of dorsal horn neurons. The model offers a high degree of efficiency since large numbers of DRG axons can be stimulated simultaneously, thus permitting recording of strong output responses from the dorsal horn neurons. This in vitro model provides a means for studying the mechanisms by which modulatory factors, such as immunoregulatory molecules, applied at either the PNS or the CNS level, can affect synaptic activity and nociceptive transmission in single neurons or network of neurons in the dorsal horn.
Collapse
Affiliation(s)
- K S Vikman
- Department of Neuroscience, Karolinska Institutet, Berzelius väg 3, Stockholm, Sweden
| | | | | | | |
Collapse
|
34
|
Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons. J Neurosci 2000. [PMID: 10704486 DOI: 10.1523/jneurosci.20-06-02121.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The superficial layers of the spinal cord dorsal horn (DH) express P2X2, P2X4, and P2X6 subunits entering into the formation of ionotropic (P2X) receptors for ATP. Using a culture system of laminae I-III from neonatal rat DH, we show that ATP induced a fast nonselective cation current in 38% of the neurons (postsynaptic effect). ATP also increased the frequency of miniature IPSCs (mIPSCs) mediated by GABA(A) receptors or by glycine receptors in 22 and 9%, respectively, of the neurons tested (presynaptic effect) but had no effect on glutamatergic transmission. The presynaptic effect of ATP on GABAergic transmission was not significantly affected by thapsigargin (1 microM) but was completely dependent on Ca(2+) influx. Presynaptic and postsynaptic effects were inhibited by suramin, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, and reactive blue and were not reproduced by uridine 5'-triphosphate (UTP) or adenosine 5'-O-(2-thiodiphosphate) (ADP-beta-S), suggesting the implication of ionotropic P2X rather than of metabotropic P2Y receptors. alphabeta-methylene-ATP (100 microM) did not reproduce the effects of ATP. ATP reversibly increased the amplitude of electrically evoked GABAergic IPSCs and reduced paired-pulse inhibition or facilitation without affecting IPSC kinetics. This effect was preferentially, but not exclusively, observed in neurons coreleasing ATP and GABA. We conclude that in cultured DH neurons, the effects of ATP are mediated by P2X receptors having a pharmacological profile dominated by the P2X2 subunit. The presynaptic receptors might underlie a modulatory action of ATP on a subset of GABAergic interneurons involved in the spinal processing of nociceptive information.
Collapse
|
35
|
Russo RE, Hounsgaard J. Dynamics of intrinsic electrophysiological properties in spinal cord neurones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:329-65. [PMID: 10605293 DOI: 10.1016/s0079-6107(99)00011-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. The intrinsic response properties of spinal neurones--determined by the particular set and distribution of voltage sensitive channels and their dynamic non-linear interactions--show a high degree of functional specialisation as reflected by the differences of intrinsic response patterns in different cell types. Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands.
Collapse
Affiliation(s)
- R E Russo
- Unidad Asociada Neurofisiología, Instituto de Investigaciones Biológicas Clemente Estable, Facultad de Ciencias, Montevideo, Uruguay.
| | | |
Collapse
|
36
|
Abstract
In the spinal dorsal horn (DH), transmission and modulation of peripheral nociceptive (pain-inducing) messages involve classical neurotransmitters and neuropeptides. We show that approximately half of DH neurons use ATP as a fast excitatory neurotransmitter acting at ionotropic P2X postsynaptic receptors. ATP was not codetected with glutamate but was coreleased with the inhibitory neurotransmitter GABA. Moreover, adenosine, probably generated by extracellular metabolism of ATP, finely tuned GABAergic inhibitory postsynaptic currents. Differential modulation of excitatory versus inhibitory components of this mixed cotransmission may help to explain changes in sensory message processing in the DH during mechanical hyperalgesia and neuropathic pain.
Collapse
Affiliation(s)
- Y H Jo
- Laboratoire de Neurophysiologie cellulaire et intégrée, UMR 7519 CNRS, Université Louis Pasteur, Strasbourg, France
| | | |
Collapse
|