1
|
Yeganegi H, Ondracek JM. Local sleep in songbirds: different simultaneous sleep states across the avian pallium. J Sleep Res 2024:e14344. [PMID: 39425588 DOI: 10.1111/jsr.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 10/21/2024]
Abstract
Wakefulness and sleep have often been treated as distinct and global brain states. However, an emerging body of evidence on the local regulation of sleep stages challenges this conventional view. Apart from unihemispheric sleep, the current data that support local variations of neural oscillations during sleep are focused on the homeostatic regulation of local sleep, i.e., the role preceding awake activity. Here, to examine local differences in brain activity during natural sleep, we recorded the electroencephalogram and the local field potential across multiple sites within the avian pallium of zebra finches without perturbing the previous awake state. We scored the sleep stages independently in each pallial site and found that the sleep stages are not pallium-wide phenomena but rather deviate widely across electrode sites. Importantly, deeper electrode sites had a dominant role in defining the temporal aspects of sleep state congruence. Altogether, these findings show that local regulation of sleep oscillations also occurs in the avian brain without prior awake recruitment of specific pallial circuits and in the absence of mammalian cortical neural architecture.
Collapse
Affiliation(s)
- Hamed Yeganegi
- Technical University of Munich, TUM School of Life Sciences, Chair of Zoology, Freising-Weihenstephan, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Janie M Ondracek
- Technical University of Munich, TUM School of Life Sciences, Chair of Zoology, Freising-Weihenstephan, Germany
| |
Collapse
|
2
|
Tian LY, Warren TL, Mehaffey WH, Brainard MS. Dynamic top-down biasing implements rapid adaptive changes to individual movements. eLife 2023; 12:e83223. [PMID: 37733005 PMCID: PMC10513479 DOI: 10.7554/elife.83223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.
Collapse
Affiliation(s)
- Lucas Y Tian
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Timothy L Warren
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - William H Mehaffey
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
3
|
Cornez G, Jonckers E, Ter Haar SM, Van der Linden A, Cornil CA, Balthazart J. Timing of perineuronal net development in the zebra finch song control system correlates with developmental song learning. Proc Biol Sci 2018; 285:rspb.2018.0849. [PMID: 30051835 DOI: 10.1098/rspb.2018.0849] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
The appearance of perineuronal nets (PNNs) represents one of the mechanisms that contribute to the closing of sensitive periods for neural plasticity. This relationship has mostly been studied in the ocular dominance model in rodents. Previous studies also indicated that PNN might control neural plasticity in the song control system of songbirds. To further elucidate this relationship, we quantified PNN expression and their localization around parvalbumin interneurons at key time-points during ontogeny in both male and female zebra finches, and correlated these data with the well-described development of song in this species. We also extended these analyses to the auditory system. The development of PNN during ontogeny correlated with song crystallization although the timing of PNN appearance in the four main telencephalic song control nuclei slightly varied between nuclei in agreement with the established role these nuclei play during song learning. Our data also indicate that very few PNN develop in the secondary auditory forebrain areas even in adult birds, which may allow constant adaptation to a changing acoustic environment by allowing synaptic reorganization during adulthood.
Collapse
Affiliation(s)
- Gilles Cornez
- GIGA Neuroscience, University of Liege, Liege 4000, Belgium
| | | | | | | | | | | |
Collapse
|
4
|
Zhou X, Fu X, Lin C, Zhou X, Liu J, Wang L, Zhang X, Zuo M, Fan X, Li D, Sun Y. Remodeling of Dendritic Spines in the Avian Vocal Motor Cortex Following Deafening Depends on the Basal Ganglia Circuit. Cereb Cortex 2018; 27:2820-2830. [PMID: 27166173 DOI: 10.1093/cercor/bhw130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Deafening elicits a deterioration of learned vocalization, in both humans and songbirds. In songbirds, learned vocal plasticity has been shown to depend on the basal ganglia-cortical circuit, but the underlying cellular basis remains to be clarified. Using confocal imaging and electron microscopy, we examined the effect of deafening on dendritic spines in avian vocal motor cortex, the robust nucleus of the arcopallium (RA), and investigated the role of the basal ganglia circuit in motor cortex plasticity. We found rapid structural changes to RA dendritic spines in response to hearing loss, accompanied by learned song degradation. In particular, the morphological characters of RA spine synaptic contacts between 2 major pathways were altered differently. However, experimental disruption of the basal ganglia circuit, through lesions in song-specialized basal ganglia nucleus Area X, largely prevented both the observed changes to RA dendritic spines and the song deterioration after hearing loss. Our results provide cellular evidence to highlight a key role of the basal ganglia circuit in the motor cortical plasticity that underlies learned vocal plasticity.
Collapse
Affiliation(s)
- Xin Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xin Fu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Chun Lin
- Department of Biology, Hainan Normal University, Haikou 571158, China
| | - Xiaojuan Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Li Wang
- Center for Biological Imaging (CBI), Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Xinwen Zhang
- Department of Biology, Hainan Normal University, Haikou 571158, China
| | - Mingxue Zuo
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaolong Fan
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dapeng Li
- State Key Laboratory of Brain and Cognitive Sciences
| | - Yingyu Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Budzillo A, Duffy A, Miller KE, Fairhall AL, Perkel DJ. Dopaminergic modulation of basal ganglia output through coupled excitation-inhibition. Proc Natl Acad Sci U S A 2017; 114:5713-5718. [PMID: 28507134 PMCID: PMC5465888 DOI: 10.1073/pnas.1611146114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Learning and maintenance of skilled movements require exploration of motor space and selection of appropriate actions. Vocal learning and social context-dependent plasticity in songbirds depend on a basal ganglia circuit, which actively generates vocal variability. Dopamine in the basal ganglia reduces trial-to-trial neural variability when the bird engages in courtship song. Here, we present evidence for a unique, tonically active, excitatory interneuron in the songbird basal ganglia that makes strong synaptic connections onto output pallidal neurons, often linked in time with inhibitory events. Dopamine receptor activity modulates the coupling of these excitatory and inhibitory events in vitro, which results in a dynamic change in the synchrony of a modeled population of basal ganglia output neurons receiving excitatory and inhibitory inputs. The excitatory interneuron thus serves as one biophysical mechanism for the introduction or modulation of neural variability in this circuit.
Collapse
Affiliation(s)
- Agata Budzillo
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195
| | - Alison Duffy
- Department of Physics, University of Washington, Seattle, WA 98195
| | - Kimberly E Miller
- Department of Otolaryngology, University of Washington, Seattle, WA 98195
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- University of Washington Institute for Neuroengineering, University of Washington, Seattle, WA 98195
- Center for Sensorimotor Neural Engineering, University of Washington, Seattle, WA 98195
| | - David J Perkel
- Department of Otolaryngology, University of Washington, Seattle, WA 98195;
- University of Washington Institute for Neuroengineering, University of Washington, Seattle, WA 98195
- Department of Biology, University of Washington, Seattle, WA 98195
| |
Collapse
|
6
|
Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences. Proc Natl Acad Sci U S A 2016; 113:E1720-7. [PMID: 26951661 DOI: 10.1073/pnas.1523754113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington's disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements.
Collapse
|
7
|
Achiro JM, Bottjer SW. Neural representation of a target auditory memory in a cortico-basal ganglia pathway. J Neurosci 2013; 33:14475-88. [PMID: 24005299 PMCID: PMC3761053 DOI: 10.1523/jneurosci.0710-13.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 11/21/2022] Open
Abstract
Vocal learning in songbirds, like speech acquisition in humans, entails a period of sensorimotor integration during which vocalizations are evaluated via auditory feedback and progressively refined to achieve an imitation of memorized vocal sounds. This process requires the brain to compare feedback of current vocal behavior to a memory of target vocal sounds. We report the discovery of two distinct populations of neurons in a cortico-basal ganglia circuit of juvenile songbirds (zebra finches, Taeniopygia guttata) during vocal learning: (1) one in which neurons are selectively tuned to memorized sounds and (2) another in which neurons are selectively tuned to self-produced vocalizations. These results suggest that neurons tuned to learned vocal sounds encode a memory of those target sounds, whereas neurons tuned to self-produced vocalizations encode a representation of current vocal sounds. The presence of neurons tuned to memorized sounds is limited to early stages of sensorimotor integration: after learning, the incidence of neurons encoding memorized vocal sounds was greatly diminished. In contrast to this circuit, neurons known to drive vocal behavior through a parallel cortico-basal ganglia pathway show little selective tuning until late in learning. One interpretation of these data is that representations of current and target vocal sounds in the shell circuit are used to compare ongoing patterns of vocal feedback to memorized sounds, whereas the parallel core circuit has a motor-related role in learning. Such a functional subdivision is similar to mammalian cortico-basal ganglia pathways in which associative-limbic circuits mediate goal-directed responses, whereas sensorimotor circuits support motor aspects of learning.
Collapse
Affiliation(s)
- Jennifer M Achiro
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089, USA.
| | | |
Collapse
|
8
|
Fee MS, Goldberg JH. A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience 2011; 198:152-70. [PMID: 22015923 DOI: 10.1016/j.neuroscience.2011.09.069] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 01/08/2023]
Abstract
Most of our motor skills are not innately programmed, but are learned by a combination of motor exploration and performance evaluation, suggesting that they proceed through a reinforcement learning (RL) mechanism. Songbirds have emerged as a model system to study how a complex behavioral sequence can be learned through an RL-like strategy. Interestingly, like motor sequence learning in mammals, song learning in birds requires a basal ganglia (BG)-thalamocortical loop, suggesting common neural mechanisms. Here, we outline a specific working hypothesis for how BG-forebrain circuits could utilize an internally computed reinforcement signal to direct song learning. Our model includes a number of general concepts borrowed from the mammalian BG literature, including a dopaminergic reward prediction error and dopamine-mediated plasticity at corticostriatal synapses. We also invoke a number of conceptual advances arising from recent observations in the songbird. Specifically, there is evidence for a specialized cortical circuit that adds trial-to-trial variability to stereotyped cortical motor programs, and a role for the BG in "biasing" this variability to improve behavioral performance. This BG-dependent "premotor bias" may in turn guide plasticity in downstream cortical synapses to consolidate recently learned song changes. Given the similarity between mammalian and songbird BG-thalamocortical circuits, our model for the role of the BG in this process may have broader relevance to mammalian BG function.
Collapse
Affiliation(s)
- M S Fee
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | | |
Collapse
|
9
|
Goldberg JH, Fee MS. Vocal babbling in songbirds requires the basal ganglia-recipient motor thalamus but not the basal ganglia. J Neurophysiol 2011; 105:2729-39. [PMID: 21430276 DOI: 10.1152/jn.00823.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Young songbirds produce vocal "babbling," and the variability of their songs is thought to underlie a process of trial-and-error vocal learning. It is known that this exploratory variability requires the "cortical" component of a basal ganglia (BG) thalamocortical loop, but less understood is the role of the BG and thalamic components in this behavior. We found that large bilateral lesions to the songbird BG homolog Area X had little or no effect on song variability during vocal babbling. In contrast, lesions to the BG-recipient thalamic nucleus DLM (medial portion of the dorsolateral thalamus) largely abolished normal vocal babbling in young birds and caused a dramatic increase in song stereotypy. These findings support the idea that the motor thalamus plays a key role in the expression of exploratory juvenile behaviors during learning.
Collapse
Affiliation(s)
- Jesse H Goldberg
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
10
|
Activity propagation in an avian basal ganglia-thalamocortical circuit essential for vocal learning. J Neurosci 2009; 29:4782-93. [PMID: 19369547 DOI: 10.1523/jneurosci.4903-08.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In mammalian basal ganglia-thalamocortical circuits, GABAergic pallidal neurons are thought to "gate" or modulate excitation in thalamus with their strong inhibitory inputs and thus signal to cortex by pausing and permitting thalamic neurons to fire in response to excitatory drive. In contrast, in a homologous circuit specialized for vocal learning in songbirds, evidence suggests that pallidal neurons signal by eliciting postinhibitory rebound spikes in thalamus, which could occur even without any excitatory drive to thalamic neurons. To test whether songbird pallidal neurons can also communicate with thalamus by gating excitatory drive, as well as by postinhibitory rebound, we examined the activity of thalamic relay neurons in response to acute inactivation of the basal ganglia structure Area X; Area X contains the pallidal neurons that project to thalamus. Although inactivation of Area X should eliminate rebound-mediated spiking in thalamus, this manipulation tonically increased the firing rate of thalamic relay neurons, providing evidence that songbird pallidal neurons can gate tonic thalamic excitatory drive. We also found that the increased thalamic activity was fed forward to its target in the avian equivalent of cortex, which includes neurons that project to the vocal premotor area. These data raise the possibility that basal ganglia circuits can signal to cortex through thalamus both by generating postinhibitory rebound and by gating excitatory drive and may switch between these modes depending on the statistics of pallidal firing. Moreover, these findings provide insight into the strikingly different disruptive effects of basal ganglia and cortical lesions on songbird vocal learning.
Collapse
|
11
|
Zhu N, Sun Y, Zeng S, Zhang X, Zuo M. Collapsin response mediator protein-4 (CRMP-4) expression in posthaching development of song control nuclei in Bengalese finches. Brain Res Bull 2008; 76:551-8. [DOI: 10.1016/j.brainresbull.2008.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/01/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
|
12
|
Pinaud R, Saldanha CJ, Wynne RD, Lovell PV, Mello CV. The excitatory thalamo-"cortical" projection within the song control system of zebra finches is formed by calbindin-expressing neurons. J Comp Neurol 2008; 504:601-18. [PMID: 17722049 DOI: 10.1002/cne.21457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The learning and production of vocalizations in songbirds are controlled by a system of interconnected brain nuclei organized into a direct vocal motor pathway and an anterior forebrain (pallium-basal ganglia-thalamo-pallial) loop. Here we show that the thalamo-pallial ("thalamo-cortical") projection (from the medial part of the dorsolateral thalamic nucleus to the lateral magnocellular nucleus of the anterior nidopallium--DLM to LMAN) within the anterior forebrain loop is composed of cells positive for the calcium-binding protein calbindin. We show that the vast majority of cells within DLM express calbindin, based both on immunocytochemistry (ICC) for calbindin protein and in situ hybridization for calb mRNA. Using a combination of tract-tracing and ICC we show that the neurons that participate in the DLM-to-LMAN projection are calbindin-positive. We also demonstrate that DLM is devoid of cells expressing mRNA for the GABAergic marker zGAD65. This observation confirms that the calbindin-expressing cells in DLM are not GABAergic, in accordance with previous electrophysiological data indicating that the DLM-to-LMAN projection is excitatory. Furthermore, we use ICC to determine the trajectory of the fibers within the DLM-to-LMAN projection, and to demonstrate a sex difference in calbindin expression levels in the fibers of the DLM-to-LMAN projection. Our findings provide a clear-cut neurochemical signature for a critical projection in the songbird vocal control pathways that enable song learning.
Collapse
Affiliation(s)
- Raphael Pinaud
- Neurological Sciences Institute, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
13
|
Bottjer SW. Silent Synapses in a Thalamo-Cortical Circuit Necessary for Song Learning in Zebra Finches. J Neurophysiol 2005; 94:3698-707. [PMID: 16107531 DOI: 10.1152/jn.00282.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Developmental changes in synaptic properties may act to limit neural and behavioral plasticity associated with sensitive periods. This study characterized synaptic maturation in a glutamatergic thalamo-cortical pathway that is necessary for vocal learning in songbirds. Lesions of the projection from medial dorsolateral nucleus of the thalamus (DLM) to the cortical nucleus lateral magnocellular nucleus of the anterior nidopallium (LMAN) greatly disrupt song behavior in juvenile birds during early stages of vocal learning. However, such lesions lose the ability to disrupt vocal behavior in normal birds at 60–70 days of age, around the time that selective auditory tuning for each bird’s own song (BOS) emerges in LMAN neurons. This pattern has suggested that LMAN is involved in processing song-related information and evaluating the degree to which vocal motor output matches the tutor song to be learned. Analysis of reversed excitatory postsynaptic currents at DLM→LMAN synapses in in vitro slice preparations revealed a pronounced N-methyl-d-aspartate receptor (NMDAR)-mediated component in both juvenile and adult cells with no developmental decrease in the relative contribution of NMDARs to synaptic transmission. However, the synaptic failure rate at DLM→LMAN synapses in juvenile males during the sensitive period for song learning was significantly lower at depolarized potentials than at hyperpolarized potentials. In contrast, the failure rate at DLM→LMAN synapses did not differ at hyper- versus depolarized holding potentials in adult males that had completed the acquisition of a stereotyped song. This pattern indicates that juvenile cells have a higher incidence of silent (NMDAR-only) synapses, which are postsynaptically silent at hyperpolarized potentials due to the voltage-dependent gating of NMDARs. Thus the decreased involvement of the LMAN pathway in vocal behavior is mirrored by a decline in the incidence of silent synapses but not by changes in the relative number of NMDA and AMPA receptors at DLM→LMAN synapses. These findings suggest that a developmental decrease in silent synapses within LMAN may represent a neural correlate of behavioral plasticity during song learning.
Collapse
Affiliation(s)
- Sarah W Bottjer
- Program in Neuroscience, University of Southern California, Los Angeles, 90089, USA.
| |
Collapse
|
14
|
Xie R, Meitzen J, Pollak GD. Differing roles of inhibition in hierarchical processing of species-specific calls in auditory brainstem nuclei. J Neurophysiol 2005; 94:4019-37. [PMID: 16135548 DOI: 10.1152/jn.00688.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here we report on response properties and the roles of inhibition in three brain stem nuclei of Mexican-free tailed bats: the inferior colliculus (IC), the dorsal nucleus of the lateral lemniscus (DNLL) and the intermediate nucleus of the lateral lemniscus (INLL). In each nucleus, we documented the response properties evoked by both tonal and species-specific signals and evaluated the same features when inhibition was blocked. There are three main findings. First, DNLL cells have little or no surround inhibition and are unselective for communication calls, in that they responded to approximately 97% of the calls that were presented. Second, most INLL neurons are characterized by wide tuning curves and are unselective for species-specific calls. The third finding is that the IC population is strikingly different from the neuronal populations in the INLL and DNLL. Where DNLL and INLL neurons are unselective and respond to most or all of the calls in the suite we presented, most IC cells are selective for calls and, on average, responded to approximately 50% of the calls we presented. Additionally, the selectivity for calls in the majority of IC cells, as well as their tuning and other response properties, are strongly shaped by inhibitory innervation. Thus we show that inhibition plays only limited roles in the DNLL and INLL but dominates in the IC, where the various patterns of inhibition sculpt a wide variety of emergent response properties from the backdrop of more expansive and far less specific excitatory innervation.
Collapse
Affiliation(s)
- Ruili Xie
- Section of Neurobiology, Institute for Neuroscience and Center for Perceptual Systems, The University of Texas at Austin, 78712, USA
| | | | | |
Collapse
|
15
|
Kreck G, Nixdorf-Bergweiler BE. Evidence for a cortical--basal ganglia projection pathway in female zebra finches. Neuroreport 2005; 16:21-4. [PMID: 15618883 DOI: 10.1097/00001756-200501190-00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The anterior forebrain pathway in songbirds is a specialization of the avian basal ganglia pathway and is prominent in males that sing, but seem to be absent or incomplete in females that do not sing. We studied the connectivity in females in the in vitro slice preparation by applying the tracer Fluoro Ruby, biotinylated dextran amine, and cholera toxin B. We identified (1) retrograde labeled neurons in the lateral magnocellular nucleus of the anterior nidopallium (LMAN) projecting to the medial striatum (MSt), and (2) we identified fibers in the MSt labeled by anterograde transport after tracer injection into LMAN. Our data clearly demonstrate the existence of a cortico-basal ganglia pathway in female birds.
Collapse
Affiliation(s)
- Gunter Kreck
- Department of Biology, Humboldt University, Berlin, Germany
| | | |
Collapse
|
16
|
Doupe AJ, Solis MM, Kimpo R, Boettiger CA. Cellular, circuit, and synaptic mechanisms in song learning. Ann N Y Acad Sci 2004; 1016:495-523. [PMID: 15313792 DOI: 10.1196/annals.1298.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Songbirds, much like humans, learn their vocal behavior, and must be able to hear both themselves and others to do so. Studies of the brain areas involved in singing and song learning could reveal the underlying neural mechanisms. Here we describe experiments that explore the properties of the songbird anterior forebrain pathway (AFP), a basal ganglia-forebrain circuit known to be critical for song learning and for adult modification of vocal output. First, neural recordings in anesthetized, juvenile birds show that auditory AFP neurons become selectively responsive to the song stimuli that are compared during sensorimotor learning. Individual AFP neurons develop tuning to the bird's own song (BOS), and in many cases to the tutor song as well, even when these stimuli are manipulated to be very different from each other. Such dual selectivity could be useful in the BOS-tutor song comparison critical to song learning. Second, simultaneous neural recordings from the AFP and its target nucleus in the song motor pathway in anesthetized adult birds reveal correlated activity that is preserved through multiple steps of the circuits for song, including the AFP. This suggests that the AFP contains highly functionally interconnected neurons, an architecture that can preserve information about the timing of firing of groups of neurons. Finally, in vitro studies show that recurrent synapses between neurons in the AFP outflow nucleus, which are expected to contribute importantly to AFP correlation, can undergo activity-dependent and timing-sensitive strengthening. This synaptic enhancement appears to be restricted to birds in the sensory critical and early sensorimotor phases of learning. Together, these studies show that the AFP contains cells that reflect learning of both BOS and tutor song, as well as developmentally regulated synaptic and circuit mechanisms well-suited to create temporally organized assemblies of such cells. Such experience-dependent sensorimotor assemblies are likely to be critical to the AFP's role in song learning. Moreover, studies of such mechanisms in this basal ganglia circuit specialized for song may shed light more generally on how basal ganglia circuits function in guiding motor learning using sensory feedback signals.
Collapse
Affiliation(s)
- Allison J Doupe
- Keck Center for Integrative Neuroscience, and Department of Physiology, Box 0444, HSE 802, University of California, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
The brain nuclei and pathways comprising the song system of oscine songbirds bear many similarities with circuits in other bird species and in mammals. This suggests that the song system evolved as a specialization of pre-existing circuits and may retain fundamental properties in common with those of other taxa. Here we review evidence for these similarities, including electrophysiological, morphological, and neurochemical data for identifying specific cell types. In addition, we discuss connectional data, addressing similarities in axonal projections among nuclei across taxa. We focus primarily on the anterior forebrain pathway, a circuit essential for song learning and vocal plasticity, because the evidence is strongest that this circuit is homologous to mammalian circuits. These fundamental similarities highlight the importance of comparative approaches; for example, understanding the role the anterior forebrain pathway plays in song plasticity may shed light on general principles of basal ganglia function. In addition, understanding specializations of such circuits in songbirds may illuminate specific innovations critical for vocal learning.
Collapse
Affiliation(s)
- David J Perkel
- Department of Biology, Box 356515, University of Washington, Seattle, WA 98195-6515, USA.
| |
Collapse
|
18
|
Nordeen KW, Nordeen EJ. Synaptic and Molecular Mechanisms Regulating Plasticity during Early Learning. Ann N Y Acad Sci 2004; 1016:416-37. [PMID: 15313788 DOI: 10.1196/annals.1298.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many behaviors are learned most easily during a discrete developmental period, and it is generally agreed that these "sensitive periods" for learning reflect the developmental regulation of molecular or synaptic properties that underlie experience-dependent changes in neural organization and function. Avian song learning provides one example of such temporally restricted learning, and several features of this behavior and its underlying neural circuitry make it a powerful model for studying how early experience sculpts neural and behavioral organization. Here we describe evidence that within the basal ganglia-thalamocortical loop implicated in vocal learning, song acquisition engages N-methyl-d-aspartate receptors (NMDARs), as well as signal transduction cascades strongly implicated in other instances of learning. Furthermore, NMDAR phenotype changes in parallel with developmental and seasonal periods for vocal plasticity. We also review recent studies in the avian song system that challenge the popular notion that sensitive periods for learning reflect developmental changes in the NMDAR that alter thresholds for synaptic plasticity.
Collapse
Affiliation(s)
- Kathy W Nordeen
- Department of Brain & Cognitive Science, University of Rochester, Rochester, NY 14627-0268, USA.
| | | |
Collapse
|
19
|
Ding L, Perkel DJ. Long-term potentiation in an avian basal ganglia nucleus essential for vocal learning. J Neurosci 2004; 24:488-94. [PMID: 14724247 PMCID: PMC6729982 DOI: 10.1523/jneurosci.4358-03.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vocal learning in songbirds provides an excellent model for sensorimotor learning in vertebrates, with an accessible, well-defined behavior and discrete neural substrate. The rich behavioral plasticity exhibited by songbirds, however, contrasts starkly with the scarcity of candidate cellular mechanisms. Here, we report for the first time on an activity-dependent form of synaptic plasticity in area X, a component of the song system required for song learning and song maintenance. In slice preparations of zebra finch area X, pairing of high-frequency presynaptic stimulation with postsynaptic depolarization induces Hebbian long-term potentiation (LTP) of the glutamatergic inputs to spiny neurons. This form of LTP requires activation of NMDA receptors and D1-like dopamine receptors. In addition, LTP is observed in birds as young as 47 d after hatching and also in adult birds but not in younger birds, providing evidence of developmental regulation of the onset of synaptic plasticity. These properties make this form of LTP the best known candidate mechanism for reinforcement-based vocal learning in juveniles and song maintenance in adult birds.
Collapse
Affiliation(s)
- Long Ding
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
20
|
Kojima S, Aoki K. Intrinsic and synaptic properties of the dorsomedial nucleus of the intercollicular complex, an area known to be involved in distance call production in Bengalese finches. Brain Res 2003; 966:84-94. [PMID: 12646311 DOI: 10.1016/s0006-8993(02)04198-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dorsomedial nucleus of the intercollicular complex (DM) of the midbrain in the Bengalese finch is essential for the vocal production of distance calls that have sexually-dimorphic acoustic structures in the adult. Anatomical tracing of the vocal control system shows that DM neurons of adult males receive axonal inputs from the robust nucleus of the archistriatum (RA), and the inputs are considered to be crucial for the male-typical features of distance calls. In order to investigate the neural mechanisms underlying distance call patterns of male finches in DM, we characterized neurons in DM and examined their synaptic responses to RA inputs in brain slice preparations. By using whole-cell recording techniques, we could classify at least three types of neurons based on electrophysiological and morphological characteristics. Type I neurons exhibited regular and high-frequency trains of action potentials in response to depolarizing current pulses. Type II neurons had large somata and action potential trains accommodating during depolarization. Type III neurons were characterized by a few spikes followed by a slow depolarization during current injection. Their somata were markedly small and their axons often projected toward the contralateral DM or the thalamic nucleus uvaeformis (Uva). In all these cell types, electrical stimulation of an area including DM-projecting RA axons often elicited both excitatory postsynaptic currents (EPSCs) mediated mainly by non-NMDA glutamate receptors and inhibitory postsynaptic currents (IPSCs) mediated by GABA(A) receptors. These intrinsic properties of DM neurons and their excitatory and inhibitory synaptic inputs may play important roles in generating the acoustic patterns of distance calls in male finches.
Collapse
Affiliation(s)
- Satoshi Kojima
- Life Science Institute, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | | |
Collapse
|
21
|
Adret P, Margoliash D. Metabolic and neural activity in the song system nucleus robustus archistriatalis: effect of age and gender. J Comp Neurol 2002; 454:409-23. [PMID: 12455006 DOI: 10.1002/cne.10459] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The sexually dimorphic robust archistriatal nucleus (RA) represents the telencephalic output of the bird song system. Here, we document sex-dependent changes in both the metabolic and neuronal activity of RA during the sensory and sensorimotor phases of song learning. From posthatching day (PHD) 20-63 in males but not females, RA and its input nucleus HVc showed sharp increases in cytochrome oxidase (CO) activity relative to surrounding archistriatum and the underlying shelf, respectively. In urethane-anesthetized birds, during the same period, the spontaneous activity of male RA neurons underwent dramatic changes in firing rate, distribution of interspike intervals, and bursting frequency, compared with other archistriatal cells. At PHD 20-21, RA neurons had extremely slow, irregular firing rates in birds of both sexes. In males, from PHD 30-36, RA neurons increased their firing rates and spiking activity became more regular, and at approximately PHD 38, strong bursts followed by inhibition (which in awake animals is associated with singing) began to be observed. Dual recordings from RA and HVc revealed synchronous bursting, with RA spikes lagging approximately 10 msec behind HVc. We conclude that changes in relative CO activity correlate with changes in spontaneous firing rates within RA and that patterns of RA spontaneous activity exhibit gradual change as birds enter early song and then again for plastic song. The emergence of strong burst patterns in RA occurs later in life than does input from HVc as established by tracer studies or based on observed HVc bursting in young animals.
Collapse
Affiliation(s)
- Patrice Adret
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
22
|
Luo M, Perkel DJ. Intrinsic and synaptic properties of neurons in an avian thalamic nucleus during song learning. J Neurophysiol 2002; 88:1903-14. [PMID: 12364516 DOI: 10.1152/jn.2002.88.4.1903] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anterior forebrain pathway (AFP) of the avian song system is a circuit essential for song learning but not for song production. This pathway consists of a loop serially connecting area X in the basal ganglia, the medial portion of the dorsolateral nucleus of thalamus (DLM), and the pallial lateral magnocellular nucleus of the anterior neostriatum (lMAN). The majority of DLM neurons in adult male zebra finches closely resemble mammalian thalamocortical neurons in both their intrinsic properties and the strong GABAergic inhibitory input they receive from the basal ganglia. These observations support the hypothesis that the AFP and the mammalian basal ganglia-thalamocortical pathway use similar information-processing mechanisms during sensorimotor learning. Our goal was to determine whether the cellular properties of DLM neurons are already established in juvenile birds in the sensorimotor phase of song learning when the AFP is essential. Current- and voltage-clamp recording in DLM of juvenile male zebra finches showed that juvenile DLM has two distinct cell types with intrinsic properties largely similar to those of their respective adult counterparts. Immunostaining for glutamic acid decarboxylase (GAD) in juvenile zebra finches revealed that, as in adults, most area X somata are large and strongly GAD+ and that their terminals in DLM form dense GAD+ baskets around somata. GAD immunoreactivity in DLM was depleted by lesions of area X, indicating that a strong GABAergic projection from area X to DLM is already established in juveniles. Some of the DLM neurons exhibited large, spontaneous GABAergic synaptic events. Stimulation of the afferent pathway evoked an inhibitory postsynaptic potential or current that was blocked by the GABA(A) receptor antagonist bicuculline methiodide. The decay of the GABA(A) receptor-mediated currents was slower in juvenile neurons than in adults. In addition, the reversal potential for these currents in juveniles was significantly more depolarized both than that in adults and than the Cl(-) equilibrium potential; yet the reversal potential was still well below the firing threshold and thus inhibitory in the slice preparation. Our findings suggest that the signal-processing role of DLM during sensorimotor learning is generally similar to that in adulthood but that quantitative changes in synaptic transmission accompany the development of stereotyped song.
Collapse
Affiliation(s)
- Minmin Luo
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
23
|
A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. J Neurosci 2002. [PMID: 11978853 DOI: 10.1523/jneurosci.22-09-03776.2002] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The song system of oscine birds has frequently been presented as a model system for motor learning in vertebrates. This practice has been bolstered by the growing recognition that one part of the song system that is essential for song learning, area X, is a component of the avian striatum. The mammalian striatum, the input structure of the basal ganglia, has been implicated in a number of motor-related functions, including motor learning, suggesting that song learning in birds and motor learning in mammals may use similar physiological mechanisms. We studied the intrinsic physiological properties of area X neurons in brain slices to see how closely they match properties identified in mammalian striatal neurons and to collect data that are necessary to understand how area X processes information. We found that area X contains all four physiological cell types present in the mammalian striatum and that each is very similar to its mammalian counterpart. We also found a fifth cell type in area X that has not been reported in mammalian striatum; instead, this cell type resembles neurons that have been recorded in the mammalian globus pallidus. This pallidum-like cell type morphologically resembles the projection neurons of area X. We suggest that area X contains a pathway equivalent to the "direct" striatopallidothalamic pathway through the mammalian basal ganglia, with the striatal and pallidal components intermingled in one nucleus.
Collapse
|
24
|
Abstract
Recent studies have provided important information concerning the neural signals that subserve vocal learning in songbirds: advanced signal processing techniques are beginning to clarify the behavioral trajectories followed by developing birds; single-unit physiology in behaving animals is providing important clues about sensory and motor representations during learning; in vitro whole-cell recordings are revealing patterns of synaptic communication; and experimental alterations in song behavior have advanced our understanding of specific structure-function relationships. The construction of theoretical and computational models will be crucial in integrating such disparate experimental results.
Collapse
Affiliation(s)
- T W Troyer
- Department of Psychology, Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
25
|
Boettiger CA, Doupe AJ. Developmentally restricted synaptic plasticity in a songbird nucleus required for song learning. Neuron 2001; 31:809-18. [PMID: 11567618 DOI: 10.1016/s0896-6273(01)00403-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We provide evidence here of long-term synaptic plasticity in a songbird forebrain area required for song learning, the lateral magnocellular nucleus of the anterior neostriatum (LMAN). Pairing postsynaptic bursts in LMAN principal neurons with stimulation of recurrent collateral synapses had two effects: spike timing- and NMDA receptor-dependent LTP of the recurrent synapses, and LTD of thalamic afferent synapses that were stimulated out of phase with the postsynaptic bursting. Both types of plasticity were restricted to the sensory critical period for song learning, consistent with a role for each in sensory learning. The properties of the observed plasticity are appropriate to establish recurrent circuitry within LMAN that reflects the spatiotemporal pattern of thalamic afferent activity evoked by tutor song. Such circuit organization could represent a tutor song memory suitable for reinforcing particular vocal sequences during sensorimotor learning.
Collapse
Affiliation(s)
- C A Boettiger
- Keck Center for Integrative Neuroscience, Neuroscience Graduate Program and Sloan-Swartz Center for Theoretical Neurobiology, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
26
|
Livingston FS, Mooney R. Androgens and isolation from adult tutors differentially affect the development of songbird neurons critical to vocal plasticity. J Neurophysiol 2001; 85:34-42. [PMID: 11152703 DOI: 10.1152/jn.2001.85.1.34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Song learning in oscine birds occurs during a juvenile sensitive period. One idea is that this sensitive period is regulated by changes in the electrophysiological properties of neurons in the telencephalic song nucleus lateral magnocellular nucleus of the anterior neostriatum (LMAN), a structure critical for song development but not adult singing. A corollary of this idea is that manipulations affecting the pace and quality of song learning will concomitantly affect the development of LMAN's electrophysiological properties. Manipulations known to affect song development include treating juvenile male zebra finches with exogenous androgens, which results in abnormally truncated adult songs, and isolation of the juvenile from adult tutors and their songs, which extends the sensitive period for song learning. Previously, we showed that synaptic transmission in LMAN changes over normal song development and that these changes are accelerated or retarded, respectively, by androgen treatment and isolation from an adult tutor. The intrinsic properties of LMAN neurons afford another potential target for regulation by steroid hormones and experience of adult tutors. Indeed previous studies showed that the capacity for LMAN neurons to fire action potentials in bursts, due to a low-threshold calcium spike, and the width of single action potentials in LMAN, wane over development. Here we analyzed these and other intrinsic electrophysiological features of LMAN neurons over normal development, then tested whether either early androgen treatment or isolating juveniles from adult tutors affected the timing of these changes. The present study shows that androgen but not isolation treatment alters the developmental time at which LMAN neurons progress from the bursting to nonbursting phenotype. In addition, other intrinsic properties, including the half-height spike width and the magnitude of the spike afterhyperpolarization (AHP), were found to change markedly over development but only changes to the AHP were androgen sensitive. Interestingly of all of the synaptic and intrinsic electrophysiological properties in LMAN studied to date, only the half-height spike width continues to change in the late juvenile stages of song learning. Furthermore raising juveniles in isolation from an adult tutor transiently delays the maturation of this property. The present results underscore that beyond their effects on LMAN's synaptic properties, both androgens and adult tutor experience are potent and selective regulators of the intrinsic properties of LMAN neurons.
Collapse
Affiliation(s)
- F S Livingston
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
27
|
DeVoogd TJ, Lauay C. Emerging Psychobiology of the Avian Song System. Dev Psychobiol 2001. [DOI: 10.1007/978-1-4615-1209-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
28
|
Farries MA, Perkel DJ. Electrophysiological properties of avian basal ganglia neurons recorded in vitro. J Neurophysiol 2000; 84:2502-13. [PMID: 11067993 DOI: 10.1152/jn.2000.84.5.2502] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The forebrains of mammals and birds appear quite different in their gross morphology, making it difficult to identify homologies between them and to assess how far they have diverged in organization. Nevertheless one set of forebrain structures, the basal ganglia, has been successfully compared in mammals and birds. Anatomical, histochemical, and molecular data have identified the avian homologues of the mammalian basal ganglia and indicate that they are very similar in organization, suggesting that they perform similar functions in the two classes. However, the physiological properties of the avian basal ganglia have not been studied, and these properties are critical for inferring functional similarity. We have used a zebra finch brain slice preparation to characterize the intrinsic physiological properties of neurons in the avian basal ganglia, particularly in the input structure of the basal ganglia, the striatum. We found that avian striatum contains a cell type that closely resembles the medium spiny neuron, the principal cell type of mammalian striatum. Avian striatum also contains a rare cell type that is very similar to an interneuron class found in mammalian striatum, the low-threshold spike cell. On the other hand, we found an aspiny, fast-firing cell type in avian striatum that is distinct from all known classes of mammalian striatal neuron. These neurons usually fired spontaneously at 10 Hz or more and were capable of sustained firing at very high rates when injected with depolarizing current. The existence of this cell type represents an important difference between avian striatum and mammalian dorsal striatum. Our data support the general idea that the organization and functional properties of the basal ganglia have been largely conserved in mammals and birds, but they imply that avian striatum is not identical to mammalian dorsal striatum.
Collapse
Affiliation(s)
- M A Farries
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
29
|
Intrinsic and extrinsic contributions to auditory selectivity in a song nucleus critical for vocal plasticity. J Neurosci 2000. [PMID: 10884327 DOI: 10.1523/jneurosci.20-14-05437.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development, maintenance, and perception of learned vocalizations in songbirds are likely to require auditory neurons that respond selectively to song. Neurons with song-selective responses have been described in several brain nuclei critical to singing, but the mechanisms by which such response properties arise, are modified, and propagate are poorly understood. The lateral magnocellular nucleus of the anterior neostriatum (LMAN) is the output of an anterior forebrain pathway (AFP) essential for learning and maintenance of song, processes dependent on auditory feedback. Although neurons throughout this pathway respond selectively to auditory presentation of the bird's own song, LMAN is the last stage at which responses to this auditory information could be transformed before being transmitted to vocal motor areas, where such responses may influence vocal production. Indeed, previous extracellular studies have indicated that LMAN's auditory selectivity is greater than that at earlier stages of the AFP. To determine whether LMAN local circuitry transforms or simply relays song-related auditory information to vocal control neurons, it is essential to distinguish local from extrinsic contributions to LMAN's auditory selectivity. In vivo intracellular recordings from LMAN projection neurons, coupled with local circuit inactivation, reveal that much of LMAN's song selectivity is supplied by its extrinsic inputs, but selective blockade of GABA receptors indicates that local inhibition is required for the expression of song selectivity. Therefore, LMAN neurons receive highly song-selective information, but LMAN's local circuitry can mask these selective inputs, providing a mechanism for context-dependent auditory feedback.
Collapse
|
30
|
White SA, Livingston FS, Mooney R. Androgens modulate NMDA receptor-mediated EPSCs in the zebra finch song system. J Neurophysiol 1999; 82:2221-34. [PMID: 10561401 DOI: 10.1152/jn.1999.82.5.2221] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Androgens potently regulate the development of learned vocalizations of songbirds. We sought to determine whether one action of androgens is to functionally modulate the development of synaptic transmission in two brain nuclei, the lateral part of the magnocellular nucleus of the anterior neostriatum (LMAN) and the robust nucleus of the archistriatum (RA), that are critical for song learning and production. We focused on N-methyl-D-aspartate-excitatory postsynaptic currents (NMDA-EPSCs), because NMDA receptor activity in LMAN is crucial to song learning, and because the LMAN synapses onto RA neurons are almost entirely mediated by NMDA receptors. Whole cell recordings from in vitro brain slice preparations revealed that the time course of NMDA-EPSCs was developmentally regulated in RA, as had been shown previously for LMAN. Specifically, in both nuclei, NMDA-EPSCs become faster over development. We found that this developmental transition can be modulated by androgens, because testosterone treatment of young animals caused NMDA-EPSCs in LMAN and RA to become prematurely fast. These androgen-induced effects were limited to fledgling and juvenile periods and were spatially restricted, in that androgens did not accelerate developmental changes in NMDA-EPSCs recorded in a nonsong area, the Wulst. To determine whether androgens had additional effects on LMAN or RA neurons, we examined several other physiological and morphological parameters. In LMAN, testosterone affected alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprianate-EPSC (AMPA-EPSC) decay times and the ratio of peak synaptic glutamate to AMPA currents, as well as dendritic length and spine density but did not alter soma size or dendritic complexity. In contrast, testosterone did not affect any of these parameters in RA, which demonstrates that exogenous androgens can have selective actions on different song system neurons. These data are the first evidence for any effect of sex steroids on synaptic transmission within the song system. Our results support the idea that endogenous androgens limit sensitive periods for song learning by functionally altering synaptic transmission in song nuclei.
Collapse
Affiliation(s)
- S A White
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
31
|
Two-stage, input-specific synaptic maturation in a nucleus essential for vocal production in the zebra finch. J Neurosci 1999. [PMID: 10516328 DOI: 10.1523/jneurosci.19-20-09107.1999] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In most songbirds, vocal learning occurs through two experience-dependent phases, culminating in a reduction of behavioral plasticity called song crystallization. At ends of developmentally plastic periods in other systems, synaptic properties change in a fashion appropriate to limit plasticity. Maturation of glutamatergic synapses often involves a reduction in duration of NMDA receptor (NMDAR)-mediated synaptic responses and a coincident reduction in the contribution of NMDARs to synaptic transmission. We hypothesized that similar changes in the zebra finch song system help limit behavioral plasticity during song development. Nucleus robustus archistriatalis (RA) is a key nucleus in the forebrain song motor pathway and receives glutamatergic input from the motor nucleus HVc. RA also receives glutamatergic input, mediated primarily by NMDARs, from the lateral magnocellular nucleus of the anterior neostriatum, which is part of a circuit essential for learning but not song production. We examined whether synaptic maturation occurs in either input to RA by recording synaptic currents in brain slices prepared from zebra finches of different ages. We find the motor input from HVc to RA uses both AMPA receptors (AMPARs) and NMDARs, and synaptic maturation occurs in two phases: an early reduction in duration of NMDAR-mediated synaptic currents in both inputs, and a later reduction in the NMDAR contribution to synaptic responses in the motor pathway. Although NMDAR kinetics change too early to account for crystallization, the reduction of the relative NMDAR contribution to synaptic transmission could contribute to the onset of crystallization. Thus, synaptic maturation events can be temporally distinct and input-specific and may play different roles in behavioral plasticity.
Collapse
|
32
|
Abstract
The anterior forebrain pathway (AFP) of the oscine song system is essential for song learning but not song production. Most cells recorded in this serially connected pathway show increased firing in response to song playback, suggesting largely excitatory connections among AFP nuclei. However, the neurons forming a key projection in this pathway, from area X to the medial nucleus of the dorsolateral thalamus (DLM), express glutamic acid decarboxylase in their somata and terminals, suggesting an inhibitory connection. To investigate the firing properties of DLM neurons and the functional influence of area X afferents in DLM, we made whole-cell recordings from DLM neurons in brain slices from adult male zebra finches. Most cells had intrinsic properties closely resembling those of mammalian thalamocortical cells, including a low-threshold Ca(2+) spike and time-dependent, hyperpolarization-activated inward rectification. Activation of afferents from area X evoked a strong, all-or-none IPSP whose amplitude and latency were unchanged by application of glutamate antagonists, consistent with a monosynaptic contact. The IPSP had a reversal potential near -70 mV and was blocked by the GABA(A) receptor antagonist bicuculline methiodide. Post-inhibitory rebound firing occurred in DLM neurons with a delay near 50 msec. Strong inhibition can combine with the intrinsic properties of DLM neurons to allow signaling on disinhibition. Our data are consistent with the hypothesis that the AFP corresponds to the mammalian corticobasal ganglia-thalamocortical loop. The similar functional properties of avian and mammalian thalamic neurons suggest conserved forebrain mechanisms of sensorimotor information processing across vertebrate taxa.
Collapse
|
33
|
Contributions of tutor and bird's own song experience to neural selectivity in the songbird anterior forebrain. J Neurosci 1999. [PMID: 10341255 DOI: 10.1523/jneurosci.19-11-04559.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Auditory neurons of the anterior forebrain (AF) of zebra finches become selective for song during song learning. In adults, these neurons respond more to the bird's own song (BOS) than to the songs of other zebra finches (conspecifics) or BOS played in reverse. In contrast, AF neurons from young birds (30 d) respond equally well to all song stimuli. AF selectivity develops rapidly during song learning, appearing in 60-d-old birds. At this age, many neurons also respond equally well to BOS and tutor song. These similar neural responses to BOS and tutor song might reflect contributions from both song experiences to selectivity, because auditory experiences of both BOS and tutor song are essential for normal song learning. Alternatively, they may simply result from acoustic similarities between BOS and tutor song. Understanding which experience shapes selectivity could elucidate the function of song-selective AF neurons. To minimize acoustic similarity between BOS and tutor song, we induced juvenile birds to produce abnormal song by denervating the syrinx, the avian vocal organ, before song onset. We recorded single neurons extracellularly in the AF at 60 d, after birds had had substantial experience of both the abnormal BOS (tsBOS) and tutor song. Some neurons preferred the unique tsBOS over the tutor song, clearly indicating a role for BOS experience in shaping neural selectivity. In addition, a sizable proportion of neurons responded equally well to tsBOS and tutor song, despite their acoustic dissimilarity. These neurons were not simply immature, because they were selective for tsBOS and tutor song relative to conspecific and reverse song. Furthermore, their similar responses to tsBOS and tutor song could not be attributed to residual acoustic similarities between the two stimuli, as measured by several song analyses. The neural sensitivity to two very different songs suggests that single AF neurons may be shaped by both BOS and tutor song experience.
Collapse
|
34
|
|