1
|
The effect of inhibition on stimulus-specific adaptation in the inferior colliculus. Brain Struct Funct 2017; 223:1391-1407. [PMID: 29143124 DOI: 10.1007/s00429-017-1546-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
The inferior colliculus is a center of convergence for inhibitory and excitatory synaptic inputs that may be activated simultaneously by sound stimulation. Stimulus repetition may generate response habituation by changing the efficacy of neuron's synaptic inputs. Specialized IC neurons reduce their response to repetitive tones, but restore their firing when a different and infrequent tone occurs, a phenomenon known as stimulus specific adaptation. Here, using the microiontophoresis technique, we determined the role of GABAA-, GABAB-, and glycinergic receptors in stimulus-specific adaptation (SSA). We found that blockade of postsynaptic GABAB receptors selectively modulated response adaptation to repetitive sounds, whereas blockade of presynaptic GABAB receptors exerted a gain control effect on neuron excitability. Adaptation decreased when postsynaptic GABAB receptors were blocked, but increased if the blockade affected the presynaptic GABAB receptors. A dual, paradoxical effect was elicited by blockade of glycinergic receptors, i.e., both increase and decrease in adaptation. Moreover, simultaneous co-application of GABAA, GABAB, and glycinergic antagonists demonstrated that local GABA- and glycine-mediated inhibition contributes to only about 50% of SSA. Therefore, inhibition via chemical synapses dynamically modulate the strength and dynamics of stimulus-specific adaptation, but does not generate it.
Collapse
|
2
|
Palomero-Gallagher N, Zilles K. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. Neuroimage 2017; 197:716-741. [PMID: 28811255 DOI: 10.1016/j.neuroimage.2017.08.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022] Open
Abstract
Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany.
| |
Collapse
|
3
|
Degro CE, Kulik A, Booker SA, Vida I. Compartmental distribution of GABAB receptor-mediated currents along the somatodendritic axis of hippocampal principal cells. Front Synaptic Neurosci 2015; 7:6. [PMID: 25852540 PMCID: PMC4369648 DOI: 10.3389/fnsyn.2015.00006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/15/2015] [Indexed: 02/02/2023] Open
Abstract
Activity of cortical principal cells is controlled by the GABAergic system providing inhibition in a compartmentalized manner along their somatodendritic axis. While GABAAR-mediated inhibitory synaptic transmission has been extensively characterized in hippocampal principal cells, little is known about the distribution of postsynaptic effects of GABABRs. In the present study, we have investigated the functional localization of GABABRs and their effector inwardly rectifying potassium (Kir3) channels by combining electrophysiological recordings in acute rat hippocampal slices, high-resolution immunoelectron microscopic analysis and single cell simulations. Pharmacologically isolated slow inhibitory postsynaptic currents were elicited in the three major hippocampal principal cell types by endogenous GABA released by electrical stimulation, photolysis of caged-GABA, as well as the canonical agonist baclofen, with the highest amplitudes observed in the CA3. Spatially restricted currents were assessed along the axis of principal cells by uncaging GABA in the different hippocampal layers. GABABR-mediated currents were present along the entire somatodendritic axis of principal cells, but non-uniformly distributed: largest currents and the highest conductance densities determined in the simulations were consistently found on the distal apical dendrites. Finally, immunocytochemical localization of GABABRs and Kir3 channels showed that distributions overlap but their densities diverge, particularly on the basal dendrites of pyramidal cells. GABABRs current amplitudes and the conductance densities correlated better with Kir3 density, suggesting a bottlenecking effect defined by the effector channel. These data demonstrate a compartmentalized distribution of the GABABR-Kir3 signaling cascade and suggest differential control of synaptic transmission, dendritic integration and synaptic plasticity at afferent pathways onto hippocampal principal cells.
Collapse
Affiliation(s)
- Claudius E Degro
- Institute for Integrative Neuroanatomy, Neurocure Cluster of Excellence, Charité Universitätsmedizin Berlin Germany
| | - Akos Kulik
- Institute for Physiology II, Bioss Centre for Biological Signalling Studies, University of Freiburg Freiburg Germany
| | - Sam A Booker
- Institute for Integrative Neuroanatomy, Neurocure Cluster of Excellence, Charité Universitätsmedizin Berlin Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Neurocure Cluster of Excellence, Charité Universitätsmedizin Berlin Germany
| |
Collapse
|
4
|
Dine J, Kühne C, Deussing JM, Eder M. Optogenetic evocation of field inhibitory postsynaptic potentials in hippocampal slices: a simple and reliable approach for studying pharmacological effects on GABAA and GABAB receptor-mediated neurotransmission. Front Cell Neurosci 2014; 8:2. [PMID: 24478627 PMCID: PMC3898519 DOI: 10.3389/fncel.2014.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/03/2014] [Indexed: 12/27/2022] Open
Abstract
The GABAergic system is the main source of inhibition in the mammalian brain. Consequently, much effort is still made to develop new modulators of GABAergic synaptic transmission. In contrast to glutamatergic postsynaptic potentials (PSPs), accurate monitoring of GABA receptor-mediated PSPs (GABAR-PSPs) and their pharmacological modulation in brain tissue invariably requires the use of intracellular recording techniques. However, these techniques are expensive, time- and labor-consuming, and, in case of the frequently employed whole-cell patch-clamp configuration, impact on intracellular ion concentrations, signaling cascades, and pH buffering systems. Here, we describe a novel approach to circumvent these drawbacks. In particular, we demonstrate in mouse hippocampal slices that selective optogenetic activation of interneurons leads to prominent field inhibitory GABAAR- and GABABR-PSPs in area CA1 which are easily and reliably detectable by a single extracellular recording electrode. The field PSPs exhibit typical temporal and pharmacological characteristics, display pronounced paired-pulse depression, and remain stable over many consecutive evocations. Additionally validating the methodological value of this approach, we further show that the neuroactive steroid 5α-THDOC (5 μM) shifts the inhibitory GABAAR-PSPs towards excitatory ones.
Collapse
Affiliation(s)
- Julien Dine
- Research Group Neuronal Network Dynamics, Max Planck Institute of Psychiatry Munich, Germany
| | - Claudia Kühne
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Matthias Eder
- Research Group Neuronal Network Dynamics, Max Planck Institute of Psychiatry Munich, Germany
| |
Collapse
|
5
|
Smith-Hicks CL. GABAergic dysfunction in pediatric neuro-developmental disorders. Front Cell Neurosci 2013; 7:269. [PMID: 24391546 PMCID: PMC3867664 DOI: 10.3389/fncel.2013.00269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022] Open
Abstract
The GABAergic system is central to the development and functional maturation of the nervous system. Emerging evidence support the role of GABAergic dysfunction in neuro-developmental disorders. This review presents the molecules and mechanisms that underlie GABA system dysfunction in several neuro-developmental disorders presenting in childhood. The impact on synaptic plasticity, neuronal circuit function and behavior, followed by targeted treatment strategies are discussed.
Collapse
Affiliation(s)
- Constance L Smith-Hicks
- Neurology, Kennedy Krieger Institute Baltimore, MD, USA ; Neurology, Johns Hopkins School of Medicine Baltimore, MD, USA
| |
Collapse
|
6
|
Best TK, Cramer NP, Chakrabarti L, Haydar TF, Galdzicki Z. Dysfunctional hippocampal inhibition in the Ts65Dn mouse model of Down syndrome. Exp Neurol 2011; 233:749-57. [PMID: 22178330 DOI: 10.1016/j.expneurol.2011.11.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/21/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
Abstract
GABAergic dysfunction is implicated in hippocampal deficits of the Ts65Dn mouse model of Down syndrome (DS). Since Ts65Dn mice overexpress G-protein coupled inward-rectifying potassium (GIRK2) containing channels, we sought to evaluate whether increased GABAergic function disrupts the functioning of hippocampal circuitry. After confirming that GABA(B)/GIRK current density is significantly elevated in Ts65Dn CA1 pyramidal neurons, we compared monosynaptic inhibitory inputs in CA1 pyramidal neurons in response to proximal (stratum radiatum; SR) and distal (stratum lacunosum moleculare; SLM) stimulation of diploid and Ts65Dn acute hippocampal slices. Synaptic GABA(B) and GABA(A) mediated currents evoked by SR stimulation were generally unaffected in Ts65Dn CA1 neurons. However, the GABA(B)/GABA(A) ratios evoked by stimulation within the SLM of Ts65Dn hippocampus were significantly larger in magnitude, consistent with increased GABA(B)/GIRK currents after SLM stimulation. These results indicate that GIRK overexpression in Ts65Dn has functional consequences which affect the balance between GABA(B) and GABA(A) inhibition of CA1 pyramidal neurons, most likely in a pathway specific manner, and may contribute to cognitive deficits reported in these mice.
Collapse
Affiliation(s)
- Tyler K Best
- Neuroscience Graduate Program, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
7
|
Cammalleri M, Martini D, Ristori C, Timperio AM, Bagnoli P. Vascular endothelial growth factor up-regulation in the mouse hippocampus and its role in the control of epileptiform activity. Eur J Neurosci 2010; 33:482-98. [DOI: 10.1111/j.1460-9568.2010.07529.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Kelly T, Mann M, Church J. The slow afterhyperpolarization modulates high pH-induced changes in the excitability of rat CA1 pyramidal neurons. Eur J Neurosci 2007; 26:2844-56. [PMID: 18001281 DOI: 10.1111/j.1460-9568.2007.05903.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Extra- and intracellular recordings from the CA1 region of rat hippocampal slices were employed to examine the role of the slow afterhyperpolarization (sAHP) in modulating the increases in neuronal excitability observed on increasing extracellular pH (pHo) from 7.4 to 7.7. In the majority of experiments, an antidromic conditioning stimulus applied in the presence of D(-)-2-amino-5-phosphonopentanoic acid (D-APV), 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt (CNQX) and bicuculline was employed to elicit a sAHP, and an antidromic test stimulus was applied during the sAHP. At pHo 7.4, a single conditioning stimulus elicited an action potential followed by a sAHP, which in turn inhibited the response to the test stimulus compared with the conditioning stimulus. Increasing the number of action potentials in the conditioning stimulus augmented the sAHP and further inhibited the test response, whereas isoproterenol inhibited the sAHP and prevented the relative inhibition of the test response. At pHo 7.7, a single conditioning stimulus elicited a burst of action potentials followed by a large sAHP, which in turn prevented the test stimulus from eliciting a burst of action potentials and, in extracellular recordings, further increased the inhibition of the test response. The latter effect did not solely reflect a high pHo-induced increase in the conditioning response (and, thus, the subsequent sAHP), but rather involved a more direct effect of high pHo to augment the sAHP. The results indicate that increasing pHo increases the excitability of CA1 neurons to an initial stimulus; however, a high pHo-dependent increase in the sAHP evoked by the initial stimulus limits the response to subsequent stimuli.
Collapse
Affiliation(s)
- Tony Kelly
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.
| | | | | |
Collapse
|
9
|
Nasrallah FA, Griffin JL, Balcar VJ, Rae C. Understanding your inhibitions: modulation of brain cortical metabolism by GABA(B) receptors. J Cereb Blood Flow Metab 2007; 27:1510-20. [PMID: 17293844 DOI: 10.1038/sj.jcbfm.9600453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the impact of neuronal excitation on the functional activity of brain is well understood, the nature of functional responses to inhibitory modulation is far from clear. In this work, we investigated the effects of modulation of the metabotropic GABA(B) receptor on brain metabolism using a targeted neuropharmacological, (1)H/(13)C nuclear magnetic resonance spectroscopy, and metabolomic approach. While agonists at GABA(B) receptors (Baclofen and SKF 97541) generally decreased metabolic activity, mild agonist action could also stimulate metabolism. Less potent antagonists (CGP 35348, Phaclofen) significantly decreased metabolic activity, while more potent antagonists (CGP 52432 and SCH 50911) had opposite, stimulatory, effects. Examination of the data by principal components analysis showed clear divisions of the effects into excitatory and inhibitory components. GABAergic modulation can, therefore, have stimulatory, inhibitory, or even neutral net effects on metabolic activity in brain tissue. This is consistent with GABAergic activity being context dependent, and this conclusion should be taken into account when evaluating functional imaging data involving modulation of neuronal inhibition.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- Prince of Wales Medical Research Institute, Randwick, New South Wales, Australia
| | | | | | | |
Collapse
|
10
|
Best TK, Siarey RJ, Galdzicki Z. Ts65Dn, a Mouse Model of Down Syndrome, Exhibits Increased GABAB-Induced Potassium Current. J Neurophysiol 2007; 97:892-900. [PMID: 17093127 DOI: 10.1152/jn.00626.2006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Down syndrome (DS) is the most common nonheritable cause of mental retardation. DS is the result of the presence of an extra chromosome 21 and its phenotype may be a consequence of overexpressed genes from that chromosome. One such gene is Kcnj6/Girk2, which encodes the G-protein-coupled inward rectifying potassium channel subunit 2 (GIRK2). We have recently shown that the DS mouse model, Ts65Dn, overexpresses GIRK2 throughout the brain and in particular the hippocampus. Here we report that this overexpression leads to a significant increase (∼2-fold) in GABAB-mediated GIRK current in primary cultured hippocampal neurons. The dose response curves for peak and steady-state GIRK current density is significantly shifted left toward lower concentrations of baclofen in Ts65Dn neurons compared with diploid controls, consistent with increased functional expression of GIRK channels. Stationary fluctuation analysis of baclofen-induced GIRK current from Ts65Dn neurons indicated no significant change in single-channel conductance compared with diploid. However, significant increases in GIRK channel density was found in Ts65Dn neurons. In normalized baclofen-induced GIRK current and GIRK current kinetics no difference was found between diploid and Ts65Dn neurons, which suggests unimpaired mechanisms of interaction between GIRK channel and GABAB receptor. These results indicate that increased expression of GIRK2 containing channels have functional consequences that likely affect the balance between excitatory and inhibitory neuronal transmission.
Collapse
Affiliation(s)
- Tyler K Best
- Neuroscience Graduate Program, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | | | | |
Collapse
|
11
|
Kaneda K, Kita H. Synaptically released GABA activates both pre- and postsynaptic GABA(B) receptors in the rat globus pallidus. J Neurophysiol 2005; 94:1104-14. [PMID: 16061489 DOI: 10.1152/jn.00255.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The globus pallidus (GP) contains abundant GABAergic synapses and GABA(B) receptors. To investigate whether synaptically released GABA can activate pre- and postsynaptic GABA(B) receptors in the GP, physiological recordings were performed using rat brain slice preparations. Cell-attached recordings from GABA(A) antagonist-treated preparations revealed that repetitive local stimulation induced a GABA(B) antagonist-sensitive pause in spontaneous firings of GP neurons. Whole cell recordings revealed that the repetitive stimulation evoked fast excitatory postsynaptic potentials followed by a slow inhibitory postsynaptic potential (IPSP) in GP neurons. The slow IPSP was insensitive to a GABA(A) receptor antagonist, increased in amplitude with the application of ionotropic glutamate receptor antagonists, and was suppressed by the GABA(B) antagonist CGP55845. The reversal potential of the slow IPSP was close to the potassium equilibrium potential. These results suggest that synaptically released GABA activated postsynaptic GABA(B) receptors and induced the pause and the slow IPSP. On the other hand, in the neurons that were treated to block postsynaptic GABA(B) responses, CGP55845 increased the amplitudes of repetitive local stimulation-induced GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) but not the ionotropic glutamate-mediated excitatory postsynaptic currents. Moreover, the GABA(B) receptor specific agonist baclofen reduced the frequency of miniature IPSCs without altering their amplitude distributions. These results suggest that synaptically released GABA also activated presynaptic GABA(B) autoreceptors, resulting in decreased GABA release in the GP. Together, we infer that both pre- and postsynaptic GABA(B) receptors may play crucial roles in the control of GP neuronal activity.
Collapse
Affiliation(s)
- Katsuyuki Kaneda
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, TN 38163, USA
| | | |
Collapse
|
12
|
Wu PH, Poelchen W, Proctor WR. Differential GABAB Receptor Modulation of Ethanol Effects on GABAA Synaptic Activity in Hippocampal CA1 Neurons. J Pharmacol Exp Ther 2004; 312:1082-9. [PMID: 15615867 DOI: 10.1124/jpet.104.075663] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that differential sensitivity to ethanol of synaptic GABA(A) somatic and dendritic inhibitory postsynaptic currents (IPSCs) in hippocampal CA1 pyramidal neurons could be due to differences in the extent of GABA(B) receptor activity at GABAergic synapses in these two hippocampal subfields. Our present results show that dendritic (distally evoked) GABA IPSCs contain a larger GABA(B) IPSC component of the total GABA IPSC than the somatic (proximally evoked) subfield. The inhibition of GABA(B) receptors by pretreatment of hippocampal slices with CGP-52432 [3[[(3,4-dichlorophenyl)methyl]amino]propyl](diethoxymethyl) phosphinic acid], a selective GABA(B) receptor antagonist, changes the basal ethanol-insensitive, distally evoked GABA(A) IPSCs to become more sensitive to ethanol. In addition, paired-pulse stimulation of the proximal and distal subfields of hippocampal pyramidal neurons shows that ethanol alone increases the probability of GABA release at proximal but not distal regions. Changes by ethanol on the probability of GABA release are only seen at distal locations during GABA(B) blockade. Finally, when the modulation of presynaptic GABA(B) receptors is minimized by the local application of 10 mM GABA directly onto somatic or dendritic GABAergic synaptic regions, postsynaptic GABA(B) receptors seem to exert significant negative (inhibiting) influence on the effects of ethanol on GABA(A) IPSCs in the distal subfields of CA1 pyramidal neurons. Together, our data suggest that differences in both presynaptic and postsynaptic GABA(B) receptor activity at these GABAergic synapses may modulate the differential ethanol sensitivity of proximal and distal GABA IPSCs(A) in hippocampal CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Peter H Wu
- Dept. of Psychiatry (C-261), University of Colorado Health Sciences Center, 4200 E. 9th Avenue, Denver, CO 80262, USA
| | | | | |
Collapse
|
13
|
Otmakhova NA, Lisman JE. Contribution of Ih and GABAB to Synaptically Induced Afterhyperpolarizations in CA1: A Brake on the NMDA Response. J Neurophysiol 2004; 92:2027-39. [PMID: 15163674 DOI: 10.1152/jn.00427.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CA1 pyramidal cells receive two major excitatory inputs: the perforant path (PP) terminates in the most distal dendrites, whereas the Schaffer collaterals (SC) terminate more proximally. We have examined the mechanism of the afterhyperpolarization (AHP) that follows single subthreshold excitatory postsynaptic potentials (EPSPs) in these inputs. The AHPs were not reduced by a GABAA antagonist or by agents that block Ca2+ entry. Application of the Ih blocker, ZD7288, partially blocked the AHP in the PP; the substantial remaining component was blocked by 2-hydroxysaclofen, a GABAB antagonist. In contrast, the AHP in the SC depends nearly completely on Ih, with almost no GABAB component. Thus postsynaptic GABAB receptors appear to be preferentially involved at distal synapses, consistent with the spatial distribution of GABAB receptors and g protein-coupled inward rectifying potassium (GIRK) channels. GABAB does, however, play a role at proximal synapses through presynaptic suppression of glutamate release, a mechanism that is much weaker at distal synapses. Experiments were conducted to explore the functional role of the AHP in the PP, which has a higher N-methyl-d-aspartate (NMDA)/AMPA ratio than the SC. Blockade of the AHP converted a response that had a small NMDA component to one that had a large component. These results indicate that the Ih and postsynaptic GABAB conductances act as a brake on distally generated NMDA responses.
Collapse
Affiliation(s)
- Nonna A Otmakhova
- Department of Biology, Brandeis Univ., 415 South St., Waltham, MA 02454, USA
| | | |
Collapse
|
14
|
Liu X, Leung LS. Partial hippocampal kindling increases GABAB receptor-mediated postsynaptic currents in CA1 pyramidal cells. Epilepsy Res 2003; 57:33-47. [PMID: 14706731 DOI: 10.1016/j.eplepsyres.2003.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In previous studies, we showed that partial hippocampal kindling decreased the efficacy of the presynaptic GABAB receptors on both GABAergic and glutamatergic terminals of CA1 neurons in hippocampal slices in vitro. In this study, GABAB receptor-mediated inhibitory postsynaptic currents (GABAB-IPSCs) were assessed by whole-cell recordings in CA1 pyramidal neurons in hippocampal slices of male Long-Evans rats. The peak GABAB-IPSC evoked by a brief train of supramaximal stratum radiatum stimuli (20 pulses of 300 Hz) in the presence of picrotoxin (0.1 mM) and kynurenic acid (1 mM) was larger in neurons of kindled (65.9 +/- 5.2 pA, N=42 cells) than control (45.8 +/- 4.8 pA, N=32 cells) rats (P<0.01). Adding GABA uptake blocker nipecotic acid (1 mM) or GABAB receptor agonist baclofen (0.01 mM) in the perfusate induced outward currents that were blocked by GABAB receptor antagonist CGP 55845A (1 microM). The peak outward current induced by nipecotic acid was larger in neurons of the kindled (55.4 +/- 5.7 pA, N=30) than the control group (39.8 +/- 4.5 pA, N=28) (P<0.05). However, the magnitude of the baclofen-induced current was not different between kindled (90.8 +/- 6.9 pA, N=29) and control (87.2 +/- 5.9 pA, N=21) groups (P>0.05). We concluded that partial hippocampal kindling increased GABAB-IPSCs in hippocampal CA1 pyramidal cells via multiple presynaptic mechanisms.
Collapse
Affiliation(s)
- Xinhuai Liu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ont, Canada N6A 5C1
| | | |
Collapse
|
15
|
Bertrand S, Nouel D, Morin F, Nagy F, Lacaille JC. Gabapentin actions on Kir3 currents and N-type Ca2+ channels via GABAB receptors in hippocampal pyramidal cells. Synapse 2003; 50:95-109. [PMID: 12923812 DOI: 10.1002/syn.10247] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gabapentin is a clinically effective anticonvulsant with an unclear mechanism of action. It was described as a GABA(B(1a,2)) receptor subtype-selective agonist, activating postsynaptic K(+) currents and inhibiting postsynaptic Ca(2+) channels in CA1 pyramidal cells, but without presynaptic actions. These activities appeared controversial and we therefore sought to further clarify gabapentin actions in rat hippocampal slices by characterizing K(+) currents and Ca(2+) channels targeted by gabapentin using whole-cell recording and multiphoton Ca(2+) imaging. 1) We found that gabapentin and baclofen induced inwardly rectifying K(+) currents (K(Gbp) and K(Bac), respectively), sensitive to Ba(2+) and Cs(+). 2) A constitutively active K(IR) current, independent of GABA(B) receptor activation and sensitive to Ba(2+) and Cs(+) was also present. 3) K(Gbp), K(Bac), and K(IR) currents showed some differences in sensitivity to Ba(2+) and Cs(+), indicating the possible activation of distinct Kir3 currents, independent of K(IR), by gabapentin and baclofen. 4) Gabapentin inhibition of Ca(2+) channels was abolished by omega-conotoxin GVIA, but not by omega-agatoxin IVA and nimodipine, indicating a predominant action of gabapentin on N-type Ca(2+) channels. 5) Gabapentin actions were linked to activation of pertussis toxin-sensitive G-proteins since N-ethylmaleimide (NEM) blocked K(Gbp) activation and Ca(2+) channel inhibition by gabapentin. 6) Finally, gabapentin reduced epileptiform discharges in slices via GABA(B) receptor activation. The anticonvulsant actions of gabapentin in hippocampal cells may thus involve GABA(B) receptor coupling to G-proteins and modulation of Kir3 and N-type Ca(2+) channels. Moreover, gabapentin and baclofen activation of GABA(B) receptors may couple to distinct cellular targets.
Collapse
Affiliation(s)
- Sandrine Bertrand
- Département de Physiologie et Centre de Recherche en Sciences Neurologiques, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
16
|
Burman KJ, Ige AO, White JH, Marshall FH, Pangalos MN, Emson PC, Minson JB, Llewellyn-Smith IJ. GABAB receptor subunits, R1 and R2, in brainstem catecholamine and serotonin neurons. Brain Res 2003; 970:35-46. [PMID: 12706246 DOI: 10.1016/s0006-8993(02)04269-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
GABA(B) receptors have been implicated in the GABAergic modulation of catecholaminergic and serotonergic pathways in the central nervous system. The GABA(B) receptor may require two subunits, GABA(B)R1 and GABA(B)R2, for functional activity. Using dual immunofluorescent labelling on adjacent cryostat sections, we investigated the presence of immunoreactivity for the GABA(B)R1 and GABA(B)R2 subunits in brainstem catecholamine (tyrosine hydroxylase-immunoreactive) and serotonin (tryptophan hydroxylase-immunoreactive) neurons. All neurons (>98%) examined in catecholamine groups A1, A2, A5, A6, C1, and serotonin groups B1-3 and B6-8 were immunoreactive for the GABA(B)R1 subunit. All A5 and A6 neurons (>97%) and at least 86% of A1, A2, C1, B2, B3, B7 and B8 neurons examined were GABA(B)R2-immunoreactive. The proportion of neurons with immunoreactivity for the GABA(B)R2 subunit varied between 0% and 99% for B1 neurons, and between 35% and 93% for B6 neurons. Statistical analysis showed that similar proportions of sampled neurons were immunoreactive for GABA(B)R1 and GABA(B)R2 in the A1, A5, A6, C1, B2 and B7 cell groups, whereas a smaller proportion of A2, B1, B3, B6 and B8 neurons were GABA(B)R2-immunoreactive than GABA(B)R1-immunoreactive. In general, our results suggest that GABA(B)R1 and GABA(B)R2 co-exist in the great majority of brainstem catecholamine and serotonin neurons. In the neurons that lack GABA(B)R2, the GABA(B)R1 subunit may act alone or with another protein.
Collapse
Affiliation(s)
- Kathleen J Burman
- Cardiovascular Neuroscience Group, Cardiovascular Medicine & Centre for Neuroscience, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bracci E, Vreugdenhil M, Hack SP, Jefferys JG. Dynamic modulation of excitation and inhibition during stimulation at gamma and beta frequencies in the CA1 hippocampal region. J Neurophysiol 2001; 85:2412-22. [PMID: 11387387 DOI: 10.1152/jn.2001.85.6.2412] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fast oscillations at gamma and beta frequency are relevant to cognition. During this activity, excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) are generated rhythmically and synchronously and are thought to play an essential role in pacing the oscillations. The dynamic changes occurring to excitatory and inhibitory synaptic events during repetitive activation of synapses are therefore relevant to fast oscillations. To cast light on this issue in the CA1 region of the hippocampal slice, we used a train of stimuli, to the pyramidal layer, comprising 1 s at 40 Hz followed by 2--3 s at 10 Hz, to mimic the frequency pattern observed during fast oscillations. Whole cell current-clamp recordings from CA1 pyramidal neurons revealed that individual stimuli at 40 Hz produced EPSPs riding on a slow biphasic hyperpolarizing-depolarizing waveform. EPSP amplitude initially increased; it then decreased concomitantly with the slow depolarization and with a large reduction in membrane resistance. During the subsequent 10-Hz train: the cells repolarized, EPSP amplitude and duration increased to above control, and no IPSPs were detected. In the presence of GABA(A) receptor antagonists, the slow depolarization was blocked, and EPSPs of constant amplitude were generated by 10-Hz stimuli. Altering pyramidal cell membrane potential affected the time course of the slow depolarization, with the peak being reached earlier at more negative potentials. Glial recordings revealed that the trains were associated with extracellular potassium accumulation, but the time course of this event was slower than the neuronal depolarization. Numerical simulations showed that intracellular chloride accumulation (due to massive GABAergic activation) can account for these observations. We conclude that synchronous activation of inhibitory synapses at gamma frequency causes a rapid chloride accumulation in pyramidal neurons, decreasing the efficacy of inhibitory potentials. The resulting transient disinhibition of the local network leads to a short-lasting facilitation of polysynaptic EPSPs. These results set constraints on the role that synchronous, rhythmic IPSPs may play in pacing oscillations at gamma frequency in the CA1 hippocampal region.
Collapse
Affiliation(s)
- E Bracci
- Department of Neurophysiology, Division of Neuroscience, The Medical School, The University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
18
|
Saghatelyan AK, Dityatev A, Schmidt S, Schuster T, Bartsch U, Schachner M. Reduced perisomatic inhibition, increased excitatory transmission, and impaired long-term potentiation in mice deficient for the extracellular matrix glycoprotein tenascin-R. Mol Cell Neurosci 2001; 17:226-40. [PMID: 11161481 DOI: 10.1006/mcne.2000.0922] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of the extracellular matrix molecule tenascin-R (TN-R) in regulation of synaptic transmission and plasticity in the CA1 region of the hippocampus was studied using mice deficient in expression of this molecule. The mutant mice showed normal NMDA-receptor-mediated currents but an impaired NMDA-receptor-dependent form of long-term potentiation (LTP) as compared to wild-type littermates. Reduced LTP in mutants was accompanied by increased basal excitatory synaptic transmission in synapses formed on CA1 pyramidal neurons. A possible mechanism for increased excitatory synaptic transmission in mutants could involve modulation of inhibition, since TN-R and its associated carbohydrate HNK-1 decorate perisomatic interneurons. Indeed, the amplitudes of unitary perisomatic inhibitory currents were smaller in mutants compared to wild-type mice. Thus, our data show that a deficit in TN-R results in reduction of perisomatic inhibition and, as a consequence, in an increase of excitatory synaptic transmission in CA1 to the levels close to saturation, impeding further expression of LTP.
Collapse
Affiliation(s)
- A K Saghatelyan
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, Hamburg, D-20246, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Zeng XJ, Tietz EI. Role of bicarbonate ion in mediating decreased synaptic conductance in benzodiazepine tolerant hippocampal CA1 pyramidal neurons. Brain Res 2000; 868:202-14. [PMID: 10854572 DOI: 10.1016/s0006-8993(00)02330-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chronic flurazepam treatment substantially impairs the function of GABAergic synapses on hippocampal CA1 pyramidal cells. Previous findings included a significant decrease in the synaptic and unitary conductance of CA1 pyramidal neuron GABA(A) receptor channels and the appearance of a GABA(A)-receptor mediated depolarizing potential. To investigate the ionic basis of the decreased conductance, whole-cell voltage-clamp techniques were used to record evoked, GABA(A) receptor-mediated IPSCs carried by HCO(3)(-)-Cl(-) or Cl(-) alone. Hippocampal slices were prepared from rats administered flurazepam orally for 1 week, 2 days after ending drug treatment. Slices were superfused with HCO(3)(-)-aCSF or with HEPES-aCSF (without HCO(3)(-)) plus 50 microM APV and 10 microM DNQX. The micropipette contained 130 mM CsCl and 1 microM QX-314. GABA(A) receptors located on pyramidal cell somata or dendrites were activated monosynaptically by maximal stimulation of GABAergic terminals at the stratum oriens-pyramidale (SO-SP) or stratum lacunosum-molecular (S-L-M) border, respectively. In HCO(3)(-)-aCSF, there was a significant reduction in synaptic-conductance in flurazepam-treated neurons following both SO-SP (control: 1058 pS, flurazepam: 226 pS, P<0.01) and S-L-M (control 998 pS, flurazepam: 179 pS, P<0.01) stimulation, as well as the total charge transfer, indicating a decreased HCO(3)(-)-Cl(-) flux. In HEPES-aCSF, the synaptic conductance and total charge transfer, and thus Cl(-) flux, was unchanged in flurazepam-treated neurons (SO-SP: control 588 pS, flurazepam: 580 pS, P>0.05; S-L-M: control 595 pS, flurazepam: 527 pS, P>0.05). Taken together, these findings suggest that a reduction in HCO(3)(-) flux may play a prominent role in mediating the action of GABA and that a loss of HCO(3)(-) conductance may significantly contribute to impaired GABA(A) receptor function after chronic benzodiazepine treatment.
Collapse
Affiliation(s)
- X J Zeng
- Department of Pharmacology, Medical College of Ohio, Block Health Science Building, 3035 Arlington Ave., Toledo, OH 43614-5804, USA
| | | |
Collapse
|
20
|
Zhang W, Elsen F, Barnbrock A, Richter DW. Postnatal development of GABAB receptor-mediated modulation of voltage-activated Ca2+ currents in mouse brain-stem neurons. Eur J Neurosci 1999; 11:2332-42. [PMID: 10383622 DOI: 10.1046/j.1460-9568.1999.00655.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GABAB receptors modulate respiratory rhythm generation in adult mammals. However, little is currently known of their functional significance during postnatal development. In the present investigation, the effects of GABAB receptor activation on voltage-activated Ca2+ currents were examined in rhythmically active neurons of the pre-Bötzinger complex (PBC). Both low- (LVA) and high-voltage-activated (HVA) Ca2+ currents were present from the first postnatal day (P1). The density of LVA Ca2+ currents increased during the first week, whilst the density of HVA Ca2+ currents increased after the first week. In the second postnatal week, the HVA Ca2+ currents were composed of L- (47 +/- 10%) and N-type (21 +/- 8%) currents plus a 'residual' current, whilst there were no N-type currents detectable in the first few days. The GABAB receptor agonist baclofen (30 microM) increased LVA Ca2+ currents (30 +/- 11%) at P1-P3, but it decreased the currents (35 +/- 11%) at P7-P15 without changing its time course. At all ages, baclofen (30 microM) decreased the HVA Ca2+ currents by approximately 54%. Threshold of baclofen effects on both LVA and HVA Ca2+ currents was 5 microM at P1-P3 and lower than 1 microM at P7-P15. The effect of baclofen was abolished in the presence of the GABAB receptor antagonist CGP 55845A (50 nM). We conclude that both LVA and HVA Ca2+ currents increased postnatally. The GABAB receptor-mediated modulation of these currents undergo marked developmental changes during the first two postnatal weeks, which may contribute essentially to modulation of respiratory rhythm generation.
Collapse
Affiliation(s)
- W Zhang
- Centre of Physiology, University of Göttingen, 37073 Germany.
| | | | | | | |
Collapse
|
21
|
Yamada K, Yu B, Gallagher JP. Different subtypes of GABAB receptors are present at pre- and postsynaptic sites within the rat dorsolateral septal nucleus. J Neurophysiol 1999; 81:2875-83. [PMID: 10368404 DOI: 10.1152/jn.1999.81.6.2875] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABAB receptor activation modulates neuronal activity mediated by multiple CNS transmitters and can occur at pre- and postsynaptic sites. In low concentrations, baclofen acts presynaptically to diminish transmitter release via both hetero- and autoreceptors, whereas at increasing concentrations, the same compound alters postsynaptic membrane excitability by inducing a membrane hyperpolarization. We have utilized electrophysiological techniques in vitro to focus on the possibility that pharmacologically different subtypes of GABAB receptors are present on presynaptic sites of glutamatergic terminals when compared with GABAB receptors on postsynaptic sites within the dorsolateral septal nucleus (DLSN). The glutamatergic terminal within the DLSN originates from a pyramidal cell body located within the hippocampus and most likely terminates on a GABAergic neuron from which recordings were made. Whole cell patch voltage-clamp methods were employed to record pharmacologically isolated excitatory postsynaptic currents (EPSCs) from DLSN neurons as an index of glutamatergic transmission. Using a modified internal pipette solution containing QX-314 and in which CsGluconate and GDPbetaS replaced Kgluconate and GTP, respectively, we recorded isolated monosynaptic EPSCs. The GABAA receptor antagonists bicuculline and picrotoxin were included in the external standard superfusion solution. Application of the GABAB receptor agonists, (+/-)-baclofen, CGP44533, and CGP35024 (10 nM to 10 microM) depressed glutamate-mediated EPSCs in a concentration-dependent manner. With the use of this combination of solutions, CGP44533 did not produce postsynaptic membrane property changes. Under these conditions, both (+/-)-baclofen and CGP35024 still induced increases of postsynaptic membrane conductance associated with an outward current. The GABAB receptor antagonist CGP55845A (1 microM) blocked the presynaptic CGP44533-mediated depressant effects of EPSCs, whereas CGP35348 (100 microM) or barium (2 mM) was ineffective. Furthermore, both CGP35348 (100 microM) and CGP55845A (1 microM) were effective in blocking the postsynaptic conductance changes associated with baclofen and CGP35024, whereas barium was ineffective. Our results demonstrate a distinct pharmacology for GABAB agonists acting at putative subtypes of GABAB receptors located on presynaptic sites of a glutamatergic terminal versus GABAB receptors on postsynaptic sites of a DLSN neuron. Furthermore, our results also suggest a different pharmacology and/or coupling of a GABAB receptor to different effectors at postsynaptic sites within the DLSN. Thus there may be three or more pharmacologically distinct GABAB receptors or receptor complexes associated with DLSN neurons: at least one pre- and two postsynaptic. If this distinct pharmacology and GABAB receptor distribution also extends to other CNS structures, such differences could provide development of selective drugs to act at these multiple sites.
Collapse
Affiliation(s)
- K Yamada
- Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1031, USA
| | | | | |
Collapse
|
22
|
Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI. Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol 1999; 405:299-321. [PMID: 10076927 DOI: 10.1002/(sici)1096-9861(19990315)405:3<299::aid-cne2>3.0.co;2-6] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The recent cloning of two gamma-aminobutyric acid(B) (GABA(B)) receptor isoforms (GABA(B)R1a/b), which are probably splice variants of the same gene transcript, allowed us to develop an antiserum that recognized the receptors in fixed tissue and to map their distribution in the rat central nervous system (CNS). We also investigated whether GABA(B)R1 colocalizes with glutamic acid decarboxylase (GAD), a marker of GABAergic cell bodies and terminals. Although GABA(B)R1-like immunoreactivity (GABA(B)R1-LI) was distributed throughout the CNS, several distinct distribution patterns emerged: (1) all monoaminergic brainstem cell groups appeared to contain very high levels of GABA(B)R1, (2) a very high intensity of GABA(B)R1-LI was observed in the majority of the cholinergic regions in the CNS, with exception of motoneurons of the third through sixth cranial nerve nuclei, and (3) a low density of the receptor was observed in most of the nuclei that contain cell bodies of GABAergic projection neurons. The highest GABA(B)R1 labeling was observed in the thalamus, interpeduncular nucleus and medial habenula. Cell bodies were labeled throughout the neuroaxis. We also observed dense neuropil labeling in many regions, suggesting that this receptor is localized in dendrites and/or axon terminals. However, in immunofluorescent double-labeling experiments for GABA(B)R1 and GAD, we never observed GABA(B)R1-LI in GAD-positive axon terminals; this result suggests that the GABA(B)R1 may not function as an autoreceptor. Double labeling was observed in the cell bodies of Purkinje neurons and in some interneurons. In general, the immunohistochemical localization of the GABA(B)R1 correlates well with physiologic and autoradiographic data on the distribution of GABA(B) receptors, but some critical differences were noted. Thus, it is likely that additional GABA(B) receptor subtypes remain to be identified.
Collapse
Affiliation(s)
- M Margeta-Mitrovic
- Department of Physiology, Howard Hughes Medical Institute, University of California San Francisco, 94143, USA
| | | | | | | | | |
Collapse
|