1
|
Deng WK, Wang X, Zhou HC, Luo F. L-type Ca 2+ channels and charybdotoxin-sensitive Ca 2+-activated K + channels are required for reduction of GABAergic activity induced by β2-adrenoceptor in the prefrontal cortex. Mol Cell Neurosci 2019; 101:103410. [PMID: 31644953 DOI: 10.1016/j.mcn.2019.103410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 08/26/2019] [Accepted: 09/09/2019] [Indexed: 11/18/2022] Open
Abstract
Whereas β2-adrenoceptor (β2-AR) has been reported to reduce GABAergic activity in the prefrontal cortex (PFC), the underlying cellular and molecular mechanisms have not been completely determined. Here, we showed that β2-AR agonist Clenbuterol (Clen) decreased GABAergic transmission onto PFC layer V/VI pyramidal neurons via a presynaptic mechanism without altering postsynaptic GABA receptors. Clen decreased the action potential firing rate but increased the burst afterhyperpolarization (AHP) amplitude in PFC interneurons. Application of L-type Ca2+ channel or charybdotoxin-sensitive Ca2+-activated K+ channel inhibitors blocked Clen-induced decreases in action potential firing rate, spontaneous inhibitory postsynaptic current (sIPSC) frequency and Clen-induced enhancement of AHP amplitude, suggesting that the effects of Clen involves L-type Ca2+ Channels and charybdotoxin-sensitive Ca2+-activated K+ channels. Our results provide a potential cellular mechanism by which Clen controls GABAergic neuronal activity in PFC.
Collapse
Affiliation(s)
- Wei-Ke Deng
- School of Life Sciences, Nanchang University, Nanchang 330031, China; Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Xing Wang
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Hou-Cheng Zhou
- Institute of Neurobiology & State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200000, China
| | - Fei Luo
- School of Life Sciences, Nanchang University, Nanchang 330031, China; Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Komaki H, Saadat F, Shahidi S, Sarihi A, Hasanein P, Komaki A. The interactive role of CB1 receptors and L-type calcium channels in hippocampal long-term potentiation in rats. Brain Res Bull 2017; 131:168-175. [PMID: 28442324 DOI: 10.1016/j.brainresbull.2017.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 01/22/2023]
Abstract
Long-term potentiation (LTP) of synaptic responses is a widely researched model of synaptic plasticity that occurs during learning and memory. The cannabinoid system is an endogenous system that modulate this kind of synaptic plasticity. In addition, voltage dependent calcium channels is essential for induction of LTP at some synapses in the hippocampus. However, there is currently debate over the interaction between L-type calcium channels and cannabinoid system on the synaptic plasticity. In this study, we examined the effects of an acute administration of the cannabinoid antagonist AM251 following a chronic administration of the Ca2+ channel blocker verapamil on LTP induction in the hippocampal dentate gyrus(DG) of rats. Male Wistar rats were administered verapamil(10,25,50mg/kg) or saline intraperitoneally(IP) daily for 13days(n=10/group). After this treatment period, animals were anesthetized with an IP injection of urethane; the recording and stimulating electrodes were positioned in the DG and the perforant pathway. After obtaining a steady state baseline response, a single IP injection of saline or AM251(1 or 5mg/kg) was administered. LTP was induced by high-frequency stimulation(HFS). The population spike(PS) amplitude and the slope of excitatory postsynaptic potentials(EPSP) were compared between the experimental groups. The acute administration of the CB1 antagonist AM251 increased LTP induction. The EPSP slopes and PS amplitude in the verapamil and AM251 groups differed after HFS, such that AM251 increased LTP, whereas verapamil decreased LTP induction. These findings suggest that there are functional interactions between the L-type calcium channels and cannabinoid system in this model of synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Hamidreza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fargol Saadat
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Hasanein
- Department of Biology, School of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
T-type channel-mediated neurotransmitter release. Pflugers Arch 2014; 466:677-87. [PMID: 24595475 DOI: 10.1007/s00424-014-1489-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Besides controlling a wide variety of cell functions, T-type channels have been shown to regulate neurotransmitter release in peripheral and central synapses and neuroendocrine cells. Growing evidence over the last 10 years suggests a key role of Cav3.2 and Cav3.1 channels in controlling basal neurosecretion near resting conditions and sustained release during mild stimulations. In some cases, the contribution of low-voltage-activated (LVA) channels is not directly evident but requires either the activation of coupled presynaptic receptors, block of ion channels, or chelation of metal ions. Concerning the coupling to the secretory machinery, T-type channels appear loosely coupled to neurotransmitter and hormone release. In neurons, Cav3.2 and Cav3.1 channels mainly control the asynchronous appearance of "minis" [miniature inhibitory postsynaptic currents (mIPSCs) and miniature excitatory postsynaptic currents (mEPSCs)]. The same loose coupling is evident from membrane capacity and amperometric recordings in chromaffin cells and melanotropes where the low-threshold-driven exocytosis possesses the same linear Ca(2+) dependence of the other voltage-gated Ca(2+) channels (Cav1 and Cav2) that is strongly attenuated by slow calcium buffers. The intriguing issue is that, despite not expressing a consensus "synprint" site, Cav3.2 channels do interact with syntaxin 1A and SNAP-25 and, thus, may form nanodomains with secretory vesicles that can be regulated at low voltages. In this review, we discuss all the past and recent issues related to T-type channel-secretion coupling in neurons and neuroendocrine cells.
Collapse
|
4
|
Tarr TB, Valdomir G, Liang M, Wipf P, Meriney SD. New calcium channel agonists as potential therapeutics in Lambert-Eaton myasthenic syndrome and other neuromuscular diseases. Ann N Y Acad Sci 2012; 1275:85-91. [DOI: 10.1111/nyas.12001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Hempel CM, Sivula M, Levenson JM, Rose DM, Li B, Sirianni AC, Xia E, Ryan TA, Gerber DJ, Cottrell JR. A system for performing high throughput assays of synaptic function. PLoS One 2011; 6:e25999. [PMID: 21998743 PMCID: PMC3187845 DOI: 10.1371/journal.pone.0025999] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/15/2011] [Indexed: 11/20/2022] Open
Abstract
Unbiased, high-throughput screening has proven invaluable for dissecting complex biological processes. Application of this general approach to synaptic function would have a major impact on neuroscience research and drug discovery. However, existing techniques for studying synaptic physiology are labor intensive and low-throughput. Here, we describe a new high-throughput technology for performing assays of synaptic function in primary neurons cultured in microtiter plates. We show that this system can perform 96 synaptic vesicle cycling assays in parallel with high sensitivity, precision, uniformity, and reproducibility and can detect modulators of presynaptic function. By screening libraries of pharmacologically defined compounds on rat forebrain cultures, we have used this system to identify novel effects of compounds on specific aspects of presynaptic function. As a system for unbiased compound as well as genomic screening, this technology has significant applications for basic neuroscience research and for the discovery of novel, mechanism-based treatments for central nervous system disorders.
Collapse
Affiliation(s)
- Chris M. Hempel
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | - Michael Sivula
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | | | - David M. Rose
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | - Bing Li
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | - Ana C. Sirianni
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | - Eva Xia
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - David J. Gerber
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | | |
Collapse
|
6
|
Bengtson CP, Freitag HE, Weislogel JM, Bading H. Nuclear calcium sensors reveal that repetition of trains of synaptic stimuli boosts nuclear calcium signaling in CA1 pyramidal neurons. Biophys J 2011; 99:4066-77. [PMID: 21156150 DOI: 10.1016/j.bpj.2010.10.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/13/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022] Open
Abstract
Nuclear calcium is a key signal in the dialogue between synapse and nucleus that controls the genomic responses required for persistent adaptations, including memory and acquired neuroprotection. The amplitude and duration of nuclear calcium transients specify activity-induced transcriptional changes. However, the precise relationship between synaptic input and nuclear calcium output is unknown. Here, we used stereotaxic delivery to the rat brain of recombinant adeno-associated viruses encoding nuclear-targeted calcium sensors to assess nuclear calcium transients in CA1 pyramidal neurons after stimulation of the Schaffer collaterals. We show that in acute hippocampal slices, a burst of synaptic activity elicits a nuclear calcium signal with a regenerative component at above-threshold stimulation intensities. Using classical stimulation paradigms (i.e., high-frequency stimulation (HFS) and θ burst stimulation (TBS)) to induce early LTP (E-LTP) and transcription-dependent late LTP (L-LTP), we found that the magnitude of nuclear calcium signals and the number of action potentials activated by synaptic stimulation trains are greatly amplified by their repetition. Nuclear calcium signals and action potential generation were reduced by blockade of either NMDA receptors or L-type voltage-gated calcium channels, but not by procedures that lead to internal calcium store depletion or by blockade of metabotropic glutamate receptors. These findings identify a repetition-induced switch in nuclear calcium signaling that correlates with the transition from E-LTP to L-LTP, and may explain why the transcription-dependent phase of L-LTP is not induced by a single HFS or TBS but requires repeated trains of activity. Recombinant, nuclear-targeted indicators may prove useful for further analysis of nuclear calcium signaling in vivo.
Collapse
Affiliation(s)
- C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
7
|
Ca(2+) and Ca(2+)-activated K(+) channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse. J Neurosci 2010; 30:12157-67. [PMID: 20826678 DOI: 10.1523/jneurosci.2541-10.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast, and inhibitory. This efferent synapse is mediated by the nicotinic alpha9alpha10 receptor coupled to the activation of SK2 Ca(2+)-activated K(+) channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown. To identify these channels, we used an isolated mouse cochlear preparation and monitored transmitter release from the efferent synaptic terminals in inner hair cells (IHCs) voltage clamped in the whole-cell recording configuration. Acetylcholine (ACh) release was evoked by electrically stimulating the efferent fibers that make axosomatic contacts with IHCs before the onset of hearing. Using the specific antagonists for P/Q- and N-type voltage-gated calcium channels (VGCCs), omega-agatoxin IVA and omega-conotoxin GVIA, respectively, we show that Ca(2+) entering through both types of VGCCs support the release process at this synapse. Interestingly, we found that Ca(2+) entering through the dihydropiridine-sensitive L-type VGCCs exerts a negative control on transmitter release. Moreover, using immunostaining techniques combined with electrophysiology and pharmacology, we show that BK Ca(2+)-activated K(+) channels are transiently expressed at the OC efferent terminals contacting IHCs and that their activity modulates the release process at this synapse. The effects of dihydropiridines combined with iberiotoxin, a specific BK channel antagonist, strongly suggest that L-type VGCCs negatively regulate the release of ACh by fueling BK channels that are known to curtail the duration of the terminal action potential in several types of neurons.
Collapse
|
8
|
Protective effects of hypothalamic proline-rich peptide and cobra venom Naja Naja Oxiana on dynamics of vestibular compensation following unilateral labyrinthectomy. Neurochem Res 2010; 35:1747-60. [PMID: 20703940 DOI: 10.1007/s11064-010-0239-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
Abstract
We tested the action of proline-rich peptide (PRP-1) and cobra venom Naja Naja Oxiana (NOX) on Deiters' nucleus neurons at 3rd, 15th and 35th days after unilateral labyrinthectomy (UL). Early and late tetanic, post-tetanic potentiation and depression of Deiters'neurons to bilateral high frequency stimulation of hypothalamic supraoptic and paraventricualar nuclei was studied. The analysis of spike activity was carried out by mean of on-line selection and special program. The complex averaged peri-event time and frequency histograms shows the increase of inhibitory and excitatory reactions of Deiters' neurons at early stage of vestibular compensation following PRP-1 and NOX injection, reaching the norm at the end of tests. In histochemical study the changes in Ca(2+)-dependent acidic phosphatase (AP) activity in neurons was discovered. It was shown that in UL animals the total disappearance or delay of decolorizing of Deiters' neurons lead to neurodegenerative pattern as cellular "shade". AP activity after UL and PRP-1 injection exerts more effective recovery of neurons in comparison with events, observed after the administration of NOX. The data of this study indicate that PRP-1 and NOX are protectors, which may successfully recover the disturbed vestibular functions.
Collapse
|
9
|
Cysteine string protein-alpha prevents activity-dependent degeneration in GABAergic synapses. J Neurosci 2010; 30:7377-91. [PMID: 20505105 DOI: 10.1523/jneurosci.0924-10.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The continuous release of neurotransmitter could be seen to place a persistent burden on presynaptic proteins, one that could compromise nerve terminal function. This supposition and the molecular mechanisms that might protect highly active synapses merit investigation. In hippocampal cultures from knock-out mice lacking the presynaptic cochaperone cysteine string protein-alpha (CSP-alpha), we observe progressive degeneration of highly active synaptotagmin 2 (Syt2)-expressing GABAergic synapses, but surprisingly not of glutamatergic terminals. In CSP-alpha knock-out mice, synaptic degeneration of basket cell terminals occurs in vivo in the presence of normal glutamatergic synapses onto dentate gyrus granule cells. Consistent with this, in hippocampal cultures from these mice, the frequency of miniature IPSCs, caused by spontaneous GABA release, progressively declines, whereas the frequency of miniature excitatory AMPA receptor-mediated currents (mEPSCs), caused by spontaneous release of glutamate, is normal. However, the mEPSC amplitude progressively decreases. Remarkably, long-term block of glutamatergic transmission in cultures lacking CSP-alpha substantially rescues Syt2-expressing GABAergic synapses from neurodegeneration. These findings demonstrate that elevated neural activity increases synapse vulnerability and that CSP-alpha is essential to maintain presynaptic function under a physiologically high-activity regimen.
Collapse
|
10
|
Long P, Mercer A, Begum R, Stephens GJ, Sihra TS, Jovanovic JN. Nerve Terminal GABAA Receptors Activate Ca2+/Calmodulin-dependent Signaling to Inhibit Voltage-gated Ca2+ Influx and Glutamate Release. J Biol Chem 2009; 284:8726-37. [PMID: 19141616 DOI: 10.1074/jbc.m805322200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
gamma-Aminobutyric acid type A (GABA(A)) receptors, a family of Cl(-)-permeable ion channels, mediate fast synaptic inhibition as postsynaptically enriched receptors for gamma-aminobutyric acid at GABAergic synapses. Here we describe an alternative type of inhibition mediated by GABA(A) receptors present on neocortical glutamatergic nerve terminals and examine the underlying signaling mechanism(s). By monitoring the activity of the presynaptic CaM kinase II/synapsin I signaling pathway in isolated nerve terminals, we demonstrate that GABA(A) receptor activation correlated with an increase in basal intraterminal [Ca(2+)](i). Interestingly, this activation of GABA(A) receptors resulted in a reduction of subsequent depolarization-evoked Ca(2+) influx, which thereby led to an inhibition of glutamate release. To investigate how the observed GABA(A) receptor-mediated modulation operates, we determined the sensitivity of this process to the Na-K-2Cl cotransporter 1 antagonist bumetanide, as well as substitution of Ca(2+) with Ba(2+), or Ca(2+)/calmodulin inhibition by W7. All of these treatments abolished the modulation by GABA(A) receptors. Application of selective antagonists of voltage-gated Ca(2+) channels (VGCCs) revealed that the GABA(A) receptor-mediated modulation of glutamate release required the specific activity of L- and R-type VGCCs. Crucially, the inhibition of release by these receptors was abolished in terminals isolated from R-type VGCC knock-out mice. Together, our results indicate that a functional coupling between nerve terminal GABA(A) receptors and L- or R-type VGCCs is mediated by Ca(2+)/calmodulin-dependent signaling. This mechanism provides a GABA-mediated control of glutamatergic synaptic activity by a direct inhibition of glutamate release.
Collapse
Affiliation(s)
- Philip Long
- Department of Pharmacology, School of Pharmacy, University of London, London WC1N 1AX
| | | | | | | | | | | |
Collapse
|
11
|
Holmgaard K, Jensen K, Lambert JDC. Imaging of Ca2+ responses mediated by presynaptic L-type channels on GABAergic boutons of cultured hippocampal neurons. Brain Res 2008; 1249:79-90. [PMID: 18996099 DOI: 10.1016/j.brainres.2008.10.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/01/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
We have previously demonstrated that L-type Ca(2+) channels are involved in post-tetanic potentiation (PTP) of GABAergic IPSCs in cultured hippocampal neurons. Here we have used intracellular Fluo-3 to detect [Ca(2+)](i) in single GABAergic boutons in response to stimulation that evokes PTP. During control stimulation of the presynaptic GABAergic neuron at 40 Hz for 1-2 s, DeltaF/F(0) increased rapidly to a peak value and started to decline shortly after the train ended, returning to baseline within 10-20 s. The L-type channel blocker, isradipine (5 microM), had no significant effect on the amplitude or kinetics of the Ca(2+) signal. Following blockade of N- and P/Q-type Ca(2+)-channels, the amplitude was reduced by 52.9+/-3%. Isradipine caused a reduction of the remaining response (by 26.6+/-5%, P<0.01), that was fully reversible on washing. The L-type channel "agonist", BayK 8644 (8 microM), caused a significant enhancement of the peak (by 18.7%+/-7%, P<0.05). The rising phase of the Ca(2+) signal, which is related to the rate of entry of Ca(2+) into the bouton, was decreased by isradipine (by 25.5+/-6%, P<0.05) and enhanced by BayK 8644 (by 45.2%+/-16%, P<0.05). These Ca(2+) imaging experiments support the putative role of L-type channels in PTP of GABAergic synapses on cultured hippocampal neurons. We expect L-channels to be few in number, although they may couple strongly to intracellular signalling cascades that could amplify a signal that regulates synaptic vesicle turnover in the GABAergic boutons.
Collapse
Affiliation(s)
- Kim Holmgaard
- Institute of Physiology and Biophysics, Building 1160, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
12
|
Storozhuk MV, Fredman SM, Ivanova SY, Balaban PM, Kostyuk PG. Involvement of L-type calcium channels and mitochondria in post-tetanic potentiation: Is it a general rule for different types of synapses? NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0055-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Lashgari R, Motamedi F, Noorbakhsh SM, Zahedi-Asl S, Komaki A, Shahidi S, Haghparast A. Assessing the long-term role of L-type voltage dependent calcium channel blocker verapamil on short-term presynaptic plasticity at dentate gyrus of hippocampus. Neurosci Lett 2007; 415:174-8. [PMID: 17267114 DOI: 10.1016/j.neulet.2007.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 01/02/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
High-voltage-activated Ca(2+) channels on presynaptic nerve terminals are known to play an important role in neurotransmitter release at both excitatory and inhibitory synapses. Whereas there is currently debate over the contribution of L-type voltage dependent Ca(2+) channels (L-type VDCCs) on the short-term presynaptic plasticity which is a defining feature of neuronal activity, the underlying mechanisms are poorly understood. In the present study, the L-type VDCCs chronically was inhibited with different doses of verapamil (10, 20 and 50 mg/kg; orally) to evaluate hippocampal dentate gyrus (DG) inhibitory interneuron function and its involvement on short-term plasticity using paired pulse stimulation in perforant path-DG of hippocampus. Our data show that chronic oral treatment of verapamil at dose of 50 mg/kg but not at lower doses, facilitated the excitability of DG cells at inter-stimulus intervals 20, 30 and 50 ms (P<0.03, 0.01 and 0.001; respectively) in population spike amplitude ratio, which is indicative of paired pulse potentiation in perforant path-DG synapses. While there are no significant differences in field excitatory postsynaptic potential slope ratio at all doses. We suggest that DG neurons facilitation is caused by inhibition of inhibitory interneurons directly and/or indirectly via inhibition of glutamate release in hippocampal DG. Therefore, these experiments indicate that chronic use of verapamil has effect on short-term presynaptic plasticity.
Collapse
Affiliation(s)
- Reza Lashgari
- Neuroscience Research Center and Department of Physiology, Shaheed Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
14
|
Korshoej AR, Lambert JDC. Post-tetanic potentiation of GABAergic IPSCs in cultured hippocampal neurons is exclusively time-dependent. Brain Res 2007; 1138:39-47. [PMID: 17274966 DOI: 10.1016/j.brainres.2006.12.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/07/2006] [Accepted: 12/27/2006] [Indexed: 10/23/2022]
Abstract
We have previously shown that post-tetanic potentiation (PTP) of GABAergic IPSCs in cultured hippocampal neurons involves activation of L-type Ca(2+) channels. Although there is little Ca(2+) entry by this route, it is possible that L-type Ca(2+) channels mediate an increase in probability of release (Pr) by a mechanism that remains dormant in the absence of stimulation. We have tested this hypothesis in the present study using dual whole-cell patch clamp recordings. IPSCs were evoked by low-frequency stimulation (LFS; 0.2 Hz) of presynaptic GABAergic neurons. Run-down was corrected by linear regression. Following tetanic stimulation (80 pulses at 40 Hz), the presence of PTP was probed by resuming LFS after various post-tetanic intervals (PTI). To control for possible effects associated with LFS, the train and PTI were replaced by corresponding pauses. Following pauses >or=16 s, the first IPSC was significantly increased by 20-25% (P<0.01, paired t-test). These post-pause responses were subtracted from IPSCs following tetanic stimulation. Following correction, PTP was greatest ( approximately 50%) after the shortest PTI (4 s) and IPSC amplitudes declined back to the baseline value over 1-2 min. With a PTI of 16 s, the first IPSC was potentiated to the same level as that to which PTP with a PTI of 4 s had decayed with continued LFS. There was no significant PTP with PTIs of 64 and 128 s. Since PTP decays entirely in the absence of stimulation, it is concluded that the process(es) mediating the increase in vesicular Pr appear to be time-dependent, but not use-dependent.
Collapse
Affiliation(s)
- Anders R Korshoej
- Department of Physiology, Institute of Physiology and Biophysics, Ole Worms Allé 160, University of Aarhus, DK-8000 Arhus C, Denmark
| | | |
Collapse
|
15
|
Vinet J, Sík A. Expression pattern of voltage-dependent calcium channel subunits in hippocampal inhibitory neurons in mice. Neuroscience 2006; 143:189-212. [PMID: 16938402 DOI: 10.1016/j.neuroscience.2006.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 11/30/2022]
Abstract
Different subtypes of voltage-dependent calcium channels (VDCCs) generate various types of calcium currents that play important role in neurotransmitter release, membrane excitability, calcium transients and gene expression. Well-established differences in the physiological properties and variable sensitivity of hippocampal GABAergic inhibitory neurons to excitotoxic insults suggest that the calcium homeostasis, thus VDCC subunits expression pattern is likely different in subclasses of inhibitory cells. Using double-immunohistochemistry, here we report that in mice: 1) Cav2.1 and Cav3.1 subunits are expressed in almost all inhibitory neurons; 2) subunits responsible for the L-type calcium current (Cav1.2 and Cav1.3) are infrequently co-localized with calretinin inhibitory cell marker while Cav1.3 subunit, at least in part, tends to compensate for the low expression of Cav1.2 subunit in parvalbumin-, metabotropic glutamate receptor 1alpha- and somatostatin-immunopositive inhibitory neurons; 3) Cav2.2 subunit is expressed in the majority of inhibitory neurons except in calbindin-reactive inhibitory cells; 4) Cav2.3 subunit is expressed in the vast majority of the inhibitory cells except in parvalbumin- and calretinin-immunoreactive neurons where the proportion of expression of this subunit is considerably lower. These data indicate that VDCC subunits are differentially expressed in hippocampal GABAergic interneurons, which could explain the diversity in their electrophysiological properties, the existence of synaptic plasticity in certain inhibitory neurons and their vulnerability to stressful stimuli.
Collapse
Affiliation(s)
- J Vinet
- Centre de Recherche Université Laval Robert-Giffard, 2601, chemin de la Canardière, Québec, Québec, Canada G1J 2G3
| | | |
Collapse
|
16
|
Glitsch M. Selective Inhibition of Spontaneous But Not Ca2+-Dependent Release Machinery by Presynaptic Group II mGluRs in Rat Cerebellar Slices. J Neurophysiol 2006; 96:86-96. [PMID: 16611839 DOI: 10.1152/jn.01282.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two main forms of neurotransmitter release are known: action potential-evoked and spontaneous release. Action potential-evoked release depends on Ca2+entry through voltage-gated Ca2+channels, whereas spontaneous release is thought to be Ca2+-independent. Generally, spontaneous and action potential-evoked release are believed to use the same release machinery to release neurotransmitter. This study shows, using the whole cell patch-clamp technique in rat cerebellar slices, that at the interneuron- Purkinje cell synapse activation of presynaptic group II metabotropic glutamate receptors suppresses spontaneous GABA release through a mechanism independent of voltage-gated Ca2+channels, store-operated Ca2+channels, and Ca2+release from intracellular Ca2+stores, suggesting that the metabotropic receptors target the release machinery directly. Voltage gated Ca2+channel-independent release following increased presynaptic cAMP production is similarly inhibited by these metabotropic receptors. In contrast, both voltage-gated Ca2+channel-dependent and presynaptic N-methyl-d-aspartate receptor-dependent GABA release were unaffected by activation of group II metabotropic glutamate receptors. Hence, the mechanisms underlying spontaneous and Ca2+-dependent GABA release are distinct in that only the former is blocked by group II metabotropic glutamate receptors. Thus the same neurotransmitter, glutamate, can activate or inhibit neurotransmitter release by selecting different receptors that target different release machineries.
Collapse
Affiliation(s)
- Maike Glitsch
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford OX1 3PT, UK.
| |
Collapse
|
17
|
Carbone E, Marcantoni A, Giancippoli A, Guido D, Carabelli V. T-type channels-secretion coupling: evidence for a fast low-threshold exocytosis. Pflugers Arch 2006; 453:373-83. [PMID: 16758226 DOI: 10.1007/s00424-006-0100-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
T-type channels are transient low-voltage-activated (LVA) Ca(2+) channels that control Ca(2+) entry in excitable cells during small depolarizations around resting potential. Studies in the past 20 years focused on the biophysical, physiological, and molecular characterization of T-type channels in most tissues. This led to a well-defined picture of the functional role of LVA channels in controlling low-threshold spikes, oscillatory cell activity, muscle contraction, hormone release, cell growth and differentiation. So far, little attention has been devoted to the role of T-type channels in transmitter release, which mainly involves channel types belonging to the high-voltage-activated (HVA) Ca(2+) channel family. However, evidence is accumulating in favor of a unique participation of T-type channels in fast transmitter release. Clear data are now reported in reciprocal synapses of the retina and olfactory bulb, synaptic contacts between primary afferent and second order nociceptive neurons, rhythmic inhibitory interneurons of invertebrates and clonal cell lines transfected with recombinant alpha(1) channel subunits. T-type channels also regulate the large dense-core vesicle release of neuroendocrine cells where Ca(2+) dependence, rate of vesicle release, and size of readily releasable pool appear comparable to those associated to HVA channels. This suggests that when sufficiently expressed and properly located near the release zones, T-type channels can trigger fast low-threshold secretion. In this study, we will review the main findings that assign a specific task to T-type channels in fast exocytosis, discussing their possible involvement in the control of the Ca(2+)-dependent processes regulating exocytosis like vesicle depletion and vesicle recycling.
Collapse
Affiliation(s)
- E Carbone
- Department of Neuroscience, NIS Center of Excellence, CNISM Research Unit, Torino, 10125, Italy.
| | | | | | | | | |
Collapse
|
18
|
Liu Y, Li X, Ma C, Liu J, Lu H. Salicylate blocks L-type calcium channels in rat inferior colliculus neurons. Hear Res 2005; 205:271-6. [PMID: 15953536 DOI: 10.1016/j.heares.2005.03.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 03/29/2005] [Indexed: 11/21/2022]
Abstract
To investigate the effects of the tinnitus inducer sodium salicylate on L-type voltage-gated calcium channels, we studied freshly dissociated inferior colliculus neurons of rats by the whole-cell voltage clamp method. Salicylate's blocking of L-type calcium channels was concentration dependent, and the IC(50) value of salicylate was estimated to be 1.99 mM. An amount of 1 mM salicylate significantly shifted the steady-state inactivation curve of L-type calcium channels about 9 mV in the hyperpolarizing direction and significantly delayed calcium channel recovery. Our results suggest that salicylate's blocking of L-type calcium channels may contribute to salicylate-induced tinnitus by decreasing GABA release in the inferior colliculus.
Collapse
Affiliation(s)
- Yanxing Liu
- Department of Neurobiology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang 050017, PR China.
| | | | | | | | | |
Collapse
|
19
|
Pre- and Post-Synaptically Induced Short-Term Plasticity of GABA-ergic Synaptic Transmission. NEUROPHYSIOLOGY+ 2005. [DOI: 10.1007/s11062-005-0073-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
A Functional Study of Single Mammalian CNS “Synaptic Bouton”. NEUROPHYSIOLOGY+ 2005. [DOI: 10.1007/s11062-005-0060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Huang CW, Chen YC, Tsai JJ. Paroxysmal Dyskinesia with Secondary Generalization of Tonic-clonic Seizures in Pseudohypoparathyroidism. Epilepsia 2005; 46:164-5. [PMID: 15660785 DOI: 10.1111/j.0013-9580.2005.39904.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Storozhuk MV, Ivanova SY, Balaban PM, Kostyuk PG. Possible role of mitochondria in posttetanic potentiation of GABAergic synaptic transmission in rat neocortical cell cultures. Synapse 2005; 58:45-52. [PMID: 16037952 DOI: 10.1002/syn.20186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been previously demonstrated that mitochondria are of crucial importance for posttetanic potentiation (PTP) at neuromuscular junction. The aim of our study was to examine whether this may also be the case at a central synapse. To address this question, we studied possible mitochondrial involvement in PTP of GABAergic synaptic transmission in rat neocortical cultures, a preparation in which PTP has not been previously documented. Synaptic responses were evoked by local extracellular stimulation. Whole-cell patch-clamp technique was employed to record inhibitory postsynaptic currents (IPSCs) from postsynaptic neurons. Tetanic stimulation (30 Hz, 4 s) of the presynaptic neuron evoked an increase of IPSC amplitude, lasting for about 1 min. PTP was accompanied by a decrease of coefficient of variation of the IPSC and a decrease of paired-pulse (IPSC(2)/IPSC(1)) ratio, indicating involvement of presynaptic mechanism(s) in PTP. Possible role of mitochondria in PTP was addressed using drugs affecting Ca(2+) uptake and subsequent Ca(2+) efflux: carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and tetraphenylphosphonium ions (TPP(+)). It was found that both CCCP (1-2 microM) and TPP(+) (10 microM) either substantially decreased or eliminated PTP. These results further confirm presynaptic origin of PTP in neocortical neurons and suggest an important role of mitochondrial Ca(2+) turnover in this form of synaptic plasticity at the central synapse.
Collapse
|
23
|
Ivanova SY, Lushnikova IV, Pivneva TA, Belan PV, Storozhuk MV, Kostyuk PG. Differential properties of GABAergic synaptic connections in rat hippocampal cell cultures. Synapse 2004; 53:122-30. [PMID: 15170824 DOI: 10.1002/syn.20040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Based on the effect of prolonged tetanic stimulation (30 Hz, 4 sec), we divided GABAergic synaptic connections in hippocampal cell cultures into two groups: connections facilitated ( approximately 45%) and connections depressed ( approximately 55%) by the tetanic stimulation. In order to reveal possible reasons for the differential effect of the tetanization, we compared several properties of the connections belonging to both groups. We found that, on average, evoked IPSCs in the connections facilitated by the tetanization have a smaller amplitude and larger coefficient of variation (CV) of IPSC amplitude compared to connections depressed by the tetanization. We also estimated quantal parameters for both groups of connections assuming that transmitter release is reasonably described by a binomial distribution. We found that a background release probability (P) is substantially lower in the connections facilitated by the tetanization (P approximately 0.5) than in the connections depressed by the tetanization (P approximately 0.9) and suggest that this difference may underlie the differential effect of the tetanization. We also found that the tetanization induces the opposite effect on connections made by distinct presynaptic neurons with the same postsynaptic cell (convergent connections) in a fraction of postsynaptic neurons studied (3 out of 9). These results support the idea that properties of the presynaptic neuron are of primary importance for the observed differential effect of the tetanization, but they do not exclude a role of the postsynaptic neuron in this effect.
Collapse
Affiliation(s)
- Svetlana Y Ivanova
- AA Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine Kiev
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Regulation of GABA release is crucial for normal brain functioning, and GABAA-mediated IPSCs are strongly influenced by repetitive stimulation and neuromodulation. However, GABA exocytosis has not been examined directly in organized tissue. Important issues remain outside the realm of electrophysiological techniques or are complicated by postsynaptic factors. For example, it is not known whether all presynaptic modulators affect release from all boutons in the same way, or whether modulator effects depend on the presence of certain types of voltage-gated calcium channels (VGCCs). To address such issues, we used confocal imaging and styryl dyes to monitor exocytosis from identified GABAergic boutons in organotypic hippocampal slice cultures. Repetitively evoked IPSCs declined more rapidly and completely than exocytosis, suggesting that depletion of filled vesicles cannot fully account for IPSC depression and underscoring the usefulness of directly imaging exocytosis. Stimulation at 10 Hz produced a transient facilitation of exocytosis that was dependent on L-type VGCCs. Using specific toxins, we found that release mediated via N-type and P-type VGCCs had similar properties. Neither baclofen nor a cannabinoid receptor agonist, CP55940, affected all boutons uniformly; they slowed release from some but completely prevented detectable release from others. Increasing stimulus frequency overcame this blockade of release. However, baclofen and CP55940 did not act identically, because only baclofen reduced facilitation and affected bouton releasing via P/Q-type VGCCs. Direct observation thus revealed novel features of GABAergic exocytosis and its regulation that would have been difficult or impossible to detect electrophysiologically. These features advance the understanding of the regulation of synapses and networks by presynaptic inhibition.
Collapse
|
25
|
Bannister RA, Melliti K, Adams BA. Reconstituted slow muscarinic inhibition of neuronal (Ca(v)1.2c) L-type Ca2+ channels. Biophys J 2002; 83:3256-67. [PMID: 12496094 PMCID: PMC1302402 DOI: 10.1016/s0006-3495(02)75327-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ca(2+) influx through L-type channels is critical for numerous physiological functions. Relatively little is known about modulation of neuronal L-type Ca(2+) channels. We studied modulation of neuronal Ca(V)1.2c channels heterologously expressed in HEK293 cells with each of the known muscarinic acetylcholine receptor subtypes. Galphaq/11-coupled M1, M3, and M5 receptors each produced robust inhibition of Ca(V)1.2c, whereas Galphai/o-coupled M2 and M4 receptors were ineffective. Channel inhibition through M1 receptors was studied in detail and was found to be kinetically slow, voltage-independent, and pertussis toxin-insensitive. Slow inhibition of Ca(V)1.2c was blocked by coexpressing RGS2 or RGS3T or by intracellular dialysis with antibodies directed against Galphaq/11. In contrast, inhibition was not reduced by coexpressing betaARK1ct or Galphat. These results indicate that slow inhibition required signaling by Galphaq/11, but not Gbetagamma, subunits. Slow inhibition did not require Ca(2+) transients or Ca(2+) influx through Ca(V)1.2c channels. Additionally, slow inhibition was insensitive to pharmacological inhibitors of phospholipases, protein kinases, and protein phosphatases. Intracellular BAPTA prevented slow inhibition via a mechanism other than Ca(2+) chelation. The cardiac splice-variant of Ca(V)1.2 (Ca(V)1.2a) and a splice-variant of the neuronal/neuroendocrine Ca(V)1.3 channel also appeared to undergo slow muscarinic inhibition. Thus, slow muscarinic inhibition may be a general characteristic of L-type channels having widespread physiological significance.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | | | | |
Collapse
|
26
|
Baldelli P, Novara M, Carabelli V, Hernández-Guijo JM, Carbone E. BDNF up-regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N- and P/Q-type Ca2+ channels signalling. Eur J Neurosci 2002; 16:2297-310. [PMID: 12492424 DOI: 10.1046/j.1460-9568.2002.02313.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic application of brain-derived neurotrophic factor (BDNF) induces new selective synthesis of non-L-type Ca2+ channels (N, P/Q, R) at the soma of cultured hippocampal neurons. As N- and P/Q-channels support neurotransmitter release in the hippocampus, this suggests that BDNF-treatment may enhance synaptic transmission by increasing the expression of presynaptic Ca2+ channels as well. To address this issue we studied the long-term effects of BDNF on miniature and stimulus-evoked GABAergic transmission in rat embryo hippocampal neurons. We found that BDNF increased the frequency of miniature currents (mIPSCs) by approximately 40%, with little effects on their amplitude. BDNF nearly doubled the size of evoked postsynaptic currents (eIPSCs) with a marked increase of paired-pulse depression, which is indicative of a major increase in presynaptic activity. The potentiation of eIPSCs was more relevant during the first two weeks in culture, when GABAergic transmission is depolarizing. BDNF action was mediated by TrkB-receptors and had no effects on: (i) the amplitude and dose-response of GABA-evoked IPSCs and (ii) the number of GABA(A) receptor clusters and the total functioning synapses, suggesting that the neurotrophin unlikely acted postsynaptically. In line with this, BDNF affected the contribution of voltage-gated Ca2+ channels mediating evoked GABAergic transmission. BDNF drastically increased the fraction of evoked IPSCs supported by N- and P/Q-channels while it decreased the contribution associated with R- and L-types. This selective action resembles the previously observed up-regulatory effects of BDNF on somatic Ca2+ currents in developing hippocampus, suggesting that potentiation of presynaptic N- and P/Q-channel signalling belongs to a manifold mechanism by which BDNF increases the efficiency of stimulus-evoked GABAergic transmission.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels, N-Type/drug effects
- Calcium Channels, N-Type/metabolism
- Calcium Channels, P-Type/drug effects
- Calcium Channels, P-Type/metabolism
- Calcium Channels, Q-Type/drug effects
- Calcium Channels, Q-Type/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Female
- Fetus
- GABA Antagonists/pharmacology
- Hippocampus/drug effects
- Hippocampus/embryology
- Hippocampus/metabolism
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Potassium Chloride/pharmacology
- Pregnancy
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, trkB/drug effects
- Receptor, trkB/metabolism
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Up-Regulation/drug effects
- Up-Regulation/physiology
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- P Baldelli
- INFM Research Unit, University of Turin, I-10125 Turin, Italy
| | | | | | | | | |
Collapse
|
27
|
Murakami N, Ishibashi H, Katsurabayashi S, Akaike N. Calcium channel subtypes on single GABAergic presynaptic terminal projecting to rat hippocampal neurons. Brain Res 2002; 951:121-9. [PMID: 12231465 DOI: 10.1016/s0006-8993(02)03148-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High voltage-activated Ca(2+) channel subtypes triggering GABA release from nerve terminals (boutons) projecting to rat hippocampal CA1 pyramidal neurons were studied. Evoked GABAergic inhibitory postsynaptic currents (eIPSCs) were recorded in response to focal stimulation of single boutons in mechanically dissociated neurons and in response to stimulation of nerve bundle in slice preparations. Nilvadipine (3 micro M), an L-type Ca(2+) channel blocker, completely inhibited eIPSCs evoked by stimulation of single boutons, but had no effect on eIPSCs evoked by stimulation of nerve bundle at low frequencies. Nilvadipine (3 micro M) did, however, prevent the potentiation of eIPSC amplitude following high-frequency stimulation of nerve bundles in the slice preparation. omega-Conotoxin-GVIA (3 micro M), an N-type Ca(2+) channel blocker, and omega-agatoxin-IVA (0.3 micro M), a P/Q-type Ca(2+) channel blocker, completely inhibited single bouton evoked eIPSCs in 33.3 and 83.3% of recordings, respectively. In response to low-frequency nerve bundle stimulation in the slice preparation, omega-conotoxin-GVIA (3 micro M), omega-agatoxin-IVA (0.1 micro M) both partially reduced eIPSC amplitude, with the residual component being abolished by Cd(2+) (0.1 mM). From these results, the following hypotheses could be drawn. (1). The distribution of P/Q- and N-type channels at a single bouton is nonuniform. (2. When a focal stimulation is applied to a single bouton, L-type channels play a significant role in a generation of an action potential which subsequently activates P/Q- and N-type channels at GABA release sites. (3). Action potentials conducted through axons in the slice preparation are sufficient to depolarize the bouton membrane, even when L-type channels are suppressed.
Collapse
Affiliation(s)
- Nobuya Murakami
- Cellular System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
28
|
Storozhuk MV, Ivanova SY, Pivneva TA, Melnick IV, Skibo GG, Belan PV, Kostyuk PG. Post-tetanic depression of GABAergic synaptic transmission in rat hippocampal cell cultures. Neurosci Lett 2002; 323:5-8. [PMID: 11911977 DOI: 10.1016/s0304-3940(01)02541-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of tetanic stimulation (30 Hz, 4 s) on evoked GABAergic inhibitory postsynaptic currents (IPSCs) was studied in cell cultures of dissociated hippocampal neurons with established synaptic connections. It was found that tetanic stimulation elicited post-tetanic depression (PTD) of the evoked IPSCs with a duration of more than 50 s in about 60% of the connections tested; post-tetanic potentiation was induced in 25% of the connections. We propose that the opposite effects of tetanization on IPSC amplitude are due to differences in the type of the interneuron that was tetanized. Since PTD in our experiments was usually accompanied by changes in the IPSC coefficient of variation and changes of a paired pulse depression, which are thought to reflect presynaptic mechanisms of modulation, we suggest that part of the PTD is due to a presynaptic mechanism(s).
Collapse
|
29
|
Stienstra C, Van Diepen M, Ten Dam M, Joëls M. Reduced field response to perforant path stimulation after adrenalectomy: effect of nimodipine treatment. Synapse 2002; 44:1-7. [PMID: 11842440 DOI: 10.1002/syn.10032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adrenalectomy enhances apoptosis in the rat dentate gyrus and concurrently decreases the field response of dentate cells to perforant path stimulation. Recent data showed that calcium current amplitude is increased 1 day prior to the appearance of apoptotic cells, pointing to calcium as a risk factor for the onset of apoptosis. We here tested if in vivo administration of nimodipine-thus presumably reducing dentate calcium influx through L type calcium channels-prevents the appearance of apoptotic cells and the change in field responses after adrenalectomy. It was found that nimodipine does not largely alter the number of animals with apoptosis nor the average number of apoptotic cells in the tip of the suprapyramidal blade of the dentate gyrus. After nimodipine treatment, field responses in the dentate gyrus of adrenalectomized rats were comparable to responses in adrenally intact rats. However, this was due to a reduction of the field response in slices from adrenally intact rats, rather than a prevention of synaptic impairment in adrenalectomized rats. The data clearly indicates that in vivo nimodipine treatment is insufficient to prevent apoptosis and synaptic impairment after adrenalectomy.
Collapse
Affiliation(s)
- C Stienstra
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
30
|
Lo FS, Ziburkus J, Guido W. Synaptic mechanisms regulating the activation of a Ca(2+)-mediated plateau potential in developing relay cells of the LGN. J Neurophysiol 2002; 87:1175-85. [PMID: 11877491 DOI: 10.1152/jn.00715.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using intracellular recordings in an isolated (in vitro) rat brain stem preparation, we examined the synaptic responses of developing relay neurons in the dorsal lateral geniculate nucleus (LGN). In newborn rats, strong stimulation of the optic tract (OT) evoked excitatory postsynaptic potentials (EPSPs) that gave rise to a sustained (300-1,300 ms), slow-decaying (<0.01 mV/s), depolarization (25-40 mV). Riding atop this response was a train of spikes of variable amplitude. We refer to this synaptically evoked event as a plateau potential. Pharmacology experiments indicate the plateau potential was mediated by the activation of high-threshold L-type Ca(2+) channels. Synaptic activation of the plateau potential relied on N-methyl-D-aspartate (NMDA) receptor-mediated activity and the spatial and/or temporal summation of retinally evoked EPSPs. Inhibitory postsynaptic responses (IPSPs) did not prevent the expression of the plateau potential. However, GABA(A) receptor activity modulated the intensity of optic tract stimulation needed to evoke the plateau potential, while GABA(B) receptor activity affected its duration. Expression of the plateau potential was developmentally regulated, showing a much higher incidence at P1-2 (90%) than at P19-20 (1%). This was in part due to the fact that developing relay cells show a greater degree of spatial summation than their mature counterparts, receiving input from as many as 7-12 retinal ganglion cells. Early spontaneous retinal activity is also likely to trigger the plateau potential. Repetitive stimulation of optic tract in a manner that approximated the high-frequency discharge of retinal ganglion cells led to a massive temporal summation of EPSPs and the activation of a sustained depolarization (>1 min) that was blocked by L-type Ca(2+) channel antagonists. These age-related changes in Ca(2+) signaling may contribute to the activity-dependent refinement of retinogeniculate connections.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Cell Biology and Anatomy, Neuroscience Center of Excellence, Louisiana State Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
31
|
Akopian G, Walsh JP. Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca(2+) channels. J Neurophysiol 2002; 87:157-65. [PMID: 11784738 DOI: 10.1152/jn.00115.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AMPA and N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses expressed differential paired-pulse plasticity when examined in the same cell using intracellular or whole cell voltage-clamp recordings. Electrical stimulation of corticostriatal afferents in brain slices bathed in artificial cerebrospinal fluid containing bicuculline produces excitatory postsynaptic potentials and excitatory postsynaptic currents (EPSCs) mediated primarily by AMPA receptors. Cell-to-cell variation existed in AMPA receptor paired-pulse plasticity, but within-cell plasticity was stable over a range of stimulation intensities. Addition of 6-cyano-7-nitroquinoxalene-2,3-dione blocked most of the synaptic response leaving behind a small AP-5-sensitive component. Increasing the stimulation intensity produced large, long-lasting NMDA receptor-mediated responses. In contrast to AMPA receptor-mediated responses, NMDA receptor responses consistently showed an increase in paired-pulse potentiation with increasing stimulation intensity. This relationship was restricted to interstimulus intervals shorter than 100 ms. Paired-pulse potentiation of NMDA receptor responses was voltage-dependent and reduced by removal of extracellular Mg(2+). Block of postsynaptic L-type Ca(2+) channels with nifedipine produced a voltage-dependent reduction of NMDA receptor excitatory postsynaptic currents (EPSCs) and a voltage-dependent reduction of NMDA receptor paired-pulse potentiation. These data indicate depolarization during the first NMDA receptor response causes facilitation of the second by removing voltage-dependent block of NMDA receptors by Mg(2+) and by activating voltage-dependent Ca(2+) channels.
Collapse
Affiliation(s)
- Garnik Akopian
- Ethel Percy Andrus Gerontology Center, USC Program in Neuroscience, University of Southern California, Los Angeles, California 90089-0191, USA
| | | |
Collapse
|
32
|
Jensen K, Mody I. L-type Ca2+ channel-mediated short-term plasticity of GABAergic synapses. Nat Neurosci 2001; 4:975-6. [PMID: 11547336 DOI: 10.1038/nn722] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Accepted: 08/18/2001] [Indexed: 11/08/2022]
Affiliation(s)
- K Jensen
- Department of Neurology, RNRC 3-131, University of California, Los Angeles School of Medicine, 710 Westwood Plaza, Los Angeles, California 90095, USA
| | | |
Collapse
|
33
|
Abstract
Neural activity producing a transient increase in intracellular Ca(2+) concentration can induce long-term potentiation (LTP) at visual cortical inhibitory synapses similar to those seen at various excitatory synapses. Here we report that low-frequency neural activity is required to maintain LTP at these inhibitory synapses. Inhibitory responses of layer 5 cells evoked by layer 4 stimulation were studied in developing rat visual cortical slices under a pharmacological blockade of excitatory synaptic transmission using intracellular and whole-cell recording methods. Although LTP induced by high-frequency stimulation (HFS) persisted while test stimulation was applied at 0.1 Hz, it was not maintained in approximately two-thirds of cells after test stimulation was stopped for 30 min. In the rest of the cells, LTP seemed to be maintained by spontaneous presynaptic spikes, because presynaptic inhibitory cells discharged spontaneously in our experimental condition and because LTP was totally abolished by a temporary application of Na(+) channel blockers. Experiments applying various Ca(2+) channel blockers and Ca(2+) chelators after HFS demonstrated that LTP maintenance was mediated by presynaptic Ca(2+) entries through multiple types of high-threshold Ca(2+) channels, which activated Ca(2+)-dependent reactions different from those triggering transmitter release. The Ca(2+) entries associated with action potentials seemed to be regulated by presynaptic K(+) channels, presumably large-conductance Ca(2+)-activated K(+) channels, because the application of blockers for these channels facilitated LTP maintenance. In addition, noradrenaline facilitated the maintenance of LTP. These findings demonstrate a new mechanism by which neural activity regulates the continuation and termination of LTP at visual cortical inhibitory synapses.
Collapse
|
34
|
Jensen K, Jensen MS, Bonefeld BE, Lambert JD. Developmental increase in asynchronous GABA release in cultured hippocampal neurons. Neuroscience 2001; 101:581-8. [PMID: 11113307 DOI: 10.1016/s0306-4522(00)00416-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Developmental changes in GABAergic synaptic transmission were examined in cultured hippocampal neurons using patch-clamp recordings and Ca(2+) imaging. In paired recordings, tetanization of the presynaptic GABAergic neuron with 80 pulses at either 40 or 80Hz was accompanied by tetanic depression of inhibitory postsynaptic responses. In neurons that had been cultured for more than two weeks, asynchronous inhibitory postsynaptic currents often appeared during the tetanus and continued for several seconds following stimulation. There was little asynchronous activity in neurons that had been cultured for shorter times. However, no age-related changes were observed in the amplitude of single synchronous inhibitory postsynaptic currents, paired-pulse depression or post-tetanic potentiation of inhibitory postsynaptic currents. Following equimolar replacement of extracellular Ca(2+) with strontium ions (Sr(2+)), single autaptic inhibitory postsynaptic currents were depressed in amplitude and asynchronous inhibitory postsynaptic currents were present on the decaying phase. Sr(2+)-induced asynchronous inhibitory postsynaptic currents showed no dependence on age in culture. Imaging of Ca(2+) in single GABAergic boutons was performed by including Fluo-3 in the patch pipette. During action potential firing induced by stimulating at 80Hz for 1s, intracellular calcium [Ca(2+)](i) increased rapidly in individual boutons. Following the stimulus, [Ca(2+)](i) decayed back to baseline within 10-15s. The half-time of decay increased from 1. 7+/-0.2s at 15days in vitro to 4.0+/-0.2s at 30days in vitro (P<0. 05), with a developmental profile that closely matched the increase in asynchronous inhibitory postsynaptic currents. We propose that the increase in tetanus-induced asynchronous GABA-release during the first month of synapse maturation in vitro is caused by a slowing of the Ca(2+)-clearing mechanisms in the GABAergic boutons. This results in larger and more prolonged elevations of [Ca(2+)](i) during tetanic stimulation, which leads to enhanced asynchronous transmitter release. We propose that the results of this study demonstrate a potentially important aspect of synapse maturation during development, and also imply that GABA release is up-regulated in conditions of decreased Ca(2+) buffering and clearing.
Collapse
Affiliation(s)
- K Jensen
- Department of Physiology, University of Aarhus, DK-8000 C, Aarhus, Denmark
| | | | | | | |
Collapse
|
35
|
Kombian SB, Hirasawa M, Mouginot D, Chen X, Pittman QJ. Short-term potentiation of miniature excitatory synaptic currents causes excitation of supraoptic neurons. J Neurophysiol 2000; 83:2542-53. [PMID: 10805656 DOI: 10.1152/jn.2000.83.5.2542] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnocellular neurons (MCNs) of the hypothalamic supraoptic nucleus (SON) secrete vasopressin and oxytocin. With the use of whole-cell and nystatin-perforated patch recordings of MCNs in current- and voltage-clamp modes, we show that high-frequency stimulation (HFS, 10-200 Hz) of excitatory afferents induces increases in the frequency and amplitude of 2,3-dioxo-6-nitro-1,2,3, 4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide (NBQX)-sensitive miniature excitatory postsynaptic currents (mEPSCs) lasting up to 20 min. This synaptic enhancement, referred to as short-term potentiation (STP), could be induced repeatedly; required tetrodotoxin (TTX)-dependent action potentials to initiate, but not to maintain; and was independent of postsynaptic membrane potential, N-methyl-D-aspartate (NMDA) receptors, or retrograde neurohypophyseal neuropeptide release. STP was not accompanied by changes in the conductance of the MCNs or in the responsiveness of the postsynaptic non-NMDA receptors, as revealed by brief application of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate. mEPSCs showed similar rise times before and after HFS and analysis of amplitude distributions of mEPSCs revealed one or more peaks pre-HFS and the appearance of additional peaks post-HFS, which were equidistant from the first peak. STP of mEPSCs was not associated with enhanced evoked responses, but was associated with an NBQX-sensitive increase in spontaneous activity of MCNs. Thus we have identified a particularly long-lasting potentiation of excitatory synapses in the SON, which has a presynaptic locus, is dissociated from changes in evoked release, and which regulates postsynaptic cell excitability.
Collapse
Affiliation(s)
- S B Kombian
- Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | | | | | | | | |
Collapse
|
36
|
Activity and calcium-dependent mechanisms maintain reliable interneuron synaptic transmission in a rhythmic neural network. J Neurosci 2000. [PMID: 10684877 DOI: 10.1523/jneurosci.20-05-01754.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inputs from glutamatergic excitatory interneurons (EIN) to motor neurons in the lamprey spinal cord locomotor network exhibit activity-dependent depression during spike trains. The mechanism underlying this depression has been examined here, and its relevance to transmitter release during rhythmic activity has been investigated. The depression of EIN inputs was greater after larger initial EPSPs and reduced in low-calcium Ringer's solution, effects that are consistent with depression caused by depletion of releasable transmitter stores. However, the depression was greater at lower stimulation frequencies and could be reversed by increasing the stimulation frequency. In addition, high-calcium Ringer's solution and the slow intracellular calcium chelator EGTA-AM, which both failed to affect the amplitude of low frequency-evoked EPSPs, reduced and increased the depression, respectively. These results are inconsistent with a simple depletion mechanism but suggest that ongoing activity and calcium-dependent mechanisms oppose depletion. The network relevance of this mechanism was examined using physiologically relevant bursts to simulate EIN spiking during rhythmic activity. Although considerably more EPSPs were evoked than during spike trains, burst-evoked EPSPs did not depress. However, single EPSPs evoked at the interburst interval depressed, and burst transmission was disrupted by EGTA-AM, again suggesting the involvement of activity and calcium-dependent mechanisms. By responding to the calcium changes evoked by increased interneuron activity, this mechanism can monitor transmitter requirements caused by EIN spiking, allowing reliable transmission across different patterns of network activity. However, not all types of spinal interneurons exhibit reliable burst transmission, suggesting specificity of this mechanism to a subset of neurons.
Collapse
|
37
|
Presynaptic L-Type Ca 2+ Channels. Neuroscientist 1999. [DOI: 10.1177/107385849900500603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Ireland DR. Preferential formation of strong synapses during re-innervation of guinea-pig sympathetic ganglia. J Physiol 1999; 520 Pt 3:827-37. [PMID: 10545147 PMCID: PMC2269622 DOI: 10.1111/j.1469-7793.1999.00827.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Re-innervation of partially denervated sympathetic ganglion cells was investigated using intracellular recording in guinea-pig lumbar paravertebral ganglia in vitro. The question addressed was whether the pattern of innervation by strong (suprathreshold) and weak (subthreshold) inputs seen normally was restored during re-innervation. 2. L5 ganglion cells each normally received 3.9 +/- 0.2 preganglionic inputs of which 1.2 +/- 0.1 were strong. Only 0.9 +/- 0.1 inputs arose from the L4 segment, the last of the thoracolumbar outflow, and only 11 % of these were strong. 3. Three to five weeks after cutting the sympathetic chain above the L4 white ramus, each neurone received 2.1 +/- 0.1 inputs after sprouting of surviving axons. Nearly 60 % of neurones received a strong input and the normal ratio of weakstrong synapses was restored. 4. Total charge transfer evoked by L4 inputs increased from 8.8 +/- 1.4 to 27. 6 +/- 2.4 pC per neurone after re-innervation, reaching 77 % of that in normal ganglia. This was primarily due to the formation of new strong inputs of normal size. 5. The synaptic events at the new strong synapses and the types of Ca2+ channel mediating transmitter release (N-type and channels resistant to specific antagonists) were the same as those at control strong synapses. 6. The data indicate that, following partial denervation, sprouting of surviving preganglionic axons results in the preferential formation of strong synapses with the same characteristics as those in normal ganglia. Thus the pattern of functional transmission by a single strong input to each cell was restored rather than the recovery of the number of synaptic connections.
Collapse
Affiliation(s)
- D R Ireland
- Prince of Wales Medical Research Institute, Randwick, NSW 2031, Australia.
| |
Collapse
|
39
|
Jensen K, Lambert JD, Jensen MS. Activity-dependent depression of GABAergic IPSCs in cultured hippocampal neurons. J Neurophysiol 1999; 82:42-9. [PMID: 10400933 DOI: 10.1152/jn.1999.82.1.42] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Short-term depression of monosynaptic GABAergic inhibitory postsynaptic currents (IPSCs) evoked between pairs of cultured rat hippocampal neurons was investigated using dual whole cell patch-clamp recordings. Paired stimuli applied to the GABAergic neuron resulted in paired-pulse depression (PPD) of the second IPSC (IPSC2) at interpulse intervals from 25 to 2,000 ms. CGP 55845A, but not CGP 35348, reduced PPD marginally. Brief paired-pulse applications of exogenous GABA indicated that postsynaptic factors made only minimal contribution to PPD of IPSCs. IPSC1 and PPD was reduced on lowering [Ca2+]o and enhanced on increasing [Ca2+]o. The potassium-channel blocker 4-aminopyridine (4-AP), which increases presynaptic Ca2+ influx, enhanced IPSC1 and PPD. Chelation of residual Ca2+ in the GABAergic boutons with EGTA-AM enhanced PPD. Stimulation of the presynaptic neuron at frequencies (f) ranging from 2.5 to 80 Hz resulted in tetanic depression of IPSCs, which declined rapidly and reached a plateau depending on f and [Ca2+]o. CGP 55845A decreased tetanic depression in the first part of the train, but this could be overcome with continued stimulation. We show that GABAergic IPSCs are robustly depressed by paired-pulse stimulation in cultured hippocampal neurons. The depression of IPSCs is mainly independent of presynaptic GABAB receptors and could be caused by depletion of releasable vesicles. Depleted synapses recover with a slow time course, depending on factors that regulate [Ca2+]i in the GABAergic boutons.
Collapse
Affiliation(s)
- K Jensen
- Department of Physiology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|