1
|
Ono Y, Kawakami K, Nakamura G, Ishida S, Aoki J, Inoue A. Generation of Gαi knock-out HEK293 cells illuminates Gαi-coupling diversity of GPCRs. Commun Biol 2023; 6:112. [PMID: 36709222 PMCID: PMC9884212 DOI: 10.1038/s42003-023-04465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are pivotal cell membrane proteins that sense extracellular molecules and activate cellular responses. The G-protein α subunit i (Gαi) family represents the most common GPCR-coupling partner and consists of eight subunits with distinct signaling properties. However, analyzing the coupling pattern has been challenging owing to endogenous expression of the Gαi subunits in virtually all cell lines. Here, we generate a HEK293 cell line lacking all Gαi subunits, which enables the measurement of GPCR-Gαi coupling upon transient re-expression of a specific Gαi subunit. We profile Gαi-coupling selectivity across 11 GPCRs by measuring ligand-induced inhibitory activity for cAMP accumulation. The coupling profiles are then classified into three clusters, representing those preferentially coupled to Gαz, those to Gαo, and those with unapparent selectivity. These results indicate that individual Gαi-coupled GPCRs fine-tune Gαi signaling by exerting coupling preference at the Gαi-subunit level.
Collapse
Affiliation(s)
- Yuki Ono
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Kouki Kawakami
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Gaku Nakamura
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Satoru Ishida
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Junken Aoki
- grid.26999.3d0000 0001 2151 536XDepartment of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Asuka Inoue
- grid.69566.3a0000 0001 2248 6943Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578 Japan
| |
Collapse
|
2
|
Deng S, Zhang G, Olayemi Aluko O, Mo Z, Mao J, Zhang H, Liu X, Ma M, Wang Q, Liu H. Bitter and astringent substances in green tea: composition, human perception mechanisms, evaluation methods and factors influencing their formation. Food Res Int 2022; 157:111262. [DOI: 10.1016/j.foodres.2022.111262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/01/2022]
|
3
|
Abduljabbar T, Alhamdan RS, Al Deeb M, AlAali KA, Vohra F. Association of Salivary Content Alteration and Early Ageusia Symptoms in COVID-19 Infections: A Systematic Review. Eur J Dent 2020; 14:S152-S158. [PMID: 33242917 PMCID: PMC7775251 DOI: 10.1055/s-0040-1716986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID 19) is a major threat to the health and prosperity of human life at present. It has resulted in loss of thousands of lives globally and has brought countries to the brink of economic, social, and health collapse. A major issue of this infection is the ease with which it transmits through salivary droplets and its survival for long durations outside the body. Therefore, its early detection is critical in prevention, diagnostic, and management efforts of COVID-19 patients. Loss of taste and smell is one of the early symptoms reported in these patients and the virus is abundantly found in the salivary secretion of the infected symptomatic and asymptomatic patients. Infection and inflammation of salivary glands are common among viral infections, particularly in the early stages, which lead to salivary composition changes. Chemosensory sensation of taste is critically dependent on the salivary flow rate and its inorganic constituents, protein levels, specific 3',5'-cyclic adenosine monophosphate and 3',5'-cyclic guanosine monophosphate levels, ghrelins, pH levels, and enzymes. Therefore, the question arises, "Does COVID-19 infection alter the salivary components and composition leading to early transient symptoms of Ageusia and hypogeusia?" This review shows association of the COVID-19 and Ageusia, in addition to the early viral infection of salivary glands and possible changes in salivary flow and content. Therefore, suggesting a potential association between early ageusia in COVID-19 infection and salivary compositional changes.
Collapse
Affiliation(s)
- Tariq Abduljabbar
- Department of Prosthetic Dental Science, Research Chair for Biological Research in Dental Health, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Rana S Alhamdan
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Modhi Al Deeb
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Khulud A AlAali
- Department of Clinical Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fahim Vohra
- Department of Prosthetic Dental Science, Research Chair for Biological Research in Dental Health, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Nitric oxide contributes to high-salt perception in a blood-sucking insect model. Sci Rep 2017; 7:15551. [PMID: 29138480 PMCID: PMC5686212 DOI: 10.1038/s41598-017-15861-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022] Open
Abstract
In all organisms, salts produce either appetitive or aversive responses depending on the concentration. While low-salt concentration in food elicits positive responses to ingest, high-salt triggers aversion. Still the mechanisms involved in this dual behavior have just started to be uncovered in some organisms. In Rhodnius prolixus, using pharmacological and behavioral assays, we demonstrated that upon high-salt detection in food a nitric oxide (NO) dependent cascade is activated. This activation involves a soluble guanylate cyclase (sGC) and the production of cyclic guanosine monophosphate (cGMP). Thus, appetitive responses to low-salt diets turn to aversion whenever this cascade is activated. Conversely, insects feed over aversive high-salt solutions when it is blocked by reducing NO levels or by affecting the sGC activity. The activation of NO/sGC/cGMP cascade commands the avoidance feeding behavior in R. prolixus. Investigations in other insect species should examine the possibility that high-salt aversion is mediated by NO/sSG/cGMP signaling.
Collapse
|
5
|
Abstract
Many people avidly consume foods and drinks containing caffeine, despite its bitter taste. Here, we review what is known about caffeine as a bitter taste stimulus. Topics include caffeine's action on the canonical bitter taste receptor pathway and caffeine's action on noncanonical receptor-dependent and -independent pathways in taste cells. Two conclusions are that (1) caffeine is a poor prototypical bitter taste stimulus because it acts on bitter taste receptor-independent pathways, and (2) caffeinated products most likely stimulate "taste" receptors in nongustatory cells. This review is relevant for taste researchers, manufacturers of caffeinated products, and caffeine consumers.
Collapse
Affiliation(s)
- Rachel L Poole
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | | |
Collapse
|
6
|
Devillier P, Naline E, Grassin-Delyle S. The pharmacology of bitter taste receptors and their role in human airways. Pharmacol Ther 2015; 155:11-21. [PMID: 26272040 DOI: 10.1016/j.pharmthera.2015.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The receptors involved in bitter taste perception (bitter taste receptors--T2Rs) constitute a family of G-protein-coupled receptors, of which around 29 subtypes have been identified in humans. T2R expression was initially thought to be confined to the oral cavity but has recently been described in a range of other tissues (such as the heart, gut, nasal cavity and lungs) and cell types (chemosensory, smooth muscle, endothelial, epithelial and inflammatory cells). Although it is still not clear whether endogenous T2R agonists exist, the T2R receptors recognize many natural and synthetic compounds, such as the acyl-homoserine lactones produced by bacteria, caffeine, chloroquine, and erythromycin. In the upper airways, T2Rs are involved in neurogenic inflammation and bacterial clearance. Their known effects in the lungs are exerted at three different levels. Firstly, T2R agonists increase the beating frequency of cilia on epithelial cells. Secondly, the T2Rs induce bronchial smooth muscle cells to relax. Thirdly, the T2R receptors expressed on immune cells (such as macrophages and mast cells) modulate production of pro-inflammatory mediators. Furthermore, T2R agonists are effective in inhibiting lung inflammation or smooth muscle contraction in ex vivo and asthma animal models, and are known to be involved in bacterial killing in the nasal cavity and enhancing lung function in humans. This review focuses on the pharmacology and physiological functions of T2R receptors in the upper and lower airways. It presents recently acquired knowledge suggesting that T2Rs may become valuable drug targets in the treatment of diseases such as asthma and chronic rhinosinusitis.
Collapse
Affiliation(s)
- Philippe Devillier
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Emmanuel Naline
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Stanislas Grassin-Delyle
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France.
| |
Collapse
|
7
|
Sawano S, Seto E, Mori T, Hayashi Y. G-Protein-Dependent and -Independent Pathways in Denatonium Signal Transduction. Biosci Biotechnol Biochem 2014; 69:1643-51. [PMID: 16195580 DOI: 10.1271/bbb.69.1643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To clarify the involvement of G protein in denatonium signal transduction, we carried out a whole-cell patch-clamp analysis with isolated taste cells in mice. Two different responses were observed by applying GDP-beta-S, a G-protein inhibitor. One response to denatonium was reduced by GDP-beta-S (G-protein-dependent), whereas the other was not affected (G-protein-independent). These different patterns were also observed by concurrently inhibiting the phospholipase C beta2 and phosphodiesterase pathways via G protein. These data suggest dual, G-protein-dependent and -independent mechanisms for denatonium. Moreover, the denatonium responses were not attenuated by singly inhibiting the phospholipase C beta2 or phosphodiesterase pathway, implying that both pathways were involved in G-protein-dependent transduction. In the G-protein-independent cells, the response was abolished by the depletion of calcium ions within the intracellular store. These results suggest that Ca2+ release from the intracellular store is an important factor. Our data demonstrate multiple transduction pathways for denatonium in mammalian taste cells.
Collapse
Affiliation(s)
- Shoko Sawano
- Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
8
|
Yu P, Yeo ASL, Low MY, Zhou W. Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile. Food Chem 2014; 155:9-16. [PMID: 24594147 DOI: 10.1016/j.foodchem.2014.01.046] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 01/20/2023]
Abstract
Thirty-nine non-volatile compounds in seven ready-to-drink (RTD) green tea samples were analysed and quantified using liquid chromatography. Taste reconstruction experiments using thirteen selected compounds were conducted to identify the key non-volatile tastants. Taste profiles of the reconstructed samples did not differ significantly from the RTD tea samples. To investigate the taste contribution and significance of individual compounds, omission experiments were carried out by removing individual or a group of compounds. Sensory evaluation revealed that the astringent- and bitter-tasting (-)-epigallocatechin gallate, bitter-tasting caffeine, and the umami-tasting l-glutamic acid were the main contributors to the taste of RTD green tea. Subsequently, the taste profile of the reduced recombinant, comprising of a combination of these three compounds and l-theanine, was found to not differ significantly from the sample recombinant and RTD tea sample. Lastly, regression models were developed to objectively predict and assess the intensities of bitterness and astringency in RTD green teas.
Collapse
Affiliation(s)
- Peigen Yu
- Food Science and Technology Programme, c/o Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Angelin Soo-Lee Yeo
- Food Science and Technology Programme, c/o Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Mei-Yin Low
- Flavour Science, Givaudan Singapore Pte Ltd, 1 Woodlands Avenue 8, Singapore 738972, Singapore
| | - Weibiao Zhou
- Food Science and Technology Programme, c/o Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
9
|
Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, Nelson TM. Genetics of taste receptors. Curr Pharm Des 2014; 20:2669-83. [PMID: 23886383 PMCID: PMC4764331 DOI: 10.2174/13816128113199990566] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/24/2013] [Indexed: 12/19/2022]
Abstract
Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.
Collapse
|
10
|
Tordoff MG, Ellis HT. Taste dysfunction in BTBR mice due to a mutation of Itpr3, the inositol triphosphate receptor 3 gene. Physiol Genomics 2013; 45:834-55. [PMID: 23859941 DOI: 10.1152/physiolgenomics.00092.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The BTBR T+ tf/J (BTBR) mouse strain is indifferent to exemplars of sweet, Polycose, umami, bitter, and calcium tastes, which share in common transduction by G protein-coupled receptors (GPCRs). To investigate the genetic basis for this taste dysfunction, we screened 610 BTBR×NZW/LacJ F2 hybrids, identified a potent QTL on chromosome 17, and isolated this in a congenic strain. Mice carrying the BTBR/BTBR haplotype in the 0.8-Mb (21-gene) congenic region were indifferent to sweet, Polycose, umami, bitter, and calcium tastes. To assess the contribution of a likely causative culprit, Itpr3, the inositol triphosphate receptor 3 gene, we produced and tested Itpr3 knockout mice. These were also indifferent to GPCR-mediated taste compounds. Sequencing the BTBR form of Itpr3 revealed a unique 12 bp deletion in Exon 23 (Chr 17: 27238069; Build 37). We conclude that a spontaneous mutation of Itpr3 in a progenitor of the BTBR strain produced a heretofore unrecognized dysfunction of GPCR-mediated taste transduction.
Collapse
|
11
|
Henkin RI, Velicu I. Etiological relationships of parotid saliva cyclic nucleotides in patients with taste and smell dysfunction. Arch Oral Biol 2012; 57:670-7. [PMID: 22310165 DOI: 10.1016/j.archoralbio.2012.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/29/2011] [Accepted: 01/08/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We previously demonstrated that parotid saliva cAMP and cGMP were lower in patients with taste and smell dysfunction than in normal subjects. We subsequently demonstrated parotid saliva cAMP and cGMP were inversely correlated with smell loss degree such that as smell loss severity increased parotid saliva cAMP and cGMP decreased proportionately. To learn more about these relationships we studied parotid saliva cAMP and cGMP with respect to aetiology of sensory loss in these patients. DESIGN Parotid saliva cAMP and cGMP in patients with smell loss (hyposmia) who participated in an open label fixed design controlled clinical trial with treatment with oral theophylline were evaluated with respect to their initial etiological diagnosis. Levels of cyclic nucleotides in each etiological category were compared to each other, to the entire patient group and to normal subjects. RESULTS Mean cAMP and cGMP in all patients combined were below those in normals, as previously described. However, categorized by aetiology, there was a stratification of levels of both cyclic nucleotides; some levels were below the normal mean and some were at or above the normal mean. CONCLUSIONS Parotid saliva cyclic nucleotides characterised in hyposmic patients by aetiology indicate (1) there are differential alterations in these nucleotides related to aetiology of sensory dysfunction and (2) these moieties measured prior to treatment indicate which patient groups may benefit from treatment with phosphodiesterase (PDE) inhibitors which increase levels of these moieties and thereby correct their sensory dysfunction.
Collapse
Affiliation(s)
- Robert I Henkin
- Center for Molecular Nutrition and Sensory Disorders, The Taste and Smell Clinic, 5125 MacArthur Blvd, NW, Washington, DC 20016, USA.
| | | |
Collapse
|
12
|
|
13
|
Effect of bitter compounds on amylase secretion in murine submandibular glands: Signaling pathway mechanisms. Biochim Biophys Acta Gen Subj 2011; 1810:1212-9. [PMID: 21871537 DOI: 10.1016/j.bbagen.2011.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Amylase is synthesized in submandibular glands (SMG) and released into the oral cavity to degrade carbohydrates in the mouth. Bitter taste receptors (T2R) belong to the G-protein coupled receptor (GPCR) family and are expressed in the taste cells and also in the digestive tract. METHODS The activity of amylase secreted by murine SMG was measured, detecting maltose by Bernfeld's method. Amylase and T2R6 were detected by imunohistochemistry and Western blot. The expression of Ggustducin, Gi, and phospholipase Cβ2 was also studied by Western blot. cAMP levels were measured by radioimmunoassay and inositol monophosphate production was quantified by ELISA. RESULTS Theophylline, denatonium and cycloheximide exerted a dose-dependent inhibition on amylase secretion. This effect was reverted by preincubating SMG with an anti-Gαi antibody. cAMP production was increased by the same compounds, an effect that was also abrogated by an anti-Gαi antibody. Bitter compounds reduced inositol monophosphate formation in SMG and H-89, a protein kinase A inhibitor, reverted this action, revealing that this protein kinase down regulates phospholipase C activity. GENERAL SIGNIFICANCE We demonstrated that theophylline, denatonium and cycloheximide inhibit salivary amylase secretion, activating an intracellular signaling pathway that involves cAMP and phospholipase C, that cross talks via protein kinase A.
Collapse
|
14
|
Vermehren-Schmaedick A, Scudder C, Timmermans W, Morton DB. Drosophila gustatory preference behaviors require the atypical soluble guanylyl cyclases. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:717-27. [PMID: 21350862 DOI: 10.1007/s00359-011-0634-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/08/2011] [Accepted: 02/13/2011] [Indexed: 11/27/2022]
Abstract
The intracellular messenger cGMP has been suggested to play a role in taste signal transduction in both vertebrates and invertebrates. In the present study, we have examined the role of the Drosophila atypical soluble guanylyl cyclases (sGCs), Gyc-89Da and Gyc-89Db, in larval and adult gustatory preference behaviors. We showed that in larvae, sucrose attraction requires Gyc-89Db and caffeine avoidance requires Gyc-89Da. In adult flies, sucrose attraction is unaffected by mutations in either gene whereas avoidance of low concentrations of caffeine is eliminated by loss of either gene. Similar defective behaviors were observed when cGMP increases were prevented by the expression of a cGMP-specific phosphodiesterase. We also showed that both genes were expressed in gustatory receptor neurons (GRNs) in larval and adult gustatory organs, primarily in a non-overlapping pattern, with the exception of a small group of cells in the adult labellum. In addition, in adults, several cells co-expressed the bitter taste receptor, Gr66a, with either Gyc-89Da or Gyc-89Db. We also showed that the electrophysiological responses of a GRN to caffeine were significantly reduced in flies mutant for the atypical sGCs, suggesting that at least part of the adult behavioral defects were due to a reduced ability to detect caffeine.
Collapse
|
15
|
Henkin RI, Velicu I. Differences between and within human parotid saliva and nasal mucus cAMP and cGMP in normal subjects and in patients with taste and smell dysfunction. J Oral Pathol Med 2010; 40:504-9. [PMID: 21166719 DOI: 10.1111/j.1600-0714.2010.00986.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND We previously described some of the moieties in human saliva and nasal mucus including cyclic nucleotides. However, comparison of levels of these latter moieties in saliva and nasal mucus has not been performed and meaning of differences found has not been discussed. PURPOSE To compare the levels of cAMP and cGMP in saliva and nasal mucus and to describe the differences in their concentrations and function. METHODS cAMP and cGMP in saliva and nasal mucus were compared in normal subjects and patients with taste and smell dysfunction by use of a spectrophotometric colorimetric ELISA. RESULTS Both cAMP and cGMP were present in saliva and nasal mucus of normals and patients with levels of both moieties lower in patients than in normals. In normals, cAMP is 6½ times higher in saliva than in nasal mucus whereas cGMP in nasal mucus is 2½ times higher than in saliva. In patients, these differences persist but are less robust. In normals, within saliva, cAMP is 9½ times higher than cGMP whereas within nasal mucus cAMP is half the level of cGMP. In patients, within saliva, these differences persist but at variable differences. CONCLUSIONS Both saliva and nasal mucus cAMP and cGMP play roles in taste and smell function, and differences in their concentrations may offer insight into these roles. In nasal mucus, cGMP may be more relevant than cAMP in activity of olfactory epithelial cell function. In saliva, cAMP may be more relevant as a growth factor in taste bud function than cGMP.
Collapse
Affiliation(s)
- Robert I Henkin
- Center for Molecular Nutrition and Sensory Disorders, The Taste and Smell Clinic, Washington, DC 20016, USA.
| | | |
Collapse
|
16
|
ROS-GC subfamily membrane guanylate cyclase-linked transduction systems: taste, pineal gland and hippocampus. Mol Cell Biochem 2009; 334:199-206. [PMID: 19953306 DOI: 10.1007/s11010-009-0334-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
In the continuous efforts to test the validity of the theme that the Ca(2+)-modulated ROS-GC subfamily system is a universal transduction component of the sensory and sensory-linked network of neurons, this article focuses on the presence and variant biochemical forms of this transduction system in the gustatory epithelium, the site of gustatory transduction; in the pineal, a light-sensitive gland; and in the hippocampus neurons, linked with the perception of all SENSES.
Collapse
|
17
|
Henkin RI, Velicu I. Decreased parotid salivary cyclic nucleotides related to smell loss severity in patients with taste and smell dysfunction. Metabolism 2009; 58:1717-23. [PMID: 19631354 DOI: 10.1016/j.metabol.2009.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
Parotid salivary levels of cyclic adenosine monophosphate (cAMP) have been previously demonstrated to be lower than normal in patients with taste and smell dysfunction. To define these results more fully, we analyzed parotid salivary levels of cAMP and cyclic guanosine monophosphate (cGMP) with respect to severity of smell loss in these patients. Smell loss severity was defined by psychophysical measurements of olfactory function and classified into 4 types from most severe to least severe loss. This resulted in patients exhibiting, in order of loss severity (from greatest to least), anosmia > type I hyposmia > type II hyposmia > type III hyposmia. Parotid saliva cAMP and cGMP were measured independently using a sensitive spectrophotometric 96-plate enzyme-linked immunosorbent assay technique; mean levels were categorized by clinical classification of loss severity. As smell loss severity decreased, salivary cAMP and cGMP levels increased consistently with each stepwise change of clinical loss severity. This is the first demonstration of biochemical changes in saliva associated with a quantitative classification of smell loss. These results reflect a biochemical method to identify and classify patients with smell loss in some respects similar to initial typing of serum lipid levels to assist in risk classification of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Robert Irwin Henkin
- Center for Molecular Nutrition and Sensory Disorders, The Taste and Smell Clinic, Washington, DC 20016, USA.
| | | |
Collapse
|
18
|
Masala C, Solari P, Sollai G, Crnjar R, Liscia A. Transduction mechanism(s) of Na-saccharin in the blowfly Protophormia terraenovae: evidence for potassium and calcium conductance involvement. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:1141-51. [PMID: 19898825 DOI: 10.1007/s00359-009-0486-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 10/15/2009] [Accepted: 10/18/2009] [Indexed: 11/26/2022]
Abstract
The study on transduction mechanisms underlying bitter stimuli is a particularly intriguing challenge for taste researchers. The present study investigates, in the labellar chemosensilla of the blowfly Protophormia terraenovae, the transduction mechanism by which saccharin evokes the response of the "deterrent" cell, with particular attention to the contribution of K(+) and Ca(2+) current and the role of cyclic nucleotides, since second messengers modulate Ca(2+), Cl(-) and K(+) currents to different extents. As assessed by extracellular single-sensillum recordings, our results show that the addition of a Ca(2+) chelator such as EGTA or the Ca(2+) current blockers SK&F-96365, Mibefradil, Nifedipine and W-7 decrease the response of the "deterrent" cell to saccharin. A similar decreasing effect was also obtained following the addition of 4-aminopyridine, a K(+) current blocker. On the contrary, the membrane-permeable cyclic nucleotide 8-bromoguanosine 3',5'-cyclic monophosphate (8Br-cGMP) activates this cell and shows an additive effect when presented mixed with saccharin. Our results are consistent with the hypothesis that in the labellar chemosensilla of the blowfly both Ca(2+) and K(+) ions are involved in the transduction mechanism of the "deterrent" cell in response to saccharin. Our results also suggest a possible pathway common to saccharin and 8Br-cGMP.
Collapse
Affiliation(s)
- Carla Masala
- Department of Experimental Biology, Section of General Physiology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy
| | | | | | | | | |
Collapse
|
19
|
Tepper BJ, White EA, Koelliker Y, Lanzara C, d'Adamo P, Gasparini P. Genetic variation in taste sensitivity to 6-n-propylthiouracil and its relationship to taste perception and food selection. Ann N Y Acad Sci 2009; 1170:126-39. [PMID: 19686122 DOI: 10.1111/j.1749-6632.2009.03916.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to taste bitter thiourea compounds and related chemicals is a well-known human trait. The majority of individuals perceive these compounds, typified by the bitterness of 6-n-propylthiouracil (PROP) and phenylthiocarbamide (PTC), as moderately-to-extremely bitter. Approximately 30% of the population is taste blind to these substances. It has been hypothesized that PROP/PTC tasters are more sensitive to other bitter tastes, sweet taste, the pungency of chili peppers, the astringency of alcohol, and the texture of fats. Tasters may also show lower preferences for foods with these taste qualities than nontasters who show the opposite set of responses (i.e., lower taste sensitivities and higher preferences for these sensory qualities). This pathway is illustrated in the following model: PROP Sensitivity --> Food Perception -->Preference --> Selection. Robust associations between PROP status and taste perceptions have been well documented. However, subsequent links to food preferences and diet selection have been more difficult to demonstrate. This is not surprising given the complexity of human ingestive behavior that is influenced by numerous factors including health attitudes, personality traits, and cultural norms. Our laboratory has been using PROP screening to investigate individual differences in the selection of bitter foods, especially bitter tasting vegetables and fruits that may have long-term health implications. This chapter will discuss new and recent findings addressing the following issues: 1) whether PROP-related differences in perception of bitter compounds predict the perception and liking of bitter foods; 2) the role of bitter taste modifiers; and 3) the influence of personal characteristics such as food attitudes and cultural background on PROP-related food preferences.
Collapse
Affiliation(s)
- Beverly J Tepper
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Henkin RI, Velicu I, Schmidt L. An Open-Label Controlled Trial of Theophylline for Treatment of Patients With Hyposmia. Am J Med Sci 2009; 337:396-406. [PMID: 19359985 DOI: 10.1097/maj.0b013e3181914a97] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Caffeine-stimulated mechanisms for improved cardiac function during sepsis*. Crit Care Med 2009; 37:1517-8. [DOI: 10.1097/ccm.0b013e31819d59d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Zhao FL, Herness S. Resynthesis of phosphatidylinositol 4,5-bisphosphate mediates adaptation of the caffeine response in rat taste receptor cells. J Physiol 2008; 587:363-77. [PMID: 19047199 DOI: 10.1113/jphysiol.2008.165167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Caffeine, a prototypic bitter stimulus, produces several physiological actions on taste receptor cells that include inhibition of KIR and KV potassium currents and elevations of intracellular calcium. These responses display adaptation, i.e. their magnitude diminishes in the sustained presence of the stimulus. Levels of the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2) are well known to modulate many potassium channels, activating the channel by stabilizing its open state. Here we investigate a putative relationship of KIR and KV with PIP2 levels hypothesizing that inhibition of these currents by caffeine might be allayed by PIP2 resynthesis. Using standard patch-clamp techniques, recordings of either potassium current from rat posterior taste receptor cells produced essentially parallel results when PIP2 levels were manipulated pharmacologically. Increasing PIP2 levels by blocking phosphoinositide-3 kinase with wortmannin or LY294002, or by blocking phospholipase C with U73122 all significantly increased the incidence of adaptation for both KIR and KV. Conversely, lowering PIP2 synthesis by blocking PI4K or using the PIP2 scavengers polylysine or bovine serum albumin reduced the incidence of adaptation. Adaptation could be modulated by activation of protein kinase C but not calcium calmodulin kinase. Collectively, these data support two highly novel conclusions: potassium currents in taste receptor cells are significantly modulated by PIP2 levels and PIP2 resynthesis may play a central role in the gustatory adaptation process at the primary receptor cell level.
Collapse
Affiliation(s)
- Fang-Li Zhao
- College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
23
|
Tepper BJ. Nutritional implications of genetic taste variation: the role of PROP sensitivity and other taste phenotypes. Annu Rev Nutr 2008; 28:367-88. [PMID: 18407743 DOI: 10.1146/annurev.nutr.28.061807.155458] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic sensitivity to the bitter taste of phenylthiocarbamide and 6-n-propylthiouracil (PROP) is a well-studied human trait. It has been hypothesized that this phenotype is a marker for individual differences in taste perception that influence food preferences and dietary behavior with subsequent links to body weight and chronic disease risk. Steady progress has been made over the past several decades in defining the involvement of this phenotype and its underlying gene, TAS2R38, in this complex behavioral pathway. However, more work needs to be done to fully determine its overall nutritional and health significance. The primary goal of this review is to assess our current understanding of the role of the PROP bitter taste phenotype in food selection and body weight in both children and adults. A brief history of the field is included and controversies surrounding the use of different PROP screening methods are addressed. The contribution of other receptors (both bitter and nonbitter) to human taste variation is also discussed.
Collapse
Affiliation(s)
- Beverly J Tepper
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
24
|
|
25
|
cAMP and cGMP in human parotid saliva: relationships to taste and smell dysfunction, gender, and age. Am J Med Sci 2008; 334:431-40. [PMID: 18091364 DOI: 10.1097/maj.0b013e3180de4d97] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Among the chemical moieties present in human parotid saliva, some, such as gustin or carbonic anhydrase VI, have been useful to distinguish patients with taste and smell dysfunction from normal subjects. To continue these studies we compared levels of salivary cAMP and cGMP in patients with taste and smell dysfunction with those in normal subjects. We were also interested in exploring physiological characteristics of salivary cAMP and cGMP including changes with gender and age because previous studies had not clearly defined these issues. To perform these studies parotid saliva was collected from 61 normal volunteers and 253 patients with taste and smell dysfunction. cAMP and cGMP were measured by a spectrophotometric 96 plate ELISA technique; parotid salivary protein and flow rate were also measured. Both cAMP and cGMP were found in saliva of normal subjects and patients in the detection range of the assay used. In patients mean concentrations of both cAMP and cGMP were lower than in normal subjects; for cAMP levels were lower among both men and women patients. cAMP was 7 to 10 times higher than cGMP in both normal subjects and patients. Concentrations of cAMP were consistently higher in normal women than in normal men. cAMP levels were generally lower and cGMP levels were generally higher than in previously reported studies. There was a complex pattern of change for both cAMP and cGMP with age with concentrations increasing to about age 50, then decreasing, then increasing again at age >70 years.
Collapse
|
26
|
Abstract
In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity.
Collapse
|
27
|
Walerczyk M, Fabczak S. Additional Evidence for the Cyclic GMP Signaling Pathway Resulting in the Photophobic Behavior of Stentor coeruleus¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740829aeftcg2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Walerczyk M, Fabczak H, Fabczak S. A Videomicroscopic Study of the Effect of l-cis-Diltiazem on the Photobehavior of Stentor coeruleus¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0770339avsote2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Watson KJ, Kim I, Baquero AF, Burks CA, Liu L, Gilbertson TA. Expression of aquaporin water channels in rat taste buds. Chem Senses 2007; 32:411-21. [PMID: 17339611 DOI: 10.1093/chemse/bjm006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to gain insight into the molecular mechanisms that allow taste cells to respond to changes in their osmotic environment, we have used primarily immunocytochemical and molecular approaches to look for evidence of the presence of aquaporin-like water channels in taste cells. Labeling of isolated taste buds from the fungiform, foliate, and vallate papillae in rat tongue with antibodies against several of the aquaporins (AQPs) revealed the presence of AQP1, AQP2, and AQP5 in taste cells from these areas. AQP3 antibodies failed to label isolated taste buds from any of the papillae. There was an apparent difference in the regional localization of AQP labeling within the taste bud. Antibodies against AQP1 and AQP2 labeled predominantly the basolateral membrane, whereas the AQP5 label was clearly evident on both the apical and basolateral membranes of cells within the taste bud. Double labeling revealed that AQP1 and AQP2 labeled many, but not all, of the same taste cells. Similar double-labeling experiments with anti-AQP2 and anti-AQP5 clearly showed that AQP5 was expressed on or near the apical membranes whereas AQP2 was absent from this area. The presence of these 3 types of AQPs in taste buds but not in non-taste bud-containing epithelia was confirmed using reverse transcription-polymerase chain reaction. Experiments using patch clamp recording showed that the AQP inhibitor, tetraethylammonium, significantly reduced hypoosmotic-induced currents in rat taste cells. We hypothesize that the AQPs may play roles both in the water movement underlying compensatory mechanisms for changes in extracellular osmolarity and, in the case of AQP5 in particular, in the gustatory response to water.
Collapse
Affiliation(s)
- Kristina J Watson
- Department of Biology and The Center for Advanced Nutrition, Utah State University, Logan, UT 84322-5305, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Mao X, Chai Y, Lin YF. Dual regulation of the ATP-sensitive potassium channel by caffeine. Am J Physiol Cell Physiol 2007; 292:C2239-58. [PMID: 17303650 DOI: 10.1152/ajpcell.00326.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels couple cellular metabolic status to changes in membrane electrical properties. Caffeine (1,2,7-trimethylxanthine) has been shown to inhibit several ion channels; however, how caffeine regulates K(ATP) channels was not well understood. By performing single-channel recordings in the cell-attached configuration, we found that bath application of caffeine significantly enhanced the currents of Kir6.2/SUR1 channels, a neuronal/pancreatic K(ATP) channel isoform, expressed in transfected human embryonic kidney (HEK)293 cells in a concentration-dependent manner. Application of nonselective and selective phosphodiesterase (PDE) inhibitors led to significant enhancement of Kir6.2/SUR1 channel currents. Moreover, the stimulatory action of caffeine was significantly attenuated by KT5823, a specific PKG inhibitor, and, to a weaker extent, by BAPTA/AM, a membrane-permeable Ca(2+) chelator, but not by H-89, a selective PKA inhibitor. Furthermore, the stimulatory effect was completely abrogated when KT5823 and BAPTA/AM were co-applied with caffeine. In contrast, the activity of Kir6.2/SUR1 channels was decreased rather than increased by caffeine in cell-free inside-out patches, while tetrameric Kir6.2LRKR368/369/370/371AAAA channels were suppressed regardless of patch configurations. Caffeine also enhanced the single-channel currents of recombinant Kir6.2/SUR2B channels, a nonvascular smooth muscle K(ATP) channel isoform, although the increase was smaller. Moreover, bidirectional effects of caffeine were reproduced on the K(ATP) channel present in the Cambridge rat insulinoma G1 (CRI-G1) cell line. Taken together, our data suggest that caffeine exerts dual regulation on the function of K(ATP) channels: an inhibitory regulation that acts directly on Kir6.2 or some closely associated regulatory protein(s), and a sulfonylurea receptor (SUR)-dependent stimulatory regulation that requires cGMP-PKG and intracellular Ca(2+)-dependent signaling.
Collapse
Affiliation(s)
- Xia Mao
- Dept. of Physiology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
31
|
Keast RSJ, Roper J. A complex relationship among chemical concentration, detection threshold, and suprathreshold intensity of bitter compounds. Chem Senses 2007; 32:245-53. [PMID: 17220518 DOI: 10.1093/chemse/bjl052] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Detection thresholds and psychophysical curves were established for caffeine, quinine-HCl (QHCl), and propylthiouracil (PROP) in a sample of 33 subjects (28 female mean age 24 +/- 4). The mean detection threshold (+/-standard error) for caffeine, QHCl, and PROP was 1.2 +/- 0.12, 0.0083 +/- 0.001, and 0.088 +/- 0.07 mM, respectively. Pearson product-moment analysis revealed no significant correlations between detection thresholds of the compounds. Psychophysical curves were constructed for each bitter compound over 6 concentrations. There were significant correlations between incremental points of the individual psychophysical curves for QHCl and PROP. Regarding caffeine, there was a specific concentration (6 mM) below and above which the incremental steps in bitterness were correlated. Between compounds, analysis of psychophysical curves revealed no correlations with PROP, but there were significant correlations between the bitterness of caffeine and QHCl at higher concentrations on the psychophysical curve (P<0.05). Correlation analysis of detection threshold and suprathreshold intensity within a compound revealed a significant correlation between PROP threshold and suprathreshold intensity (r=0.46-0.4, P<0.05), a significant negative correlation for QHCl (r=-0.33 to -0.4, P<0.05), and no correlation for caffeine. The results suggest a complex relationship between chemical concentration, detection threshold, and suprathreshold intensity.
Collapse
Affiliation(s)
- Russell S J Keast
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
| | | |
Collapse
|
32
|
Abstract
The emerging picture of taste coding at the periphery is one of elegant simplicity. Contrary to what was generally believed, it is now clear that distinct cell types expressing unique receptors are tuned to detect each of the five basic tastes: sweet, sour, bitter, salty and umami. Importantly, receptor cells for each taste quality function as dedicated sensors wired to elicit stereotypic responses.
Collapse
Affiliation(s)
- Jayaram Chandrashekar
- Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093-0649, USA
| | | | | | | |
Collapse
|
33
|
Moon SJ, Köttgen M, Jiao Y, Xu H, Montell C. A Taste Receptor Required for the Caffeine Response In Vivo. Curr Biol 2006; 16:1812-7. [PMID: 16979558 DOI: 10.1016/j.cub.2006.07.024] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 11/29/2022]
Abstract
Caffeine is a methylxanthine present in the coffee tree, tea plant, and other naturally occurring sources and is among the most commonly consumed drugs worldwide. Whereas the pharmacological action of caffeine has been studied extensively, relatively little is known concerning the molecular mechanism through which this substance is detected as a bitter compound. Unlike most tastants, which are detected through cell-surface G protein-coupled receptors, it has been proposed that caffeine and related methylxanthines activate taste-receptor cells through inhibition of a cyclic nucleotide phosphodiesterase (PDE) . Here, we show that the gustatory receptor Gr66a is expressed in the dendrites of Drosophila gustatory receptor neurons and is essential for the caffeine response. In a behavioral assay, the aversion to caffeine was specifically disrupted in flies missing Gr66a. Caffeine-induced action potentials were also eliminated, as was the response to theophylline, the methylxanthine in tea. The Gr66a mutant exhibited normal tastant-induced action potentials upon presentation of theobromine, a methylxanthine in cocoa. Given that theobromine and caffeine inhibit PDEs with equal potencies , these data further support the role of Gr66a rather than a PDE in mediating the caffeine response. Gr66a is the first gustatory receptor shown to be essential for caffeine-induced behavior and activity of gustatory receptor cells in vivo.
Collapse
Affiliation(s)
- Seok Jun Moon
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
34
|
Geran LC, Travers SP. Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli. J Neurophysiol 2006; 96:2513-27. [PMID: 16899635 DOI: 10.1152/jn.00607.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular data suggest that receptors for all bitter ligands are coexpressed in the same taste receptor cells (TRCs), whereas physiological results indicate that individual TRCs respond to only a subset of bitter stimuli. It is also unclear to what extent bitter-responsive neurons are stimulated by nonbitter stimuli. To explore these issues, single neuron responses were recorded from the rat nucleus of the solitary tract (NST) during whole mouth stimulation with a variety of bitter compounds: 10 microM cycloheximide, 7 mM propylthiouracil, 10 mM denatonium benzoate, and 3 mM quinine hydrochloride at intensities matched for behavioral effectiveness. Stimuli representing the remaining putative taste qualities were also tested. Particular emphasis was given to activating taste receptors in the foliate papillae innervated by the quinine-sensitive glossopharyngeal nerve. This method revealed a novel population of bitter-best (B-best) cells with foliate receptive fields and significant selectivity for bitter tastants. Across all neurons, multidimensional scaling depicted bitter stimuli as loosely clustered yet clearly distinct from nonbitter tastants. When neurons with posterior receptive fields were analyzed alone, bitter stimuli formed a tighter cluster. Nevertheless, responses to bitter stimuli were variable across B-best neurons, with cycloheximide the most, and quinine the least frequent optimal stimulus. These results indicate heterogeneity for the processing of ionic and nonionic bitter tastants, which is dependent on receptive field. Further, they suggest that neurons selective for bitter substances could contribute to taste coding.
Collapse
Affiliation(s)
- Laura C Geran
- Section of Oral Biology, College of Dentistry, Ohio State University, 305 W. 12th Ave. Postle Hall, Columbus, OH 43210, USA
| | | |
Collapse
|
35
|
Zubare-Samuelov M, Shaul ME, Peri I, Aliluiko A, Tirosh O, Naim M. Inhibition of signal termination-related kinases by membrane-permeant bitter and sweet tastants: potential role in taste signal termination. Am J Physiol Cell Physiol 2005; 289:C483-92. [PMID: 15829560 DOI: 10.1152/ajpcell.00547.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sweet and bitter taste sensations are believed to be initiated by the tastant-stimulated T1R and T2R G protein-coupled receptor (GPCR) subfamilies, respectively, which occur in taste cells. Although such tastants, with their significantly diverse chemical structures (e.g., sugar and nonsugar sweeteners), may share the same or similar T1Rs, some nonsugar sweeteners and many bitter tastants are amphipathic and produce a significant delay in taste termination (lingering aftertaste). We report that such tastants may permeate rat taste bud cells rapidly in vivo and inhibit known signal termination-related kinases in vitro, such as GPCR kinase (GRK)2, GRK5, and PKA. GRK5 and perhaps GRK2 and GRK6 are present in taste cells. A new hypothesis is proposed in which membrane-permeant tastants not only interact with taste GPCRs but also interact intracellularly with the receptors' downstream shutoff components to inhibit signal termination.
Collapse
Affiliation(s)
- Meirav Zubare-Samuelov
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Nelson TM, Munger SD, Boughter JD. Haplotypes at the Tas2r locus on distal chromosome 6 vary with quinine taste sensitivity in inbred mice. BMC Genet 2005; 6:32. [PMID: 15938754 PMCID: PMC1181811 DOI: 10.1186/1471-2156-6-32] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 06/06/2005] [Indexed: 11/25/2022] Open
Abstract
Background The detection of bitter-tasting compounds by the gustatory system is thought to alert animals to the presence of potentially toxic food. Some, if not all, bitter stimuli activate specific taste receptors, the T2Rs, which are expressed in subsets of taste receptor cells on the tongue and palate. However, there is evidence for both receptor-dependent and -independent transduction mechanisms for a number of bitter stimuli, including quinine hydrochloride (QHCl) and denatonium benzoate (DB). Results We used brief-access behavioral taste testing of BXD/Ty recombinant inbred (RI) mouse strains to map the major quantitative trait locus (QTL) for taste sensitivity to QHCl. This QTL is restricted to a ~5 Mb interval on chromosome 6 that includes 24 genes encoding T2Rs (Tas2rs). Tas2rs at this locus display in total 307 coding region single nucleotide polymorphisms (SNPs) between the two BXD/Ty RI parental strains, C57BL/6J (quinine-sensitive) and DBA/2J (quinine insensitive); approximately 50% of these mutations are silent. Individual RI lines contain exclusively either C57BL/6J or DBA/2J Tas2r alleles at this locus, and RI lines containing C57BL/6J Tas2r alleles are more sensitive to QHCl than are lines containing DBA/2J alleles. Thus, the entire Tas2r cluster comprises a large haplotype that correlates with quinine taster status. Conclusion These studies, the first using a taste-salient assay to map the major QTL for quinine taste, indicate that a T2R-dependent transduction cascade is responsible for the majority of strain variance in quinine taste sensitivity. Furthermore, the large number of polymorphisms within coding exons of the Tas2r cluster, coupled with evidence that inbred strains exhibit largely similar bitter taste phenotypes, suggest that T2R receptors are quite tolerant to variation.
Collapse
Affiliation(s)
- Theodore M Nelson
- Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Steven D Munger
- Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - John D Boughter
- Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
37
|
Duda T, Sharma RK. S100B-modulated Ca2+-dependent ROS-GC1 transduction machinery in the gustatory epithelium: a new mechanism in gustatory transduction. FEBS Lett 2005; 577:393-8. [PMID: 15556616 DOI: 10.1016/j.febslet.2004.09.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/07/2004] [Accepted: 09/09/2004] [Indexed: 10/26/2022]
Abstract
Gustatory transduction is a biochemical process by which the gustatory signal generates the electric signal. The microvilli of the taste cells in the gustatory epithelium are the sites of gustatory transduction. This study documents the biochemical, molecular, and functional identity of the Ca2+-modulated membrane guanylate cyclase transduction machinery in the bovine gustatory epithelium. The machinery is a two-component system: the Ca2+-sensor protein, S100B; and the transducer, ROS-GC1. S100B senses increments in free Ca2+, undergoes conformational change, binds to the domain amino acids (aa) Gly962-Asn981 and via the transduction domain aa Ile1030-Gln1041 activates ROS-GC1, generating the second messenger, cyclic GMP. In a recent study, operational presence of this machinery has been demonstrated in the photoreceptor bipolar synapse [Duda et al., EMBO J. 21 (2002) 2547]. Thus, the machinery has a broader role in sensory perceptions, vision in the retinal neurons and gustation in the tongue. The entry of the ROS-GC transduction machinery defines the beginning of a new paradigm of Ca2+ signaling in the tongue.
Collapse
Affiliation(s)
- Teresa Duda
- The Unit of Regulatory and Molecular Biology, Department of Cell Biology, SOM & NJMS, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.
| | | |
Collapse
|
38
|
Scheiner R, Sokolowski MB, Erber J. Activity of cGMP-dependent protein kinase (PKG) affects sucrose responsiveness and habituation in Drosophila melanogaster. Learn Mem 2004; 11:303-11. [PMID: 15169860 PMCID: PMC419733 DOI: 10.1101/lm.71604] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cGMP-dependent protein kinase (PKG) has many cellular functions in vertebrates and insects that affect complex behaviors such as locomotion and foraging. The foraging (for) gene encodes a PKG in Drosophila melanogaster. Here, we demonstrate a function for the for gene in sensory responsiveness and nonassociative learning. Larvae of the natural variant sitter (for(s)) show less locomotor activity during feeding and have a lower PKG activity than rover (for(R)) larvae. We used rover and sitter adult flies to test whether PKG activity affects (1) responsiveness to sucrose stimuli applied to the front tarsi, and (2) habituation of proboscis extension after repeated sucrose stimulation. To determine whether the differences observed resulted from variation in the for gene, we also tested for(s2), a sitter mutant produced on a rover genetic background. We found that rovers (for(R)) were more responsive to sucrose than sitters (for(s) and for(s2)) at 1-, 2-, and 3-wk old. This was true for both sexes. Differences in sucrose responsiveness between rovers and sitters were greater after 2 h of food deprivation than after 24 h. Of flies with similar sucrose responsiveness, for(R) rovers showed less habituation and generalization of habituation than for(s) and for(s2) sitters. These results show that the PKG encoded by for independently affects sensory responsiveness and habituation in Drosophila melanogaster.
Collapse
Affiliation(s)
- Ricarda Scheiner
- Institut für Okologie, Technische Universität Berlin, Franklinstr. 28/29, D-10587 Berlin, Germany.
| | | | | |
Collapse
|
39
|
Sugita M, Ohishi H, Iwasa Y, Hirono C, Shiba Y. Extracellular proton sensing of the rat gustatory cyclic nucleotide-gated channel. Biochem Biophys Res Commun 2004; 319:369-74. [PMID: 15178415 DOI: 10.1016/j.bbrc.2004.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Indexed: 11/30/2022]
Abstract
Elevations of the intracellular levels of cyclic nucleotides appear to cause the cation influx through gustatory cyclic nucleotide-gated (CNGgust) channels expressed in taste cells. Although changes in the oral pH may directly regulate the activity of the CNGgust channel, the mechanism of pH-dependent control of the channel is not understood. In the present study, we combined the whole-cell patch-clamp recording and the site-directed mutagenesis to investigate the effect of extracellular pH on the ion permeation through CNGgust channels expressed in HEK293 cells. Extracellular acidification strongly inhibited ion permeation through open CNGgust channels. Mutation of Glu(289) remarkably attenuated the pH-dependence of the channel, suggesting that Glu(289) in the pore-forming region is a major proton acceptor site. However, the mutant E289A-CNGgust channel possesses the other residual protonation/deprotonation site. The channel activity, tightly regulated by pH(o) and [cNMP](i), suggests the involvement of its pH(o)-dependent ion permeation in taste signal transduction events.
Collapse
Affiliation(s)
- Makoto Sugita
- Department of Oral Physiology, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | |
Collapse
|
40
|
Zubare-Samuelov M, Peri I, Tal M, Tarshish M, Spielman AI, Naim M. Some sweet and bitter tastants stimulate inhibitory pathway of adenylyl cyclase via melatonin and alpha 2-adrenergic receptors in Xenopus laevis melanophores. Am J Physiol Cell Physiol 2003; 285:C1255-62. [PMID: 12839835 DOI: 10.1152/ajpcell.00149.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sweeteners saccharin, D-tryptophan, and neohesperidin dihydrochalcone (NHD) and the bitter tastant cyclo(Leu-Trp) stimulated concentration-dependent pigment aggregation in a Xenopus laevis melanophore cell line similar to melatonin. Like melatonin, these tastants inhibited (by 45-92%) cAMP formation in melanophores; pertussis toxin pretreatment almost completely abolished the tastant-induced cAMP inhibition, suggesting the involvement of the inhibitory pathway (Gi) of adenylyl cyclase. The presence of luzindole (melatonin receptor antagonist) almost completely abolished the inhibition of cAMP formation induced by saccharin, D-tryptophan, and cyclo(Leu-Trp) but only slightly affected the inhibitory effect of NHD. In contrast, the presence of an alpha2-adrenergic receptor antagonist, yohimbine, almost completely abolished the inhibition of cAMP formation induced by NHD but had only a minor effect on that induced by the other tastants. Thus saccharin, D-tryptophan, and cyclo(Leu-Trp) are melatonin receptor agonists whereas NHD is an alpha2-adrenergic receptor agonist, but both pathways lead to the same transduction output and cellular response. Formation of D-myo-inositol 1,4,5-trisphosphate (IP3) in melanophores was reduced (15-58%, no concentration dependence) by saccharin, D-tryptophan, and cyclo(Leu-Trp) stimulation but increased by NHD stimulation. Tastant stimulation did not affect cGMP. Although some of the above tastants were found to be membrane permeant, their direct activation of downstream transduction components in this experimental system is questionable. MT1 and MT2 melatonin receptor mRNAs were identified in rat circumvallate papilla taste buds and nonsensory epithelium, suggesting the occurrence of MT1 and MT2 receptors in these tissues. Melatonin stimulation reduced the cellular content of cAMP in taste cells, which may or may not be related to taste sensation.
Collapse
Affiliation(s)
- Meirav Zubare-Samuelov
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76-100, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The palatability of oral medications, many of which are quite bitter, plays an important role in achieving compliance in pediatric patients. We tested the hypothesis that the addition of a sodium salt to some, but not all, bitter tasting liquids enhances acceptance and reduces the perceived bitterness in 7- to 10-year-old children and their mothers. For both children and adults, sodium gluconate significantly suppressed the perceived bitterness and enhanced the acceptance of urea and caffeine whereas the reverse was true for another bitter stimulus, Tetralone. Because children preferred salted solutions more than did adults, these data suggest that the use of sodium salts may be an especially effective strategy for reducing the bitterness of some medicines and facilitating compliance among pediatric populations. However, based on sodium's differential ability to inhibit bitterness, as has been shown here with children and adults, clearly each drug of interest must be evaluated separately.
Collapse
Affiliation(s)
- Julie A Mennella
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, USA.
| | | | | |
Collapse
|
42
|
Meunier N, Marion-Poll F, Rospars JP, Tanimura T. Peripheral coding of bitter taste in Drosophila. JOURNAL OF NEUROBIOLOGY 2003; 56:139-52. [PMID: 12838579 DOI: 10.1002/neu.10235] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Taste receptors play a crucial role in detecting the presence of bitter compounds such as alkaloids, and help to prevent the ingestion of toxic food. In Drosophila, we show for the first time that several taste sensilla on the prothoracic legs detect bitter compounds both through the activation of specific taste neurons but also through inhibition of taste neurons activated by sugars and water. Each sensillum usually houses a cluster of four taste neurons classified according to their best stimulus (S for sugar, W for Water, L1 and L2 for salts). Using a new statistical approach based on the analysis of interspike intervals, we show that bitter compounds activate the L2 cell. Bitter-activated L2 cells were excited with a latency of at least 50 ms. Their sensitivity to bitter compounds was different between sensilla, suggesting that specific receptors to bitter compounds are differentially expressed among L2 cells. When presented in mixtures, bitter compounds inhibited the responses of S and W, but not the L1 cell. The inhibition was effective even in sensilla where bitter compounds did not activate the L2 cell, indicating that bitter compounds directly interact with the S and W cells. Interestingly, this inhibition occurred with latencies similar to the excitation of bitter-activated L2 cells. It suggests that the inhibition in the W and S cells shares similar transduction pathways with the excitation in the L2 cells. Combined with molecular approaches, the results presented here should provide a physiological basis to understand how bitter compounds are detected and discriminated.
Collapse
Affiliation(s)
- Nicolas Meunier
- INRA Station de Phytopharmacie et Médiateurs Chimiques, 78026 Versailles Cedex, France.
| | | | | | | |
Collapse
|
43
|
Walerczyk M, Fabczak H, Fabczak S. A videomicroscopic study of the effect of l-cis-diltiazem on the photobehavior of Stentor coeruleus. Photochem Photobiol 2003; 77:339-42. [PMID: 12685664 DOI: 10.1562/0031-8655(2003)077<0339:avsote>2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The protozoan ciliate Stentor coeruleus displays a step-up photophobic response to an increase in light intensity in its environment. The motile response consists of a delayed stop of ciliary beating and transient ciliary reversal period. Such light-avoiding behavior was significantly influenced by an incubation of cells with l-cis-diltiazem, a common blocker of cyclic guanosine monophosphate (cGMP)-gated ion channel conductance. The introduction of l-cis-diltiazem to the medium induced ciliary reversal in control cells, mimicking the step-up photophobic response. In light-stimulated ciliates, the presence of this inhibitor caused a substantial decrease of the latency of ciliary stop response, prolongation of the ciliary reversal duration and also an increase of cell photoresponsiveness in a dose- and time-dependent manner. The obtained behavioral results support the suggestion that the photosensitive ciliate S. coeruleus possesses cGMP-gated channels, which may be involved in the process of light signal transduction for the motile photophobic response.
Collapse
Affiliation(s)
- Miroslawa Walerczyk
- Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
44
|
Zarrindast MR, Adl M, Sharifzadeh M, Bahreini T. Role of nitric oxide in systemic effect of theophylline on mouse body temperature. Eur J Pharmacol 2002; 451:63-8. [PMID: 12223230 DOI: 10.1016/s0014-2999(02)02159-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, the interaction of nitric oxide synthase (NOS) inhibitors, L-NAME (N(G)-nitro-L-arginine methyl ester HCl) and L-NA (N(omega)-nitro-L-arginine), and its precursor, L-arginine (2-(S)-2-amino-5-[(aminoiminomethyl)amino] pentatonic acid), with theophylline on mouse body temperature was studied. Intraperitoneal (i.p.) injection of different doses of theophylline altered body temperature. Lower doses of theophylline (12.5 and 25 mg/kg) increased, but a higher dose (100 mg/kg) reduced, the animals' body temperature. The combination of L-arginine (20 and 40 mg/kg) with the highest dose of theophylline potentiated the hypothermic effect induced by the latter drug, while L-arginine by itself did not alter body temperature. L-NAME (10-80 mg/kg) or L-NA (10 mg/kg) plus a lower dose of theophylline (12.5 mg/kg) reduced the theophylline-induced hyperthermic response. L-NA (1, 5, and 10 mg/kg) in combination with the high dose of theophylline (100 mg/kg) also induced greater hypothermia. Both L-NAME and L-NA by themselves reduced body temperature. It is concluded that nitric oxide (NO) may be involved in the effects of theophylline on body temperature in mice.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, PO Box 13145-784, Tehran, Iran.
| | | | | | | |
Collapse
|
45
|
Keast RSJ, Breslin PAS. Modifying the bitterness of selected oral pharmaceuticals with cation and anion series of salts. Pharm Res 2002; 19:1019-26. [PMID: 12180534 DOI: 10.1023/a:1016474607993] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE NaCl has proven to be an effective bitterness inhibitor, but the reason remains unclear. The purpose of this study was to examine the influence of a variety of cations and anions on the bitterness of selected oral pharmaceuticals and bitter taste stimuli: pseudoephedrine, ranitidine, acetaminophen, quinine, and urea. METHOD Human psychophysical taste evaluation using a whole mouth exposure procedure was used. RESULTS The cations (all associated with the acetate anion) inhibited bitterness when mixed with pharmaceutical solutions to varying degrees. The sodium cation significantly (P < 0.003) inhibited bitterness of the pharmaceuticals more than the other cations. The anions (all associated with the sodium cation) also inhibited bitterness to varying degrees. With the exception of salicylate, the glutamate and adenosine monophosphate anions significantly (P < 0.001) inhibited bitterness of the pharmaceuticals more than the other anions. Also, there were several specific inhibitory interactions between ammonium, sodium and salicylate and certain pharmaceuticals. CONCLUSIONS We conclude that sodium was the most successful cation and glutamate and AMP were the most successful anions at inhibiting bitterness. Structure forming and breaking properties of ions, as predicted by the Hofmeister series. and other physical-chemical ion properties failed to significantly predict bitterness inhibition.
Collapse
Affiliation(s)
- Russell S J Keast
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
46
|
Zhao FL, Lu SG, Herness S. Dual actions of caffeine on voltage-dependent currents and intracellular calcium in taste receptor cells. Am J Physiol Regul Integr Comp Physiol 2002; 283:R115-29. [PMID: 12069937 DOI: 10.1152/ajpregu.00410.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the numerous stimuli representing the taste quality of bitterness are known to be transduced through multiple mechanisms, recent studies have suggested an unpredicted complexity of the transduction pathways for individual bitter stimuli. To investigate this notion more thoroughly, a single prototypic bitter stimulus, caffeine, was studied by using patch-clamp and ratiometric imaging techniques on dissociated rat taste receptor cells. At behaviorally relevant concentrations, caffeine produced strong inhibition of outwardly and inwardly rectifying potassium currents. Caffeine additionally inhibited calcium current, produced a weaker inhibition of sodium current, and was without effect on chloride current. Consistent with its effects on voltage-dependent currents, caffeine caused a broadening of the action potential and an increase of the input resistance. Caffeine was an effective stimulus for elevation of intracellular calcium. This elevation was concentration dependent, independent of extracellular calcium or ryanodine, and dependent on intracellular stores as evidenced by thapsigargin treatment. These dual actions on voltage-activated ionic currents and intracellular calcium levels suggest that a single taste stimulus, caffeine, utilizes multiple transduction mechanisms.
Collapse
Affiliation(s)
- Fang-Li Zhao
- Department of Oral Biology, College of Dentistry, Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
47
|
Li Y, Perruccio E, Zhang X, Kleinhaus AL. Bitter substances suppress afferent responses to an appetitive mixture: evidence for peripheral integration of chemosensory stimuli. JOURNAL OF NEUROBIOLOGY 2001; 49:255-63. [PMID: 11745663 DOI: 10.1002/neu.10003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The processes that lead from detection of chemicals, transduction, and coding with the appropriate message to initiate ingestion of a palatable meal or to reject a potentially noxious substance are poorly understood in vertebrates owing to the complex organization of the taste system. As a first step in elucidating the cellular basis of the behavioral differences elicited by appetitive stimuli and bitter compounds, we recorded from the afferent nerves conveying peripheral chemosensory information to the CNS in the head of the leech, Hirudo medicinalis. Superfusion of the chemosensory region of the lip of Hirudo with a mixture of NaCl (150 mM) and arginine (1 mM), an appetitive solution that elicits ingestion, increased the neuronal activity in the afferent cephalic nerves, for example (Zhang X, Wilson RJ, Li Y, Kleinhaus AL. 2000. Chemical and thermal stimuli have short-lived effects on the Retzius cell in the medicinal leech. J Neurobiol 43:304-311.). In the present paper we show that superfusing the lip with quinine or denatonium reduced the basal neural activity in the afferents. Furthermore, these bitter substances in the appetitive solution counteracted the increased activity the appetitive solution evoked in the cephalic nerves. Thus, the neural activity evoked by the application of appetitive and aversive stimuli to the chemosensory area of the lip paralleled the opposite behavioral responses to the same chemicals. The results suggest that individual leech taste cells possess receptors for both types of stimuli. Therefore, the leech may be a good model system in which to study peripheral taste events in cells that may possess multiple receptors and transduction mechanisms that interact to integrate information.
Collapse
Affiliation(s)
- Y Li
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | |
Collapse
|
48
|
Walerczyk M, Fabczak S. Additional evidence for the cyclic GMP signaling pathway resulting in the photophobic behavior of Stentor coeruleus. Photochem Photobiol 2001; 74:829-36. [PMID: 11783940 DOI: 10.1562/0031-8655(2001)074<0829:aeftcg>2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report that exo- and endogenous guanosine 3',5'-cyclic monophosphate (cGMP) specifically influenced the photophobic response. In behavioral experiments the slowly hydrolyzable and membrane-permeable analogs of cGMP (8-bromo-cGMP [Br-cGMP] and N6,2'-o-dibutyryl-cGMP) dramatically prolonged the time for ciliary stop response and decreased the duration of ciliary reversal in a dose-dependent manner. When analogs of adenosine 3',5'-cyclic monophosphate (cAMP) (8-bromo-cAMP or N6,2'-o-dibutyryl-cAMP) were used, no essential effects were detected on the kinetics of the photophobic response. Both nonspecific cyclic nucleotide phosphodiesterase (PDE) activity inhibitors (3-isobutyl-1-methylxanthine [IBMX] and 1,3-dimethylxanthine [theophylline]) and the highly specific cGMP-PDE activity inhibitor 1,4-dihydro-5-[2-propoxyphenyl]-7H-1,2,3-triazolo[4,5-d]pyrimidine-7-one (zaprinast) mimicked the effects of cGMP analogs. Treatment of cells with an inhibitor of guanylate cyclase activity (6-anilino-5,8-quinolinedione [LY 83583]) exerted an effect opposite to that of cGMP analogs and PDE activity inhibitors. The positive physiological effect of LY 83583 was significantly diminished in ciliates that were treated simultaneously with Br-cGMP. In an assay of cell cyclic nucleotide content, the exposure of dark-adapted Stentor to light evoked a transient decrease in the basal level of intracellular cGMP. Alterations in internal cGMP levels were more distinct when the intensity of applied illumination was increased. In the presence of IBMX or theophylline the basal content of cGMP was markedly enhanced, and the photoinduced changes in cGMP level were less pronounced. In this paper the possible whole molecular mechanism by which the ciliary orientation in Stentor is controlled by light is presented.
Collapse
Affiliation(s)
- M Walerczyk
- Department of Cell Biology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
49
|
Abstract
Taste is the sensory system devoted primarily to a quality check of food to be ingested. Although aided by smell and visual inspection, the final recognition and selection relies on chemoreceptive events in the mouth. Emotional states of acute pleasure or displeasure guide the selection and contribute much to our quality of life. Membrane proteins that serve as receptors for the transduction of taste have for a long time remained elusive. But screening the mass of genome sequence data that have recently become available has provided a new means to identify key receptors for bitter and sweet taste. Molecular biology has also identified receptors for salty, sour and umami taste.
Collapse
Affiliation(s)
- B Lindemann
- Department of Physiology, Universität des Saarlandes, Homburg, Germany.
| |
Collapse
|
50
|
Abstract
Food choices and eating habits are largely influenced by how foods taste. Without being the dominant taste sensation, bitter taste contributes to the complexity and enjoyment of beverages and foods. Compounds that are perceived as bitter do not share a similar chemical structure. In addition to peptides and salts, bitter compounds in foods may include plant-derived phenols and polyphenols, flavonoids, catechins, and caffeine. Recent studies have shown that humans possess a multitude of bitter taste receptors and that the transduction of bitter taste may differ between one compound and another. Studies of mixture interactions suggest further that bitter compounds suppress or enhance sweet and sour tastes and interact with volatile flavor molecules. Caffeine, a natural ingredient of tea, coffee, and chocolate, has a unique flavor profile. Used as a flavoring agent, it enhances the sensory appeal of beverages. Research developments on the genetics and perception of bitter taste add to our understanding of the role of bitterness in relation to food preference.
Collapse
Affiliation(s)
- A Drewnowski
- Nutritional Sciences Program, University of Washington, Seattle 98195-3410, USA
| |
Collapse
|