1
|
Rinné S, Schick F, Vowinkel K, Schütte S, Krasel C, Kauferstein S, Schäfer MKH, Kiper AK, Müller T, Decher N. Potassium channel TASK-5 forms functional heterodimers with TASK-1 and TASK-3 to break its silence. Nat Commun 2024; 15:7548. [PMID: 39215006 PMCID: PMC11364637 DOI: 10.1038/s41467-024-51288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
TASK-5 (KCNK15) belongs to the acid-sensitive subfamily of two-pore domain potassium (K2P) channels, which includes TASK-1 and TASK-3. TASK-5 stands out as K2P channel for which there is no functional data available, since it was reported in 2001 as non-functional and thus "silent". Here we show that TASK-5 channels are indeed non-functional as homodimers, but are involved in the formation of functional channel complexes with TASK-1 and TASK-3. TASK-5 negatively modulates the surface expression of TASK channels, while the heteromeric TASK-5-containing channel complexes located at the plasma membrane are characterized by changes in single-channel conductance, Gq-coupled receptor-mediated channel inhibition, and sensitivity to TASK modulators. The unique pharmacology of TASK-1/TASK-5 heterodimers, affected by a common polymorphism in KCNK15, needs to be carefully considered in the future development of drugs targeting TASK channels. Our observations provide an access to study TASK-5 at the functional level, particularly in malignant cancers associated with KCNK15.
Collapse
Affiliation(s)
- Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany
| | - Florian Schick
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany
| | - Kirsty Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany
| | - Sven Schütte
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany
| | - Cornelius Krasel
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Silke Kauferstein
- Centre for Sudden Cardiac Death and Institute of Legal Medicine, University Hospital Frankfurt, Goethe-University, Frankfurt/Main, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany
| | - Martin K-H Schäfer
- Institute of Anatomy and Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany
| | - Thomas Müller
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
2
|
Zhou C, Zhou Q, He X, He Y, Wang X, Zhu X, Zhang Y, Ma L. Differential modulation of C. elegans motor behavior by NALCN and two-pore domain potassium channels. PLoS Genet 2022; 18:e1010126. [PMID: 35482723 PMCID: PMC9049526 DOI: 10.1371/journal.pgen.1010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Two-pore domain potassium channels (K2P) are a large family of “background” channels that allow outward “leak” of potassium ions. The NALCN/UNC80/UNC79 complex is a non-selective channel that allows inward flow of sodium and other cations. It is unclear how K2Ps and NALCN differentially modulate animal behavior. Here, we found that loss of function (lf) in the K2P gene twk-40 suppressed the reduced body curvatures of C. elegans NALCN(lf) mutants. twk-40(lf) caused a deep body curvature and extended backward locomotion, and these phenotypes appeared to be associated with neuron-specific expression of twk-40 and distinct twk-40 transcript isoforms. To survey the functions of other less studied K2P channels, we examined loss-of-function mutants of 13 additional twk genes expressed in the motor circuit and detected defective body curvature and/or locomotion in mutants of twk-2, twk-17, twk-30, twk-48, unc-58, and the previously reported twk-7. We generated presumptive gain-of-function (gf) mutations in twk-40, twk-2, twk-7, and unc-58 and found that they caused paralysis. Further analyses detected variable genetic interactions between twk-40 and other twk genes, an interdependence between twk-40 and twk-2, and opposite behavioral effects between NALCN and twk-2, twk-7, or unc-58. Finally, we found that the hydrophobicity/hydrophilicity property of TWK-40 residue 159 could affect the channel activity. Together, our study identified twk-40 as a novel modulator of the motor behavior, uncovered potential behavioral effects of five other K2P genes and suggests that NALCN and some K2Ps can oppositely affect C. elegans behavior.
Collapse
Affiliation(s)
- Chuanman Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaohui He
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yunxia He
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaoqin Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaowei Zhu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yujia Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
3
|
Ceder MM, Aggarwal T, Hosseini K, Maturi V, Patil S, Perland E, Williams MJ, Fredriksson R. CG4928 Is Vital for Renal Function in Fruit Flies and Membrane Potential in Cells: A First In-Depth Characterization of the Putative Solute Carrier UNC93A. Front Cell Dev Biol 2020; 8:580291. [PMID: 33163493 PMCID: PMC7591606 DOI: 10.3389/fcell.2020.580291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
The number of transporter proteins that are not fully characterized is immense. Here, we used Drosophila melanogaster and human cell lines to perform a first in-depth characterization of CG4928, an ortholog to the human UNC93A, of which little is known. Solute carriers regulate and maintain biochemical pathways important for the body, and malfunctioning transport is associated with multiple diseases. Based on phylogenetic analysis, CG4928 is closely related to human UNC93A and has a secondary and a tertiary protein structure and folding similar to major facilitator superfamily transporters. Ubiquitous knockdown of CG4928 causes flies to have a reduced secretion rate from the Malpighian tubules; altering potassium content in the body and in the Malpighian tubules, homologous to the renal system; and results in the development of edema. The edema could be rescued by using amiloride, a common diuretic, and by maintaining the flies on ion-free diets. CG4928-overexpressing cells did not facilitate the transport of sugars and amino acids; however, proximity ligation assay revealed that CG4928 co-localized with TASK1 channels. Overexpression of CG4928 resulted in induced apoptosis and cytotoxicity, which could be restored when cells were kept in high-sodium media. Furthermore, the basal membrane potential was observed to be disrupted. Taken together, the results indicate that CG4928 is of importance for generating the cellular membrane potential by an unknown manner. However, we speculate that it most likely acts as a regulator or transporter of potassium flows over the membrane.
Collapse
Affiliation(s)
- Mikaela M Ceder
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Tanya Aggarwal
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Kimia Hosseini
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Varun Maturi
- Department of Pharmacy, Drug Delivery, Uppsala University, Uppsala, Sweden
| | - Sourabh Patil
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Emelie Perland
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Michael J Williams
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Bedoya M, Rinné S, Kiper AK, Decher N, González W, Ramírez D. TASK Channels Pharmacology: New Challenges in Drug Design. J Med Chem 2019; 62:10044-10058. [PMID: 31260312 DOI: 10.1021/acs.jmedchem.9b00248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rational drug design targeting ion channels is an exciting and always evolving research field. New medicinal chemistry strategies are being implemented to explore the wild chemical space and unravel the molecular basis of the ion channels modulators binding mechanisms. TASK channels belong to the two-pore domain potassium channel family and are modulated by extracellular acidosis. They are extensively distributed along the cardiovascular and central nervous systems, and their expression is up- and downregulated in different cancer types, which makes them an attractive therapeutic target. However, TASK channels remain unexplored, and drugs designed to target these channels are poorly selective. Here, we review TASK channels properties and their known blockers and activators, considering the new challenges in ion channels drug design and focusing on the implementation of computational methodologies in the drug discovery process.
Collapse
Affiliation(s)
- Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular (CBSM) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular (CBSM) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud , Universidad Autónoma de Chile , El Llano Subercaseaux 2801, Piso 6 , 8900000 Santiago , Chile
| |
Collapse
|
5
|
Bayliss DA, Barhanin J, Gestreau C, Guyenet PG. The role of pH-sensitive TASK channels in central respiratory chemoreception. Pflugers Arch 2014; 467:917-29. [PMID: 25346157 DOI: 10.1007/s00424-014-1633-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 01/16/2023]
Abstract
A number of the subunits within the family of K2P background K(+) channels are sensitive to changes in extracellular pH in the physiological range, making them likely candidates to mediate various pH-dependent processes. Based on expression patterns within several brainstem neuronal cell groups that are believed to function in CO2/H(+) regulation of breathing, three TASK subunits-TASK-1, TASK-2, and TASK-3-were specifically hypothesized to contribute to this central respiratory chemoreflex. For the acid-sensitive TASK-1 and TASK-3 channels, despite widespread expression at multiple levels within the brainstem respiratory control system (including presumptive chemoreceptor populations), experiments in knockout mice provided no evidence for their involvement in CO2 regulation of breathing. By contrast, the alkaline-activated TASK-2 channel has a more restricted brainstem distribution and was localized to the Phox2b-expressing chemoreceptor neurons of the retrotrapezoid nucleus (RTN). Remarkably, in a Phox2b(27Ala/+) mouse genetic model of congenital central hypoventilation syndrome (CCHS) that is characterized by reduced central respiratory chemosensitivity, selective ablation of Phox2b-expressing RTN neurons was accompanied by a corresponding loss of TASK-2 expression. Furthermore, genetic deletion of TASK-2 blunted RTN neuronal pH sensitivity in vitro, reduced alkaline-induced respiratory network inhibition in situ and diminished the ventilatory response to CO2/H(+) in vivo. Notably, a subpopulation of RTN neurons from TASK-2(-/-) mice retained their pH sensitivity, at least in part due to a residual pH-sensitive background K(+) current, suggesting that other mechanisms (and perhaps other K2P channels) for RTN neuronal pH sensitivity are yet to be identified.
Collapse
Affiliation(s)
- Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908-0735, USA,
| | | | | | | |
Collapse
|
6
|
Silent but not dumb: how cellular trafficking and pore gating modulate expression of TWIK1 and THIK2. Pflugers Arch 2014; 467:1121-31. [PMID: 25339226 DOI: 10.1007/s00424-014-1631-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 12/25/2022]
Abstract
Among K2P channels, a few of them turned out to be difficult to express in heterologous systems and were coined "silent subunits". Recent studies have shed light on the mechanisms behind this apparent lack of channel activity at the plasma membrane. For TWIK1 and THIK2 channels, silence is related to a combination of intracellular retention and low intrinsic activity. TWIK1 is constitutively endocytosed from the plasma membrane before being transported to recycling endosomes, whereas THIK2 is restricted to endoplasmic reticulum. These intracellular localizations are related to trafficking signals located in the cytoplasmic parts of the channels. When these motifs are mutated or masked, channels are redistributed at the plasma membrane and produce measurable currents. However, these currents are of modest amplitude. This weak basal activity is due to a hydrophobic barrier in the deep pore that limits water and ions in the conduction pathway. Other silent channels KCNK7, TWIK2, and TASK5 are still under study. Expression and characterization of these K2P channels pave the way for a better understanding of the mechanisms controlling intracellular trafficking of membrane proteins, ion conduction, and channel gating.
Collapse
|
7
|
Hao X, Li X. The knockdown of TASK-1 channels improved the proliferation of N2A cells. J Mol Neurosci 2014; 55:314-7. [PMID: 24848104 DOI: 10.1007/s12031-014-0323-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/02/2014] [Indexed: 01/08/2023]
Abstract
Previous studies indicated that K(+) channels, such as voltage-gated Kv channels, were involved in the apoptosis and proliferation of neurons. In the experiments here, the small interfering RNAs (siRNAs) targeted against TASK-1, an acid-sensitive member of two-pore domain K(+) (K2P) channel family, were transfected into mouse neuroblastoma N2A cells. This treatment induced a reduction of messenger RNA (mRNA) level of TASK-1 by 61%. As a negative control, however, the transfection of scrambled siRNAs (scRNA) did not significantly affect the expression of TASK-1 in N2A cells. Furthermore, exposure to TASK-1-specific siRNAs (siTASK-1) for 48 h also substantially increased the proliferation rates of N2A cells by 25.8%, but no effect was observed in scRNA-treated cells. These data implied that TASK-1 channels may participate in the regulation of neuronal proliferation.
Collapse
Affiliation(s)
- Xuran Hao
- Department of Neuroscience, South-Central University for Nationalities, 182 Minyuan Road, 430074, Wuhan, China
| | | |
Collapse
|
8
|
Jerng HH, Pfaffinger PJ. Modulatory mechanisms and multiple functions of somatodendritic A-type K (+) channel auxiliary subunits. Front Cell Neurosci 2014; 8:82. [PMID: 24723849 PMCID: PMC3973911 DOI: 10.3389/fncel.2014.00082] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022] Open
Abstract
Auxiliary subunits are non-conducting, modulatory components of the multi-protein ion channel complexes that underlie normal neuronal signaling. They interact with the pore-forming α-subunits to modulate surface distribution, ion conductance, and channel gating properties. For the somatodendritic subthreshold A-type potassium (ISA) channel based on Kv4 α-subunits, two types of auxiliary subunits have been extensively studied: Kv channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). KChIPs are cytoplasmic calcium-binding proteins that interact with intracellular portions of the Kv4 subunits, whereas DPLPs are type II transmembrane proteins that associate with the Kv4 channel core. Both KChIPs and DPLPs genes contain multiple start sites that are used by various neuronal populations to drive the differential expression of functionally distinct N-terminal variants. In turn, these N-terminal variants generate tremendous functional diversity across the nervous system. Here, we focus our review on (1) the molecular mechanism underlying the unique properties of different N-terminal variants, (2) the shaping of native ISA properties by the concerted actions of KChIPs and DPLP variants, and (3) the surprising ways that KChIPs and DPLPs coordinate the activity of multiple channels to fine-tune neuronal excitability. Unlocking the unique contributions of different auxiliary subunit N-terminal variants may provide an important opportunity to develop novel targeted therapeutics to treat numerous neurological disorders.
Collapse
Affiliation(s)
- Henry H. Jerng
- Department of Neuroscience, Baylor College of MedicineHouston, TX, USA
| | | |
Collapse
|
9
|
Hayoz S, Cubano L, Maldonado H, Bychkov R. Protein kinase A and C regulate leak potassium currents in freshly isolated vascular myocytes from the aorta. PLoS One 2013; 8:e75077. [PMID: 24086441 PMCID: PMC3781042 DOI: 10.1371/journal.pone.0075077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
We tested the hypothesis that protein kinase A (PKA) inhibits K2P currents activated by protein kinase C (PKC) in freshly isolated aortic myocytes. PDBu, the PKC agonist, applied extracellularly, increased the amplitude of the K2P currents in the presence of the “cocktail” of K+ channel blockers. Gö 6976 significantly reduced the increase of the K2P currents by PDBu suggesting the involvement of either α or β isoenzymes of PKC. We found that forskolin, or membrane permeable cAMP, did not inhibit K2P currents activated by the PKC. However, when PKA agonists were added prior to PDBu, they produced a strong decrease in the K2P current amplitudes activated by PKC. Inhibition of PDBu-elicited K2P currents by cAMP agonists was not prevented by the treatment of vascular smooth muscle cells with PKA antagonists (H-89 and Rp-cAMPs). Zn2+ and Hg2+ inhibited K2P currents in one population of cells, produced biphasic responses in another population, and increased the amplitude of the PDBu-elicited K+ currents in a third population of myocytes, suggesting expression of several K2P channel types. We found that cAMP agonists inhibited biphasic responses and increase of amplitude of the PDBu-elicited K2P currents produced by Zn2+ and Hg2. 6-Bnz-cAMp produced a significantly altered pH sensitivity of PDBu-elicited K2P-currents, suggesting the inhibition of alkaline-activated K2P-currents. These results indicate that 6-Bnz-cAMP and other cAMP analogs may inhibit K2P currents through a PKA-independent mechanism. cAMP analogs may interact with unidentified proteins involved in K2P channel regulation. This novel cellular mechanism could provide insights into the interplay between PKC and PKA pathways that regulate vascular tone.
Collapse
Affiliation(s)
- Sébastien Hayoz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Luis Cubano
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Hector Maldonado
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Rostislav Bychkov
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
BACKGROUND Local anesthetics (LAs) are typically used for regional anesthesia but can be given systemically to mitigate postoperative pain, supplement general anesthesia, or prevent cardiac arrhythmias. However, systemic application or inadvertent intravenous injection can be associated with substantial toxicity, including seizure induction. The molecular basis for this toxic action remains unclear. METHODS We characterized inhibition by different LAs of homomeric and heteromeric K channels containing TASK-1 (K2P3.1, KCNK3) and TASK-3 (K2P9.1, KCNK9) subunits in a mammalian expression system. In addition, we used TASK-1/TASK-3 knockout mice to test the possibility that TASK channels contribute to LA-evoked seizures. RESULTS LAs inhibited homomeric and heteromeric TASK channels in a range relevant for seizure induction; channels containing TASK-1 subunits were most sensitive and IC₅₀ values indicated a rank order potency of bupivacaine > ropivacaine >> lidocaine. LAs induced tonic-clonic seizures in mice with the same rank order potency, but higher LA doses were required to evoke seizures in TASK knockout mice. For bupivacaine, which produced the longest seizure times, seizure duration was significantly shorter in TASK knockout mice; bupivacaine-induced seizures were associated with an increase in electroencephalogram power at frequencies less than 5 Hz in both wild-type and TASK knockout mice. CONCLUSIONS These data suggest that increased neuronal excitability associated with TASK channel inhibition by LAs contributes to seizure induction. Because all LAs were capable of evoking seizures in TASK channel deleted mice, albeit at higher doses, the results imply that other molecular targets must also be involved in this toxic action.
Collapse
|
11
|
Kadiri N, Rodeau JL, Schlichter R, Hugel S. Neurotensin inhibits background K+ channels and facilitates glutamatergic transmission in rat spinal cord dorsal horn. Eur J Neurosci 2011; 34:1230-40. [PMID: 21936876 DOI: 10.1111/j.1460-9568.2011.07846.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotensin (NT) is a neuropeptide involved in the modulation of nociception. We have investigated the actions of NT on cultured postnatal rat spinal cord dorsal horn (DH) neurons. NT induced an inward current associated with a decrease in membrane conductance in 46% of the neurons and increased the frequency of glutamatergic miniature excitatory synaptic currents in 37% of the neurons. Similar effects were observed in acute slices. Both effects of NT were reproduced by the selective NTS1 agonist JMV449 and blocked by the NTS1 antagonist SR48692 and the NTS1/NTS2 antagonist SR142948A. The NTS2 agonist levocabastine had no effect. The actions of NT persisted after inactivation of G(i/o) proteins by pertussis toxin but were absent after inactivation of protein kinase C (PKC) by chelerythrine or inhibition of the MAPK (ERK1/2) pathway by PD98059. Pre- and postsynaptic effects of NT were insensitive to classical voltage- and Ca(2+) -dependent K(+) channel blockers. The K(+) conductance inhibited by NT was blocked by Ba(2+) and displayed no or little inward rectification, despite the presence of strongly rectifying Ba(2+) -sensitive K(+) conductance in these neurons. This suggested that NT blocked two-pore domain (K2P) background K(+) -channels rather than inwardly rectifying K(+) channels. Zn(2+) ions, which inhibit TRESK and TASK-3 K2P channels, decreased NT-induced current. Our results indicate that in DH neurons NT activates NTS1 receptors which, via the PKC-dependent activation of the MAPK (ERK1/2) pathway, depolarize the postsynaptic neuron and increase the synaptic release of glutamate. These actions of NT might modulate the transfer and the integration of somatosensory information in the DH.
Collapse
Affiliation(s)
- Nabila Kadiri
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 21 rue René Descartes, Strasbourg, France
| | | | | | | |
Collapse
|
12
|
Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 2010; 90:559-605. [PMID: 20393194 DOI: 10.1152/physrev.00029.2009] [Citation(s) in RCA: 642] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
13
|
Luján R. Organisation of potassium channels on the neuronal surface. J Chem Neuroanat 2010; 40:1-20. [PMID: 20338235 DOI: 10.1016/j.jchemneu.2010.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 11/30/2022]
Abstract
Potassium channels are a family of ion channels that govern the intrinsic electrical properties of neurons in the brain. Molecular cloning has revealed over 100 genes encoding the pore-forming alpha subunits of potassium channels in mammals, making them the most diverse subset of ion channels. Multiplicity in this ion channel family is further generated through alternative splicing. The precise location of potassium channels along the dendro-somato-axonic surface of the neurons is an important factor in determining its functional impact. Today, it is widely accepted that potassium channels can be located at any subcellular compartment on the neuronal surface, at synaptic and extrasynaptic sites, from somata to dendritic shafts, dendritic spines, axons or axon terminals. However, they are not evenly distributed on the neuronal surface and depending on the potassium channel subtype, are instead concentrated at different compartments. This selective localization of ion channels to specific neuronal compartments has many different functional implications. One factor necessary to understand the role of potassium channels in neuronal function is to unravel their specialized distribution and subcellular localization within a cell, and this can only be achieved by electron microscopy. In this review, I summarize anatomical findings, describing their distribution in the central nervous system. The distinct regional, cellular and subcellular distribution of potassium channels in the brain will be discussed in view of their possible functional implications.
Collapse
Affiliation(s)
- Rafael Luján
- Departamento de Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain.
| |
Collapse
|
14
|
Muhammad S, Aller MI, Maser-Gluth C, Schwaninger M, Wisden W. Expression of the kcnk3 potassium channel gene lessens the injury from cerebral ischemia, most likely by a general influence on blood pressure. Neuroscience 2010; 167:758-64. [PMID: 20167264 DOI: 10.1016/j.neuroscience.2010.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 01/27/2023]
Abstract
We examined the possible protective effect of TASK-1 (TWIK-related acid-sensitive potassium channel-1, kcnk3) and -3 potassium channels during stroke. TASK-1 and TASK-3, members of the two pore domain (K2P or kcnk) potassium channel family, form hetero or homodimers and help set the resting membrane potential. We used male TASK-1 and TASK-3 knockout mice in a model of focal cerebral ischemia, permanent middle cerebral artery occlusion (pMCAO). Infarct volume was measured 48 h after pMCAO. The TASK-1 knockout brains had larger infarct volumes (P=0.004), and those in TASK-3 knockouts were unchanged. As the TASK-1 gene is expressed in adrenal gland, heart and possibly blood vessels, the higher infarct volumes in the TASK-1 knockout mice could be due to TASK-1 regulating blood vessel tone and hence blood pressure or influencing blood vessel microarchitecture and blood flow rate. Indeed, we found that male TASK-1 knockout mice had reduced blood pressure, likely explaining the increased brain injury seen after pMCAO. Thus to make precise conclusions about how TASK-1 protects neurons, neural- or organ-specific deletions of the gene will be needed. Nevertheless, a consequence of having TASK-1 channels expressed (in various non-neuronal tissues and organs) is that neuronal damage is lessened when stroke occurs.
Collapse
Affiliation(s)
- S Muhammad
- Department of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
15
|
Ishibashi H, Nakahata Y, Eto K, Nabekura J. Excitation of locus coeruleus noradrenergic neurons by thyrotropin-releasing hormone. J Physiol 2009; 587:5709-22. [PMID: 19840999 DOI: 10.1113/jphysiol.2009.181420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Locus coeruleus (LC) noradrenergic neurons are implicated in a variety of functions including the regulation of vigilance and the modulation of sensory processing. Thyrotropin-releasing hormone (TRH) is an endogenous neuropeptide that induces a variety of behavioural changes including arousal and antinociception. In the present study, we explored whether the activity of LC noradrenergic neurons is modulated by TRH. Using current-clamp recording from isolated rat LC neurons, we found that TRH increased the firing rate of spontaneous action potentials. The TRH action was mimicked by TRH analogues including taltirelin and TRH-gly. In voltage-clamp recording at a holding potential of 50 mV, TRH produced an inward current associated with a decrease in the membrane K+ conductance. This current was inhibited by the TRH receptor antagonist chlordiazepoxide. Following inhibition of the pH-sensitive K+ conductance by extracellular acidification, the TRH response was fully inhibited. The TRH-induced current was also inhibited by the phospholipase C (PLC) inhibitor U-73122, but not by the protein kinase C inhibitor chelerythrine nor by chelation of intracellular Ca2+ by BAPTA. The recovery from the facilitatory action of TRH on the spike frequency was markedly inhibited by a high concentration of wortmannin. These results suggest that TRH activates LC noradrenergic neurons by decreasing an acid-sensitive K+ conductance via PLC-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate. The present findings demonstrate that TRH activates LC neurons and characterize the underlying signalling mechanisms. The action of TRH on LC neurons may influence a variety of CNS functions related to the noradrenergic system which include arousal and analgesia.
Collapse
Affiliation(s)
- Hitoshi Ishibashi
- Division of Homeostatic Development, Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.
| | | | | | | |
Collapse
|
16
|
Pottosin II, Bonales-Alatorre E, Valencia-Cruz G, Mendoza-Magaña ML, Dobrovinskaya OR. TRESK-like potassium channels in leukemic T cells. Pflugers Arch 2008; 456:1037-48. [PMID: 18506476 DOI: 10.1007/s00424-008-0481-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Revised: 12/20/2007] [Accepted: 02/19/2008] [Indexed: 12/25/2022]
Abstract
In this study, we present patch-clamp characterization of the background potassium current in human lymphoma (Jurkat cells), generated by voltage-independent 16 pS channels with a high ( approximately 100-fold) K+/Na+ selectivity. Depending on the background K+ channels density, from few per cell up to approximately 1 open channel per microm2, resting membrane potential was in the range of -40 to -83 mV, approaching E (K) = -88 mV. The background K+ channels were insensitive to margotoxin (3 nM), apamine (3 nM), and clotrimazole (1 microM), high-affinity blockers of the lymphocyte Kv1.3, SKCa2, and IKCa1 channels. The current depended weakly on external pH. Arachidonic acid (20 microM) and Hg2+ (0.3-10 microM) suppressed background K+ current in Jurkat cells by 75-90%. Background K+ current was weakly sensitive to TEA+ (IC50 = 14 mM), and was efficiently suppressed by externally applied bupivacaine (IC50 = 5 microM), quinine (IC50 = 16 microM), and Ba2+ (2 mM). Our data, in particular strong inhibition by mercuric ions, suggest that background K+ currents expressed in Jurkat cells are mediated by TWIK-related spinal cord K+ (TRESK) channels belonging to the double-pore domain K+ channel family. The presence of human TRESK in the membrane protein fraction was confirmed by Western blot analysis.
Collapse
Affiliation(s)
- Igor I Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa San Sebastian, 28045, Colima, Mexico
| | | | | | | | | |
Collapse
|
17
|
Aller M, Wisden W. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice. Neuroscience 2008; 151:1154-72. [DOI: 10.1016/j.neuroscience.2007.12.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 12/03/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
18
|
TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. J Neurosci 2008; 27:14049-58. [PMID: 18094244 DOI: 10.1523/jneurosci.4254-07.2007] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Central respiratory chemoreception is the mechanism by which the CNS maintains physiologically appropriate pH and PCO2 via control of breathing. A prominent hypothesis holds that neural substrates for this process are distributed widely in the respiratory network, especially because many neurons that make up this network are chemosensitive in vitro. We and others have proposed that TASK channels (TASK-1, K(2P)3.1 and/or TASK-3, K(2P)9.1) may serve as molecular sensors for central chemoreception because they are highly expressed in multiple neuronal populations in the respiratory pathway and contribute to their pH sensitivity in vitro. To test this hypothesis, we examined the chemosensitivity of two prime candidate chemoreceptor neurons in vitro and tested ventilatory responses to CO2 using TASK channel knock-out mice. The pH sensitivity of serotonergic raphe neurons was abolished in TASK channel knock-outs. In contrast, pH sensitivity of neurons in the mouse retrotrapezoid nucleus (RTN) was fully maintained in a TASK null background, and pharmacological evidence indicated that a K+ channel with properties distinct from TASK channels contributes to the pH sensitivity of rat RTN neurons. Furthermore, the ventilatory response to CO2 was completely retained in single or double TASK knock-out mice. These data rule out a strict requirement for TASK channels or raphe neurons in central respiratory chemosensation. Furthermore, they indicate that a non-TASK K+ current contributes to chemosensitivity of RTN neurons, which are profoundly pH-sensitive and capable of driving respiratory output in response to local pH changes in vivo.
Collapse
|
19
|
Lotshaw DP. Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 2007; 47:209-56. [PMID: 17652773 DOI: 10.1007/s12013-007-0007-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/12/2022]
Abstract
The mammalian family of two-pore domain K+ (K2P) channel proteins are encoded by 15 KCNK genes and subdivided into six subfamilies on the basis of sequence similarities: TWIK, TREK, TASK, TALK, THIK, and TRESK. K2P channels are expressed in cells throughout the body and have been implicated in diverse cellular functions including maintenance of the resting potential and regulation of excitability, sensory transduction, ion transport, and cell volume regulation, as well as metabolic regulation and apoptosis. In recent years K2P channel isoforms have been identified as important targets of several widely employed drugs, including: general anesthetics, local anesthetics, neuroprotectants, and anti-depressants. An important goal of future studies will be to identify the basis of drug actions and channel isoform selectivity. This goal will be facilitated by characterization of native K2P channel isoforms, their pharmacological properties and tissue-specific expression patterns. To this end the present review examines the biophysical, pharmacological, and functional characteristics of cloned mammalian K2P channels and compares this information with the limited data available for native K2P channels in order to determine criteria which may be useful in identifying ionic currents mediated by native channel isoforms and investigating their pharmacological and functional characteristics.
Collapse
Affiliation(s)
- David P Lotshaw
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
20
|
Brickley SG, Aller MI, Sandu C, Veale EL, Alder FG, Sambi H, Mathie A, Wisden W. TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons. J Neurosci 2007; 27:9329-40. [PMID: 17728447 PMCID: PMC6673138 DOI: 10.1523/jneurosci.1427-07.2007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability of neurons, such as cerebellar granule neurons (CGNs), to fire action potentials (APs) at high frequencies during sustained depolarization is usually explained in relation to the functional properties of voltage-gated ion channels. Two-pore domain potassium (K(2P)) channels are considered to simply hyperpolarize the resting membrane potential (RMP) by increasing the potassium permeability of the membrane. However, we find that CGNs lacking the TASK-3 type K(2P) channel exhibit marked accommodation of action potential firing. The accommodation phenotype was not associated with any change in the functional properties of the underlying voltage-gated sodium channels, nor could it be explained by the more depolarized RMP that resulted from TASK-3 channel deletion. A functional rescue, involving the introduction of a nonlinear leak conductance with a dynamic current clamp, was able to restore wild-type firing properties to adult TASK-3 knock-out CGNs. Thus, in addition to the accepted role of TASK-3 channels in limiting neuronal excitability, by increasing the resting potassium conductance TASK-3 channels also increase excitability by supporting high-frequency firing once AP threshold is reached.
Collapse
Affiliation(s)
- Stephen G Brickley
- Biophysics Group, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Linden AM, Sandu C, Aller MI, Vekovischeva OY, Rosenberg PH, Wisden W, Korpi ER. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics. J Pharmacol Exp Ther 2007; 323:924-34. [PMID: 17875609 DOI: 10.1124/jpet.107.129544] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P < 0.01) compared with wild-type littermate controls, light phase activity being similar. Although TASK-3 channels are abundant in cerebellar granule cells, the KO mice performed as well as the wild-type mice in walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P < 0.05) for the KO mice. Likewise, during training for the Morris water-maze spatial memory task, the KO mice were slower to find the hidden platform, and in the probe trial, the female KO mice visited fewer times the platform quadrant than the male KO and wild-type mice. In pharmacological tests, the TASK-3 KO mice showed reduced sensitivity to the inhalation anesthetic halothane and the cannabinoid receptor agonist WIN55212-2 mesylate [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] but unaltered responses to the alpha2 adrenoceptor agonist dexmedetomidine, the i.v. anesthetic propofol, the opioid receptor agonist morphine, and the local anesthetic lidocaine. Overall, our results suggest important contributions of TASK-3 channels in the neuronal circuits regulating circadian rhythms, cognitive functions, and mediating specific pharmacological effects.
Collapse
Affiliation(s)
- Anni-Maija Linden
- Institute of Biomedicine, Pharmacology, University of Helsinki, POB 63 (Haartmaninkatu 8), 00014 University of Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Veale EL, Kennard LE, Sutton GL, MacKenzie G, Sandu C, Mathie A. Gαq-Mediated Regulation of TASK3 Two-Pore Domain Potassium Channels: The Role of Protein Kinase C. Mol Pharmacol 2007; 71:1666-75. [PMID: 17374744 DOI: 10.1124/mol.106.033241] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The TASK subfamily of two pore domain potassium channels (K2P) gives rise to leak potassium currents, which contribute to the resting membrane potential of many neurons and regulate their excitability. K2P channels are highly regulated by phosphorylation and by G protein-mediated pathways. In this study, we show that protein kinase C (PKC) inhibits recombinant TASK3 channels. Inhibition by PKC is blocked by the PKC inhibitors bisindolylmaleimide 1 hydrochloride (BIM) and 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole (Gö6976). Gene-silencing experiments with a validated small interfering RNA sequence against PKCalpha ablates the effect of PKC. PKC acts directly on hTASK3 channels to phosphorylate an identified amino acid in the C terminus region (Thr341), thereby reducing channel current. PKC also inhibits mTASK3 channels despite their having a quite different C-terminal structure to hTASK3 channels. Activation of M(3) muscarinic receptors inhibits both hTASK3 channels expressed in tsA-201 cells and standing outward potassium current (IK(SO)) in mouse cerebellar granule neurons through the activation of the G protein Galpha(q), because both effects are abolished by the selective Galpha(q) antagonist YM-254890 (J Biol Chem 279:47438-47445, 2004). This inhibition is not directly transduced through activation of PKC because inhibition persists in mutated PKC-insensitive hTASK3 channels. Instead, inhibition seems to occur through a direct action of Galpha(q) on the channel. Nevertheless, preactivation of PKC blocks muscarinic inhibition of both TASK3 channels and IK(SO). Our results suggest that activation of PKC (via phospholipase C) has a role in opposing inhibition after M(3) receptor activation rather than transducing it and may act as a negative regulator of G protein modulation to prevent prolonged current inhibition.
Collapse
Affiliation(s)
- Emma L Veale
- Biophysics Section, Blackett Laboratory, Division of Cell & Molecular Biology, Imperial College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Mathie A. Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 2006; 578:377-85. [PMID: 17068099 PMCID: PMC2075148 DOI: 10.1113/jphysiol.2006.121582] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Leak potassium currents in the nervous system are often carried through two-pore-domain potassium (K2P) channels. These channels are regulated by a number of different G protein-coupled receptor (GPCR) pathways. The TASK subfamily of K2P channels are inhibited following activation of the G protein Galpha(q). The mechanism(s) that transduce this inhibition have yet to be established but there is evidence to support a role of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis products, depletion of PIP2 itself from the membrane, or a direct action of activated Galpha(q) on TASK channels. It seems possible that more than one pathway may act in parallel to transduce inhibition. By contrast, TRESK channels are stimulated following activation of Galpha(q). This is due to stimulation of the protein phosphatase, calcineurin, which dephosphorylates TRESK channels and enhances their activity. TREK channels are the most widely regulated of the K2P channel subfamilies being inhibited following activation of Galpha(q) and Galpha(s) but enhanced following activation of Galpha(i). The multiple pathways activated and the apparent promiscuous coupling of at least some K2P channel types to different G protein regulatory pathways suggests that the excitability of neurons that express K2P channels will be profoundly sensitive to variations in GPCR activity.
Collapse
Affiliation(s)
- Alistair Mathie
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
24
|
Aller MI, Veale EL, Linden AM, Sandu C, Schwaninger M, Evans LJ, Korpi ER, Mathie A, Wisden W, Brickley SG. Modifying the subunit composition of TASK channels alters the modulation of a leak conductance in cerebellar granule neurons. J Neurosci 2006; 25:11455-67. [PMID: 16339039 PMCID: PMC6725905 DOI: 10.1523/jneurosci.3153-05.2005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two-pore domain potassium (K2P) channel expression is believed to underlie the developmental emergence of a potassium leak conductance [IK(SO)] in cerebellar granule neurons (CGNs), suggesting that K2P function is an important determinant of the input conductance and resting membrane potential. To investigate the role that different K2P channels may play in the regulation of CGN excitability, we generated a mouse lacking TASK-1, a K2P channel known to have high expression levels in CGNs. In situ hybridization and real-time PCR studies in wild-type and TASK-1 knock-outs (KOs) demonstrated that the expression of other K2P channels was unaltered in CGNs. TASK-1 knock-out mice were healthy and bred normally but exhibited compromised motor performance consistent with altered cerebellar function. Whole-cell recordings from adult cerebellar slice preparations revealed that the resting excitability of mature CGNs was no different in TASK-1 KO and littermate controls. However, the modulation of IK(SO) by extracellular Zn2+, ruthenium red, and H+ was altered. The IK(SO) recorded from TASK-1 knock-out CGNs was no longer sensitive to alkalization and was blocked by Zn2+ and ruthenium red. These results suggest that a TASK-1-containing channel population has been replaced by a homodimeric TASK-3 population in the TASK-1 knock-out. These data directly demonstrate that TASK-1 channels contribute to the properties of IK(SO) in adult CGNs. However, TASK channel subunit composition does not alter the resting excitability of CGNs but does influence sensitivity to endogenous modulators such as Zn2+ and H+.
Collapse
Affiliation(s)
- M Isabel Aller
- Department of Clinical Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Larkman PM, Perkins EM. A TASK-like pH- and amine-sensitive ‘leak’ K+ conductance regulates neonatal rat facial motoneuron excitability in vitro. Eur J Neurosci 2005; 21:679-91. [PMID: 15733086 DOI: 10.1111/j.1460-9568.2005.03898.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A 'leak' potassium (K+) conductance (gK(Leak)) modulated by amine neurotransmitters is a major determinant of neonatal rat facial motoneuron excitability. Although the molecular identity of gK(Leak) is unknown, TASK-1 and TASK-3 channel mRNA is found in facial motoneurons. External pH, across the physiological range (pH 6-8), and noradrenaline (NA) modulated a conductance that displayed a relatively linear current/voltage relationship and reversed at the K+ equilibrium potential, consistent with inhibition of gK(Leak). The pH-sensitive current (I(pH)), was maximal around pH 8, fully inhibited near pH 6 and was described by a modified Hill equation with a pK of 7.1. The NA-induced current (I(NA)) was occluded at pH 6 and enhanced at pH 7.7. The TASK-1 selective inhibitor anandamide (10 microM), its stable analogue methanandamide (10 microM), the TASK-3 selective inhibitor ruthenium red (10 microM) and Zn2+ (100-300 microM) all failed to alter facial motoneuron membrane current or block I(NA) or I(pH). Isoflurane, a volatile anaesthetic that enhances heteromeric TASK-1/TASK-3 currents, increased gK(Leak). Ba2+, Cs+ and Rb+ blocked I(NA) and I(pH) voltage-dependently with maximal block at hyperpolarized potentials. 4-Aminopyridine (4-AP, 4 mM) voltage-independently blocked I(NA) and I(pH). In summary, gK(Leak) displays some of the properties of a TASK-like conductance. The linearity of gK(Leak) and an independence of activation on external [K+] suggests against pH-sensitive inwardly rectifying K+ channels. Our results argue against principal contributions to gK(Leak) by homomeric TASK-1 or TASK-3 channels, while the potentiation by isoflurane supports a predominant role for heterodimeric TASK-1/TASK-3 channels.
Collapse
Affiliation(s)
- Philip M Larkman
- Division of Neuroscience, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK.
| | | |
Collapse
|
26
|
Berg AP, Talley EM, Manger JP, Bayliss DA. Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci 2005; 24:6693-702. [PMID: 15282272 PMCID: PMC6729708 DOI: 10.1523/jneurosci.1408-04.2004] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background potassium currents carried by the KCNK family of two-pore-domain K+ channels are important determinants of resting membrane potential and cellular excitability. TWIK-related acid-sensitive K+ 1 (TASK-1, KCNK3) and TASK-3 (KCNK9) are pH-sensitive subunits of the KCNK family that are closely related and coexpressed in many brain regions. There is accumulating evidence that these two subunits can form heterodimeric channels, but this evidence remains controversial. In addition, a substantial contribution of heterodimeric TASK channels to native currents has not been unequivocally established. In a heterologous expression system, we verified formation of heterodimeric TASK channels and characterized their properties; TASK-1 and TASK-3 were coimmunoprecipitated from membranes of mammalian cells transfected with the channel subunits, and a dominant negative TASK-1(Y191F) construct strongly diminished TASK-3 currents. Tandem-linked heterodimeric TASK channel constructs displayed a pH sensitivity (pK approximately 7.3) in the physiological range closer to that of TASK-1 (pK approximately 7.5) than TASK-3 (pK approximately 6.8). On the other hand, heteromeric TASK channels were like TASK-3 insofar as they were activated by high concentrations of isoflurane (0.8 mm), whereas TASK-1 channels were inhibited. The pH and isoflurane sensitivities of native TASK-like currents in hypoglossal motoneurons, which strongly express TASK-1 and TASK-3 mRNA, were best represented by TASK heterodimeric channels. Moreover, after blocking homomeric TASK-3 channels with ruthenium red, we found a major component of motoneuronal isoflurane-sensitive TASK-like current that could be attributed to heteromeric TASK channels. Together, these data indicate that TASK-1 and TASK-3 subunits coassociate in functional channels, and heteromeric TASK channels provide a substantial component of background K(+) current in motoneurons with distinct modulatory properties.
Collapse
Affiliation(s)
- Allison P Berg
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
27
|
Vega-Saenz de Miera EC. Modification of Kv2.1 K+ currents by the silent Kv10 subunits. ACTA ACUST UNITED AC 2004; 123:91-103. [PMID: 15046870 DOI: 10.1016/j.molbrainres.2004.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2004] [Indexed: 12/13/2022]
Abstract
Human and rat Kv10.1a and b cDNAs encode silent K+ channel pore-forming subunits that modify the electrophysiological properties of Kv2.1. These alternatively spliced variants arise by the usage of an alternative site of splicing in exon 1 producing an 11-amino acid insertion in the linker between the first and second transmembrane domains in Kv10.1b. In human, the Kv10s mRNA were detected by Northern blot in brain kidney lung and pancreas. In brain, they were expressed in cortex, hippocampus, caudate, putamen, amygdala and weakly in substantia nigra. In rat, Kv10.1 products were detected in brain and weakly in testes. In situ hybridization in rat brain shows that Kv10.1 mRNAs are expressed in cortex, olfactory cortical structures, basal ganglia/striatal structures, hippocampus and in many nuclei of the amygdala complex. The CA3 and dentate gyrus of the hippocampus present a gradient that show a progression from high level of expression in the caudo-ventro-medial area to a weak level in the dorso-rostral area. The CA1 and CA2 areas had low levels throughout the hippocampus. Several small nuclei were also labeled in the thalamus, hypothalamus, pons, midbrain, and medulla oblongata. Co-injection of Kv2.1 and Kv10.1a or b mRNAs in Xenopus oocytes produced smaller currents that in the Kv2.1 injected oocytes and a moderate reduction of the inactivation rate without any appreciable change in recovery from inactivation or voltage dependence of activation or inactivation. At higher concentration, Kv10.1a also reduces the activation rate and a more important reduction in the inactivation rate. The gene that encodes for Kv10.1 mRNAs maps to chromosome 2p22.1 in human, 6q12 in rat and 17E4 in mouse, locations consistent with the known systeny for human, rat and mouse chromosomes.
Collapse
|
28
|
Mathie A, Clarke CE, Ranatunga KM, Veale EL. What are the roles of the many different types of potassium channel expressed in cerebellar granule cells? CEREBELLUM (LONDON, ENGLAND) 2003; 2:11-25. [PMID: 12882230 DOI: 10.1080/14734220310015593] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Potassium (K) channels have a key role in the regulation of neuronal excitability. Over a hundred different subunits encoding distinct K channel subtypes have been identified so far. A major challenge is to relate these many different channel subunits to the functional K currents observed in native neurons. In this review, we have concentrated on cerebellar granule neurons (CGNs). We have considered each of the three principal super families of K channels in turn, namely, the six transmembrane domain, voltage-gated super family, the two transmembrane domain, inward-rectifier super family and the four transmembrane domain, leak channel super family. For each super family, we have identified the subunits that are expressed in CGNs and related the properties of these expressed channel subunits to the functional currents seen in electrophysiological recordings from these neurons. In some cases, there are strong molecular candidates for proteins underlying observed currents. In other cases the correlation is less clear. We show that at least 26 potassium channel alpha subunits are moderately or strongly expressed in CGNs. Nevertheless, a good empirical model of CGN function has been obtained with just six distinct K conductances. The transient KA current in CGNs, seems due to expression of Kv4.2 channels or Kv4.2/4.3 heteromers, while the KCa current is due to expression of large-conductance slo channels. The G-protein activated KIR current is probably due to heteromeric expression of KIR3.1 and KIR3.2. Perhaps KIR2.2 subunits underlie the KIR current when it is constitutively active. The leak conductance can be attributed to TASK-1 and or TASK-3 channels. With less certainty, the IK-slow current may be due to expression of one or more members of the KCNQ or EAG family. Lastly, the delayed-rectifier Kv current has as many as six different potential contributors from the extensive Kv family of alpha subunits. Since many of these subunits are highly regulated by neurotransmitters, physiological regulators and, often, auxiliary subunits, the resulting electrical properties of CGNs may be highly dynamic and subject to constant fine-tuning.
Collapse
Affiliation(s)
- Alistair Mathie
- Biophysics Section, Blackett Laboratory, Department of Biological Sciences, Imperial College of Science Technology and Medicine, London, UK.
| | | | | | | |
Collapse
|
29
|
Campanucci VA, Fearon IM, Nurse CA. A novel O2-sensing mechanism in rat glossopharyngeal neurones mediated by a halothane-inhibitable background K+ conductance. J Physiol 2003; 548:731-43. [PMID: 12640017 PMCID: PMC2342899 DOI: 10.1113/jphysiol.2002.035998] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Modulation of K+ channels by hypoxia is a common O2-sensing mechanism in specialised cells. More recently, acid-sensitive TASK-like background K+ channels, which play a key role in setting the resting membrane potential, have been implicated in O2-sensing in certain cell types. Here, we report a novel O2 sensitivity mediated by a weakly pH-sensitive background K+ conductance in nitric oxide synthase (NOS)-positive neurones of the glossopharyngeal nerve (GPN). This conductance was insensitive to 30 mM TEA, 5 mM 4-aminopyridine (4-AP) and 200 microM Cd2+, but was reversibly inhibited by hypoxia (O2 tension (PO2) = 15 mmHg), 2-5 mM halothane, 10 mM barium and 1 mM quinidine. Notably, the presence of halothane occluded the inhibitory effect of hypoxia. Under current clamp, these agents depolarised GPN neurones. In contrast, arachidonic acid (5-10 microM) caused membrane hyperpolarisation and potentiation of the background K+ current. This pharmacological profile suggests the O2-sensitive conductance in GPN neurones is mediated by a class of background K+ channels different from the TASK family; it appears more closely related to the THIK (tandem pore domain halothane-inhibited K+) subfamily, or may represent a new member of the background K+ family. Since GPN neurones are thought to provide NO-mediated efferent inhibition of the carotid body (CB), these channels may contribute to the regulation of breathing during hypoxia via negative feedback control of CB function, as well as to the inhibitory effect of volatile anaesthetics (e.g. halothane) on respiration.
Collapse
Affiliation(s)
- Verónica A Campanucci
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | | |
Collapse
|
30
|
Talley EM, Sirois JE, Lei Q, Bayliss DA. Two-pore-Domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist 2003; 9:46-56. [PMID: 12580339 DOI: 10.1177/1073858402239590] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leak K+ currents contribute to the resting membrane potential and are important for modulation of neuronal excitability. Within the past few years, an entire family of genes has been described whose members form leak K+ channels, insofar as they generate potassium-selective currents with little voltage- and time-dependence. They are often referred to as "two-pore-domain" channels because of their predicted topology, which includes two pore-forming regions in each subunit. These channels are modulated by a host of different endogenous and clinical compounds such as neurotransmitters and anesthetics, and by physicochemical factors such as temperature, pH, oxygen tension, and osmolarity. They also are subject to long-term regulation by changes in gene expression. In this review, the authors describe multiple roles that modulation of leak K+ channels play in CNS function and discuss evidence that members of the two-pore-domain family are molecular substrates for these processes.
Collapse
Affiliation(s)
- Edmund M Talley
- Department of Pharmacology, Universty of Virginia, Charlottesville 22908-0735, USA.
| | | | | | | |
Collapse
|
31
|
O'Connell AD, Morton MJ, Hunter M. Two-pore domain K+ channels-molecular sensors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:152-61. [PMID: 12421546 DOI: 10.1016/s0005-2736(02)00597-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two-pore domain K(+) (K2P) channels have been cloned from a variety of species and tissues. They have been characterised biophysically as a 'background' K(+)-selective conductance and are gated by pH, stretch, heat, coupling to G-proteins and anaesthetics. Whilst their precise physiological function is unknown, they are likely to represent an increasingly important family of membrane proteins.
Collapse
Affiliation(s)
- Anthony D O'Connell
- Worsley Medical and Dental Building, School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
32
|
Plant LD, Kemp PJ, Peers C, Henderson Z, Pearson HA. Hypoxic depolarization of cerebellar granule neurons by specific inhibition of TASK-1. Stroke 2002; 33:2324-8. [PMID: 12215606 DOI: 10.1161/01.str.0000027440.68031.b0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The mechanisms underlying neuronal excitotoxicity during hypoxic/ischemic episodes are not fully understood. One feature of such insults is a rapid and transient depolarization of central neurons. TASK-1, an open rectifying K+ leak channel, is significant in setting the resting membrane potential of rat cerebellar granule neurons by mediating a standing outward K+ current. In this study we investigate the theory that the transient neuronal depolarization seen during hypoxia is due to the inhibition of TASK-1. METHODS Activity of TASK-1 in primary cultures of rat cerebellar granule neurons was investigated by the whole-cell patch-clamp technique. Discriminating pharmacological and electrophysiological maneuvers were used to isolate the specific channel types underlying acute hypoxic depolarizations. RESULTS Exposure of cells to acute hypoxia resulted in a reversible and highly reproducible mean membrane depolarization of 14.2+/-2.6 mV (n=5; P<0.01). Two recognized means of inhibiting TASK-1 (decreasing extracellular pH to 6.4 or exposure to the TASK-1-selective inhibitor anandamide) abolished both the hypoxic depolarization and the hypoxic depression of a standing outward current, identifying TASK-1 as the channel mediating this effect. CONCLUSIONS Our data provide compelling evidence that hypoxia depolarizes central neurons by specific inhibition of TASK-1. Since this hypoxic depolarization may be an early, contributory factor in the response of central neurons to hypoxic/ischemic episodes, TASK-1 may provide a potential therapeutic target in the treatment of stroke.
Collapse
Affiliation(s)
- Leigh D Plant
- School of Biomedical Sciences and Institute for Cardiovascular Research, University of Leeds, Leeds, UK
| | | | | | | | | |
Collapse
|
33
|
Han J, Truell J, Gnatenco C, Kim D. Characterization of four types of background potassium channels in rat cerebellar granule neurons. J Physiol 2002; 542:431-44. [PMID: 12122143 PMCID: PMC2290413 DOI: 10.1113/jphysiol.2002.017590] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cerebellar granule neurons express a standing outward (background) K+ current (I(K,SO)) that regulates the resting membrane potential and cell excitability. As several tandem-pore (2P) K+ channel mRNAs are highly expressed in cerebellar granule cells, we studied whether, and which, 2P K+ channels contribute to I(K,SO). I(K,SO) was highly sensitive to changes in extracellular pH and was partially inhibited by acetylcholine, as reported previously. In cell-attached patches from cultured cerebellar granule neurons, four types of K+ channels were found to be active when membrane potential was held at -50 mV or +50 mV in symmetrical 140 mM KCl. Based on single-channel conductances, gating kinetics and modulation by pharmacological agents and pH, three K+ channels could be considered as functional correlates of TASK-1, TASK-3 and TREK-2, which are members of the 2P K+ channel family. The fourth K+ channel (Type 4) has not been described previously and its molecular correlate is not yet known. Based on the measurement of channel current densities, the Type 2 (TASK-3) and the Type 4 K+ channels were determined to be the major sources of I(K,SO) in cultured cerebellar granule neurons. The Type 1 (TASK-1) and Type 3 (TREK-2) activities were relatively low throughout cell growth in culture (1-10 days). Similar to TASK-1 and TASK-3, the Type 4 K+ channel was highly sensitive to changes in extracellular pH, showing a 78 % inhibition by changing the extracellular pH from 7.3 to 6.3. The results of this study show that three 2P K+ channels and an additional pH-sensing K+ channel (Type 4) comprise the I(K,SO) in cultured cerebellar granule neurons. Our results also show that the high sensitivity of I(K,SO) to extracellular pH comes from the high sensitivity of Type 2 (TASK-3) and Type 4 K+ channels.
Collapse
Affiliation(s)
- Jaehee Han
- Department of Physiology, Gyeongsang National University School of Medicine, Chinju, Korea
| | | | | | | |
Collapse
|
34
|
Ozaita A, Vega-Saenz de Miera E. Cloning of two transcripts, HKT4.1a and HKT4.1b, from the human two-pore K+ channel gene KCNK4. Chromosomal localization, tissue distribution and functional expression. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 102:18-27. [PMID: 12191490 DOI: 10.1016/s0169-328x(02)00157-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The human KCNK4 gene encodes several transcripts that generate two-pore K+ channel subunits. We describe the identification and cloning of two transcripts of this gene: human KT4.1a (HKT4.1a) and HKT4.1b. They encode proteins of 393 and 419 amino acids, respectively. HKT4.1a and mouse TRAAK (mTRAAK) are 83% identical, polymerase chain reaction (PCR) experiments performed with rat and human samples as well as the comparison of the HKT4.1 and mTRAAK UTRs strongly suggest that both the human and mouse cDNAs are products of ortholog genes. In contrast to the reported exclusive expression mTRAAK in the nervous system, human and rat KCNK4 gene products are expressed widely in several tissues. Northern blot analysis revealed the presence of three bands of 1.9, 3.0, and 4.8 kb in human, while in rat four bands of 1.8, 3.6, 5.2 and 8.6 kb were observed. Human KCNK4 transcripts were expressed mainly in the heart and brain but also in the liver, skeletal muscle, kidney and pancreas. In rat, the transcripts were strongly expressed in the brain but were also detected in the lung, kidney, liver, spleen, skeletal muscle, testes and at lower levels in the heart. Expression of HKT4.1b in Xenopus oocytes drives the resting potential close to the potassium equilibrium voltage. The expressed channels are not gated by voltage and are permanently open. The channels are not blocked by the classical K+ channel blockers TEA, 4-AP, Cs+, Ba++, quinine or quinidine. Analysis of genomic sequences reveals that seven exons participate to produce HKT4.1a and 11 exons to produce HKT4.1b cDNAs. The KCNK4 gene maps to chromosome 11q13.
Collapse
Affiliation(s)
- Andres Ozaita
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
35
|
Sirois JE, Lynch C, Bayliss DA. Convergent and reciprocal modulation of a leak K+ current and I(h) by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J Physiol 2002; 541:717-29. [PMID: 12068035 PMCID: PMC2290347 DOI: 10.1113/jphysiol.2002.018119] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neurotransmitters and volatile anaesthetics have opposing effects on motoneuronal excitability which appear to reflect contrasting modulation of two types of subthreshold currents. Neurotransmitters increase motoneuronal excitability by inhibiting TWIK-related acid-sensitive K+ channels (TASK) and shifting activation of a hyperpolarization-activated cationic current (I(h)) to more depolarized potentials; on the other hand, anaesthetics decrease excitability by activating a TASK-like current and inducing a hyperpolarizing shift in I(h) activation. Here, we used whole-cell recording from motoneurones in brainstem slices to test if neurotransmitters (serotonin (5-HT) and noradrenaline (NA)) and an anaesthetic (halothane) indeed compete for modulation of the same ion channels - and we determined which prevails. When applied together under current clamp conditions, 5-HT reversed anaesthetic-induced membrane hyperpolarization and increased motoneuronal excitability. Under voltage clamp conditions, 5-HT and NA overcame most, but not all, of the halothane-induced current. When I(h) was blocked with ZD 7288, the neurotransmitters completely inhibited the K+ current activated by halothane; the halothane-sensitive neurotransmitter current reversed at the equilibrium potential for potassium (E(K)) and displayed properties expected of acid-sensitive, open-rectifier TASK channels. To characterize modulation of I(h) in relative isolation, effects of 5-HT and halothane were examined in acidified bath solutions that blocked TASK channels. Under these conditions, 5-HT and halothane each caused their characteristic shift in voltage-dependent gating of I(h). When tested concurrently, however, halothane decreased the neurotransmitter-induced depolarizing shift in I(h) activation. Thus, halothane and neurotransmitters converge on TASK and I(h) channels with opposite effects; transmitter action prevailed over anaesthetic effects on TASK channels, but not over effects on I(h). These data suggest that anaesthetic actions resulting from effects on either TASK or hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in motoneurones, and perhaps at other CNS sites, can be modulated by prevailing neurotransmitter tone.
Collapse
Affiliation(s)
- Jay E Sirois
- Department of Pharmacology, University of Virginia, Charlottesville 22908, USA.
| | | | | |
Collapse
|
36
|
Talley EM, Bayliss DA. Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J Biol Chem 2002; 277:17733-42. [PMID: 11886861 DOI: 10.1074/jbc.m200502200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TASK-1 and TASK-3, members of the two-pore-domain channel family, are widely expressed leak potassium channels responsible for maintenance of cell membrane potential and input resistance. They are sites of action for a variety of modulatory agents, including volatile anesthetics and neurotransmitters/hormones, the latter acting via mechanisms that have remained elusive. To clarify these mechanisms, we generated mutant channels and found that alterations disrupting anesthetic (halothane) activation of these channels also disrupted transmitter (thyrotropin-releasing hormone, TRH) inhibition and did so to a similar degree. For both TASK-1 and TASK-3, mutations (substitutions with corresponding residues from TREK-1) in a six-residue sequence at the beginning of the cytoplasmic C terminus virtually abolished both anesthetic activation and transmitter inhibition. The only sequence motif identified with a classical signaling mechanism in this region is a potential phosphorylation site; however, mutation of this site failed to disrupt modulation. TASK-1 and TASK-3 differed insofar as a large portion of the C terminus was necessary for the full effects of halothane and TRH on TASK-3 but not on TASK-1. Finally, tandem-linked TASK-1/TASK-3 heterodimeric channels were fully modulated by anesthetic and transmitter, and introduction of the identified mutations either into the TASK-1 or the TASK-3 portion of the channel was sufficient to disrupt both effects. Thus, both anesthetic activation and transmitter inhibition of these channels require a region at the interface between the final transmembrane domain and the cytoplasmic C terminus that has not been associated previously with receptor signal transduction. Our results also indicate a close molecular relationship between these two forms of modulation, one endogenous and the other clinically applied.
Collapse
Affiliation(s)
- Edmund M Talley
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908-0735, USA.
| | | |
Collapse
|
37
|
Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J Neurosci 2002. [PMID: 11850453 DOI: 10.1523/jneurosci.22-04-01256.2002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The recently described two-pore-domain K+ channels, TASK-1 and TASK-3, generate currents with a unique set of properties; specifically, the channels produce instantaneous open-rectifier (i.e., "leak") K+ currents that are modulated by extracellular pH and by clinically useful anesthetics. In this study, we used histochemical and in vitro electrophysiological approaches to determine that TASK channels are expressed in serotonergic raphe neurons and to show that they confer a pH and anesthetic sensitivity to these neurons. By combining in situ hybridization for TASK-1 or TASK-3 with immunohistochemical localization of tryptophan hydroxylase, we found that a majority of serotonergic neurons in both dorsal and caudal raphe cell groups contain TASK channel transcripts (approximately 70-90%). Whole-cell voltage-clamp recordings were obtained from raphe cells that responded to 5-HT in a manner characteristic of serotonergic neurons (i.e., with activation of an inwardly rectifying K+ current). In those cells, we isolated an endogenous K+ conductance that had properties expected of TASK channel currents; raphe neurons expressed a joint pH- and halothane-sensitive open-rectifier K+ current. The pH sensitivity of this current (pK approximately 7.0) was intermediate between that of TASK-1 and TASK-3, consistent with functional expression of both channel types. Together, these data indicate that TASK-1 and TASK-3 are expressed and functional in serotonergic raphe neurons. The pH-dependent inhibition of TASK channels in raphe neurons may contribute to ventilatory and arousal reflexes associated with extracellular acidosis; on the other hand, activation of raphe neuronal TASK channels by volatile anesthetics could play a role in their immobilizing and sedative-hypnotic effects.
Collapse
|
38
|
Gabriel A, Abdallah M, Yost CS, Winegar BD, Kindler CH. Localization of the tandem pore domain K+ channel KCNK5 (TASK-2) in the rat central nervous system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 98:153-63. [PMID: 11834308 DOI: 10.1016/s0169-328x(01)00330-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tandem pore domain K+ channels (2P K+ channels) are responsible for background K+ currents. 2P K+ channels are the most numerous encoded K+ channels in the Caenorhabditis elegans and Drosophila melanogaster genomes and to date 14 human 2P K+ channels have been identified. The 2P K+ channel TASK-2 (also named KCNK5) is sensitive to changes in extracellular pH, inhibited by local anesthetics and activated by volatile anesthetics. While TASK-1 has been shown to be involved in controlling neuronal cell excitability, much less is known about the cellular expression and function of TASK-2, originally cloned from human kidney. Previous studies demonstrated TASK-2 mRNA expression in high abundance in human kidney, liver, and pancreas, but only low expression in mouse brain or even absent expression in human brain was reported. In this study we have used immunohistochemical methods to localize TASK-2 at the cellular level in the rat central nervous system. TASK-2 immunoreactivity is prominently found in the rat hippocampal formation with the strongest staining observed in the pyramidal cell layer and in the dentate gyrus, and the Purkinje and granule cells of cerebellum. Additional immunofluorescence studies in cultured cerebellar granule cells demonstrate TASK-2 localization to the neuronal soma and to the proximal regions of neurites of cerebellar granule cells. The superficial layers of spinal cord and small-diameter neurons of dorsal root ganglia also showed strong TASK-2 immunoreactivity. These results suggest a possible involvement of TASK-2 in central mechanisms for controlling cell excitability and in peripheral signal transduction.
Collapse
Affiliation(s)
- Anja Gabriel
- Department of Anesthesia and Operative Intensive Care Medicine, University of Köln, 50924, Köln, Germany
| | | | | | | | | |
Collapse
|
39
|
Karschin C, Wischmeyer E, Preisig-Müller R, Rajan S, Derst C, Grzeschik KH, Daut J, Karschin A. Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-5, associated with the central auditory nervous system. Mol Cell Neurosci 2001; 18:632-48. [PMID: 11749039 DOI: 10.1006/mcne.2001.1045] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TWIK-related acid-sensitive K(+) (TASK) channels contribute to setting the resting potential of mammalian neurons and have recently been defined as molecular targets for extracellular protons and volatile anesthetics. We have isolated a novel member of this subfamily, hTASK-5, from a human genomic library and mapped it to chromosomal region 20q12-20q13. hTASK-5 did not functionally express in Xenopus oocytes, whereas chimeric TASK-5/TASK-3 constructs containing the region between M1 and M3 of TASK-3 produced K(+) selective currents. To better correlate TASK subunits with native K(+) currents in neurons the precise cellular distribution of all TASK family members was elucidated in rat brain. A comprehensive in situ hybridization analysis revealed that both TASK-1 and TASK-3 transcripts are most strongly expressed in many neurons likely to be cholinergic, serotonergic, or noradrenergic. In contrast, TASK-5 expression is found in olfactory bulb mitral cells and Purkinje cells, but predominantly associated with the central auditory pathway. Thus, TASK-5 K(+) channels, possibly in conjunction with auxiliary proteins, may play a role in the transmission of temporal information in the auditory system.
Collapse
Affiliation(s)
- C Karschin
- Department of Molecular Neurobiology of Signal Transduction, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|