1
|
Xu W, Zhang X, Zhang B, Lu S, Huang W, Xu J, Liu Y, Zhao W, Yan Z, Yu Y, Qiu S, Wu B, Tang J. Clinical features and mechanisms of neck myoclonus in narcolepsy. Sleep Med 2024; 123:22-28. [PMID: 39226673 DOI: 10.1016/j.sleep.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
STUDY OBJECTIVES The purpose of this study was to investigate the effects of neck myoclonus (NM) on sleep quality and daytime sleepiness in patients with narcolepsy (NT) and to further explore possible underlying mechanisms. METHODS We included 72 patients with narcolepsy type 1 (NT1), 34 patients with narcolepsy type 2 (NT2) and 33 healthy controls. Patients underwent questionnaires, lumbar puncture procedure, polysomnography, and multiple sleep latency test (MSLT). Healthy controls underwent polysomnography and questionnaires. Orexin-A levels in the cerebrospinal fluid (CSF) were analyzed by radioimmunoassay. Three catecholamines, including dopamine, norepinephrine and epinephrine, in the CSF were measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS Both the NT1 and NT2 groups displayed a higher level of NM incidence rate and index compared to the control group in PSG. NT1 displayed greater MSLT REM--NM incidence rate and index than NT2. NM were often associated with arousal or awakening and body movements, which had a prominent influence on sleep quality in both narcoleptic patients and controls. There was a positive correlation between the NM index and the Pittsburgh Sleep Quality Index (PSQI), Stanford Sleepiness Scale (SSS) and Ullanlinna Narcolepsy Scale (UNS) scores in NT1 patients. In MSLT of NT1 patients, REM-NM index were positively correlated with the CSF dopamine levels, and there were elevated dopamine levels but reduced orexin-A levels in patients with REM-NM. CONCLUSION NM incidence rate and index were high in patients with narcolepsy, which had a huge effect on sleep quality and aggravated daytime sleepiness. NM should be considered pathological and viewed as a new sleep-related movement disorder. Orexin-A and dopamine may be involved in the development of NM.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, NO. 16766, Jingshi Road, Jinan, Shandong, 250014, People's Republic of China; Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| | - Xiao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| | - Baokun Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, NO. 16766, Jingshi Road, Jinan, Shandong, 250014, People's Republic of China
| | - Shanshan Lu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| | - Weiwei Huang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| | - Juanjuan Xu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| | - Ying Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| | - Wanyu Zhao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| | - Zian Yan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| | - Yixin Yu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| | - Shenghan Qiu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| | - Bingyun Wu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China
| | - Jiyou Tang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, NO. 16766, Jingshi Road, Jinan, Shandong, 250014, People's Republic of China; Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Kaplan GB, Lakis GA, Zhoba H. Sleep-Wake and Arousal Dysfunctions in Post-Traumatic Stress Disorder:Role of Orexin Systems. Brain Res Bull 2022; 186:106-122. [PMID: 35618150 DOI: 10.1016/j.brainresbull.2022.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related condition that produces distressing fear memory intrusions, avoidance behaviors, hyperarousal/startle, stress responses and insomnia. This review focuses on the importance of the orexin neural system as a novel mechanism related to the pathophysiology of PTSD. Orexinergic neurons originate in the lateral hypothalamus and project widely to key neurotransmitter system neurons, autonomic neurons, the hypothalamic-pituitaryadrenal (HPA) axis, and fear-related neural circuits. After trauma or stress, the basolateral amygdala (BLA) transmits sensory information to the central nucleus of the amygdala (CeA) and in turn to the hypothalamus and other subcortical and brainstem regions to promote fear and threat. Orexin receptors have a prominent role in this circuit as fear conditioned orexin receptor knockout mice show decreased fear expression while dual orexin receptor antagonists (DORAs) inhibit fear acquisition and expression. Orexin activation of an infralimbic-amygdala circuit impedes fear extinction while DORA treatments enhance it. Increased orexin signaling to the amygdalocortical- hippocampal circuit promotes avoidance behaviors. Orexin has an important role in activating sympathetic nervous system (SNS) activity and the HPA axis stress responses. Blockade of orexin receptors reduces fear-conditioned startle responses. In PTSD models, individuals demonstrate sleep disturbances such as increased sleep latency and more transitions to wakefulness. Increased orexin activity impairs sleep by promoting wakefulness and reducing total sleep time while DORA treatments enhance sleep onset and maintenance. The orexinergic neural system provides important mechanisms for understanding multiple PTSD behaviors and provides new medication targets to treat this often persistent and debilitating illness.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118 USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118 USA.
| | - Gabrielle A Lakis
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA; Undergraduate Program in Neuroscience, Boston University, Boston, MA, 02215 USA
| | - Hryhoriy Zhoba
- Research Service, VA Boston Healthcare System, West Roxbury, MA, 02132 USA
| |
Collapse
|
3
|
REM sleep behavior disorder in narcolepsy: A secondary form or an intrinsic feature? Sleep Med Rev 2019; 50:101254. [PMID: 31931470 DOI: 10.1016/j.smrv.2019.101254] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 01/17/2023]
Abstract
Disrupted nighttime sleep is one of the pentad of symptoms defining Narcolepsy. REM sleep behavior disorder (RBD) largely contributes to night sleep disruption and narcolepsy is the most common cause of secondary RBD. However, RBD linked to narcolepsy (N-RBD) has been insufficiently characterized, leaving unsolved a number of issues. Indeed, it is still debated whether N-RBD is an intrinsic feature of narcolepsy, as indubitable for cataplexy, and therefore strictly linked to the cerebrospinal fluid hypocretin-1 (CSF hcrt-1) deficiency, or an associated feature, with a still unclear pathophysiology. The current review aims at rendering a comprehensive state-of-the-art of N-RBD, highlighting the open and unsettled topics. RBD reportedly affects 30-60% of patients with Narcolepsy type 1 (NT1), but it may be seen also in Narcolepsy type 2 (NT2). When compared to idiopathic/isolated RBD (iRBD), N-RBD has been reported to be characterized by less energetic and quieter episode, which however occur with the same probability in the first and the second part of the night and sometime even subcontinuously. N-RBD patients are generally younger than those with iRBD. N-RBD has been putatively linked to wake-sleep instability due to CSF hcrt-1 deficiency, but this latter by itself cannot explain completely the phenomenon as N-RBD has not been universally linked to low CSF hcrt-1 levels and it may be observed also in NT2. Therefore, other factors may probably play a role and further studies are needed to clarify this issue. In addition, therapeutic options have been poorly investigated.
Collapse
|
4
|
Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016; 594:5391-414. [PMID: 27060683 DOI: 10.1113/jp271324] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/02/2016] [Indexed: 01/14/2023] Open
Abstract
Rapid eye movement (REM) sleep is a recurring part of the sleep-wake cycle characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone (atonia). The brain circuitry governing REM sleep is located in the pontine and medullary brainstem and includes ascending and descending projections that regulate the EEG and motor components of REM sleep. The descending signal for postural muscle atonia during REM sleep is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which in turn activate glycinergic pre-motor neurons in the spinal cord and/or ventromedial medulla to inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular and synaptic basis of REM sleep atonia control is a critical step for treating many sleep-related disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and narcolepsy with cataplexy.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Michael C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Rivas M, Torterolo P, Ferreira A, Benedetto L. Hypocretinergic system in the medial preoptic area promotes maternal behavior in lactating rats. Peptides 2016; 81:9-14. [PMID: 27083313 DOI: 10.1016/j.peptides.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Hypocretin-1 and 2 (HCRT-1 and HCRT-2, respectively) are neuropeptides synthesized by neurons located in the postero-lateral hypothalamus, whose projections are widely distributed throughout the brain. The hypocretinergic (HCRTergic) system has been associated with the generation and maintenance of wakefulness, as well as with the promotion of motivated behaviors. In lactating rats, intra-cerebroventricular HCRT-1 administration stimulates maternal behavior, whilst lactation per se increases the expression of HCRT type 1 receptor (HCRT-R1). Due to the fact that HCRTergic receptors are expressed in the medial preoptic area (mPOA), a region critically involved in maternal behavior, we hypothesize that HCRT-1 promotes maternal behavior acting on this region. In order to evaluate this hypothesis, we assessed the maternal behavior of lactating rats following microinjections of HCRT-1 (10 or 100μM) and the selective HCRT-R1 antagonist SB-334867 (250μM) into the mPOA, during the first and second postpartum weeks. While intra-mPOA microinjections of HCRT-1 (100μM) increased corporal pup licking during the second postpartum week, the blockade of HCRT-R1 significantly decreased active components of maternal behavior, such as retrievals, corporal and ano-genital lickings, and increased the time spent in nursing postures in both postpartum periods. We conclude that HCRTergic system in the mPOA may stimulate maternal behavior, suggesting that endogenous HCRT-1 is necessary for the natural display of this behavior.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
6
|
CeA-NPO circuits and REM sleep dysfunction in drug-refractory epilepsy. Epilepsy Behav 2015; 51:273-6. [PMID: 26312989 DOI: 10.1016/j.yebeh.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 11/20/2022]
|
7
|
Xu AJ, Liu TT, He ZG, Hong QX, Xiang HB. STN-PPTg circuits and REM sleep dysfunction in drug-refractory epilepsy. Epilepsy Behav 2015; 51:277-80. [PMID: 26312990 DOI: 10.1016/j.yebeh.2015.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Ai-Jun Xu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Tao-Tao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qing-Xiong Hong
- Department of Anesthesiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China.
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
8
|
Xi M, Fung SJ, Yamuy J, Chase MH. Interactions between hypocretinergic and GABAergic systems in the control of activity of neurons in the cat pontine reticular formation. Neuroscience 2015; 298:190-9. [PMID: 25892701 DOI: 10.1016/j.neuroscience.2015.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 11/30/2022]
Abstract
Anatomical studies have demonstrated that hypocretinergic and GABAergic neurons innervate cells in the nucleus pontis oralis (NPO), a nucleus responsible for the generation of active (rapid eye movement (REM)) sleep (AS) and wakefulness (W). Behavioral and electrophysiological studies have shown that hypocretinergic and GABAergic processes in the NPO are involved in the generation of AS as well as W. An increase in hypocretin in the NPO is associated with both AS and W, whereas GABA levels in the NPO are elevated during W. We therefore examined the manner in which GABA modulates NPO neuronal responses to hypocretin. We hypothesized that interactions between the hypocretinergic and GABAergic systems in the NPO play an important role in determining the occurrence of AS or W. To determine the veracity of this hypothesis, we examined the effects of the juxtacellular application of hypocretin-1 and GABA on the activity of NPO neurons, which were recorded intracellularly, in chloralose-anesthetized cats. The juxtacellular application of hypocretin-1 significantly increased the mean amplitude of spontaneous EPSPs and the frequency of discharge of NPO neurons; in contrast, the juxtacellular microinjection of GABA produced the opposite effects, i.e., there was a significant reduction in the mean amplitude of spontaneous EPSPs and a decrease in the discharge of these cells. When hypocretin-1 and GABA were applied simultaneously, the inhibitory effect of GABA on the activity of NPO neurons was reduced or completely blocked. In addition, hypocretin-1 also blocked GABAergic inhibition of EPSPs evoked by stimulation of the laterodorsal tegmental nucleus. These data indicate that hypocretin and GABA function within the context of a neuronal gate that controls the activity of AS-on neurons. Therefore, we suggest that the occurrence of either AS or W depends upon interactions between hypocretinergic and GABAergic processes as well as inputs from other sites that project to AS-on neurons in the NPO.
Collapse
Affiliation(s)
- M Xi
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - S J Fung
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - J Yamuy
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - M H Chase
- Websciences International, Los Angeles, CA 90024, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Torterolo P, Chase MH. The hypocretins (orexins) mediate the "phasic" components of REM sleep: A new hypothesis. Sleep Sci 2014; 7:19-29. [PMID: 26483897 PMCID: PMC4521687 DOI: 10.1016/j.slsci.2014.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
In 1998, a group of phenotypically distinct neurons were discovered in the postero-lateral hypothalamus which contained the neuropeptides hypocretin 1 and hypocretin 2 (also called orexin A and orexin B), which are excitatory neuromodulators. Hypocretinergic neurons project throughout the central nervous system and have been involved in the generation and maintenance of wakefulness. The sleep disorder narcolepsy, characterized by hypersomnia and cataplexy, is produced by degeneration of these neurons. The hypocretinergic neurons are active during wakefulness in conjunction with the presence of motor activity that occurs during survival-related behaviors. These neurons decrease their firing rate during non-REM sleep; however there is still controversy upon the activity and role of these neurons during REM sleep. Hence, in the present report we conducted a critical review of the literature of the hypocretinergic system during REM sleep, and hypothesize a possible role of this system in the generation of REM sleep.
Collapse
Affiliation(s)
- Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800 Montevideo, Uruguay
| | - Michael H. Chase
- WebSciences International, Los Angeles, USA
- UCLA School of Medicine, Los Angeles, USA
| |
Collapse
|
10
|
García-García B, Reinoso-Suárez F, Rodrigo-Angulo ML. Hypothalamic Hypocretinergic/Orexinergic Neurons Projecting to the Oral Pontine Rapid Eye Movement Sleep Inducing Site in the Cat. Anat Rec (Hoboken) 2013; 296:815-21. [DOI: 10.1002/ar.22690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/19/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Berta García-García
- Departamento de Anatomía; Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid; Madrid Spain
| | - Fernando Reinoso-Suárez
- Departamento de Anatomía; Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid; Madrid Spain
| | - Margarita L. Rodrigo-Angulo
- Departamento de Anatomía; Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
11
|
Luppi PH, Clément O, Fort P. Brainstem structures involved in rapid eye movement sleep behavior disorder. Sleep Biol Rhythms 2013. [DOI: 10.1111/j.1479-8425.2012.00544.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Torterolo P, Sampogna S, Chase MH. Hypocretinergic and non-hypocretinergic projections from the hypothalamus to the REM sleep executive area of the pons. Brain Res 2013; 1491:68-77. [PMID: 23122879 PMCID: PMC3529971 DOI: 10.1016/j.brainres.2012.10.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 12/28/2022]
Abstract
Within the postero-lateral hypothalamus neurons that utilize hypocretin or melanin-concentrating hormone (MCH) as neuromodulators are co-distributed. These neurons have been involved in the control of behavioral states, and a deficit in the hypocretinergic system is the pathogenic basis of narcolepsy with cataplexy. In this report, utilizing immunohistochemistry and retrograde tracing techniques, we examined the hypocretinergic innervation of the nucleus pontis oralis (NPO), which is the executive site that is responsible for the generation of REM sleep in the cat. The retrograde tracer cholera toxin subunit b (CTb) was administered in pontine regions where carbachol microinjections induced REM sleep. Utilizing immunohistochemical techniques, we found that approximately 1% of hypocretinergic neurons in the tuberal area of the hypothalamus project to the NPO. In addition, approximately 6% of all CTb+ neurons in this region were hypocretinergic. The hypocretinergic innervation of the NPO was also compared with the innervation of the same site by MCH-containing neurons. More than three times as many MCHergic neurons were found to project to the NPO compared with hypocretinergic cells; both neuronal types exhibited bilateral projections. We also identified a group of non-hypocretinergic non-MCHergic neuronal group of neurons that were intermingled with both hypocretinergic and MCHergic neurons that also projected to this same brainstem region. These neurons were grater in number that either hypocretin or MCH-containing neurons; their soma size was also smaller and their projections were mainly ipsilateral. The present anatomical data suggest that hypocretinergic, MCHergic and an unidentified companion group of neurons of the postero-lateral hypothalamus participate in the regulation of the neuronal activity of NPO neurons, and therefore, are likely to participate in the control of wakefulness and REM sleep.
Collapse
Affiliation(s)
- Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, Uruguay.
| | | | | |
Collapse
|
13
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
14
|
Luppi PH, Clément O, Sapin E, Gervasoni D, Peyron C, Léger L, Salvert D, Fort P. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Med Rev 2011; 15:153-63. [PMID: 21115377 DOI: 10.1016/j.smrv.2010.08.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 02/02/2023]
Affiliation(s)
- Pierre-Hervé Luppi
- UMR5167 CNRS, Institut Fédératif des Neurosciences de Lyon (IFR 19), Univ Lyon 1, Université de Lyon, Lyon, France.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Adrian R Morrison
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Xi M, Chase MH. The injection of hypocretin-1 into the nucleus pontis oralis induces either active sleep or wakefulness depending on the behavioral state when it is administered. Sleep 2010; 33:1236-43. [PMID: 20857871 DOI: 10.1093/sleep/33.9.1236] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES We previously reported that the microinjection of hypocretin (orexin) into the nucleus pontis oralis (NPO) induces a behavioral state that is comparable to naturally occurring active (rapid eye movement) sleep. However, other laboratories have found that wakefulness occurs following injections of hypocretin into the NPO. The present study tested the hypothesis that the discrepancy in behavioral state responses to hypocretin injections is due to the fact that hypocretin was not administered during the same states of sleep or wakefulness. DESIGN Adult cats were implanted with electrodes to record sleep and waking states. Hypocretin-1 (0.25 microL, 500microM) was microinjected into the NPO while the animals were awake or in quiet (non-rapid eye movement) sleep. MEASUREMENTS AND RESULTS When hyprocretin-1 was microinjected into the NPO during quiet sleep, active sleep occurred with a short latency. In addition, there was a significant increase in the time spent in active sleep and in the number of episodes of this state. On the other hand, the injection of hyprocretin-1 during wakefulness resulted not only in a significant increase in wakefulness, but also in a decrease in the percentage and frequency of episodes of active sleep. CONCLUSIONS The present data demonstrate that the behavioral state of the animal dictates whether active sleep or wakefulness is induced following the injection of hypocretin. Therefore, we suggest that hypocretin-1 enhances ongoing states of wakefulness and their accompanying patterns of physiologic activity and that hypocretin-1 is also capable of promoting active sleep and the changes in various processes that occur during this state.
Collapse
Affiliation(s)
- Mingchu Xi
- WebSciences International, Los Angeles, CA 90024, USA.
| | | |
Collapse
|
17
|
Brevig HN, Watson CJ, Lydic R, Baghdoyan HA. Hypocretin and GABA interact in the pontine reticular formation to increase wakefulness. Sleep 2010; 33:1285-93. [PMID: 21061850 DOI: 10.1093/sleep/33.10.1285] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Hypocretin-1/orexin A administered directly into the oral part of rat pontine reticular formation (PnO) causes an increase in wakefulness and extracellular gamma-aminobutyric acid (GABA) levels. The receptors in the PnO that mediate these effects have not been identified. Therefore, this study tested the hypothesis that the increase in wakefulness caused by administration of hypocretin-1 into the PnO occurs via activation of GABAA receptors and hypocretin receptors. DESIGN Within/between subjects. SETTING University of Michigan. PATIENTS OR PARTICIPANTS Twenty-three adult male Crl:CD*(SD) (Sprague Dawley) rats. INTERVENTIONS Microinjection of hypocretin-1, bicuculline (GABAA receptor antagonist), SB-334867 (hypocretin receptor-1 antagonist), and Ringer solution (vehicle control) into the PnO. MEASUREMENTS AND RESULTS Hypocretin-1 caused a significant concentration-dependent increase in wakefulness and decrease in rapid eye movement (REM) sleep and non-REM (NREM) sleep. Coadministration of SB-334867 and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in both the NREM and REM phases of sleep. Coadministration of bicuculline and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in NREM sleep caused by hypocretin-1. CONCLUSION The increase in wakefulness caused by administering hypocretin-1 to the PnO is mediated by hypocretin receptors and GABAA receptors in the PnO. These results show for the first time that hypocretinergic and GABAergic transmission in the PnO can interact to promote wakefulness.
Collapse
Affiliation(s)
- Holly N Brevig
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-5615, USA
| | | | | | | |
Collapse
|
18
|
Dergacheva O, Philbin K, Bateman R, Mendelowitz D. Hypocretin-1 (orexin A) prevents the effects of hypoxia/hypercapnia and enhances the GABAergic pathway from the lateral paragigantocellular nucleus to cardiac vagal neurons in the nucleus ambiguus. Neuroscience 2010; 175:18-23. [PMID: 21134420 DOI: 10.1016/j.neuroscience.2010.11.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 11/18/2022]
Abstract
Hypocretins (orexins) are hypothalamic neuropeptides that play a crucial role in regulating sleep/wake states and autonomic functions including parasympathetic cardiac activity. We have recently demonstrated stimulation of the lateral paragigantocellular nucleus (LPGi), the nucleus which is thought to play a role in rapid eye movement (REM) sleep control, activates an inhibitory pathway to preganglionic cardiac vagal neurons in the nucleus ambiguus (NA). In this study we test the hypothesis that hypocretin-1 modulates the inhibitory neurotransmission to cardiac vagal neurons evoked by stimulation of the LPGi using whole-cell patch-clamp recordings in an in vitro brain slice preparation from rats. Activation of hypocretin-1 receptors produced a dose-dependent and long-term facilitation of GABAergic postsynaptic currents evoked by electrical stimulation of the LPGi. Hypoxia/hypercapnia diminished LPGi-evoked GABAergic current in cardiac vagal neurons and this inhibition by hypoxia/hypercapnia was prevented by pre-application of hypocretin-1. The action of hypocretin-1 was blocked by the hypocretin-1 receptor antagonist SB-334867. Facilitation of LPGi-evoked GABAergic current in cardiac vagal neurons under both normal condition and during hypoxia/hypercapnia could be the mechanism by which hypocretin-1 affects parasympathetic cardiac function and heart rate during REM sleep. Furthermore, our findings indicate a new potential mechanism that might be involved in the cardiac arrhythmias, bradycardia, and sudden cardiac death that can occur during sleep.
Collapse
Affiliation(s)
- O Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
20
|
Nuñez A, Rodrigo-Angulo ML, Andrés ID, Garzón M. Hypocretin/Orexin neuropeptides: participation in the control of sleep-wakefulness cycle and energy homeostasis. Curr Neuropharmacol 2010; 7:50-9. [PMID: 19721817 PMCID: PMC2724663 DOI: 10.2174/157015909787602797] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/19/2008] [Accepted: 09/17/2008] [Indexed: 11/28/2022] Open
Abstract
Hypocretins or orexins (Hcrt/Orx) are hypothalamic neuropeptides that are synthesized by neurons located mainly in the perifornical area of the posterolateral hypothalamus. These hypothalamic neurons are the origin of an extensive and divergent projection system innervating numerous structures of the central nervous system. In recent years it has become clear that these neuropeptides are involved in the regulation of many organic functions, such as feeding, thermoregulation and neuroendocrine and cardiovascular control, as well as in the control of the sleep-wakefulness cycle. In this respect, Hcrt/Orx activate two subtypes of G protein-coupled receptors (Hcrt/Orx1R and Hcrt/Orx2R) that show a partly segregated and prominent distribution in neural structures involved in sleep-wakefulness regulation. Wakefulness-enhancing and/or sleep-suppressing actions of Hcrt/Orx have been reported in specific areas of the brainstem. Moreover, presently there are animal models of human narcolepsy consisting in modifications of Hcrt/Orx receptors or absence of these peptides. This strongly suggests that narcolepsy is the direct consequence of a hypofunction of the Hcrt/Orx system, which is most likely due to Hcrt/Orx neurons degeneration. The main focus of this review is to update and illustrate the available data on the actions of Hcrt/Orx neuropeptides with special interest in their participation in the control of the sleep-wakefulness cycle and the regulation of energy homeostasis. Current pharmacological treatment of narcolepsy is also discussed.
Collapse
Affiliation(s)
- A Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
21
|
Dergacheva O, Wang X, Lovett-Barr MR, Jameson H, Mendelowitz D. The lateral paragigantocellular nucleus modulates parasympathetic cardiac neurons: a mechanism for rapid eye movement sleep-dependent changes in heart rate. J Neurophysiol 2010; 104:685-94. [PMID: 20484535 DOI: 10.1152/jn.00228.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rapid eye movement (REM) sleep is generally associated with a withdrawal of parasympathetic activity and heart rate increases; however, episodic vagally mediated heart rate decelerations also occur during REM sleep. This alternating pattern of autonomic activation provides a physiological basis for REM sleep-induced cardiac arrhythmias. Medullary neurons within the lateral paragigantocellular nucleus (LPGi) are thought to be active after REM sleep recovery and play a role in REM sleep control. In proximity to the LPGi are parasympathetic cardiac vagal neurons (CVNs) within the nucleus ambiguus (NA), which are critical for controlling heart rate. This study examined brain stem pathways that may mediate REM sleep-related reductions in parasympathetic cardiac activity. Electrical stimulation of the LPGi evoked inhibitory GABAergic postsynaptic currents in CVNs in an in vitro brain stem slice preparation in rats. Because brain stem cholinergic mechanisms are involved in REM sleep regulation, we also studied the role of nicotinic neurotransmission in modulation of GABAergic pathway from the LGPi to CVNs. Application of nicotine diminished the GABAergic responses evoked by electrical stimulation. This inhibitory effect of nicotine was prevented by the alpha7 nicotinic receptor antagonist alpha-bungarotoxin. Moreover, hypoxia/hypercapnia (H/H) diminished LPGi-evoked GABAergic current in CVNs, and this inhibitory effect was also prevented by alpha-bungarotoxin. In conclusion, stimulation of the LPGi evokes an inhibitory pathway to CVNs, which may constitute a mechanism for the reduced parasympathetic cardiac activity and increase in heart rate during REM sleep. Inhibition of this pathway by nicotinic receptor activation and H/H may play a role in REM sleep-related and apnea-associated bradyarrhythmias.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
22
|
Badami VM, Rice CD, Lois JH, Madrecha J, Yates BJ. Distribution of hypothalamic neurons with orexin (hypocretin) or melanin concentrating hormone (MCH) immunoreactivity and multisynaptic connections with diaphragm motoneurons. Brain Res 2010; 1323:119-26. [PMID: 20144885 DOI: 10.1016/j.brainres.2010.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 01/30/2010] [Accepted: 02/02/2010] [Indexed: 11/16/2022]
Abstract
Prior work showed that neurons in the lateral, dorsal, and perifornical regions of the tuberal and mammillary levels of the hypothalamus participate in the control of breathing. The same areas also contain large numbers of neurons that produce either orexins (hypocretins) or melanin concentrating hormone (MCH). These peptides have been implicated in regulating energy balance and physiological changes that occur in transitions between sleep and wakefulness, amongst other functions. The goal of this study was to determine if hypothalamic neurons involved in respiratory control, which were identified in cats by the retrograde transneuronal transport of rabies virus from the diaphragm, were immunopositive for either orexin-A or MCH. In animals with limited rabies infection of the hypothalamus (<10 infected cells/section), where the neurons with the most direct influences on diaphragm motoneurons were presumably labeled, a large fraction (28-75%) of the infected hypothalamic neurons contained orexin-A. In the same cases, 6-33% of rabies-infected hypothalamic cells contained MCH. However, in animals with more extensive infection, where rabies had presumably passed transneuronally through more synapses, the fraction of infected cells that contained orexin-A was lower. The findings from these experiments thus support the notion that hypothalamic influences on breathing are substantially mediated through orexins or MCH.
Collapse
Affiliation(s)
- Varun M Badami
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
23
|
Adamantidis A, Carter MC, de Lecea L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2010; 2:31. [PMID: 20126433 PMCID: PMC2814554 DOI: 10.3389/neuro.02.031.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 12/18/2009] [Indexed: 02/04/2023] Open
Abstract
How does the brain regulate the sleep–wake cycle? What are the temporal codes of sleep and wake-promoting neural circuits? How do these circuits interact with each other across the light/dark cycle? Over the past few decades, many studies from a variety of disciplines have made substantial progress in answering these fundamental questions. For example, neurobiologists have identified multiple, redundant wake-promoting circuits in the brainstem, hypothalamus, and basal forebrain. Sleep-promoting circuits have been found in the preoptic area and hypothalamus. One of the greatest challenges in recent years has been to selectively record and manipulate these sleep–wake centers in vivo with high spatial and temporal resolution. Recent developments in microbial opsin-based neuromodulation tools, collectively referred to as “optogenetics,” have provided a novel method to demonstrate causal links between neural activity and specific behaviors. Here, we propose to use optogenetics as a fundamental tool to probe the necessity, sufficiency, and connectivity of defined neural circuits in the regulation of sleep and wakefulness.
Collapse
Affiliation(s)
- Antoine Adamantidis
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine Palo Alto, CA, USA
| | | | | |
Collapse
|
24
|
Volgin DV, Malinowska M, Kubin L. Dorsomedial pontine neurons with descending projections to the medullary reticular formation express orexin-1 and adrenergic alpha2A receptor mRNA. Neurosci Lett 2009; 459:115-8. [PMID: 19427365 DOI: 10.1016/j.neulet.2009.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/02/2009] [Accepted: 05/05/2009] [Indexed: 01/13/2023]
Abstract
Neurons located in the dorsomedial pontine rapid eye movement (REM) sleep-triggering region send axons to the medial medullary reticular formation (mMRF). This pathway is believed to be important for the generation of REM sleep motor atonia, but other than that they are glutamatergic little is known about neurochemical signatures of these pontine neurons important for REM sleep. We used single-cell reverse transcription and polymerase chain reaction (RT-PCR) to determine whether dorsomedial pontine cells with projections to the mMRF express mRNA for selected membrane receptors that mediate modulatory influences on REM sleep. Fluorescein (FITC)-labeled latex microspheres were microinjected into the mMRF of 26-34-day-old rats under pentobarbital anesthesia. After 5-6 days, rats were sacrificed, pontine slices were obtained and neurons were dissociated from 400 to 600 microm micropunches extracted from dorsomedial pontine reticular formation. We found that 32 out of 51 FITC-labeled cells tested (63+/-7% (SE)) contained the orexin type 1 receptor (ORX1r) mRNA, 27 out of 73 (37+/-6%) contained the adrenergic alpha(2A) receptor (alpha(2A)r) RNA, and 6 out of 31 (19+/-7%) contained both mRNAs. The percentage of cells positive for the ORX1r mRNA was significantly lower (p<0.04) for the dorsomedial pontine cells that were not retrogradely labeled from the mMRF (32+/-11%), whereas alpha(2A)r mRNA was present in a similar percentage of FITC-labeled and unlabeled neurons. Our data suggest that ORX and adrenergic pathways converge on a subpopulation of cells of the pontine REM sleep-triggering region that have descending projections to the medullary region important for the motor control during REM sleep.
Collapse
Affiliation(s)
- Denys V Volgin
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
25
|
Watson CJ, Soto-Calderon H, Lydic R, Baghdoyan HA. Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness. Sleep 2008; 31:453-64. [PMID: 18457232 DOI: 10.1093/sleep/31.4.453] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES GABAergic transmission in the oral part of the pontine reticular formation (PnO) increases wakefulness. The hypothalamic peptide hypocretin-1 (orexin A) promotes wakefulness, and the PnO receives hypocretinergic input. The present study tested the hypothesis that PnO administration of hypocretin-1 increases PnO GABA levels and increases wakefulness. This study also tested the hypothesis that wakefulness is either increased or decreased, respectively, by PnO administration of drugs known to selectively increase or decrease GABA levels. DESIGN Awithin-subjects design was used for microdialysis and microinjection experiments. SETTING University of Michigan. PATIENTS OR PARTICIPANTS Experiments were performed using adult male Crl:CD (SD)IGS BR (Sprague-Dawley) rats (n=46). INTERVENTIONS PnO administration of hypocretin-1, nipecotic acid (a GABA uptake inhibitor that increases extracellular GABA levels), 3-mercaptopropionic acid (a GABA synthesis inhibitor that decreases extracellular GABA levels; 3-MPA), and Ringer solution (vehicle control). MEASUREMENTS AND RESULTS Dialysis administration of hypocretin-1 to the PnO caused a statistically significant, concentration-dependent increase in PnO GABA levels. PnO microinjection of hypocretin-1 or nipecotic acid caused a significant increase in wakefulness and a significant decrease in non-rapid eye movement (NREM) sleep and REM sleep. Microinjecting 3-MPA into the PnO caused a significant increase in NREM sleep and REM sleep and a significant decrease in wakefulness. CONCLUSIONS An increase or a decrease in PnO GABA levels causes an increase or decrease, respectively, in wakefulness. Hypocretin-1 may promote wakefulness, at least in part, by increasing GABAergic transmission in the PnO.
Collapse
Affiliation(s)
- Christopher J Watson
- Department ofAnesthesiology, University ofMichigan, Ann Arbor, MI 48109-5615, USA
| | | | | | | |
Collapse
|
26
|
Moreno-Balandrn E, Garzn M, Bdalo C, Reinoso-Surez F, de Andrs I. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum. Eur J Neurosci 2008; 28:331-41. [DOI: 10.1111/j.1460-9568.2008.06334.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Brown RE, McKenna JT, Winston S, Basheer R, Yanagawa Y, Thakkar MM, McCarley RW. Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. Eur J Neurosci 2008; 27:352-63. [PMID: 18215233 DOI: 10.1111/j.1460-9568.2008.06024.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent experiments suggest that brainstem GABAergic neurons may control rapid-eye-movement (REM) sleep. However, understanding their pharmacology/physiology has been hindered by difficulty in identification. Here we report that mice expressing green fluorescent protein (GFP) under the control of the GAD67 promoter (GAD67-GFP knock-in mice) exhibit numerous GFP-positive neurons in the central gray and reticular formation, allowing on-line identification in vitro. Small (10-15 microm) or medium-sized (15-25 microm) GFP-positive perikarya surrounded larger serotonergic, noradrenergic, cholinergic and reticular neurons, and > 96% of neurons were double-labeled for GFP and GABA, confirming that GFP-positive neurons are GABAergic. Whole-cell recordings in brainstem regions important for promoting REM sleep [subcoeruleus (SubC) or pontine nucleus oralis (PnO) regions] revealed that GFP-positive neurons were spontaneously active at 3-12 Hz, fired tonically, and possessed a medium-sized depolarizing sag during hyperpolarizing steps. Many neurons also exhibited a small, low-threshold calcium spike. GFP-positive neurons were tested with pharmacological agents known to promote (carbachol) or inhibit (orexin A) REM sleep. SubC GFP-positive neurons were excited by the cholinergic agonist carbachol, whereas those in the PnO were either inhibited or excited. GFP-positive neurons in both areas were excited by orexins/hypocretins. These data are congruent with the hypothesis that carbachol-inhibited GABAergic PnO neurons project to, and inhibit, REM-on SubC reticular neurons during waking, whereas carbachol-excited SubC and PnO GABAergic neurons are involved in silencing locus coeruleus and dorsal raphe aminergic neurons during REM sleep. Orexinergic suppression of REM during waking is probably mediated in part via excitation of acetylcholine-inhibited GABAergic neurons.
Collapse
Affiliation(s)
- Ritchie E Brown
- In Vitro Neurophysiology Section, Laboratory of Neuroscience, Harvard Medical School and VA Boston Healthcare System, 940 Belmont Street, Research 151-C, Brockton, MA 02301, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Minami K, Uezono Y, Sakurai T, Horishita T, Shiraishi M, Ueta Y. Effects of anesthetics on the function of orexin-1 receptors expressed in Xenopus oocytes. Pharmacology 2007; 79:236-42. [PMID: 17435392 DOI: 10.1159/000101713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 12/15/2006] [Indexed: 11/19/2022]
Abstract
Neurons in the hypothalamus containing the neuropeptide orexin have been implicated in the control of sleep and wakefulness and in the pathology of narcolepsy. In this study, we investigated the effects of volatile anesthetics, ethanol and intravenous anesthetics on orexin-A-induced Ca2+-activated Cl- currents using Xenopus oocytes expressing orexin-1 receptors (OX1Rs). The volatile anesthetics isoflurane, enflurane and halothane inhibited Cl- currents elicited by 1-micromol/l orexin-A. Ethanol and the intravenous anesthetics pentobarbital and ketamine also inhibited the action of orexin-A. The inhibitory effects of all of the compounds tested were shown to be caused by the inhibition of OX1R function. These results may, at least in part, explain their hypnotic effects.
Collapse
Affiliation(s)
- Kouichiro Minami
- Department of Anesthesiology, Jichi Medical University, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Nuñez A, Moreno-Balandrán ME, Rodrigo-Angulo ML, Garzón M, De Andrés I. Relationship between the perifornical hypothalamic area and oral pontine reticular nucleus in the rat. Possible implication of the hypocretinergic projection in the control of rapid eye movement sleep. Eur J Neurosci 2006; 24:2834-42. [PMID: 17116163 DOI: 10.1111/j.1460-9568.2006.05159.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The perifornical (PeF) area in the posterior lateral hypothalamus has been implicated in several physiological functions including the regulation of sleep-wakefulness. Some PeF neurons, which contain hypocretin, have been suggested to play an important role in sleep-wake regulation. The aim of the present study was to examine the effect of the PeF area and hypocretin on the electrophysiological activity of neurons of the oral pontine reticular nucleus (PnO), which is an important structure in the generation and maintenance of rapid eye movement sleep. PnO neurons were recorded in urethane-anesthetized rats. Extracellular recordings were performed by means of tungsten microelectrodes or barrel micropipettes. Electrical stimulation of the ipsilateral PeF area elicited orthodromic responses in both type I (49%) and type II (58%) electrophysiologically characterized PnO neurons, with a mean latency of 13.0 +/- 2 and 8.3 +/- 5 ms, respectively. In six cases, antidromic spikes were evoked in type I PnO neurons with a mean latency of 3.2 +/- 0.4 ms, indicating the existence of PnO neurons that projected to the PeF area. Anatomical studies showed retrogradely labeled neurons in the PeF area from the PnO. Some of these neurons projecting to the PnO contained hypocretin (17.8%). Iontophoretic application of hypocretin-1 through a barrel micropipette in the PnO induced an inhibition, which was blocked by a previous iontophoretic application of bicuculline, indicating that the inhibitory action of hypocretin-1 may be due to activation of GABA(A) receptors. These data suggest that the PeF area may control the generation of rapid eye movement sleep through a hypocretinergic projection by inhibiting the activity of PnO neurons.
Collapse
Affiliation(s)
- A Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | | | | | | | | |
Collapse
|
30
|
Brown RE, Winston S, Basheer R, Thakkar MM, McCarley RW. Electrophysiological characterization of neurons in the dorsolateral pontine rapid-eye-movement sleep induction zone of the rat: Intrinsic membrane properties and responses to carbachol and orexins. Neuroscience 2006; 143:739-55. [PMID: 17008019 PMCID: PMC1775037 DOI: 10.1016/j.neuroscience.2006.08.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 08/11/2006] [Accepted: 08/16/2006] [Indexed: 11/20/2022]
Abstract
Pharmacological, lesion and single-unit recording techniques in several animal species have identified a region of the pontine reticular formation (subcoeruleus, SubC) just ventral to the locus coeruleus as critically involved in the generation of rapid-eye-movement (REM) sleep. However, the intrinsic membrane properties and responses of SubC neurons to neurotransmitters important in REM sleep control, such as acetylcholine and orexins/hypocretins, have not previously been examined in any animal species and thus were targeted in this study. We obtained whole-cell patch-clamp recordings from visually identified SubC neurons in rat brain slices in vitro. Two groups of large neurons (mean diameter 30 and 27 mum) were tentatively identified as cholinergic (rostral SubC) and noradrenergic (caudal SubC) neurons. SubC reticular neurons (non-cholinergic, non-noradrenergic) showed a medium-sized depolarizing sag during hyperpolarizing current pulses and often had a rebound depolarization (low-threshold spike, LTS). During depolarizing current pulses they exhibited little adaptation and fired maximally at 30-90 Hz. Those SubC reticular neurons excited by carbachol (n=27) fired spontaneously at 6 Hz, often exhibited a moderately sized LTS, and varied widely in size (17-42 mum). Carbachol-inhibited SubC reticular neurons were medium-sized (15-25 mum) and constituted two groups. The larger group (n=22) was silent at rest and possessed a prominent LTS and associated one to four action potentials. The second, smaller group (n=8) had a delayed return to baseline at the offset of hyperpolarizing pulses. Orexins excited both carbachol excited and carbachol inhibited SubC reticular neurons. SubC reticular neurons had intrinsic membrane properties and responses to carbachol similar to those described for other reticular neurons but a larger number of carbachol inhibited neurons were found (>50%), the majority of which demonstrated a prominent LTS and may correspond to pontine-geniculate-occipital burst neurons. Some or all carbachol-excited neurons are presumably REM-on neurons.
Collapse
Affiliation(s)
- R E Brown
- In Vitro Neurophysiology Section, Laboratory of Neuroscience, Department of Psychiatry, Harvard Medical School, VA Medical Center Brockton, Research 151C, 940, Belmont Street, Brockton, MA 02301, USA.
| | | | | | | | | |
Collapse
|
31
|
Xi MC, Chase MH. Neuronal mechanisms of active (rapid eye movement) sleep induced by microinjections of hypocretin into the nucleus pontis oralis of the cat. Neuroscience 2006; 140:335-42. [PMID: 16533574 DOI: 10.1016/j.neuroscience.2006.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/18/2006] [Accepted: 01/26/2006] [Indexed: 10/24/2022]
Abstract
Hypocretinergic (orexinergic) neurons in the hypothalamus project to the nucleus pontis oralis, a nucleus which plays a crucial role in the generation of active (rapid eye movement) sleep. We recently reported that the microinjection of hypocretin into the nucleus pontis oralis of chronically-instrumented, unanesthetized cats induces a behavioral state that is comparable to naturally-occurring active sleep. The present study examined the intracellular signaling pathways underlying the active sleep-inducing effects of hypocretin. Accordingly, hypocretin-1, a protein kinase C inhibitor and a protein kinase A inhibitor were injected into the nucleus pontis oralis in selected combinations in order to determine their effects on sleep and waking states of chronically instrumented, unanesthetized cats. Microinjections of hypocretin-1 into the nucleus pontis oralis elicited active sleep with a short latency. However, a pre-injection of bisindolylmaleimide-I, a protein kinase C-specific inhibitor, completely blocked the active sleep-inducing effects of hypocretin-1. The combined injection of bisindolylmaleimide-I and hypocretin-1 significantly increased the latency to active sleep induced by hypocretin-1; it also abolished the increase in the time spent in active sleep induced by hypocretin-1. On the other hand, the injection of 2'5'-dideoxyadenosine, an adenylyl cyclase inhibitor, did not block the occurrence of active sleep by hypocretin-1. We conclude that the active sleep-inducing effect of hypocretin in the nucleus pontis oralis is mediated by intracellular signaling pathways that act via G-protein stimulation of protein kinase C.
Collapse
Affiliation(s)
- M-C Xi
- WebSciences International, 1251 Westwood Boulevard, Los Angeles, CA 90024, USA
| | | |
Collapse
|
32
|
Bernard R, Lydic R, Baghdoyan HA. Hypocretin (orexin) receptor subtypes differentially enhance acetylcholine release and activate g protein subtypes in rat pontine reticular formation. J Pharmacol Exp Ther 2005; 317:163-71. [PMID: 16352704 DOI: 10.1124/jpet.105.097071] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hypothalamic peptides hypocretin-1 (orexin A) and -2 (orexin B) promote wakefulness by mechanisms that are not well understood. Defects in hypocretinergic neurotransmission underlie the human sleep disorder narcolepsy. Hypocretins alter cell excitability via two receptor subtypes, hypocretin receptor subtype 1 (hcrt-r1) and hypocretin receptor subtype 2 (hcrt-r2). This study aimed to identify G protein subtypes activated by hypocretin in rat pontine reticular nucleus oral part (PnO) and the hypocretin receptor subtype modulating acetylcholine (ACh) release in the PnO. G protein activation was quantified using in vitro [(35)S]guanylyl-5'-O-(gamma-thio)triphosphate autoradiography. ACh release was measured using in vivo microdialysis and high-performance liquid chromatography. Hypocretin-1-stimulated G protein activation was significantly decreased by pertussis toxin, demonstrating that some hypocretin receptors in rat PnO activate inhibitory G proteins. Hypocretin-1-stimulated ACh release was not blocked by pertussis toxin, supporting the conclusion that the hypocretin receptors modulating ACh release in rat PnO activate stimulatory G proteins. Hypocretin-1 and -2 each caused a concentration-dependent increase in ACh release with similar potencies, indicating that hcrt-r2 modulates ACh release in PnO. Hypocretin-1 caused a significantly greater increase in ACh release than hypocretin-2, suggesting a role for hcrt-r1 in the modulation of PnO ACh release. Taken together, these data provide the first evidence that hypocretin receptors in rat PnO signal via inhibitory and stimulatory G proteins and that ACh release in rat PnO is modulated by hcrt-r2 and hcrt-r1. One mechanism by which hypocretin promotes arousal may be to increase ACh release in the pontine reticular formation.
Collapse
Affiliation(s)
- René Bernard
- Department of Anesthesiology, University of Michigan, Ann Arbor, 48109, USA
| | | | | |
Collapse
|
33
|
Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y. Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol 2005; 568:1003-20. [PMID: 16123113 PMCID: PMC1464186 DOI: 10.1113/jphysiol.2005.085829] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Orexinergic neurones in the perifornical lateral hypothalamus project to structures of the midbrain, including the substantia nigra and the mesopontine tegmentum. These areas contain the mesencephalic locomotor region (MLR), and the pedunculopontine and laterodorsal tegmental nuclei (PPN/LDT), which regulate atonia during rapid eye movement (REM) sleep. Deficiencies of the orexinergic system result in narcolepsy, suggesting that these projections are concerned with switching between locomotor movements and muscular atonia. The present study characterizes the role of these orexinergic projections to the midbrain. In decerebrate cats, injecting orexin-A (60 microm to 1.0 mm, 0.20-0.25 microl) into the MLR reduced the intensity of the electrical stimulation required to induce locomotion on a treadmill (4 cats) or even elicit locomotor movements without electrical stimulation (2 cats). On the other hand, when orexin was injected into either the PPN (8 cats) or the substantia nigra pars reticulata (SNr, 4 cats), an increased stimulus intensity at the PPN was required to induce muscle atonia. The effects of orexin on the PPN and the SNr were reversed by subsequently injecting bicuculline (5 mm, 0.20-0.25 microl), a GABA(A) receptor antagonist, into the PPN. These findings indicate that excitatory orexinergic drive could maintain a higher level of locomotor activity by increasing the excitability of neurones in the MLR, while enhancing GABAergic effects on presumably cholinergic PPN neurones, to suppress muscle atonia. We conclude that orexinergic projections from the hypothalamus to the midbrain play an important role in regulating motor behaviour and controlling postural muscle tone and locomotor movements when awake and during sleep. Furthermore, as the excitability is attenuated in the absence of orexin, signals to the midbrain may induce locomotor behaviour when the orexinergic system functions normally but elicit atonia or narcolepsy when the orexinergic function is disturbed.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Asahikawa Medical College, Midorigaoka-higashi 2-1, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Horowitz SS, Blanchard J, Morin LP. Medial vestibular connections with the hypocretin (orexin) system. J Comp Neurol 2005; 487:127-46. [PMID: 15880498 DOI: 10.1002/cne.20521] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.
Collapse
Affiliation(s)
- Seth S Horowitz
- Department of Psychiatry, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
35
|
Sanford LD, Yang L, Tang X, Ross RJ, Morrison AR. Tetrodotoxin inactivation of pontine regions: Influence on sleep–wake states. Brain Res 2005; 1044:42-50. [PMID: 15862788 DOI: 10.1016/j.brainres.2005.02.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/21/2005] [Accepted: 02/24/2005] [Indexed: 11/19/2022]
Abstract
Studies using various methodologies have implicated n. reticularis pontis oralis (RPO) and n. subcoeruleus (SubC) in the generation of rapid eye movement sleep (REM). In rats, electrolytic lesions in these regions may give rise to the phenomenon of REM without atonia (REM-A), in which the electrophysiological features of REM are normal except that atonia is absent and elaborate behaviors may be exhibited. However, electrolytic lesions damage both cell bodies and fibers of passage, and the neural reorganization and adaptation that can occur post-lesion can complicate interpretation. Tetrodotoxin (TTX) is a sodium channel blocker that temporarily inactivates both neurons and fibers of passage and thus may be functionally equivalent to an electrolytic lesion, but without allowing time for neural adaptation. In this study, we examined the influence of microinjections of TTX into RPO and SubC on sleep in freely behaving rats. Rats (90 day old male Sprague-Dawley) were implanted with electrodes for recording EEG and EMG. Guide cannulae were implanted aimed into RPO or SubC. Each animal received one unilateral microinjection (TTXUH: 5.0 ng/0.2 microl) and two bilateral microinjections (TTXBL: 2.5 ng/0.1 microl; TTXBH: 5.0 ng/0.2 microl) of TTX, and control microinjections of saline alone (SAL). The injections were made 2 h following lights on, and sleep was recorded for the subsequent 22 h. Sleep was scored from computerized records in 10 s epochs. Recordings from the 10-h light period and the 12-h dark period were examined separately. TTX inactivation of RPO could decrease REM and non-REM (NREM), whereas inactivation of SubC produced relatively more specific decreases in REM with smaller effects on NREM. The results complement studies that have implicated RPO and SubC in REM generation. REM-A was not observed, suggesting that REM-A is a complex phenomenon that requires time for reorganization of the nervous system after insult.
Collapse
Affiliation(s)
- Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, PO Box 1980, Norfolk, VA 23501, USA.
| | | | | | | | | |
Collapse
|
36
|
Zhang JH, Sampogna S, Morales FR, Chase MH. Age-related ultrastructural changes in hypocretinergic terminals in the brainstem and spinal cord of cats. Neurosci Lett 2005; 373:171-4. [PMID: 15619537 DOI: 10.1016/j.neulet.2003.08.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2003] [Revised: 07/15/2003] [Accepted: 08/13/2003] [Indexed: 11/30/2022]
Abstract
In a previous study, we noted the presence of enlarged "spot-like" structures that are immunoreactive to hypocretin in specific regions of brainstem of aged cats; similar structures were not seen in the same regions of adult cats. In the present study, electron microscopy was combined with hypocretin immunohistochemistry to examine the ultrastructure of these enlarged "spot-like" structures, which were found to consist of enlarged axonal terminals. The terminals were comprised of a large pale core with a dark peripheral rim. Many granules were present within the core; most of these granular structures were not immunostained. On the other hand, the rim contained a high density of hypocretin immunoreactivity; in this peripheral region, large dense-core vesicles and small synaptic vesicles without dense cores were observed. In addition, mitochondria in the peripheral rim region exhibited high electron density, which is indicative of the presence of age-related degenerative changes. Synaptic contacts were observed between the enlarged terminals and adjacent dendrites. Most of these synapses were asymmetric (Gray type I), although a few of them were symmetric (Gray type II). These data suggest that hypocretin transmission is altered during aging, which would be expected to result in age-related changes in the functioning of the hypocretinergic system.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- WebSciences International, 1251 Westwood Blvd., Los Angeles, CA 90024, USA
| | | | | | | |
Collapse
|
37
|
Simpson JI, Hulscher HC, Sabel-Goedknegt E, Ruigrok TJH. Between in and out: linking morphology and physiology of cerebellar cortical interneurons. PROGRESS IN BRAIN RESEARCH 2005; 148:329-40. [PMID: 15661201 DOI: 10.1016/s0079-6123(04)48026-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We used the juxtacellular recording and labeling technique of Pinault (1996) in the uvula/nodulus of the ketamine anesthetized rat in an attempt to link different patterns of spontaneous activity with different types of morphologically identified cerebellar cortical interneurons. Cells displaying a somewhat irregular, syncopated cadence of spontaneous activity averaging 4-10 Hz could, upon successful entrainment and visualization, be morphologically identified as Golgi cells. Spontaneously firing cells with a highly or fairly regular firing rate of 10-35 Hz turned out to be unipolar brush cells. We also found indications that other types of cerebellar cortical neurons might also be distinguished on the basis of the characteristics of their spontaneous firing. Comparison of the interspike interval histograms of spontaneous activity obtained in the anaesthetized rat with those obtained in the awake rabbit points to a way whereby the behaviorally related modulation of specific types of interneurons can be studied. In particular, the spontaneous activity signatures of Golgi cells and unipolar brush cells anatomically identified in the uvula/nodulus of the anaesthetized rat are remarkably similar to the spontaneous activity patterns of some units we have recorded in the flocculus of the awake rabbit. The spontaneous activity patterns of at least some types of cerebellar interneurons clearly have the potential to serve as identifying signatures in behaving animals.
Collapse
Affiliation(s)
- J I Simpson
- Department of Physiology & Neuroscience, NYU Medical School, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
38
|
Sukhotinsky I, Hopkins DA, Lu J, Saper CB, Devor M. Movement suppression during anesthesia: Neural projections from the mesopontine tegmentum to areas involved in motor control. J Comp Neurol 2005; 489:425-48. [PMID: 16025457 DOI: 10.1002/cne.20636] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microinjection of pentobarbital and GABA(A)-receptor agonists into a brainstem region we have called the mesopontine tegmental anesthesia area (MPTA; Devor and Zalkind [2001] Pain 94:101-112) induces a general anesthesia-like state. As in systemic general anesthesia, rats show loss of the righting reflex, atonia, nonresponsiveness to noxious stimuli, and apparent loss of consciousness. GABA(A) agonist anesthetics acting on the MPTA might suppress movement by engaging endogenous motor regulatory systems previously identified in research on decerebrate rigidity and REM sleep atonia. Anterograde and retrograde tracing revealed that the MPTA has multiple descending projections to pontine and medullary areas known to be associated with motor control and atonia. Prominent among these are the dorsal pontine reticular formation and components of the rostral ventromedial medulla (RVM). The MPTA also has direct projections to the intermediate gray matter and ventral horn of the spinal cord via the lateral and anterior funiculi. These projections show a rostrocaudal topography: neurons in the rostral MPTA project to the RVM, but only minimally to the spinal cord, while those in the caudal MPTA project to both targets. Finally, the MPTA has ascending projections to motor control areas including the substantia nigra, subthalamic nucleus, and the caudate-putamen. Projections are bilateral with an ipsilateral predominance. We propose that GABA(A) agonist anesthetics induce immobility at least in part by acting on these endogenous motor control pathways via the MPTA. Analysis of MPTA connectivity has the potential for furthering our understanding of the neural circuitry responsible for the various functional components of general anesthesia.
Collapse
Affiliation(s)
- Inna Sukhotinsky
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
39
|
Bohnet SG, Traynor TR, Majde JA, Kacsoh B, Krueger JM. Mice deficient in the interferon type I receptor have reduced REM sleep and altered hypothalamic hypocretin, prolactin and 2′,5′-oligoadenylate synthetase expression. Brain Res 2004; 1027:117-25. [PMID: 15494163 DOI: 10.1016/j.brainres.2004.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
We report that mice with a targeted null mutation in the interferon type I receptor (IFN-RI), which cannot respond to such IFNs as IFNalpha and IFNbeta, have a 30% reduction in time spent in spontaneous rapid eye movement sleep (REMS) as a consequence of a reduced number of REMS episodes. Time spent in nonrapid eye movement sleep (NREMS) was essentially unaltered in IFN-RI knockouts (KOs) compared to 129 SvEv controls. Body temperature and locomotor activity were similar in both strains of mice. Hypothalamic expression of mRNAs for molecules previously linked to sleep-wake regulation and an IFN-inducible antiviral gene, 2',5'-oligoadenylate synthetase 1a (OAS), were determined by real-time reverse-transcriptase polymerase chain reaction (RT2-PCR). The level of hypocretin A mRNA was elevated in IFN-RI KO mice compared to 129 SvEv mice, while prolactin mRNA and OAS mRNA levels were suppressed. Vasoactive intestinal peptide (VIP) and corticotropin-releasing hormone (CRH) mRNA levels were unchanged relative to controls. Serum prolactin levels were similar in both strains. Results are consistent with the hypothesis that increased hypocretin and reduced prolactin in the hypothalamus of IFN-RI KO mice are responsible for their reduced REMS. In addition, the reduced OAS expression may result in modulation of prolactin receptor signaling and thus contribute to suppression of REMS.
Collapse
Affiliation(s)
- S G Bohnet
- Department of VCAPP College of Veterinary Medicine Washington State University PO Box 646520 Pullman, WA 99164-6520, USA
| | | | | | | | | |
Collapse
|
40
|
Allard JS, Tizabi Y, Shaffery JP, Trouth CO, Manaye K. Stereological analysis of the hypothalamic hypocretin/orexin neurons in an animal model of depression. Neuropeptides 2004; 38:311-5. [PMID: 15464197 DOI: 10.1016/j.npep.2004.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
Affective disorders often occur in combination with disrupted sleep-wake cycles and abnormal fluctuations in hypothalamic neurotransmitters. Hypocretin (orexin) is a hypothalamic neuropeptide linked to narcolepsy, a sleep-related disorder characterized by profound disturbances in the normal sleeping pattern and variable degrees of depression. Wistar-Kyoto (WKY) rats exhibit depressive characteristics and patterns of sleep disruption similar to that observed in depressed human patients. In this study we sought to determine whether the total number or the size of hypothalamic hypocretin neurons in WKY rats differ from their control, Wistar (WIS) rats. Immunocytochemical and stereological methods were applied to quantify hypocretin-1 containing neurons in the hypothalamus. The study revealed 18% fewer hypocretin-1 positive neurons as well as a 15% decrease in average neuronal soma size of hypocretin-1 producing cells in the hypothalamus of WKY rats compared to WIS rats. These findings support the view that reduced number or size of hypothalamic hypocretinergic neurons may underlie the disrupted sleep pattern associated with depressive characteristics in WKY rats.
Collapse
Affiliation(s)
- Joanne S Allard
- Department of Physiology and Biophysics, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Hypocretinergic (orexinergic) neurons in the lateral hypothalamus project to motor columns in the lumbar spinal cord. Consequently, we sought to determine whether the hypocretinergic system modulates the electrical activity of motoneurons. Using in vivo intracellular recording techniques, we examined the response of spinal motoneurons in the cat to electrical stimulation of the lateral hypothalamus. In addition, we examined the membrane potential response to orthodromic stimulation and intracellular current injection before and after both hypothalamic stimulation and the juxtacellular application of hypocretin-1. It was found that (1) hypothalamic stimulation produced a complex sequence of depolarizing- hyperpolarizing potentials in spinal motoneurons; (2) the depolarizing potentials decreased in amplitude after the application of SB-334867, a hypocretin type 1 receptor antagonist; (3) the EPSP induced by dorsal root stimulation was not affected by the application of SB-334867; (4) subthreshold stimulation of dorsal roots and intracellular depolarizing current steps produced spike potentials when applied in concert to stimulation of the hypothalamus or after the local application of hypocretin-1; (5) the juxtacellular application of hypocretin-1 induced motoneuron depolarization and, frequently, high-frequency discharge; (6) hypocretin-1 produced a significant decrease in rheobase (36%), membrane time constant (16.4%), and the equalizing time constant (23.3%); (7) in a small number of motoneurons, hypocretin-1 produced an increase in the synaptic noise; and (8) the input resistance was not affected after hypocretin-1. The juxtacellular application of vehicle (saline) and denatured hypocretin-1 did not produce changes in the preceding electrophysiological properties. We conclude that hypothalamic hypocretinergic neurons are capable of modulating the activity of lumbar motoneurons through presynaptic and postsynaptic mechanisms. The lack of hypocretin-induced facilitation of motoneurons may be a critical component of the pathophysiology of cataplexy.
Collapse
Affiliation(s)
- Jack Yamuy
- Department of Physiology, University of California Los Angeles School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
42
|
Fabris C, Cozzi B, Hay-Schmidt A, Naver B, Møller M. Demonstration of an orexinergic central innervation of the pineal gland of the pig. J Comp Neurol 2004; 471:113-27. [PMID: 14986306 DOI: 10.1002/cne.20007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Orexins/hypocretins, two isoforms of the same prepropeptide, are widely distributed throughout the brain and are involved in several physiological and neuroendocrine regulatory patterns, mostly related to feeding, sleep, arousal, and cyclic sleep-wake behaviors. Orexin-A and orexin-B bind with different affinities to two G-protein-coupled transmembrane receptors, orexin-1 and orexin-2 receptors (OR-R1 and OR-R2, respectively). Because of the similarities between the human and the swine brain, we have studied the pig to investigate the orexinergic system in the diencephalon, with special emphasis on the neuroanatomical projections to the epithalamic region. By using antibodies against orexin-A and orexin-B, immunoreactive large multipolar perikarya were detected in the hypothalamic periventricular and perifornical areas at the light and electron microscopic levels. In the region of the paraventricular nucleus, the orexinergic neurons extended all the way to the lateral hypothalamic area. Immunoreactive nerve fibers, often endowed with large varicosities, were found throughout the hypothalamus and the epithalamus. Some periventricular immunoreactive nerve fibers entered the epithalamic region and continued into the pineal stalk and parenchyma to disperse among the pinealocytes. Immunoelectron microscopy confirmed the presence of orexinergic nerve fibers in the pig pineal gland. After extraction of total mRNA from the hypothalamus and pineal gland, we performed RT-PCR and nested PCR using primers specific for porcine orexin receptors. PCR products were sequenced, verifying the presence of both OR-R1 and OR-R2 in the tissues investigated. These findings, supported by previous studies on rodents, suggest a hypothalamic regulation of the pineal gland via central orexinergic nervous inputs.
Collapse
Affiliation(s)
- Chiara Fabris
- Department of Experimental Veterinary Science, University of Padua, I-35020 Legnaro, Italy.
| | | | | | | | | |
Collapse
|
43
|
Bernard R, Lydic R, Baghdoyan HA. Hypocretin-1 causes G protein activation and increases ACh release in rat pons. Eur J Neurosci 2003; 18:1775-85. [PMID: 14622212 DOI: 10.1046/j.1460-9568.2003.02905.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The effects of the arousal-promoting peptide hypocretin on brain stem G protein activation and ACh release were examined using 16 adult Sprague-Dawley rats. In vitro[35S]GTPgammaS autoradiography was used to test the hypothesis that hypocretin-1-stimulated G protein activation is concentration-dependent and blocked by the hypocretin receptor antagonist SB-334867. Activated G proteins were quantified in dorsal raphe nucleus (DR), locus coeruleus (LC) and pontine reticular nucleus oral part (PnO) and caudal part (PnC). Concentration-response data revealed a significant (P < 0.001) effect of hypocretin-1 (2-2000 nm) in all brain regions examined. Maximal increases over control levels of [35S]GTPgammaS binding were 37% (DR), 58% (LC), 52% (PnO) and 44% (PnC). SB-334867 (2 micro m) significantly (P < 0.002) blocked hypocretin-1 (200 nm)-stimulated [35S]GTPgammaS binding in all four nuclei. This is the first autoradiographic demonstration that hypocretin-1 activates G proteins in arousal-related brain stem nuclei as a result of specific receptor interactions. This finding suggests that some hypocretin receptors in brain stem couple to inhibitory G proteins. In vivo microdialysis was used to test the hypothesis that PnO administration of hypocretin-1 increases ACh release in PnO. Dialysis delivery of hypocretin-1 (100 micro m) significantly (P < 0.002) increased (87%) ACh release. This finding is consistent with the interpretation that one mechanism by which hypocretin promotes arousal is by enhancing cholinergic neurotransmission in the pontine reticular formation.
Collapse
Affiliation(s)
- René Bernard
- Departments of Pharmacology and Anaesthesiology, University of Michigan, 7433 Medical Sciences Building I, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
44
|
Xi MC, Fung SJ, Yamuy J, Morales FR, Chase MH. Hypocretinergic facilitation of synaptic activity of neurons in the nucleus pontis oralis of the cat. Brain Res 2003; 976:253-8. [PMID: 12763260 DOI: 10.1016/s0006-8993(03)02566-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study was undertaken to explore the neuronal mechanisms of hypocretin actions on neurons in the nucleus pontis oralis (NPO), a nucleus which plays a key role in the generation of active (REM) sleep. Specifically, we sought to determine whether excitatory postsynaptic potentials (EPSPs) evoked by stimulation of the laterodorsal tegmental nucleus (LDT) and spontaneous EPSPs in NPO neurons are modulated by hypocretin. Accordingly, recordings were obtained from NPO neurons in the cat in conjunction with the juxtacellular microinjection of hypocretin-1 onto intracellularly recorded cells. The application of hypocretin-1 significantly increased the mean amplitude of LDT-evoked EPSPs of NPO neurons. In addition, the frequency and the amplitude of spontaneous EPSPs in NPO neurons increased following hypocretin-1 administration. These data suggest that hypocretinergic processes in the NPO are capable of modulating the activity of NPO neurons that receive excitatory cholinergic inputs from neurons in the LDT.
Collapse
Affiliation(s)
- Ming Chu Xi
- Department of Physiology and the Brain Research Institute, 53-231 CHS, UCLA School of Medicine, 90095, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
45
|
Satoh S, Matsumura H, Nakajima T, Nakahama KI, Kanbayashi T, Nishino S, Yoneda H, Shigeyoshi Y. Inhibition of rostral basal forebrain neurons promotes wakefulness and induces FOS in orexin neurons. Eur J Neurosci 2003; 17:1635-45. [PMID: 12752381 DOI: 10.1046/j.1460-9568.2003.02577.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study examined whether the activities of the rostral basal forebrain neurons alter the activities of the orexin (also known as hypocretin) neurons in the tuberal part of the hypothalamus in rats. We performed microdialysis perfusion of the ventromedial portion of the rostral basal forebrain with the GABAA receptor agonist muscimol to inhibit focally the neuronal activities in the rostral basal forebrain. Then, we monitored sleep/wake behaviour and investigated the pattern of activities of orexin neurons by examining the expression of FOS as an indicator of cellular activation. Bilateral perfusion with muscimol (5, 15, and 50 micro m) produced a dose-dependent decrease in the amount of sleep. This perfusion with muscimol at 50 micro m produced FOS-like immunoreactivity in 37% of the orexin neurons located in the tuberal part of the hypothalamus, whereas the FOS-like immunoreactivity was sparse in orexin neurons of the sleeping control rats (P = 0.001 by Mann-Whitney U-test). Unilateral perfusion with muscimol (50 micro m) also suppressed sleep. In this case, FOS-like immunoreactivity was seen in 40% of the orexin neurons on the side ipsilateral to the perfusion site but only in 10% of orexin neurons on the contralateral side (P = 0.018 by Wilcoxon signed rank test). These functional data suggested that a sleep-generating element in the ventromedial part of the rostral basal forebrain provides an inhibitory influence on the activities of the orexin neurons in the tuberal part of the hypothalamus.
Collapse
Affiliation(s)
- Shinsuke Satoh
- Second Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka-Sayama, Osaka 589-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Shaw PJ, Franken P. Perchance to dream: solving the mystery of sleep through genetic analysis. JOURNAL OF NEUROBIOLOGY 2003; 54:179-202. [PMID: 12486704 DOI: 10.1002/neu.10167] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sleep has been identified in all mammals and nonmammalian vertebrates that have been critically evaluated. In addition, sleep-like states have also been identified and described in several invertebrates. Despite this prevalence throughout the animal kingdom, the function of sleep remains a mystery. The completion of several genome sequencing projects has led to the expectation that fundamental aspects of sleep can be elucidated through genetic dissection. Indeed, studies in both the mouse and fly have begun to reveal tantalizing suggestions about the underlying principles that regulate sleep homeostasis. In this article we will review recent studies that have used genetic techniques to evaluate sleep in the fruit fly and the mouse.
Collapse
Affiliation(s)
- Paul J Shaw
- The Neurosciences Institute, 10640 John J Hopkins Dr, San Diego, California 92121, USA.
| | | |
Collapse
|