1
|
Majstorović J, Kyslík J, Klak K, Maciuszek M, Chan JTH, Korytář T, Holzer AS. Erythrocytes of the common carp are immune sentinels that sense pathogen molecular patterns, engulf particles and secrete pro-inflammatory cytokines against bacterial infection. Front Immunol 2024; 15:1407237. [PMID: 38947329 PMCID: PMC11211254 DOI: 10.3389/fimmu.2024.1407237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Red blood cells (RBCs), also known as erythrocytes, are underestimated in their role in the immune system. In mammals, erythrocytes undergo maturation that involves the loss of nuclei, resulting in limited transcription and protein synthesis capabilities. However, the nucleated nature of non-mammalian RBCs is challenging this conventional understanding of RBCs. Notably, in bony fishes, research indicates that RBCs are not only susceptible to pathogen attacks but express immune receptors and effector molecules. However, given the abundance of RBCs and their interaction with every physiological system, we postulate that they act in surveillance as sentinels, rapid responders, and messengers. Methods We performed a series of in vitro experiments with Cyprinus carpio RBCs exposed to Aeromonas hydrophila, as well as in vivo laboratory infections using different concentrations of bacteria. Results qPCR revealed that RBCs express genes of several inflammatory cytokines. Using cyprinid-specific antibodies, we confirmed that RBCs secreted tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). In contrast to these indirect immune mechanisms, we observed that RBCs produce reactive oxygen species and, through transmission electron and confocal microscopy, that RBCs can engulf particles. Finally, RBCs expressed and upregulated several putative toll-like receptors, including tlr4 and tlr9, in response to A. hydrophila infection in vivo. Discussion Overall, the RBC repertoire of pattern recognition receptors, their secretion of effector molecules, and their swift response make them immune sentinels capable of rapidly detecting and signaling the presence of foreign pathogens. By studying the interaction between a bacterium and erythrocytes, we provide novel insights into how the latter may contribute to overall innate and adaptive immune responses of teleost fishes.
Collapse
Affiliation(s)
- Jovana Majstorović
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jiří Kyslík
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Justin T. H. Chan
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Fish Health Division, Veterinary University of Vienna, Vienna, Austria
| | - Tomáš Korytář
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Astrid S. Holzer
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Fish Health Division, Veterinary University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Nguyen TD, Bordeau BM, Zhang Y, Mattle AG, Balthasar JP. Half-Life Extension and Biodistribution Modulation of Biotherapeutics via Red Blood Cell Hitch-Hiking with Novel Anti-Band 3 Single-Domain Antibodies. Int J Mol Sci 2022. [PMID: 36613917 DOI: 10.3390/ijms23179779/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Small therapeutic proteins are receiving increased interest as therapeutic drugs; however, their clinical success has been limited due to their rapid elimination. Here, we report a half-life extension strategy via strategy via red blood cell red blood cell (RBC) hitch-hiking. This manuscript details the development and characterization of novel anti-RBC single-domain antibodies (sdAbs), their genetic fusion to therapeutic antibody fragments (TAF) as bispecific fusion constructs, and their influence on TAF pharmacokinetics and biodistribution. Several sdAbs specific to the band 3 antigen were generated via phage-display technology. Binding affinity to RBCs was assessed via flow cytometry. Affinity maturation via random mutagenesis was carried out to improve the binding affinity of the sdAbs. Bi-specific constructs were generated by fusing the anti-RBC sdAbs with anti-tissue necrosis factor alpha (TNF-α) TAF via the use of a glycine-serine flexible linker, and assessments for binding were performed via enzyme-linked immunosorbent assay and flow cytometry. Pharmacokinetics of anti-RBC sdAbs and fusion constructs were evaluated following intravenous bolus dosing in mice at a 1 mg/kg dose. Two RBC-binding sdAbs, RB12 and RE8, were developed. These two clones showed high binding affinity to human RBC with an estimated KD of 17.7 nM and 23.6 nM and low binding affinity to mouse RBC with an estimated KD of 335 nM and 528 nM for RB12 and RE8, respectively. Two derivative sdAbs, RMA1, and RMC1, with higher affinities against mouse RBC, were generated via affinity maturation (KD of 66.9 nM and 30.3 nM, respectively). Pharmacokinetic investigations in mice demonstrated prolonged circulation half-life of an anti-RBC-TNF-α bispecific construct (75 h) compared to a non-RBC binding control (1.3 h). In summary, the developed anti-RBC sdAbs and fusion constructs have demonstrated high affinity in vitro, and sufficient half-life extension in vivo.
Collapse
Affiliation(s)
- Toan D Nguyen
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Brandon M Bordeau
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Yu Zhang
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Anna G Mattle
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- 450 Pharmacy Building, Buffalo, NY 14214, USA
| |
Collapse
|
3
|
Zhang H, Wan GZ, Wang YY, Chen W, Guan JZ. The role of erythrocytes and erythroid progenitor cells in tumors. Open Life Sci 2022; 17:1641-1656. [PMID: 36567722 PMCID: PMC9755711 DOI: 10.1515/biol-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 12/23/2022] Open
Abstract
In the current research context of precision treatment of malignant tumors, the advantages of immunotherapy are unmatched by conventional antitumor therapy, which can prolong progression-free survival and overall survival. The search for new targets and novel combination therapies can improve the efficacy of immunotherapy and reduce adverse effects. Since current research targets for immunotherapy mainly focus on lymphocytes, little research has been done on erythrocytes. Nucleated erythroid precursor stem cells have been discovered to play an essential role in tumor progression. Researchers are exploring new targets and therapeutic approaches for immunotherapy from the perspective of erythroid progenitor cells (EPCs). Recent studies have shown that different subtypes of EPCs have specific surface markers and distinct biological roles in tumor immunity. CD45+ EPCs are potent myeloid-derived suppressor cell-like immunosuppressants that reduce the patient's antitumor immune response. CD45- EPCs promote tumor invasion and metastasis by secreting artemin. A specific type of EPC also promotes angiogenesis and provides radiation protection. Therefore, EPCs may be involved in tumor growth, infiltration, and metastasis. It may also be an important cause of anti-angiogenesis and immunotherapy resistance. This review summarizes recent research advances in erythropoiesis, EPC features, and their impacts and processes on tumors.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100091, China,Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China,Postgraduate Department of Hebei North University, Zhangjiakou 075000, China
| | - Guang-zhi Wan
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China
| | - Yu-ying Wang
- Department of Oncology, First Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Wen Chen
- Department of Pathology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100091, China
| | - Jing-Zhi Guan
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China
| |
Collapse
|
4
|
Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev 2021; 178:113992. [PMID: 34597748 PMCID: PMC8556370 DOI: 10.1016/j.addr.2021.113992] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Drug delivery research pursues many types of carriers including proteins and other macromolecules, natural and synthetic polymeric structures, nanocarriers of diverse compositions and cells. In particular, liposomes and lipid nanoparticles represent arguably the most advanced and popular human-made nanocarriers, already in multiple clinical applications. On the other hand, red blood cells (RBCs) represent attractive natural carriers for the vascular route, featuring at least two distinct compartments for loading pharmacological cargoes, namely inner space enclosed by the plasma membrane and the outer surface of this membrane. Historically, studies of liposomal drug delivery systems (DDS) astronomically outnumbered and surpassed the RBC-based DDS. Nevertheless, these two types of carriers have different profile of advantages and disadvantages. Recent studies showed that RBC-based drug carriers indeed may feature unique pharmacokinetic and biodistribution characteristics favorably changing benefit/risk ratio of some cargo agents. Furthermore, RBC carriage cardinally alters behavior and effect of nanocarriers in the bloodstream, so called RBC hitchhiking (RBC-HH). This article represents an attempt for the comparative analysis of liposomal vs RBC drug delivery, culminating with design of hybrid DDSs enabling mutual collaborative advantages such as RBC-HH and camouflaging nanoparticles by RBC membrane. Finally, we discuss the key current challenges faced by these and other RBC-based DDSs including the issue of potential unintended and adverse effect and contingency measures to ameliorate this and other concerns.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Don L Siegel
- Department of Pathology & Laboratory Medicine, Division of Transfusion Medicine & Therapeutic Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02138, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
5
|
Brenner JS, Mitragotri S, Muzykantov VR. Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annu Rev Biomed Eng 2021; 23:225-248. [PMID: 33788581 PMCID: PMC8277719 DOI: 10.1146/annurev-bioeng-121219-024239] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Red blood cell (RBC) hitchhiking is a method of drug delivery that can increase drug concentration in target organs by orders of magnitude. In RBC hitchhiking, drug-loaded nanoparticles (NPs) are adsorbed onto red blood cells and then injected intravascularly, which causes the NPs to transfer to cells of the capillaries in the downstream organ. RBC hitchhiking has been demonstrated in multiple species and multiple organs. For example, RBC-hitchhiking NPs localized at unprecedented levels in the brain when using intra-arterial catheters, such as those in place immediately after mechanical thrombectomy for acute ischemic stroke. RBC hitchhiking has been successfully employed in numerous preclinical models of disease, ranging from pulmonary embolism to cancer metastasis. In addition to summarizing the versatility of RBC hitchhiking, we also describe studies into the surprisingly complex mechanisms of RBC hitchhiking as well as outline future studies to further improve RBC hitchhiking's clinical utility.
Collapse
Affiliation(s)
- Jacob S Brenner
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Vladimir R Muzykantov
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
Chéneau C, Kremer EJ. Adenovirus-Extracellular Protein Interactions and Their Impact on Innate Immune Responses by Human Mononuclear Phagocytes. Viruses 2020; 12:v12121351. [PMID: 33255892 PMCID: PMC7760109 DOI: 10.3390/v12121351] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to highlight how, in a syngeneic system, human mononuclear phagocytes respond to environments containing human adenovirus (HAdV) and soluble extracellular proteins that influence their innate immune response. Soluble extracellular proteins, including immunoglobulins, blood clotting factors, proteins of the complement system, and/or antimicrobial peptides (AMPs) can exert direct effects by binding to a virus capsid that modifies interactions with pattern recognition receptors and downstream signaling. In addition, the presence, generation, or secretion of extracellular proteins can indirectly influence the response to HAdVs via the activation and recruitment of cells at the site of infection.
Collapse
|
7
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Johansson JU, Brubaker WD, Javitz H, Bergen AW, Nishita D, Trigunaite A, Crane A, Ceballos J, Mastroeni D, Tenner AJ, Sabbagh M, Rogers J. Peripheral complement interactions with amyloid β peptide in Alzheimer's disease: Polymorphisms, structure, and function of complement receptor 1. Alzheimers Dement 2018; 14:1438-1449. [PMID: 29792870 DOI: 10.1016/j.jalz.2018.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/23/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Genome-wide association studies consistently show that single nucleotide polymorphisms (SNPs) in the complement receptor 1 (CR1) gene modestly but significantly alter Alzheimer's disease (AD) risk. Follow-up research has assumed that CR1 is expressed in the human brain despite a paucity of evidence for its function there. Alternatively, erythrocytes contain >80% of the body's CR1, where, in primates, it is known to bind circulating pathogens. METHODS Multidisciplinary methods were employed. RESULTS Conventional Western blots and quantitative polymerase chain reaction failed to detect CR1 in the human brain. Brain immunohistochemistry revealed only vascular CR1. By contrast, erythrocyte CR1 immunoreactivity was readily observed and was significantly deficient in AD, as was CR1-mediated erythrocyte capture of circulating amyloid β peptide. CR1 SNPs associated with decreased erythrocyte CR1 increased AD risk, whereas a CR1 SNP associated with increased erythrocyte CR1 decreased AD risk. DISCUSSION SNP effects on erythrocyte CR1 likely underlie the association of CR1 polymorphisms with AD risk.
Collapse
Affiliation(s)
| | | | - Harold Javitz
- Education Division, SRI International, Menlo Park, CA, USA
| | - Andrew W Bergen
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Denise Nishita
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | | | - Andrés Crane
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | | | - Diego Mastroeni
- The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Andrea J Tenner
- Departments of Molecular Biology and Biochemistry, Pathology, and Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Marwan Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Joseph Rogers
- Biosciences Division, SRI International, Menlo Park, CA, USA.
| |
Collapse
|
9
|
Crane A, Brubaker WD, Johansson JU, Trigunaite A, Ceballos J, Bradt B, Glavis-Bloom C, Wallace TL, Tenner AJ, Rogers J. Peripheral complement interactions with amyloid β peptide in Alzheimer's disease: 2. Relationship to amyloid β immunotherapy. Alzheimers Dement 2018; 14:243-252. [PMID: 28755839 PMCID: PMC5881571 DOI: 10.1016/j.jalz.2017.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Our previous studies have shown that amyloid β peptide (Aβ) is subject to complement-mediated clearance from the peripheral circulation, and that this mechanism is deficient in Alzheimer's disease. The mechanism should be enhanced by Aβ antibodies that form immune complexes (ICs) with Aβ, and therefore may be relevant to current Aβ immunotherapy approaches. METHODS Multidisciplinary methods were employed to demonstrate enhanced complement-mediated capture of Aβ antibody immune complexes compared with Aβ alone in both erythrocytes and THP1-derived macrophages. RESULTS Aβ antibodies dramatically increased complement activation and opsonization of Aβ, followed by commensurately enhanced Aβ capture by human erythrocytes and macrophages. These in vitro findings were consistent with enhanced peripheral clearance of intravenously administered Aβ antibody immune complexes in nonhuman primates. DISCUSSION Together with our previous results, showing significant Alzheimer's disease deficits in peripheral Aβ clearance, the present findings strongly suggest that peripheral mechanisms should not be ignored as contributors to the effects of Aβ immunotherapy.
Collapse
Affiliation(s)
- Andrés Crane
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | | | | | | | | | - Bonnie Bradt
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | | | - Tanya L Wallace
- Biosciences Division, SRI International, Menlo Park, CA, USA
| | - Andrea J Tenner
- Departments of Molecular Biology and Biochemistry and Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Joseph Rogers
- Biosciences Division, SRI International, Menlo Park, CA, USA.
| |
Collapse
|
10
|
Peripheral complement interactions with amyloid β peptide: Erythrocyte clearance mechanisms. Alzheimers Dement 2017; 13:1397-1409. [PMID: 28475854 DOI: 10.1016/j.jalz.2017.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Although amyloid β peptide (Aβ) is cleared from the brain to cerebrospinal fluid and the peripheral circulation, mechanisms for its removal from blood remain unresolved. Primates have uniquely evolved a highly effective peripheral clearance mechanism for pathogens, immune adherence, in which erythrocyte complement receptor 1 (CR1) plays a major role. METHODS Multidisciplinary methods were used to demonstrate immune adherence capture of Aβ by erythrocytes and its deficiency in Alzheimer's disease (AD). RESULTS Aβ was shown to be subject to immune adherence at every step in the pathway. Aβ dose-dependently activated serum complement. Complement-opsonized Aβ was captured by erythrocytes via CR1. Erythrocytes, Aβ, and hepatic Kupffer cells were colocalized in the human liver. Significant deficits in erythrocyte Aβ levels were found in AD and mild cognitive impairment patients. DISCUSSION CR1 polymorphisms elevate AD risk, and >80% of human CR1 is vested in erythrocytes to subserve immune adherence. The present results suggest that this pathway is pathophysiologically relevant in AD.
Collapse
|
11
|
Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev 2016; 106:88-103. [PMID: 26941164 DOI: 10.1016/j.addr.2016.02.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Red blood cells (RBCs) constitute a unique drug delivery system as a biologic or hybrid carrier capable of greatly enhancing pharmacokinetics, altering pharmacodynamics (for example, by changing margination within the intravascular space), and modulating immune responses to appended cargoes. Strategies for RBC drug delivery systems include internal and surface loading, and the latter can be performed both ex vivo and in vivo. A relatively new avenue for RBC drug delivery is their application as a carrier for nanoparticles. Efforts are also being made to incorporate features of RBCs in nanocarriers to mimic their most useful aspects, such as long circulation and stealth features. RBCs have also recently been explored as carriers for the delivery of antigens for modulation of immune response. Therefore, RBC-based drug delivery systems represent supercarriers for a diverse array of biomedical interventions, and this is reflected by several industrial and academic efforts that are poised to enter the clinical realm.
Collapse
|
12
|
Malkwitz I, Berndt A, Zhang R, Daugschies A, Bangoura B. Replication of Toxoplasma gondii in chicken erythrocytes and thrombocytes compared to macrophages. Parasitol Res 2016; 116:123-131. [PMID: 27696227 DOI: 10.1007/s00436-016-5268-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
Toxoplasma (T.) gondii is able to infect various cell types in different hosts. The replication of this parasite within different peripheral mononuclear blood cell populations in chicken has not yet been fully understood. Aim of the present study was to investigate the impact of chicken erythrocytes and thrombocytes as potential host cells for T. gondii. Cultures of primary avian erythrocytes and thrombocytes were inoculated with tachyzoites of T. gondii type II strain ME49. Parasite replication was detected by a quantitative real-time PCR at different times postinoculation until 24 or 48 h, respectively, displaying long-term investigations for the chosen cultures. The parasite replication curve showed a continuous decrease of parasite stages in erythrocytes and thrombocytes. Observations by light microscopy showed massive destruction for both cell populations. Few macrophages in between the infected thrombocytes were viable during the investigation period and showed internalised tachyzoites by confocal laser scanning microscopy. These findings show that T. gondii is not capable of replication in chicken erythrocytes and thrombocytes; therefore, both cannot be considered as potential host cells. In further consequence, monocyte-derived macrophages seem to be the key to the dissemination mechanisms for T. gondii in chicken.
Collapse
Affiliation(s)
- Irene Malkwitz
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103, Leipzig, Germany
| | - Angela Berndt
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Str. 96A, 07743, Jena, Germany
| | - Runhui Zhang
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103, Leipzig, Germany
| | - Berit Bangoura
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103, Leipzig, Germany.
| |
Collapse
|
13
|
Villa CH, Pan DC, Zaitsev S, Cines DB, Siegel DL, Muzykantov VR. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther Deliv 2015; 6:795-826. [PMID: 26228773 PMCID: PMC4712023 DOI: 10.4155/tde.15.34] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For several decades, researchers have used erythrocytes for drug delivery of a wide variety of therapeutics in order to improve their pharmacokinetics, biodistribution, controlled release and pharmacodynamics. Approaches include encapsulation of drugs within erythrocytes, as well as coupling of drugs onto the red cell surface. This review focuses on the latter approach, and examines the delivery of red blood cell (RBC)-surface-bound anti-inflammatory, anti-thrombotic and anti-microbial agents, as well as RBC carriage of nanoparticles. Herein, we discuss the progress that has been made in surface loading approaches, and address in depth the issues relevant to surface loading of RBC, including intrinsic features of erythrocyte membranes, immune considerations, potential surface targets and techniques for the production of affinity ligands.
Collapse
Affiliation(s)
- Carlos H Villa
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel C Pan
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Zaitsev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas B Cines
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald L Siegel
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Impact on red blood cell immunity patterns in postoperative phase following total hip arthroplasty. Cent Eur J Immunol 2014; 39:377-83. [PMID: 26155151 PMCID: PMC4440011 DOI: 10.5114/ceji.2014.45951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/23/2014] [Indexed: 01/12/2023] Open
Abstract
Objective In this study, we aimed to measure changes in red blood cell (RBC) immunity and cytokine levels after performing total hip replacement surgery. Material and methods Twenty patients receiving total hip arthroplasty were investigated by measuring presurgical and postoperative RBC natural tumor erythrocyte rosette rate (NTERR), RBC C3b receptor rosette rate (RC3bRR), RBC membrane CD35, CD58 and CD59 expression and cytokine levels [including tumor necrosis factor α (TNF-α), interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 10 (IL-10) and prostaglandin E2 (PGE2)]. Blood samples were collected on the day before surgery and on the first day after hip arthroplasty. Results Postoperative NTERR and RC3bRR were significantly lower than presurgical levels (p < 0.05). The RBC membrane CD35, CD58 and CD59 expressions were significantly decreased in the postoperative phase compared to pre-operative levels. Importantly, RBC promoting lymphocyte proliferation rates were significantly reduced after surgery. In addition, postoperative TNF-α, IL-2 and IFN-γ levels in RBC and lymphocyte culture fluid were lower than those pre-operation, whereas IL-10 and PGE2 were significantly increased compared to presurgical levels (p < 0.05). Conclusions The modification of RBC immune function may be involved in the occurrence and development of the infection following hip arthroplasty, and this suggests a novel strategy to prevent such infection.
Collapse
|
15
|
Minasyan H. Erythrocyte and blood antibacterial defense. Eur J Microbiol Immunol (Bp) 2014; 4:138-43. [PMID: 24883200 DOI: 10.1556/eujmi.4.2014.2.7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/10/2014] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED It is an axiom that blood cellular immunity is provided by leukocytes. As to erythrocytes, it is generally accepted that their main function is respiration. Our research provides objective video and photo evidence regarding erythrocyte bactericidal function. Phase-contrast immersion vital microscopy of the blood of patients with bacteremia was performed, and the process of bacteria entrapping and killing by erythrocytes was shot by means of video camera. Video evidence demonstrates that human erythrocytes take active part in blood bactericidal action and can repeatedly engulf and kill bacteria of different species and size. Erythrocytes are extremely important integral part of human blood cellular immunity. COMPARED WITH PHAGOCYTIC LEUKOCYTES, THE ERYTHROCYTES a) are more numerous; b) are able to entrap and kill microorganisms repeatedly without being injured; c) are more resistant to infection and better withstand the attacks of pathogens; d) have longer life span and are produced faster; e) are inauspicious media for proliferation of microbes and do not support replication of chlamidiae, mycoplasmas, rickettsiae, viruses, etc.; and f) are more effective and uncompromised bacterial killers. Blood cellular immunity theory and traditional view regarding the function of erythrocytes in human blood should be revised.
Collapse
|
16
|
Gulati S, Zheng B, Reed GW, Su X, Cox AD, St. Michael F, Stupak J, Lewis LA, Ram S, Rice PA. Immunization against a saccharide epitope accelerates clearance of experimental gonococcal infection. PLoS Pathog 2013; 9:e1003559. [PMID: 24009500 PMCID: PMC3757034 DOI: 10.1371/journal.ppat.1003559] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
The emergence of ceftriaxone-resistant strains of Neisseria gonorrhoeae may herald an era of untreatable gonorrhea. Vaccines against this infection are urgently needed. The 2C7 epitope is a conserved oligosaccharide (OS) structure, a part of lipooligosaccharide (LOS) on N gonorrhoeae. The epitope is expressed by 94% of gonococci that reside in the human genital tract (in vivo) and by 95% of first passaged isolates. Absence of the 2C7 epitope shortens the time of gonococcal carriage in a mouse model of genital infection. To circumvent the limitations of saccharide immunogens in producing long lived immune responses, previously we developed a peptide mimic (called PEP1) as an immunologic surrogate of the 2C7-OS epitope and reconfigured it into a multi-antigenic peptide, (MAP1). To test vaccine efficacy of MAP1, female BALB/c mice were passively immunized with a complement-dependent bactericidal monoclonal antibody specific for the 2C7 epitope or were actively immunized with MAP1. Mice immunized with MAP1 developed a TH1-biased anti-LOS IgG antibody response that was also bactericidal. Length of carriage was shortened in immune mice; clearance occurred in 4 days in mice passively administered 2C7 antibody vs. 6 days in mice administered control IgG3λ mAb in one experiment (p = 0.03) and 6 vs. 9 days in a replicate experiment (p = 0.008). Mice vaccinated with MAP1 cleared infection in 5 days vs. 9 days in mice immunized with control peptide (p = 0.0001 and p = 0.0002, respectively in two replicate experiments). Bacterial burden was lower over the course of infection in passively immunized vs. control mice in both experiments (p = 0.008 and p = 0.0005); burdens were also lower in MAP1 immunized mice vs. controls (p<0.0001) and were inversely related to vaccine antibodies induced in the vagina (p = 0.043). The OS epitope defined by mAb 2C7 may represent an effective vaccine target against gonorrhea, which is rapidly becoming incurable with currently available antibiotics.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/pharmacology
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Bacterial Vaccines/immunology
- Bacterial Vaccines/microbiology
- Disease Models, Animal
- Epitopes/immunology
- Epitopes/pharmacology
- Female
- Gonorrhea/genetics
- Gonorrhea/immunology
- Gonorrhea/prevention & control
- Humans
- Immunization, Passive
- Immunoglobulin G/immunology
- Immunoglobulin G/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Neisseria gonorrhoeae/genetics
- Neisseria gonorrhoeae/immunology
- Peptides/immunology
- Peptides/pharmacology
- Polysaccharides, Bacterial/immunology
- Polysaccharides, Bacterial/pharmacology
- Th1 Cells/immunology
- Th1 Cells/pathology
Collapse
Affiliation(s)
- Sunita Gulati
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Bo Zheng
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - George W. Reed
- Department of Medicine, Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Xiaohong Su
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, People's Republic of China
| | - Andrew D. Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Frank St. Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jacek Stupak
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Lisa A. Lewis
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Peter A. Rice
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
17
|
Morera D, Roher N, Ribas L, Balasch JC, Doñate C, Callol A, Boltaña S, Roberts S, Goetz G, Goetz FW, MacKenzie SA. RNA-Seq reveals an integrated immune response in nucleated erythrocytes. PLoS One 2011; 6:e26998. [PMID: 22046430 PMCID: PMC3203173 DOI: 10.1371/journal.pone.0026998] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 10/07/2011] [Indexed: 11/18/2022] Open
Abstract
Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems.
Collapse
Affiliation(s)
- Davinia Morera
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Ribas
- Unitat de Fisiologia Animal, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Joan Carles Balasch
- Unitat de Fisiologia Animal, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Carmen Doñate
- Unitat de Fisiologia Animal, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Agnes Callol
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sebastian Boltaña
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Giles Goetz
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Frederick W. Goetz
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Simon A. MacKenzie
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
18
|
Arakelyan A, Zakharyan R, Khoyetsyan A, Poghosyan D, Aroutiounian R, Mrazek F, Petrek M, Boyajyan A. Functional characterization of the complement receptor type 1 and its circulating ligands in patients with schizophrenia. BMC Clin Pathol 2011; 11:10. [PMID: 21867543 PMCID: PMC3176470 DOI: 10.1186/1472-6890-11-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/25/2011] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Whereas the complement system alterations contribute to schizophrenia, complement receptors and regulators are little studied. We investigated complement receptor type 1 (CR1) expression on blood cells, the levels of circulating immune complexes (CIC) containing ligands of CR1, C1q complement protein and fragments of C3 complement protein (C1q-CIC, C3d-CIC), and CR1 C5507G functional polymorphism in schizophrenia patients and controls. RESULTS We found an increased C1q-CIC level and CR1 expression on blood cells, elevated number of CR1 positive erythrocytes and reduced number of CR1 positive lymphocytes and monocytes in patients compared to controls. No difference in the levels of C3d-CIC between groups was observed. Higher CR1 expression on erythrocytes in CC genotype versus CG+GG for both groups was detected, whereas no difference was observed for other cell populations. Our results indicated that schizophrenia is associated with the increased CR1 expression and C1q-CIC level. CONCLUSIONS Our study for the first time indicated that schizophrenia is associated with the increased CR1 expression and C1q-CIC level. Further studies in other ethnic groups are needed to replicate these findings.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, 7 Hasratyan St., 0014, Yerevan, Armenia
| | - Roksana Zakharyan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, 7 Hasratyan St., 0014, Yerevan, Armenia
- Faculty of Medicine and Dentistry, Palacky University, 6 I. P. Pavlova St., 775 20, Olomouc, Czech Republic
| | - Aren Khoyetsyan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, 7 Hasratyan St., 0014, Yerevan, Armenia
| | - David Poghosyan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, 7 Hasratyan St., 0014, Yerevan, Armenia
| | - Rouben Aroutiounian
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, 7 Hasratyan St., 0014, Yerevan, Armenia
- Biological Faculty of Yerevan State University, 1 Al. Manoogian St., 0025, Yerevan, Armenia
| | - Frantisek Mrazek
- Faculty of Medicine and Dentistry, Palacky University, 6 I. P. Pavlova St., 775 20, Olomouc, Czech Republic
| | - Martin Petrek
- Faculty of Medicine and Dentistry, Palacky University, 6 I. P. Pavlova St., 775 20, Olomouc, Czech Republic
| | - Anna Boyajyan
- Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, 7 Hasratyan St., 0014, Yerevan, Armenia
| |
Collapse
|
19
|
Morera D, MacKenzie SA. Is there a direct role for erythrocytes in the immune response? Vet Res 2011; 42:89. [PMID: 21801407 PMCID: PMC3199785 DOI: 10.1186/1297-9716-42-89] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 07/29/2011] [Indexed: 11/10/2022] Open
Abstract
Erythrocytes are highly abundant circulating cells in the vertebrates, which, with the notable exception of mammals, remain nucleated throughout the entire life cycle. The major function associated with these cells is respiratory gas exchange however other functions including interaction with the immune system have been attributed to these cells. Many viral, prokaryotic and eukaryotic pathogens directly target this cell type and across the vertebrate group a significant number of related pathologies have been reported. Across the primary literature mechanisms of interaction, invasion and replication between viruses and erythrocytes have been well described however the functional response of the erythrocyte has been poorly studied. A fragmented series of reports spanning the vertebrates suggests that these cells are capable of functional responses to viral infection. In contrast, in-depth proteomic studies using human erythrocytes have strongly progressed throughout the past decade providing a rich source of information related to protein expression and potential function. Furthermore information at the gene expression level is becoming available. Here we provide a review of erythrocyte-pathogen interactions, erythrocyte functions in immunity and propose in light of recent -omics research that the nucleated erythrocytes may have a direct role in the immune response.
Collapse
Affiliation(s)
- Davinia Morera
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | | |
Collapse
|
20
|
Bao L, Haas M, Quigg RJ. Complement factor H deficiency accelerates development of lupus nephritis. J Am Soc Nephrol 2010; 22:285-95. [PMID: 21148254 DOI: 10.1681/asn.2010060647] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Complement factor H (CfH) is a key regulator of the alternative pathway, and its presence on mouse platelets and podocytes allows the processing of immune complexes. Because of the role of immune complexes in the pathophysiology of lupus nephritis, we studied the role of CfH in the development of nephritis in MRL-lpr mice, an animal model of lupus. At 12 weeks, CfH-deficient MRL-lpr mice had significantly more albuminuria and higher BUN levels than MRL-lpr controls. Cfh-deficient MRL-lpr mice also experienced earlier mortality: at 14 weeks, 6 of 9 CfH-deficient MRL-lpr mice had died of renal failure, whereas all 11 littermate CfH-sufficient MRL-lpr mice were alive (P ≤ 0.001). Histologically, CfH-deficient MRL-lpr mice developed severe diffuse lupus nephritis by 12 weeks (glomerulonephritis scores of 2.6 ± 0.4 versus 0.4 ± 0.2 in littermate controls, P = 0.001). Similar to other CfH-deficient mouse models on nonautoimmune backgrounds, immunofluorescence staining showed extensive linear C3 staining along glomerular capillary walls. IgG was present in the mesangium and peripheral capillary walls along with excessive infiltration of macrophages and neutrophils. Ultrastructurally, there were subendothelial and subepithelial immune deposits and extensive podocyte foot process effacement. In summary, the loss of CfH accelerates the development of lupus nephritis and recapitulates the functional and structural features of the human disease. This illustrates the critical role of complement regulation and metabolism of immune complexes in the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Lihua Bao
- Section of Nephrology, The University of Chicago, 5841 S. Maryland Avenue, MC5100, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
21
|
Sadallah S, Eken C, Schifferli JA. Ectosomes as immunomodulators. Semin Immunopathol 2010; 33:487-95. [PMID: 21136061 DOI: 10.1007/s00281-010-0232-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 01/07/2023]
Abstract
Considerable progress has been made in recognizing microvesicles as important mediators of intercellular communication rather than irrelevant cell debris. Microvesicles released by budding directly from the cell membrane surface (i.e., ectocytosis) either spontaneously or in response to various stimuli are called shed vesicles or ectosomes. Ectosomes are rightside-out vesicles with cytosolic content, and they expose phosphatidylserine in the outer leaflet of their membrane. Depending on their cellular origin, ectosomes have been associated with a broad spectrum of biological activities. In the light of recent findings, we now know that ectosomes derived from polymorphonuclear leukocytes, erythrocytes, platelets, and tumor cells have profound effects on the innate immune system, as well as on the induction of the adaptive immunity, globally reprogramming cells such as macrophages or dendritic cells toward an immunosuppressive and possibly tolerogenic phenotype. Although the effects observed in the circulation are mainly procoagulant and pro-inflammatory, ectosomes might be anti-inflammatory/immunosuppressive in local inflammation.
Collapse
Affiliation(s)
- Salima Sadallah
- Immunonephrology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | |
Collapse
|
22
|
Abstract
Microbes as well as immune complexes and other continuously generated inflammatory particles are efficiently removed from the human circulation by red blood cells (RBCs) through a process called immune-adherence clearance. During this process, RBCs use complement receptor 1 (CR1, CD35) to bind circulating complement-opsonized particles and transfer them to resident macrophages in the liver and spleen for removal. We here show that ligation of RBC CR1 by antibody and complement-opsonized particles induces a transient Ca(++) influx that is proportional to the RBC CR1 levels and is inhibited by T1E3 pAb, a specific inhibitor of TRPC1 channels. The CR1-elicited RBC Ca(++) influx is accompanied by an increase in RBC membrane deformability that positively correlates with the number of preexisting CR1 molecules on RBC membranes. Biochemically, ligation of RBC CR1 causes a significant increase in phosphorylation levels of β-spectrin that is inhibited by preincubation of RBCs with DMAT, a specific casein kinase II inhibitor. We hypothesize that the CR1-dependent increase in membrane deformability could be relevant for facilitating the transfer of CR1-bound particles from the RBCs to the hepatic and splenic phagocytes.
Collapse
|
23
|
Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010; 7:403-27. [PMID: 20192900 DOI: 10.1517/17425241003610633] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field. AREAS COVERED BY THIS REVIEW: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC. WHAT THE READER WILL GAIN Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery. TAKE HOME MESSAGE RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania Medical Center, Department of Pharmacology and Program in Targeted Therapeutics of Institute of Translational Medicine and Therapeutics, IFEM, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| |
Collapse
|
24
|
Complement receptor 1 expression on mouse erythrocytes mediates clearance of Streptococcus pneumoniae by immune adherence. Infect Immun 2010; 78:3129-35. [PMID: 20439480 DOI: 10.1128/iai.01263-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement-containing immune complexes can be presented to phagocytes by human erythrocytes bearing complement receptor 1 (CR1). Although this has long been assumed to be a mechanism by which humans are able to protect themselves from "extracellular" bacteria such as pneumococci, there is little direct evidence. In these studies we have investigated this question by comparing results for erythrocytes from transgenic mice expressing human CR1 on their erythrocytes to the results for wild-type mouse erythrocytes that do not express CR1. We demonstrate that human CR1 expression on murine erythrocytes allows immune adherence to beads opsonized with either mouse or human serum as a source of complement. The role of CR1 in immune adherence was supported by studies showing that it was blocked by the addition of antibody to human CR1. Furthermore, human CR1 expression enhances the immune adherence of opsonized pneumococci to erythrocytes in vitro, and the pneumococci attached to erythrocytes via CR1 can be transferred in vitro to live macrophages. Even more importantly, we observed that if complement-opsonized pneumococci are injected intravenously with CR1(+) mouse erythrocytes into wild-type mice (after a short in vitro incubation), they are cleared faster than opsonized pneumococci similarly injected with wild-type mouse erythrocytes. Finally, we have shown that the intravenous (i.v.) injection of pneumococci into CR1(+) mice also results in more rapid blood clearance than in wild-type mice. These data support that immune adherence via CR1 on erythrocytes likely plays an important role in the clearance of opsonized bacteria from human blood.
Collapse
|
25
|
Antibody to the type 3 capsule facilitates immune adherence of pneumococci to erythrocytes and augments their transfer to macrophages. Infect Immun 2008; 77:464-71. [PMID: 19001076 DOI: 10.1128/iai.00892-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus pneumoniae has been shown to bind to erythrocytes via a process called immune adherence. This adherence and the subsequent transfer of pneumococci from erythrocytes to macrophages are both dependent on complement C3 deposition onto the pneumococcal surface. The observation that anti-capsule antibody increases C3 deposition on the pneumococcal capsule indicated that anti-capsule antibody may also facilitate the clearance of pneumococci through immune adherence. Using pneumococcal strain WU2 (capsule type 3) and its nonencapsulated mutant JD908, we found that monoclonal antibody (MAb) to type 3 capsule increases complement C3, C1q, and C4 deposition on WU2 and enhanced the immune adherence of WU2 to erythrocytes. The MAb to type 3 capsule also enhanced the transfer of WU2 from erythrocytes to macrophages. Moreover, the transfer reaction was inhibited by preincubating macrophages with anti-CR3 or anti-Fc gammaRIII/II MAb, indicating that CR3 and Fc gammaRIII/II on macrophages mediate this process. The transfer reactions of JD908 (opsonized with complement) and WU2 (opsonized with complement plus MAb to type 3 capsule) were similarly inhibited by anti-CR3 MAb, but only the latter was inhibited by anti-Fc gammaRIII/II MAb. This finding indicates that although complement and the macrophage receptor CR3 are essential for the transfer reaction, if antibody is present it can further enhance the transfer reaction through a process dependent on Fc gammaRIII/II. Using pre- and postvaccination sera of people immunized with the 23-valent pneumococcal polysaccharide vaccine, we confirmed that human anti-capsule antibodies are also able to increase the immune adherence of pneumococci and their transfer to macrophages.
Collapse
|
26
|
Jacobson AC, Weis JH. Comparative functional evolution of human and mouse CR1 and CR2. THE JOURNAL OF IMMUNOLOGY 2008; 181:2953-9. [PMID: 18713965 DOI: 10.4049/jimmunol.181.5.2953] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Amanda C Jacobson
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
27
|
Bánki Z, Wilflingseder D, Ammann CG, Pruenster M, Müllauer B, Holländer K, Meyer M, Sprinzl GM, van Lunzen J, Stellbrink HJ, Dierich MP, Stoiber H. Factor I-mediated processing of complement fragments on HIV immune complexes targets HIV to CR2-expressing B cells and facilitates B cell-mediated transmission of opsonized HIV to T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3469-76. [PMID: 16920989 DOI: 10.4049/jimmunol.177.5.3469] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Our study demonstrates that binding of complement-opsonized HIV to complement receptor type 1 on human erythrocytes (E) via C3b fragments is followed by a rapid normal human serum-mediated detachment of HIV from E. The release was dependent on the presence of factor I indicating a conversion of C3b fragments to iC3b and C3d on the viral surface. This in turn resulted in an efficient binding of opsonized HIV to CR2-expressing B cells, thus facilitating B cell-mediated transmission of HIV to T cells. These data provide a new dynamic view of complement opsonization of HIV, suggesting that association of virus with E might be a transient phenomenon and the factor I-mediated processing of C3b to iC3b and C3d on HIV targets the virus to complement receptor type 2-expressing cells. Thus, factor I in concert with CR1 on E and factor H in serum due to their cofactor activity are likely to be important contributors for the generation of C3d-opsonized infectious HIV reservoirs on follicular dendritic cells and/or B cells in HIV-infected individuals.
Collapse
Affiliation(s)
- Zoltán Bánki
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Horakova E, Gasser O, Sadallah S, Inal JM, Bourgeois G, Ziekau I, Klimkait T, Schifferli JA. Complement Mediates the Binding of HIV to Erythrocytes. THE JOURNAL OF IMMUNOLOGY 2004; 173:4236-41. [PMID: 15356175 DOI: 10.4049/jimmunol.173.6.4236] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A fraction of HIV is associated with erythrocytes even when the virus becomes undetectable in plasma under antiretroviral therapy. The aim of the present work was to further characterize this association in vitro. We developed an in vitro model to study the factors involved in the adherence of HIV-1 to erythrocytes. Radiolabeled HIV-1 (HIV) and preformed HIV-1/anti-HIV immune complexes (HIV-IC) were opsonized in various human sera, purified using sucrose density gradient ultracentrifugation, and incubated with human erythrocytes. We observed that, when opsonized in normal human serum, not only HIV-IC, but also HIV, bound to erythrocytes, although the adherence of HIV was lower than that of HIV-IC. The adherence was abolished when the complement system was blocked, but was maintained in hypogammaglobulinemic sera. Complement-deficient sera indicated that both pathways of complement were important for optimal adherence. No adherence was seen in C1q-deficient serum, and the adherence of HIV was reduced when the alternative pathway was blocked using anti-factor D Abs. The adherence could be inhibited by an mAb against complement receptor 1. At supraphysiological concentrations, purified C1q mediated the binding of a small fraction of HIV and HIV-IC to erythrocytes. In conclusion, HIV-IC bound to erythrocytes as other types of IC do when exposed to complement. Of particular interest was that HIV alone bound also to erythrocytes in a complement/complement receptor 1-dependent manner. Thus, erythrocytes may not only deliver HIV-IC to organs susceptible to infection, but free HIV as well. This may play a crucial role in the progression of the primary infection.
Collapse
Affiliation(s)
- Eliska Horakova
- Laboratory of Immunonephrology, Department of Research, and University of Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|