1
|
Raphael-Mizrahi B, Attar-Lamdar M, Chourasia M, Cascio MG, Shurki A, Tam J, Neuman M, Rimmerman N, Vogel Z, Shteyer A, Pertwee RG, Zimmer A, Kogan N, Bab I, Gabet Y. Osteogenic growth peptide is a potent anti-inflammatory and bone preserving hormone via cannabinoid receptor type 2. eLife 2022; 11:65834. [PMID: 35604006 PMCID: PMC9154745 DOI: 10.7554/elife.65834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid system consists mainly of 2-arachidonoylglycerol and anandamide, as well as cannabinoid receptor type 1 (CB1) and type 2 (CB2). Based on previous studies, we hypothesized that a circulating peptide previously identified as Osteogenic Growth Peptide (OGP) maintains a bone-protective CB2 tone. We tested OGP activity in mouse models and cells, and in human osteoblasts. We show that the OGP effects on osteoblast proliferation, osteoclastogenesis, and macrophage inflammation in vitro, as well as rescue of ovariectomy-induced bone loss and prevention of ear edema in vivo are all abrogated by genetic or pharmacological ablation of CB2. We also demonstrate that OGP binds at CB2 and may act as both an agonist and positive allosteric modulator in the presence of other lipophilic agonists. In premenopausal women, OGP circulating levels significantly decline with age. In adult mice, exogenous administration of OGP completely prevented age-related bone loss. Our findings suggest that OGP attenuates age-related bone loss by maintaining a skeletal CB2 tone. Importantly, they also indicate the occurrence of an endogenous peptide that signals via CB2 receptor in health and disease.
Collapse
Affiliation(s)
| | - Malka Attar-Lamdar
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mukesh Chourasia
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria G Cascio
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Avital Shurki
- Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moshe Neuman
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Neta Rimmerman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Vogel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Arie Shteyer
- Department of Oral and Maxillofacial Surgery, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roger G Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Natalya Kogan
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itai Bab
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Logan RW, Xue X, Ketchesin KD, Hoffman G, Roussos P, Tseng G, McClung CA, Seney ML. Sex Differences in Molecular Rhythms in the Human Cortex. Biol Psychiatry 2022; 91:152-162. [PMID: 33934884 PMCID: PMC8423868 DOI: 10.1016/j.biopsych.2021.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Diurnal rhythms in gene expression have been detected in the human brain. Previous studies found that males and females exhibit 24-hour rhythms in known circadian genes, with earlier peak expression in females. Whether there are sex differences in large-scale transcriptional rhythms in the cortex that align with observed sex differences in physiological and behavioral rhythms is currently unknown. METHODS Diurnal rhythmicity of gene expression was determined for males and females using RNA sequencing data from human postmortem dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). Sex differences among rhythmic genes were determined using significance cutoffs, threshold-free analyses, and R2 difference. Phase concordance was assessed across the DLPFC and ACC for males and females. Pathway and transcription factor analyses were also conducted on significantly rhythmic genes. RESULTS Canonical circadian genes had diurnal rhythms in both sexes with similar amplitude and phase. When analyses were expanded to the entire transcriptome, significant sex differences in transcriptional rhythms emerged. There were nearly twice as many rhythmic transcripts in the DLPFC in males and nearly 4 times as many rhythmic transcripts in the ACC in females. Results suggest a diurnal rhythm in synaptic transmission specific to the ACC in females (e.g., GABAergic [gamma-aminobutyric acidergic] and cholinergic neurotransmission). For males, there was phase concordance between the DLPFC and ACC, while phase asynchrony was found in females. CONCLUSIONS There are robust sex differences in molecular rhythms of genes in the DLPFC and ACC, providing potential mechanistic insights into how neurotransmission and synaptic function are modulated in a circadian-dependent and sex-specific manner.
Collapse
Affiliation(s)
- Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts; Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle D Ketchesin
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Gabriel Hoffman
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York; Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, Bronx, New York
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine; Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania; Translational Neuroscience Program, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Sherafat Y, Chen E, Lallai V, Bautista M, Fowler JP, Chen YC, Miwa J, Fowler CD. Differential Expression Patterns of Lynx Proteins and Involvement of Lynx1 in Prepulse Inhibition. Front Behav Neurosci 2021; 15:703748. [PMID: 34803621 PMCID: PMC8595198 DOI: 10.3389/fnbeh.2021.703748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Negative allosteric modulators, such as lynx1 and lynx2, directly interact with nicotinic acetylcholine receptors (nAChRs). The nAChRs are integral to cholinergic signaling in the brain and have been shown to mediate different aspects of cognitive function. Given the interaction between lynx proteins and these receptors, we examined whether these endogenous negative allosteric modulators are involved in cognitive behaviors associated with cholinergic function. We found both cell-specific and overlapping expression patterns of lynx1 and lynx2 mRNA in brain regions associated with cognition, learning, memory, and sensorimotor processing, including the prefrontal cortex (PFC), cingulate cortex, septum, hippocampus, amygdala, striatum, and pontine nuclei. Since lynx proteins are thought to play a role in conditioned associations and given the expression patterns across brain regions, we first assessed whether lynx knockout mice would differ in a cognitive flexibility task. We found no deficits in reversal learning in either the lynx1–/– or lynx2–/– knockout mice. Thereafter, sensorimotor gating was examined with the prepulse inhibition (PPI) assessment. Interestingly, we found that both male and female lynx1–/– mice exhibited a deficit in the PPI behavioral response. Given the comparable expression of lynx2 in regions involved in sensorimotor gating, we then examined whether removal of the lynx2 protein would lead to similar behavioral effects. Unexpectedly, we found that while male lynx2–/– mice exhibited a decrease in the baseline startle response, no differences were found in sensorimotor gating for either male or female lynx2–/– mice. Taken together, these studies provide insight into the expression patterns of lynx1 and lynx2 across multiple brain regions and illustrate the modulatory effects of the lynx1 protein in sensorimotor gating.
Collapse
Affiliation(s)
- Yasmine Sherafat
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Edison Chen
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Valeria Lallai
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - James P Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Julie Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Miwa JM. Lynx1 prototoxins: critical accessory proteins of neuronal nicotinic acetylcholine receptors. Curr Opin Pharmacol 2021; 56:46-51. [PMID: 33254061 PMCID: PMC8771676 DOI: 10.1016/j.coph.2020.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
Nicotinic receptors of the cholinergic system are ligand-gated ion channels, responding to the excitatory neurotransmitter, acetylcholine, and the addictive component of tobacco, nicotine. They help to transduce salient information in the environment by activating specific neural circuitry in normal and disease states. While nicotinic receptors are promising neurological and neuropsychiatric disorder targets, they have fallen out of favor after several late-stage clinical failures. Targeting the complex of the nicotinic receptor, including lynx1 accessory proteins, could be the key to unlocking the intractable nAChR for therapeutic development. Lynx1 binds to the extracellular face of the nAChR and acts as a critical modulator, suppressing memory, learning, and plasticity. Lynx1 removal in animal models leads to memory and plasticity enhancements, some of which have therapeutic relevance for neuropsychiatric and neurological disease. A review of the lynx1 accessory modulator and its role in modulating neuronal nAChRs will be discussed.
Collapse
Affiliation(s)
- Julie M Miwa
- Lehigh University, Department of Biological Sciences, 111 Research Drive, Bethlehem, PA, United States.
| |
Collapse
|
5
|
Venkatesan S, Jeoung HS, Chen T, Power SK, Liu Y, Lambe EK. Endogenous Acetylcholine and Its Modulation of Cortical Microcircuits to Enhance Cognition. Curr Top Behav Neurosci 2020; 45:47-69. [PMID: 32601996 DOI: 10.1007/7854_2020_138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acetylcholine regulates the cerebral cortex to sharpen sensory perception and enhance attentional focus. The cellular and circuit mechanisms of this cholinergic modulation are under active investigation in sensory and prefrontal cortex, but the universality of these mechanisms across the cerebral cortex is not clear. Anatomical maps suggest that the sensory and prefrontal cortices receive distinct cholinergic projections and have subtle differences in the expression of cholinergic receptors and the metabolic enzyme acetylcholinesterase. First, we briefly review this anatomical literature and the recent progress in the field. Next, we discuss in detail the electrophysiological effects of cholinergic receptor subtypes and the cell and circuit consequences of their stimulation by endogenous acetylcholine as established by recent optogenetic work. Finally, we explore the behavioral ramifications of in vivo manipulations of endogenous acetylcholine. We find broader similarities than we expected between the cholinergic regulation of sensory and prefrontal cortex, but there are some differences and some gaps in knowledge. In visual, auditory, and somatosensory cortex, the cell and circuit mechanisms of cholinergic sharpening of sensory perception have been probed in vivo with calcium imaging and optogenetic experiments to simultaneously test mechanism and measure the consequences of manipulation. By contrast, ascertaining the links between attentional performance and cholinergic modulation of specific prefrontal microcircuits is more complicated due to the nature of the required tasks. However, ex vivo optogenetic manipulations point to differences in the cholinergic modulation of sensory and prefrontal cortex. Understanding how and where acetylcholine acts within the cerebral cortex to shape cognition is essential to pinpoint novel treatment targets for the perceptual and attention deficits found in multiple psychiatric and neurological disorders.
Collapse
Affiliation(s)
| | - Ha-Seul Jeoung
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Tianhui Chen
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Saige K Power
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yupeng Liu
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Anderson KR, Hoffman KM, Miwa JM. Modulation of cholinergic activity through lynx prototoxins: Implications for cognition and anxiety regulation. Neuropharmacology 2020; 174:108071. [PMID: 32298703 PMCID: PMC7785133 DOI: 10.1016/j.neuropharm.2020.108071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, USA.
| |
Collapse
|
7
|
Sadahiro M, Demars MP, Burman P, Yevoo P, Zimmer A, Morishita H. Activation of Somatostatin Interneurons by Nicotinic Modulator Lypd6 Enhances Plasticity and Functional Recovery in the Adult Mouse Visual Cortex. J Neurosci 2020; 40:5214-5227. [PMID: 32467358 PMCID: PMC7329312 DOI: 10.1523/jneurosci.1373-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/27/2023] Open
Abstract
The limitation of plasticity in the adult brain impedes functional recovery later in life from brain injury or disease. This pressing clinical issue may be resolved by enhancing plasticity in the adult brain. One strategy for triggering robust plasticity in adulthood is to reproduce one of the hallmark physiological events of experience-dependent plasticity observed during the juvenile critical period: to rapidly reduce the activity of parvalbumin (PV)-expressing interneurons and disinhibit local excitatory neurons. This may be achieved through the enhancement of local inhibitory inputs, particularly those of somatostatin (SST)-expressing interneurons. However, to date the means for manipulating SST interneurons for enhancing cortical plasticity in the adult brain are not known. We show that SST interneuron-selective overexpression of Lypd6, an endogenous nicotinic signaling modulator, enhances ocular dominance plasticity in the adult primary visual cortex (V1). Lypd6 overexpression mediates a rapid experience-dependent increase in the visually evoked activity of SST interneurons as well as a simultaneous reduction in PV interneuron activity and disinhibition of excitatory neurons. Recapitulating this transient activation of SST interneurons using chemogenetics similarly enhanced V1 plasticity. Notably, we show that SST-selective Lypd6 overexpression restores visual acuity in amblyopic mice that underwent early long-term monocular deprivation. Our data in both male and female mice reveal selective modulation of SST interneurons and a putative downstream circuit mechanism as an effective method for enhancing experience-dependent cortical plasticity as well as functional recovery in adulthood.SIGNIFICANCE STATEMENT The decline of cortical plasticity after closure of juvenile critical period consolidates neural circuits and behavior, but this limits functional recovery from brain diseases and dysfunctions in later life. Here we show that activation of cortical somatostatin (SST) interneurons by Lypd6, an endogenous modulator of nicotinic acetylcholine receptors, enhances experience-dependent plasticity and recovery from amblyopia in adulthood. This manipulation triggers rapid reduction of PV interneuron activity and disinhibition of excitatory neurons, which are known hallmarks of cortical plasticity during juvenile critical periods. Our study demonstrates modulation of SST interneurons by Lypd6 to achieve robust levels of cortical plasticity in the adult brain and may provide promising targets for restoring brain function in the event of brain trauma or disease.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Dominance, Ocular/genetics
- Evoked Potentials, Visual/genetics
- Evoked Potentials, Visual/physiology
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/physiology
- Immunohistochemistry
- Interneurons/physiology
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- Phosphatidylinositols/pharmacology
- Receptors, Nicotinic/genetics
- Recovery of Function/genetics
- Somatostatin/physiology
- Vision, Monocular/genetics
- Vision, Monocular/physiology
- Visual Acuity/genetics
- Visual Cortex/physiology
Collapse
Affiliation(s)
- Masato Sadahiro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Poromendro Burman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Priscilla Yevoo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
8
|
Affiliation(s)
- Claudio Nardiello
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
9
|
Morty RE. World health days in May 2020: pulmonary hypertension; asthma; and tobacco-, smoking-, and vaping-related disease in focus. Am J Physiol Lung Cell Mol Physiol 2020; 318:L988-L991. [PMID: 32233790 DOI: 10.1152/ajplung.00115.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
10
|
Miwa JM, Anderson KR, Hoffman KM. Lynx Prototoxins: Roles of Endogenous Mammalian Neurotoxin-Like Proteins in Modulating Nicotinic Acetylcholine Receptor Function to Influence Complex Biological Processes. Front Pharmacol 2019; 10:343. [PMID: 31114495 PMCID: PMC6502960 DOI: 10.3389/fphar.2019.00343] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
The cholinergic system modulates many biological functions, due to the widespread distribution of cholinergic neuronal terminals, and the diffuse release of its neurotransmitter, acetylcholine. Several layers of regulation help to refine and control the scope of this excitatory neurotransmitter system. One such regulatory mechanism is imparted through endogenous toxin-like proteins, prototoxins, which largely control the function of nicotinic receptors of the cholinergic system. Prototoxins and neurotoxins share the distinct three finger toxin fold, highly effective as a receptor binding protein, and the former are expressed in the mammalian brain, immune system, epithelium, etc. Prototoxins and elapid snake neurotoxins appear to be related through gene duplication and divergence from a common ancestral gene. Protein modulators can provide a graded response of the cholinergic system, and within the brain, stabilize neural circuitry through direct interaction with nicotinic receptors. Understanding the roles of each prototoxin (e.g., lynx1, lynx2/lypd1, PSCA, SLURP1, SLURP2, Lypd6, lypd6b, lypdg6e, PATE-M, PATE-B, etc.), their binding specificity and unique expression profile, has the potential to uncover many fascinating cholinergic-dependent mechanisms in the brain. Each family member can provide a spatially restricted level of control over nAChR function based on its expression in the brain. Due to the difficulty in the pharmacological targeting of nicotinic receptors in the brain as a result of widespread expression patterns and similarities in receptor sequences, unique interfaces between prototoxin and nicotinic receptor could provide more specific targeting than nicotinic receptors alone. As such, this family is intriguing from a long-term therapeutic perspective.
Collapse
Affiliation(s)
- Julie M Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Kristin R Anderson
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Katie M Hoffman
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
11
|
Nichols AL, Noridomi K, Hughes CR, Jalali-Yazdi F, Eaton JB, Lai LH, Advani G, Lukas RJ, Lester HA, Chen L, Roberts RW. α1-FANGs: Protein Ligands Selective for the α-Bungarotoxin Site of the α1-Nicotinic Acetylcholine Receptor. ACS Chem Biol 2018; 13:2568-2576. [PMID: 30059207 DOI: 10.1021/acschembio.8b00513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that play a central role in neuronal and neuromuscular signal transduction. Here, we have developed FANG ligands, fibronectin antibody-mimetic nicotinic acetylcholine receptor-generated ligands, using mRNA display. We generated a 1 trillion-member primary e10FnIII library to target a stabilized α1 nicotinic subunit (α211). This library yielded 270000 independent potential protein binding ligands. The lead sequence, α1-FANG1, represented 25% of all library sequences, showed the highest-affinity binding, and competed with α-bungarotoxin (α-Btx). To improve this clone, a new library based on α1-FANG1 was subjected to heat, protease, binding, off-rate selective pressures, and point mutations. This resulted in α1-FANG2 and α1-FANG3. These proteins bind α211 with KD values of 3.5 nM and 670 pM, respectively, compete with α-Btx, and show improved subunit specificity. α1-FANG3 is thermostable ( Tm = 62 °C) with a 6 kcal/mol improvement in folding free energy compared with that of the parent α1-FANG1. α1-FANG3 competes directly with the α-Btx binding site of intact neuromuscular heteropentamers [(α1)2β1γδ] in mammalian culture-derived cellular membranes and in Xenopus laevis oocytes expressing these nAChRs. This work demonstrates that mRNA display against a monomeric ecto-domain of a pentamer has the capability to select ligands that bind that subunit in both a monomeric and a pentameric context. Overall, our work provides a route to creating a new family of stable, well-behaved proteins that specifically target this important receptor family.
Collapse
Affiliation(s)
- Aaron L. Nichols
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Kaori Noridomi
- Molecular and Computational Biology, Department of Biology, University of Southern California, Los Angeles, California 90089-0371, United States
| | - Christopher R. Hughes
- Mork Family Department of Chemical Engineering and Material Sciences, University of Southern California, Los Angeles, California 90089-1211, United States
| | - Farzad Jalali-Yazdi
- Mork Family Department of Chemical Engineering and Material Sciences, University of Southern California, Los Angeles, California 90089-1211, United States
| | - J. Brek Eaton
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, University of Arizona, Phoenix, Arizona 85013-4409, United States
| | - Lan Huong Lai
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Gaurav Advani
- Mork Family Department of Chemical Engineering and Material Sciences, University of Southern California, Los Angeles, California 90089-1211, United States
| | - Ronald J. Lukas
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, University of Arizona, Phoenix, Arizona 85013-4409, United States
| | - Henry A. Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125-0001, United States
| | - Lin Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
- Molecular and Computational Biology, Department of Biology, University of Southern California, Los Angeles, California 90089-0371, United States
- Norris Cancer Center, University of Southern California, Los Angeles, California 90033, United States
| | - Richard W. Roberts
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
- Molecular and Computational Biology, Department of Biology, University of Southern California, Los Angeles, California 90089-0371, United States
- Mork Family Department of Chemical Engineering and Material Sciences, University of Southern California, Los Angeles, California 90089-1211, United States
- Norris Cancer Center, University of Southern California, Los Angeles, California 90033, United States
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089-1111, United States
| |
Collapse
|
12
|
Zoli M, Pucci S, Vilella A, Gotti C. Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. Curr Neuropharmacol 2018; 16:338-349. [PMID: 28901280 PMCID: PMC6018187 DOI: 10.2174/1570159x15666170912110450] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/08/2017] [Accepted: 09/03/2017] [Indexed: 02/08/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) belong to a super-family of Cys-loop ligand-gated ion chan-nels that respond to endogenous acetylcholine (ACh) or other cholinergic ligands. These receptors are also the targets of drugs such as nicotine (the main addictive agent delivered by cigarette smoke) and are involved in a variety of physiological and pathophysiological processes. Numerous studies have shown that the expression and/or function of nAChRs is com-promised in many neurological and psychiatric diseases. Furthermore, recent studies have shown that neuronal nAChRs are found in a large number of non-neuronal cell types in-cluding endothelial cells, glia, immune cells, lung epithelia and cancer cells where they regulate cell differentiation, prolifera-tion and inflammatory responses. The aim of this review is to describe the most recent findings concerning the structure and function of native nAChRs inside and outside the nervous system.
Collapse
Affiliation(s)
- Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Susanna Pucci
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| |
Collapse
|
13
|
Nissen NI, Anderson KR, Wang H, Lee HS, Garrison C, Eichelberger SA, Ackerman K, Im W, Miwa JM. Augmenting the antinociceptive effects of nicotinic acetylcholine receptor activity through lynx1 modulation. PLoS One 2018; 13:e0199643. [PMID: 29969495 PMCID: PMC6029753 DOI: 10.1371/journal.pone.0199643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) of the cholinergic system have been linked to antinociception, and therefore could be an alternative target for pain alleviation. nAChR activity has been shown to be regulated by the nicotinic modulator, lynx1, which forms stable complexes with nAChRs and has a negative allosteric action on their function. The objective in this study was to investigate the contribution of lynx1 to nicotine-mediated antinociception. Lynx1 contribution was investigated by mRNA expression analysis and electrophysiological responses to nicotine in the dorsal raphe nucleus (DRN), a part of the pain signaling pathway. In vivo antinociception was investigated in a test of nociception, the hot-plate analgesia assay with behavioral pharmacology. Lynx1/α4β2 nAChR interactions were investigated using molecular dynamics computational modeling. Nicotine evoked responses in serotonergic and GABAergic neurons in the DRN are augmented in slices lacking lynx1 (lynx1KO). The antinociceptive effect of nicotine and epibatidine is enhanced in lynx1KO mice and blocked by mecamylamine and DHβE. Computer simulations predict preferential binding affinity of lynx1 to the α:α interface that exists in the stoichiometry of the low sensitivity (α4)3(β2)2 nAChRs. Taken together, these data point to a role of lynx1 in mediating pain signaling in the DRN through preferential affinity to the low sensitivity α4β2 nAChRs. This study suggests that lynx1 is a possible alternative avenue for nociceptive modulation outside of opioid-based strategies.
Collapse
Affiliation(s)
- Neel I. Nissen
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kristin R. Anderson
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Huaixing Wang
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Hui Sun Lee
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Carly Garrison
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | | | - Kasarah Ackerman
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Wonpil Im
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Julie M. Miwa
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Arvaniti M, Polli FS, Kohlmeier KA, Thomsen MS, Andreasen JT. Loss of Lypd6 leads to reduced anxiety-like behaviour and enhanced responses to nicotine. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:86-94. [PMID: 29195920 DOI: 10.1016/j.pnpbp.2017.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/19/2017] [Accepted: 11/27/2017] [Indexed: 11/28/2022]
Abstract
Nicotine consumption through smoking affects anxious states in humans. However, the precise role of nicotinic acetylcholine receptor (nAChR) circuitry in the regulation of anxiety remains elusive. The Lynx protein Lypd6 is highly enriched in synaptic loci and has been previously identified as an endogenous inhibitor of neuronal nAChR function in vitro. Here, we investigate the effect of Lypd6 in anxiety-related behaviour and examine the molecular underpinnings of its function in the brain. We employ the marble burying (MB) and elevated zero maze (EZM) tests in Lypd6 knock-out (KO) and wild-type (WT) mice and find that loss of Lypd6 leads to decreased digging behaviour in the MB test and increased time spent in the open area in the EZM test. Moreover, we demonstrate that acute nicotine administration reduces digging in the MB test in both KO and WT mice and further accentuates the inherent genotype difference. Using in vitro electrophysiology in dorsal raphe nuclei (DRN) neurons from Lypd6 KO mice, we show that nicotine-evoked whole-cell currents are enhanced in the absence of Lypd6. Collectively, these data are the first to indicate the involvement of Lypd6 in circuits associated with anxiety and suggest that a possible underlying neurobiological mechanism is the modulation of cholinergic responses in the DRN.
Collapse
Affiliation(s)
- Maria Arvaniti
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Filip S Polli
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Thomsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; H. Lundbeck A/S, Department of Synaptic Transmission In Vitro, Valby, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. Neuron 2017; 91:1199-1218. [PMID: 27657448 DOI: 10.1016/j.neuron.2016.09.006] [Citation(s) in RCA: 476] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Recent work continues to place cholinergic circuits at center stage for normal executive and mnemonic functioning and provides compelling evidence that the loss of cholinergic signaling and cognitive decline are inextricably linked. This Review focuses on the last few years of studies on the mechanisms by which cholinergic signaling contributes to circuit activity related to cognition. We attempt to identify areas of controversy, as well as consensus, on what is and is not yet known about how cholinergic signaling in the CNS contributes to normal cognitive processes. In addition, we delineate the findings from recent work on the extent to which dysfunction of cholinergic circuits contributes to cognitive decline associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Elizabeth C Ballinger
- Medical Scientist Training Program, Program in Neuroscience, Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Mala Ananth
- Program in Neuroscience, Department of Neurobiology & Behavior, Department of Psychiatry & Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - David A Talmage
- Department of Pharmacological Sciences, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorna W Role
- Department of Neurobiology & Behavior, Neurosciences Institute, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
16
|
Crespi A, Colombo SF, Gotti C. Proteins and chemical chaperones involved in neuronal nicotinic receptor expression and function: an update. Br J Pharmacol 2017; 175:1869-1879. [PMID: 28294298 DOI: 10.1111/bph.13777] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/26/2017] [Accepted: 03/04/2017] [Indexed: 01/03/2023] Open
Abstract
Neuronal nicotinic ACh receptors (nAChRs) are a family of ACh-gated cation channels, and their homeostasis or proteostasis is essential for the correct physiology of the central and peripheral nervous systems. The proteostasis network regulates the folding, assembly, degradation and trafficking of nAChRs in order to ensure their efficient and functional expression at the cell surface. However, as nAChRs are multi-subunit, multi-span, integral membrane proteins, the folding and assembly is a very inefficient process, and only a small proportion of subunits can form functional pentamers. Moreover, the efficiency of assembly and trafficking varies widely depending on the nAChR subtypes and the cell type in which they are expressed. A detailed understanding of the mechanisms that regulate the functional expression of nAChRs in neurons and non-neuronal cells is therefore important. The purpose of this short review is to describe more recent findings concerning the chaperone proteins and target-specific and target-nonspecific pharmacological chaperones that modulate the expression of nAChR subtypes, and the possible mechanisms that underlie the dynamic changes of cell surface nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
|
17
|
McCloskey MC, Young TJ, Anderson SM. Research Article: The influence of acetylcholinesterase on anxiety- and depression-like behaviors in fluoxetine-treated male mice. ACTA ACUST UNITED AC 2017. [DOI: 10.1893/bios-d-15-00013.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Tyler J. Young
- Department of Biology, Saint Vincent College, Latrobe, PA 15650
| | | |
Collapse
|
18
|
George AA, Bloy A, Miwa JM, Lindstrom JM, Lukas RJ, Whiteaker P. Isoform-specific mechanisms of α3β4*-nicotinic acetylcholine receptor modulation by the prototoxin lynx1. FASEB J 2017; 31:1398-1420. [PMID: 28100642 DOI: 10.1096/fj.201600733r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 11/11/2022]
Abstract
This study investigates-for the first time to our knowledge-the existence and mechanisms of functional interactions between the endogenous mammalian prototoxin, lynx1, and α3- and β4-subunit-containing human nicotinic acetylcholine receptors (α3β4*-nAChRs). Concatenated gene constructs were used to express precisely defined α3β4*-nAChR isoforms (α3β4)2β4-, (α3β4)2α3-, (α3β4)2α5(398D)-, and (α3β4)2α5(398N)-nAChR in Xenopus oocytes. In the presence or absence of lynx1, α3β4*-nAChR agonist responses were recorded by using 2-electrode voltage clamp and single-channel electrophysiology, whereas radioimmunolabeling measured cell-surface expression. Lynx1 reduced (α3β4)2β4-nAChR function principally by lowering cell-surface expression, whereas single-channel effects were primarily responsible for reducing (α3β4)2α3-nAChR function [decreased unitary conductance (≥50%), altered burst proportions (3-fold reduction in the proportion of long bursts), and enhanced closed dwell times (3- to 6-fold increase)]. Alterations in both cell-surface expression and single-channel properties accounted for the reduction in (α3β4)2α5-nAChR function that was mediated by lynx1. No effects were observed when α3β4*-nAChRs were coexpressed with mutated lynx1 (control). Lynx1 is expressed in the habenulopeduncular tract, where α3β4*-α5*-nAChR subtypes are critical contributors to the balance between nicotine aversion and reward. This gives our findings a high likelihood of physiologic significance. The exquisite isoform selectivity of lynx1 interactions provides new insights into the mechanisms and allosteric sites [α(-)-interface containing] by which prototoxins can modulate nAChR function.-George, A. A., Bloy, A., Miwa, J. M., Lindstrom, J. M., Lukas, R. J., Whiteaker, P. Isoform-specific mechanisms of α3β4*-nicotinic acetylcholine receptor modulation by the prototoxin lynx1.
Collapse
Affiliation(s)
- Andrew A George
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA;
| | - Abigail Bloy
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.,Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
| | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Jon M Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
19
|
Nicotinic regulation of experience-dependent plasticity in visual cortex. ACTA ACUST UNITED AC 2016; 110:29-36. [PMID: 27840212 DOI: 10.1016/j.jphysparis.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/19/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022]
Abstract
While the cholinergic neuromodulatory system and muscarinic acetylcholine receptors (AChRs) have been appreciated as permissive factors for developmental critical period plasticity in visual cortex, it was unknown why plasticity becomes limited after the critical period even in the presence of massive cholinergic projections to visual cortex. In this review we highlighted the recent progresses that started to shed light on the role of the nicotinic cholinergic neuromodulatory signaling on limiting juvenile form of plasticity in the adult brain. We introduce the Lynx family of proteins and Lynx1 as its representative, as endogenous proteins structurally similar to α-bungarotoxin with the ability to bind and modulate nAChRs to effectively regulate functional and structural plasticity. Remarkably, Lynx family members are expressed in distinct subpopulations of GABAergic interneurons, placing them in unique positions to potentially regulate the convergence of GABAergic and nicotinic neuromodulatory systems to regulate plasticity. Continuing studies of the potentially differential roles of Lynx family of proteins may further our understanding of the fundamentals of molecular and cell type-specific mechanisms of plasticity that we may be able to harness through nicotinic cholinergic signaling.
Collapse
|
20
|
Arvaniti M, Jensen MM, Soni N, Wang H, Klein AB, Thiriet N, Pinborg LH, Muldoon PP, Wienecke J, Imad Damaj M, Kohlmeier KA, Gondré-Lewis MC, Mikkelsen JD, Thomsen MS. Functional interaction between Lypd6 and nicotinic acetylcholine receptors. J Neurochem 2016; 138:806-20. [PMID: 27344019 PMCID: PMC5017906 DOI: 10.1111/jnc.13718] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 01/15/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine-induced ERK phosphorylation and attenuates nicotine-induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain.
Collapse
Affiliation(s)
- Maria Arvaniti
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Majbrit M Jensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Neeraj Soni
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hong Wang
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Anders B Klein
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Thiriet
- Laboratory of Experimental and Clinical Neurosciences, University of Poitiers, Poitiers, France
| | - Lars H Pinborg
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Epilepsy Clinic, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Pretal P Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jacob Wienecke
- Department of Nutrition, Exercise and Sport & Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kristi A Kohlmeier
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Marjorie C Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Morten S Thomsen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark. .,Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
21
|
Lyukmanova EN, Shulepko MA, Shenkarev ZO, Bychkov ML, Paramonov AS, Chugunov AO, Kulbatskii DS, Arvaniti M, Dolejsi E, Schaer T, Arseniev AS, Efremov RG, Thomsen MS, Dolezal V, Bertrand D, Dolgikh DA, Kirpichnikov MP. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors. Sci Rep 2016; 6:30698. [PMID: 27485575 PMCID: PMC4971505 DOI: 10.1038/srep30698] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/06/2016] [Indexed: 11/12/2022] Open
Abstract
Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a 'three-finger' fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the 'classical' orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.
Collapse
Affiliation(s)
- E. N. Lyukmanova
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - M. A. Shulepko
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Z. O. Shenkarev
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - M. L. Bychkov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - A. S. Paramonov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - A. O. Chugunov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - D. S. Kulbatskii
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - M. Arvaniti
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Eva Dolejsi
- Institute of Physiology, Academy of Sciences of the Czech Republic (public research institution), Prague, 14220, Czech Republic
| | - T. Schaer
- HiQScreen Sàrl, 6 rte de Compois, 1222, Vésenaz, Geneva, Switzerland
| | - A. S. Arseniev
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - R. G. Efremov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - M. S. Thomsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - V. Dolezal
- Institute of Physiology, Academy of Sciences of the Czech Republic (public research institution), Prague, 14220, Czech Republic
| | - D. Bertrand
- HiQScreen Sàrl, 6 rte de Compois, 1222, Vésenaz, Geneva, Switzerland
| | - D. A. Dolgikh
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - M. P. Kirpichnikov
- Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
22
|
Shayahmetova DM, Zhevlenev ES, Mozhaev AA, Deyev IE, Petrenko AG. Genetic link between IRR-receptor and Ly6/PLAUR protein. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016040166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Faure G, Shelukhina IV, Porowinska D, Shulepko MA, Lyukmanova EN, Dolgikh DA, Spirova EN, Kasheverov IE, Utkin YN, Corringer JP, Tsetlin VI. Interaction of three-finger proteins from snake venoms and from mammalian brain with the cys-loop receptors and their models. DOKL BIOCHEM BIOPHYS 2016; 468:193-6. [DOI: 10.1134/s1607672916030091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 11/23/2022]
|
24
|
Thomsen MS, Arvaniti M, Jensen MM, Shulepko MA, Dolgikh DA, Pinborg LH, Härtig W, Lyukmanova EN, Mikkelsen JD. Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes. Neurobiol Aging 2016; 46:13-21. [PMID: 27460145 DOI: 10.1016/j.neurobiolaging.2016.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023]
Abstract
Lynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification to demonstrate that a water-soluble variant of human Lynx1 (Ws-Lynx1) isolates α3, α4, α5, α6, α7, β2, and β4 nAChR subunits from human and rat cortical extracts, and rat midbrain and olfactory bulb extracts, suggesting that Lynx1 forms complexes with multiple nAChR subtypes in the human and rodent brain. Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal-regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 nAChRs, suggesting that Lynx1 can affect the function of native non-α7, non-α4β2 nAChR subtypes. We further show that Lynx1 and oligomeric β-amyloid1-42 compete for binding to several nAChR subunits, that Ws-Lynx1 prevents β-amyloid1-42-induced cytotoxicity in cortical neurons, and that cortical Lynx1 levels are decreased in a transgenic mouse model with concomitant β-amyloid and tau pathology. Our data suggest that Lynx1 binds to multiple nAChR subtypes in the brain and that this interaction might have functional and pathophysiological implications in relation to Alzheimer's disease.
Collapse
Affiliation(s)
- Morten S Thomsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark; Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Maria Arvaniti
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Majbrit M Jensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Mikhail A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Lars H Pinborg
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark; Epilepsy Clinic, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
25
|
Ochoa V, George AA, Nishi R, Whiteaker P. The prototoxin LYPD6B modulates heteromeric α3β4-containing nicotinic acetylcholine receptors, but not α7 homomers. FASEB J 2016; 30:1109-19. [PMID: 26586467 PMCID: PMC4750422 DOI: 10.1096/fj.15-274548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022]
Abstract
Prototoxins are a diverse family of membrane-tethered molecules expressed in the nervous system that modulate nicotinic cholinergic signaling, but their functions and specificity have yet to be completely explored. We tested the selectivity and efficacy of leukocyte antigen, PLAUR (plasminogen activator, urokinase receptor) domain-containing (LYPD)-6B on α3β4-, α3α5β4-, and α7-containing nicotinic acetylcholine receptors (nAChRs). To constrain stoichiometry, fusion proteins encoding concatemers of human α3, β4, and α5 (D and N variants) subunits were expressed in Xenopus laevis oocytes and tested with or without LYPD6B. We used the 2-electrode voltage-clamp method to quantify responses to acetylcholine (ACh): agonist sensitivity (EC50), maximal agonist-induced current (Imax), and time constant (τ) of desensitization. For β4-α3-α3-β4-α3 and β4-α3-β4-α3-α3, LYPD6B decreased EC50 from 631 to 79 μM, reduced Imax by at least 59%, and decreased τ. For β4-α3-α5D-β4-α3 and β4-α3-β4-α-α5D, LYPD6B decreased Imax by 63 and 32%, respectively. Thus, LYPD6B acted only on (α3)3(β4)2 and (α3)2(α5D)(β4)2 and did not affect the properties of (α3)2(β4)3, α7, or (α3)2(α5N)(β4)2 nAChRs. Therefore, LYPD6B acts as a mixed modulator that enhances the sensitivity of (α3)3(β4)2 nAChRs to ACh while reducing ACh-induced whole-cell currents. LYPD6B also negatively modulates α3β4 nAChRs that include the α5D common human variant, but not the N variant associated with nicotine dependence.
Collapse
Affiliation(s)
- Vanessa Ochoa
- *Neuroscience Graduate Program, Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA; and Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Andrew A George
- *Neuroscience Graduate Program, Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA; and Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Rae Nishi
- *Neuroscience Graduate Program, Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA; and Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Paul Whiteaker
- *Neuroscience Graduate Program, Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA; and Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
26
|
Lyukmanova EN, Shulepko MA, Kudryavtsev D, Bychkov ML, Kulbatskii DS, Kasheverov IE, Astapova MV, Feofanov AV, Thomsen MS, Mikkelsen JD, Shenkarev ZO, Tsetlin VI, Dolgikh DA, Kirpichnikov MP. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor. PLoS One 2016; 11:e0149733. [PMID: 26905431 PMCID: PMC4764493 DOI: 10.1371/journal.pone.0149733] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/04/2016] [Indexed: 11/28/2022] Open
Abstract
SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,—non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that the antiproliferative activity of SLURP-1 is related to ‘metabotropic’ signaling pathway through α7-nAChR, that activates intracellular signaling cascades without opening the receptor channel.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- * E-mail:
| | - Mikhail A. Shulepko
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Denis Kudryavtsev
- Department of Molecular Basics of Neurosignalling, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Maxim L. Bychkov
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitrii S. Kulbatskii
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor E. Kasheverov
- Department of Molecular Basics of Neurosignalling, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Maria V. Astapova
- Department of Structural Biology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey V. Feofanov
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Structural Biology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Morten S. Thomsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Neurobiology Research Unit, University Hospital, Copenhagen, Copenhagen, Denmark
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, University Hospital, Copenhagen, Copenhagen, Denmark
| | - Zakhar O. Shenkarev
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Structural Biology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russian Federation
| | - Victor I. Tsetlin
- Department of Molecular Basics of Neurosignalling, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry A. Dolgikh
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mikhail P. Kirpichnikov
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Bioengineering, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
27
|
Abstract
Lung cancers express an autocrine cholinergic loop in which secreted acetylcholine can stimulate tumor growth through both nicotinic and muscarinic receptors. Because activation of mAChR and nAChR stimulates growth; tumor growth can be stimulated by both locally synthesized acetylcholine as well as acetylcholine from distal sources and from nicotine in the high percentage of lung cancer patients who are smokers. The stimulation of lung cancer growth by cholinergic agonists offers many potential new targets for lung cancer therapy. Cholinergic signaling can be targeted at the level of choline transport; acetylcholine synthesis, secretion and degradation; and nicotinic and muscarinic receptors. In addition, the newly describe family of ly-6 allosteric modulators of nicotinic signaling such as lynx1 and lynx2 offers yet another new approach to novel lung cancer therapeutics. Each of these targets has their potential advantages and disadvantages for the development of new lung cancer therapies which are discussed in this review.
Collapse
Affiliation(s)
- Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States.
| |
Collapse
|
28
|
Ly6h regulates trafficking of alpha7 nicotinic acetylcholine receptors and nicotine-induced potentiation of glutamatergic signaling. J Neurosci 2015; 35:3420-30. [PMID: 25716842 DOI: 10.1523/jneurosci.3630-14.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
α7 nAChRs are expressed widely throughout the brain, where they are important for synaptic signaling, gene transcription, and plastic changes that regulate sensory processing, cognition, and neural responses to chronic nicotine exposure. However, the mechanisms by which α7 nAChRs are regulated are poorly understood. Here we show that trafficking of α7-subunits is controlled by endogenous membrane-associated prototoxins in the Ly6 family. In particular, we find that Ly6h reduces cell-surface expression and calcium signaling by α7 nAChRs. We detect Ly6h in several rat brain regions, including the hippocampus, where we find it is both necessary and sufficient to limit the magnitude of α7-mediated currents. Consistent with such a regulatory function, knockdown of Ly6h in rat hippocampal pyramidal neurons enhances nicotine-induced potentiation of glutamatergic mEPSC amplitude, which is known to be mediated by α7 signaling. Collectively our data suggest a novel cellular role for Ly6 proteins in regulating nAChRs, which may be relevant to plastic changes in the nervous system including rewiring of glutamatergic circuitry during nicotine addiction.
Collapse
|
29
|
Role of Lynx1 and related Ly6 proteins as modulators of cholinergic signaling in normal and neoplastic bronchial epithelium. Int Immunopharmacol 2015; 29:93-8. [PMID: 26025503 DOI: 10.1016/j.intimp.2015.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 01/05/2023]
Abstract
The ly-6 proteins are a large family of proteins that resemble the snake three finger alpha toxins such as α-bungarotoxin and are defined by their multiple cysteine residues. Multiple members of the ly-6 protein family can modulate nicotinic signaling including lynx1, lynx2, slurp-1, slurp-2 and prostate stem cell antigen (PSCA). Consistent with the expression of multiple nicotinic receptors in bronchial epithelium, multiple members of the nicotinic-modulatory ly-6 proteins are expressed in lung including lynx1 and lynx2. We studied the role of lynx1 as an exemplar of the role of ly-6 proteins in lung. Our data demonstrates that lynx1 acts as a negative modulator of nicotinic signaling in normal and neoplastic lung. In normal lung lynx1 serves to limit the ability of chronic nicotine exposure to increase levels of nicotinic receptors and also serves to limit the ability of nicotine to upregulate levels of GABAA receptors in lung. In turn this allows lynx1 to limit the ability of nicotine to upregulate levels of mucin which is mediated by GABAergic signaling. This suggests that lynx1-mimetics may have potential for treatment of asthma and COPD. In that most lung cancer cells also express nicotinic receptor and lynx1 we examined the role of lynx-1 in lung cancer. Lynx1 levels are decreased in lung cancers compared to adjacent normal lung. Knockdown of lynx1 by siRNAs increased growth of lung cancer cells while expression of lynx1 in lung cancer cell decreased cell proliferation. This suggests that lynx1 is an endogenous regulator of lung cancer growth. Given that multiple small molecule negative and positive allosteric modulators of nicotinic receptors have already been developed, this suggests that lynx1 is a highly druggable target both for development of drugs that may limit lung cancer growth as well as for drugs that may be effective for asthma or COPD treatment.
Collapse
|
30
|
Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins. Toxins (Basel) 2015; 7:1683-701. [PMID: 26008231 PMCID: PMC4448168 DOI: 10.3390/toxins7051683] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.
Collapse
|
31
|
Henderson BJ, Lester HA. Inside-out neuropharmacology of nicotinic drugs. Neuropharmacology 2015; 96:178-93. [PMID: 25660637 DOI: 10.1016/j.neuropharm.2015.01.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 02/05/2023]
Abstract
Upregulation of neuronal nicotinic acetylcholine receptors (AChRs) is a venerable result of chronic exposure to nicotine; but it is one of several consequences of pharmacological chaperoning by nicotine and by some other nicotinic ligands, especially agonists. Nicotinic ligands permeate through cell membranes, bind to immature AChR oligomers, elicit incompletely understood conformational reorganizations, increase the interaction between adjacent AChR subunits, and enhance the maturation process toward stable AChR pentamers. These changes and stabilizations in turn lead to increases in both anterograde and retrograde traffic within the early secretory pathway. In addition to the eventual upregulation of AChRs at the plasma membrane, other effects of pharmacological chaperoning include modifications to endoplasmic reticulum stress and to the unfolded protein response. Because these processes depend on pharmacological chaperoning within intracellular organelles, we group them as "inside-out pharmacology". This term contrasts with the better-known, acute, "outside-in" effects of activating and desensitizing plasma membrane AChRs. We review current knowledge concerning the mechanisms and consequences of inside-out pharmacology. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Brandon J Henderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
32
|
Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators. Trends Pharmacol Sci 2014; 36:109-23. [PMID: 25528970 DOI: 10.1016/j.tips.2014.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
Abstract
Snake venom neurotoxins and lymphocyte antigen 6 (Ly6) proteins, most of the latter being membrane tethered by a glycosylphosphatidylinositol (GPI) anchor, have a variety of biological activities, but their three-finger (3F) folding combines them in one Ly6/neurotoxin family. Subsets of two groups, represented by α-neurotoxins and Lynx1, respectively, interact with nicotinic acetylcholine receptors (nAChR) and, hence, are of therapeutic interest for the treatment of neurodegenerative diseases, pain, and cancer. Information on the mechanisms of action and 3D structure of the binding sites, which is required for drug design, is available from the 3D structure of α-neurotoxin complexes with nAChR models. Here, I compare the structural and functional features of α-neurotoxins versus Lynx1 and its homologs to get a clearer picture of Lynx1-nAChR interactions that is necessary for fundamental science and practical applications.
Collapse
|
33
|
Nichols WA, Henderson BJ, Yu C, Parker RL, Richards CI, Lester HA, Miwa JM. Lynx1 shifts α4β2 nicotinic receptor subunit stoichiometry by affecting assembly in the endoplasmic reticulum. J Biol Chem 2014; 289:31423-32. [PMID: 25193667 PMCID: PMC4223341 DOI: 10.1074/jbc.m114.573667] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/30/2014] [Indexed: 01/11/2023] Open
Abstract
Glycosylphosphatidylinositol-anchored neurotoxin-like receptor binding proteins, such as lynx modulators, are topologically positioned to exert pharmacological effects by binding to the extracellular portion of nAChRs. These actions are generally thought to proceed when both lynx and the nAChRs are on the plasma membrane. Here, we demonstrate that lynx1 also exerts effects on α4β2 nAChRs within the endoplasmic reticulum. Lynx1 affects assembly of nascent α4 and β2 subunits and alters the stoichiometry of the receptor population that reaches the plasma membrane. Additionally, these data suggest that lynx1 shifts nAChR stoichiometry to low sensitivity (α4)3(β2)2 pentamers primarily through this interaction in the endoplasmic reticulum, rather than solely via direct modulation of activity on the plasma membrane. To our knowledge, these data represent the first test of the hypothesis that a lynx family member, or indeed any glycosylphosphatidylinositol-anchored protein, could act within the cell to alter assembly of a multisubunit protein.
Collapse
Affiliation(s)
- Weston A Nichols
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brandon J Henderson
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Caroline Yu
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Rell L Parker
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | | | - Henry A Lester
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Julie M Miwa
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
34
|
Demars MP, Morishita H. Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors. Mol Brain 2014; 7:75. [PMID: 25359633 PMCID: PMC4228157 DOI: 10.1186/s13041-014-0075-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inhibition from GABAergic interneurons in brain circuits is a critical component of cognitive function. This inhibition is regulated through a diverse network of neuromodulation. A number of recent studies suggest that one of the major regulators of interneuron function is nicotinic acetylcholinergic transmission and dysregulation of both systems is common in psychiatric conditions. However, how nicotinic modulation impacts specific subpopulations of diverse GABAergic interneurons remains in question. One potential way of conferring specificity to the convergence of GABAergic and nicotinic signaling is through the expression of a unique family of nicotinic acetycholine receptor modulators, the Lynx family. The present study sought to identify members of the Lynx family enriched in cortical interneurons and to elucidate subpopulations of GABAergic neurons that express unique nicotinic modulators. RESULTS We utilize double fluorescence in situ hybridization to examine the interneuronal expression of the Lynx family in adult mouse visual cortex. We find that two of the Lynx family members, Lynx1 and Lypd6, are enriched in interneuron populations in cortex. Nearly all parvalbumin interneurons express Lynx1 but we did not detect Lypd6 in this population. Conversely, in somatostatin interneurons Lypd6 was found in a subset localized to deep cortical layers but no somatostatin neurons show detectable levels of Lynx1. Using a combination of genetic and viral manipulations we further show that a subpopulation of deep-layer cortico-cortical long-range somatostatin neurons also express Lypd6. CONCLUSIONS This work shows that distinct subpopulations of GABAergic interneurons express unique Lynx family members. The pattern of expression of Lynx family members within interneurons places them in a unique position to potentially regulate the convergence of GABAergic and nicotinic systems, dysfunction of which are characteristic of psychiatric disorders.
Collapse
Affiliation(s)
- Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
35
|
Henderson BJ, Srinivasan R, Nichols WA, Dilworth CN, Gutierrez DF, Mackey EDW, McKinney S, Drenan RM, Richards CI, Lester HA. Nicotine exploits a COPI-mediated process for chaperone-mediated up-regulation of its receptors. ACTA ACUST UNITED AC 2014; 143:51-66. [PMID: 24378908 PMCID: PMC3874574 DOI: 10.1085/jgp.201311102] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic exposure to nicotine up-regulates high sensitivity nicotinic acetylcholine receptors (nAChRs) in the brain. This up-regulation partially underlies addiction and may also contribute to protection against Parkinson's disease. nAChRs containing the α6 subunit (α6* nAChRs) are expressed in neurons in several brain regions, but comparatively little is known about the effect of chronic nicotine on these nAChRs. We report here that nicotine up-regulates α6* nAChRs in several mouse brain regions (substantia nigra pars compacta, ventral tegmental area, medial habenula, and superior colliculus) and in neuroblastoma 2a cells. We present evidence that a coat protein complex I (COPI)-mediated process mediates this up-regulation of α6* or α4* nAChRs but does not participate in basal trafficking. We show that α6β2β3 nAChR up-regulation is prevented by mutating a putative COPI-binding motif in the β3 subunit or by inhibiting COPI. Similarly, a COPI-dependent process is required for up-regulation of α4β2 nAChRs by chronic nicotine but not for basal trafficking. Mutation of the putative COPI-binding motif or inhibition of COPI also results in reduced normalized Förster resonance energy transfer between α6β2β3 nAChRs and εCOP subunits. The discovery that nicotine exploits a COPI-dependent process to chaperone high sensitivity nAChRs is novel and suggests that this may be a common mechanism in the up-regulation of nAChRs in response to chronic nicotine.
Collapse
Affiliation(s)
- Brandon J Henderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kobayashi A, Parker RL, Wright AP, Brahem H, Ku P, Oliver KM, Walz A, Lester HA, Miwa JM. Lynx1 supports neuronal health in the mouse dorsal striatum during aging: an ultrastructural investigation. J Mol Neurosci 2014; 53:525-36. [PMID: 25027556 DOI: 10.1007/s12031-014-0352-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Nicotinic acetylcholine receptors have been shown to participate in neuroprotection in the aging brain. Lynx protein modulators dampen the activity of the cholinergic system through direct interaction with nicotinic receptors. Although lynx1 null mutant mice exhibit augmented learning and plasticity, they also exhibit macroscopic vacuolation in the dorsal striatum as they age, detectable at the optical microscope level. Despite the relevance of the lynx1 gene to brain function, little is known about the cellular ultrastructure of these age-related changes. In this study, we assessed degeneration in the dorsal striatum in 1-, 3-, 7-, and 13-month-old mice, using optical and transmission electron microscopy. We observed a loss of nerve fibers, a breakdown in nerve fiber bundles, and a loss of neuronal nuclei in the 13-month-old lynx1 null striatum. At higher magnification, these nerve fibers displayed intracellular vacuoles and disordered myelin sheaths. Few or none of these morphological alterations were present in younger lynx1 null mutant mice or in heterozygous lynx1 null mutant mice at any age. These data indicate that neuronal health can be maintained by titrating lynx1 dosage and that the lynx1 gene may participate in a trade-off between neuroprotection and augmented learning.
Collapse
Affiliation(s)
- Atsuko Kobayashi
- Biology Division, California Institute of Technology, MC156-29, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nicotinic acetylcholine receptors in attention circuitry: the role of layer VI neurons of prefrontal cortex. Cell Mol Life Sci 2014; 71:1225-44. [PMID: 24122021 PMCID: PMC3949016 DOI: 10.1007/s00018-013-1481-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 12/15/2022]
Abstract
Cholinergic modulation of prefrontal cortex is essential for attention. In essence, it focuses the mind on relevant, transient stimuli in support of goal-directed behavior. The excitation of prefrontal layer VI neurons through nicotinic acetylcholine receptors optimizes local and top-down control of attention. Layer VI of prefrontal cortex is the origin of a dense feedback projection to the thalamus and is one of only a handful of brain regions that express the α5 nicotinic receptor subunit, encoded by the gene chrna5. This accessory nicotinic receptor subunit alters the properties of high-affinity nicotinic receptors in layer VI pyramidal neurons in both development and adulthood. Studies investigating the consequences of genetic deletion of α5, as well as other disruptions to nicotinic receptors, find attention deficits together with altered cholinergic excitation of layer VI neurons and aberrant neuronal morphology. Nicotinic receptors in prefrontal layer VI neurons play an essential role in focusing attention under challenging circumstances. In this regard, they do not act in isolation, but rather in concert with cholinergic receptors in other parts of prefrontal circuitry. This review urges an intensification of focus on the cellular mechanisms and plasticity of prefrontal attention circuitry. Disruptions in attention are one of the greatest contributing factors to disease burden in psychiatric and neurological disorders, and enhancing attention may require different approaches in the normal and disordered prefrontal cortex.
Collapse
|
38
|
Pandya AA, Yakel JL. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochem Pharmacol 2013; 86:1054-62. [PMID: 23732296 PMCID: PMC3797251 DOI: 10.1016/j.bcp.2013.05.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation-conducting transmembrane channels from the cys-loop receptor superfamily. The neuronal subtypes of these receptors (e.g. the α7 and α4β2 subtypes) are involved in neurobehavioral processes such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and a number of cognitive functions like learning and memory. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders, and behavioral studies in animals are useful models to assess the effects of compounds that act on these receptors. Allosteric modulators are ligands that bind to the receptors at sites other than the orthosteric site where acetylcholine, the endogenous agonist for the nAChRs, binds. While conventional ligands for the neuronal nAChRs have been studied for their behavioral effects in animals, allosteric modulators for these receptors have only recently gained attention, and research on their behavioral effects is growing rapidly. Here we will discuss the behavioral effects of allosteric modulators of the neuronal nAChRs.
Collapse
Affiliation(s)
- Anshul A Pandya
- Chukchi Campus, Department of Bio-science, College of Rural and Community Development, University of Alaska Fairbanks, P.O. Box 297, Kotzebue, AK 99752-0297, USA.
| | | |
Collapse
|
39
|
Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated. Brain Struct Funct 2013; 219:1923-34. [DOI: 10.1007/s00429-013-0611-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
|
40
|
Sieck GC. Communicating with our external and internal environments. Physiology (Bethesda) 2012; 27:185-6. [PMID: 22875449 DOI: 10.1152/physiol.00031.2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|