1
|
Guan G, Chen Y, Dong Y. Unraveling the AMPK-SIRT1-FOXO Pathway: The In-Depth Analysis and Breakthrough Prospects of Oxidative Stress-Induced Diseases. Antioxidants (Basel) 2025; 14:70. [PMID: 39857404 PMCID: PMC11763278 DOI: 10.3390/antiox14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS) refers to the production of a substantial amount of reactive oxygen species (ROS), leading to cellular and organ damage. This imbalance between oxidant and antioxidant activity contributes to various diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative conditions. The body's antioxidant system, mediated by various signaling pathways, includes the AMPK-SIRT1-FOXO pathway. In oxidative stress conditions, AMPK, an energy sensor, activates SIRT1, which in turn stimulates the FOXO transcription factor. This cascade enhances mitochondrial function, reduces mitochondrial damage, and mitigates OS-induced cellular injury. This review provides a comprehensive analysis of the biological roles, regulatory mechanisms, and functions of the AMPK-SIRT1-FOXO pathway in diseases influenced by OS, offering new insights and methods for understanding OS pathogenesis and its therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; (G.G.); (Y.C.)
| |
Collapse
|
2
|
Jiang S, Zhang C, Pan X, Storey KB, Zhang W. Distinct metabolic responses to thermal stress between invasive freshwater turtle Trachemys scripta elegans and native freshwater turtles in China. Integr Zool 2024; 19:1057-1075. [PMID: 38169086 DOI: 10.1111/1749-4877.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Different responses or tolerance to thermal stress between invasive and native species can affect the outcome of interactions between climate change and biological invasion. However, knowledge about the physiological mechanisms that modulate the interspecific differences in thermal tolerance is limited. The present study analyzes the metabolic responses to thermal stress by the globally invasive turtle, Trachemys scripta elegans, as compared with two co-occurring native turtle species in China, Pelodiscus sinensis and Mauremys reevesii. Changes in metabolite contents and the expression or enzyme activities of genes involved in energy sensing, glucose metabolism, lipid metabolism, and tricarboxylic acid (TCA) cycle after exposure to gradient temperatures were assessed in turtle juveniles. Invasive and native turtles showed distinct metabolic responses to thermal stress. T. scripta elegans showed greater transcriptional regulation of energy sensors than the native turtles. Enhanced anaerobic metabolism was needed by all three species under extreme heat conditions, but phosphoenolpyruvate carboxykinase and lactate dehydrogenase in the invader showed stronger upregulation or stable responses than the native species, which showed inhibition by high temperatures. These contrasts were pronounced in the muscles of the three species. Regulation of lipid metabolism was observed in both T. scripta elegans and P. sinensis but not in M. reevesii under thermal stress. Thermal stress did not inhibit the TCA cycle in turtles. Different metabolic responses to thermal stress may contribute to interspecific differences in thermal tolerance. Overall, our study further suggested the potential role of physiological differences in mediating interactions between climate change and biological invasion.
Collapse
Affiliation(s)
- Shufen Jiang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Changyi Zhang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xiao Pan
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Wenyi Zhang
- Research Center of Herpetology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Barron D, Ratinaud Y, Rambousek S, Brinon B, Naranjo Pinta M, Sanders MJ, Sakamoto K, Ciclet O. Unambiguous Characterization of Commercial Natural (Dihydro)phenanthrene Compounds Is Vital in the Discovery of AMPK Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14993-15004. [PMID: 38896806 DOI: 10.1021/acs.jafc.4c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
These days, easy access to commercially available (poly)phenolic compounds has expanded the scope of potential research beyond the field of chemistry, particularly in the area of their bioactivity. However, the quality of these compounds is often overlooked or not even considered. This issue is illustrated in this study through the example of (dihydro)phenanthrenes, a group of natural products present in yams, as AMP-activated protein kinase (AMPK) activators. A study conducted in our group on a series of compounds, fully characterized using a combination of chemical synthesis, NMR and MS techniques, provided evidence that the conclusions of a previous study were erroneous, likely due to the use of a misidentified commercial compound by its supplier. Furthermore, we demonstrated that additional representatives of the (dihydro)phenanthrene phytochemical classes were able to directly activate AMPK, avoiding the risk of misinterpretation of results based on analysis of a single compound alone.
Collapse
Affiliation(s)
- Denis Barron
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Yann Ratinaud
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Simona Rambousek
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Benjamin Brinon
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | | | - Matthew J Sanders
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Kei Sakamoto
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Olivier Ciclet
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Abasubong KP, Jiang GZ, Guo HX, Wang X, Huang YY, Li XF, Yan-Zou D, Liu WB, Desouky HE. Effects of a high-fat and high-carbohydrate diet on appetite regulation and central AMPK in the hypothalamus of blunt snout bream (Megalobrama amblycephala). J Anim Physiol Anim Nutr (Berl) 2024; 108:480-492. [PMID: 38014877 DOI: 10.1111/jpn.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a sensor of cellular energy changes and controls food intake. This study investigates the effect of a high-calorie diet (high fat diet [HFD], high carbohydrate diet [HCD] and high energy diet [HED]) on appetite and central AMPK in blunt snout bream. In the present study, fish (average initial weight 45.84 ± 0.07 g) were fed the control, HFD, HCD and HED in four replicates for 12 weeks. At the end of the feeding trial, the result showed that body mass index, specific growth rate, feed efficiency ratio and feed intake were not affected (p > 0.05) by dietary treatment. However, fish fed the HFD obtained a significantly higher (p < 0.05) lipid productive value, lipid gain and lipid intake than those fed the control diet, but no significant difference was attributed to others. Also, a significantly higher (p < 0.05) energy intake content was found in fish-fed HFD, HCD and HED than those given the control diet. Long-term HFD and HCD feeding significantly increased (p < 0.05) plasma glucose, glycated serum protein, advanced glycation end product, insulin and leptin content levels than the control group. Moreover, a significantly lower (p < 0.05) complex 1, 2 and 3 content was found in fish-fed HFD and HCD than in the control, but no differences (p > 0.05) were attributed to those in HED. Fish-fed HED significantly upregulated (p < 0.05) hypothalamic ampα 1 and ampα 2 expression, whereas the opposite trend was observed in the hypothalamic mammalian target of rapamycin than those in HFD and HCD compared to the control. However, hypothalamic neuropeptide y, peroxisome proliferator-activated receptor α (pparα), acetyl-coa oxidase and carnitine palmitoyltransferase 1 were significantly upregulated (p < 0.05) in the HCD group, while the opposite was seen in cholecystokinin expression compared to those in the control group. Our findings indicated that the central AMPK signal pathway and appetite were modulated according to the diet's energy level to regulate nutritional status and maintain energy homoeostasis in fish.
Collapse
Affiliation(s)
- Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Dong Yan-Zou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hesham Eed Desouky
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Laboratory of Animal Science, Nanjing Agricultural University, Nanjing, People's Republic of China
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| |
Collapse
|
6
|
He X, Xu J, Liu Y, Guo X, Wei W, Xing C, Zhang H, Wang H, Liu M, Jiang R. Explorations on Key Module and Hub Genes Affecting IMP Content of Chicken Pectoralis Major Muscle Based on WGCNA. Animals (Basel) 2024; 14:402. [PMID: 38338044 PMCID: PMC10854493 DOI: 10.3390/ani14030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Inosine monophosphate (IMP) is a substance that enhances flavor and plays a crucial role in the umami taste of chicken muscle. It is also an influential factor in determining chicken's economic value. However, the molecular regulatory network underlying the IMP content in muscle remains unclear. To address this issue, we performed transcriptome sequencing on 20 pectoralis major muscle samples from 120-day-old Guangde feathered-leg chicken and used weighted gene co-expression network analysis (WGCNA) to identify key regulatory factors that influence IMP content. The weighted gene co-expression network was constructed using a total of 16,344 genes, leading to the identification of 20 co-expression gene modules. Among the modules that were identified, it was observed that the purple module (R = -0.51, p = 0.02) showed a significant negative correlation with the IMP content. This suggests that the genes within the purple module had the ability to regulate the IMP content. A total of 68 hub genes were identified in the purple module through gene significance (GS) > 0.2 and module membership (MM) > 0.8. The STRING database was used for a protein-protein interaction (PPI) network of hub genes. Furthermore, troponin I type 1 (TNNI1), myozenin 2 (MYOZ2), myosin light chain 2 regulatory cardiac slow (MYL2), and myosin light chain 3 regulatory cardiac slow (MYL3) involved in the "ATP-dependent activity", "cAMP signaling pathway" and "cGMP-PKG signaling pathway" were identified as central regulators that contribute to IMP content. These results offer valuable information into the gene expression and regulation that affects IMP content in muscle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.H.); (J.X.); (Y.L.); (X.G.); (W.W.); (C.X.); (H.Z.); (H.W.); (M.L.)
| |
Collapse
|
7
|
Cescon M, Gambarotta G, Calabrò S, Cicconetti C, Anselmi F, Kankowski S, Lang L, Basic M, Bleich A, Bolsega S, Steglich M, Oliviero S, Raimondo S, Bizzotto D, Haastert-Talini K, Ronchi G. Gut microbiota depletion delays somatic peripheral nerve development and impairs neuromuscular junction maturation. Gut Microbes 2024; 16:2363015. [PMID: 38845453 PMCID: PMC11164225 DOI: 10.1080/19490976.2024.2363015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'
Collapse
Affiliation(s)
- Matilde Cescon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Sonia Calabrò
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Chiara Cicconetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Anselmi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Luisa Lang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Silvia Bolsega
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Matthias Steglich
- Research Core Unit Genomics, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Centre for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
8
|
Li Y, Zhou T, Zhuang J, Dai Y, Zhang X, Bai S, Zhao B, Tang X, Wu X, Chen Y. Effects of feeding restriction on skeletal muscle development and functional analysis of TNNI1 in New Zealand white rabbits. Anim Biotechnol 2023; 34:4435-4447. [PMID: 36520026 DOI: 10.1080/10495398.2022.2155662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While restricting nutrition can improve diseases related to the digestive tract, excessive restriction of food intake can also lead to malnutrition and delayed physical growth. Therefore, this brings the demand to study the effect and potential mechanism of restricted feeding on skeletal muscle development in rabbits. This study utilized hematoxylin-eosin (HE) staining to detect muscle fiber area which depicted significant reduction in skeletal muscle fiber upon 30% feed restriction (p < 0.05). The control group and 30% feed restricted group showed 615 deferentially expressed genes (DEGs). Through the GO and KEGG functional enrichment analysis demonstrated 28 DEGs related to muscle development. KEGG analysis showed enrichment of pathways including PI3K/Akt signaling pathway, MAPK signaling pathway, and Hedgehog signaling pathway. Further, the full length of troponin I1, slow skeletal type (TNNI1) was cloned. We studied the expression of skeletal muscle differentiation-related genes such as MyoD, Myf5 gene and Desmin. Specifically, the TNNI1 gene overexpression and knockdown studies were conducted. The over-expression of TNNI1 significantly enhanced the expression of the skeletal muscle development-related genes. Contrastingly, the silencing of TNNI1 gene reduced the expression significantly. These findings showed that TNNI1 may be a regulator for regulating the expression of muscle development-related genes.
Collapse
Affiliation(s)
- Yunpeng Li
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Tong Zhou
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Junyi Zhuang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Xianwei Tang
- Jiangsu Pizhou Orient Breeding Co., Ltd, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| |
Collapse
|
9
|
Areta JL. Physical performance during energy deficiency in humans: An evolutionary perspective. Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111473. [PMID: 37406958 DOI: 10.1016/j.cbpa.2023.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Energy deficiency profoundly disrupts normal endocrinology, metabolism, and physiology, resulting in an orchestrated response for energy preservation. As such, despite energy deficit is typically thought as positive for weight-loss and treatment of cardiometabolic diseases during the current obesity pandemic, in the context of contemporary sports and exercise nutrition, chronic energy deficiency is associated to negative health and athletic performance consequences. However, the evidence of energy deficit negatively affecting physical capacity and sports performance is unclear. While severe energy deficiency can negatively affect physical capacity, humans can also improve aerobic fitness and strength while facing significant energy deficit. Many athletes, also, compete at an elite and world-class level despite showing clear signs of energy deficiency. Maintenance of high physical capacity despite the suppression of energetically demanding physiological traits seems paradoxical when an evolutionary viewpoint is not considered. Humans have evolved facing intermittent periods of food scarcity in their natural habitat and are able to thrive in it. In the current perspective it is argued that when facing limited energy availability, maintenance of locomotion and physical capacity are of high priority given that they are essential for food procurement for survival in the habitat where humans evolved. When energetic resources are limited, energy may be allocated to tasks essential for survival (e.g. locomotion) while minimising energy allocation to traits that are not (e.g. growth and reproduction). The current perspective provides a model of energy allocation during energy scarcity supported by observation of physiological and metabolic responses that are congruent with this paradigm.
Collapse
Affiliation(s)
- José L Areta
- Research Institute for Sport and Exercise Sciences, School of Sport and Exercise Sciences, Liverpool John Moores University, UK.
| |
Collapse
|
10
|
Zhou Z, Zhao J, de Cruz CR, Xu H, Wang L, Xu Q. Alpha-ketoglutaric acid mitigates the detrimental effects of soy antigenic protein on the intestinal health and growth performance of Mirror carp Cyprinus carpio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:951-965. [PMID: 37665506 DOI: 10.1007/s10695-023-01234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
The study investigated the alleviated effects of Alpha-ketoglutaric acid (AKG) on the intestinal health of mirror carp (Cyprinus carpio Songpu) caused by soy antigenic protein. The diets were formulated from fishmeal (CON), 50% soybean meal (SBM), the mixture of glycinin and β-conglycinin (11 + 7S) and adding 1% AKG in the 11 + 7S (AKG). Carp (~ 4 g) in triplicate (30 fish per tank) was fed to apparent satiation thrice a day for six weeks. Compared with CON, SBM treatment resulted in significantly poor growth performance (P < 0.05), whereas 11 + 7S and AKG treatments were not significantly different from CON (P > 0.05). Gene expression of tumor necrosis factor (TNF-α) and interleukin-1 β (IL-1β) in proximal intestines (PI) and distal intestines (DI) were increased (P < 0.05), and transforming growth factor (TGF-β) in PI and middle intestines (MI) was decreased (P < 0.05) in both SBM and 11 + 7S. The caspase-3 in DI increased in SBM (P < 0.05) and the caspase-3 and caspase-9 in DI increased in 11 + 7S (P < 0.05); conversely, TGF-β in PI and MI was increased, TNF-α and IL-1β in the MI, caspase-3, and caspase-9 in DI was decreased in AKG (P < 0.05). The TOR (target of rapamycin) in PI and MI, ACC in PI, MI and DI was decreased in SBM (P < 0.05), the AMPK in the PI and DI, TOR in PI, MI and DI, ACC in PI and DI, 4E-BP in DI was reduced in 11 + 7S (P < 0.05). AMPK in the PI and DI, ACC in the PI and MI, TOR in PI, MI, and DI, 4E-BP in PI and DI was recovered by AKG supplementation (P < 0.05). Lipids and lipid-like metabolism, organic acids and derivatives metabolism increased in AKG dietary treatment. In conclusion, AKG reduces the expression of intestinal inflammation and apoptosis pathway and changes glycerophospholipid metabolism and sphingolipid metabolism in the intestine of fish.
Collapse
Affiliation(s)
- Zuliang Zhou
- College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China
- Guangdong HAID Group Co., Ltd, Guangzhou, 511400, China
| | - Jianhua Zhao
- College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China
| | - Clement R de Cruz
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hong Xu
- College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China
| | - Liansheng Wang
- Animal Nutrition Laboratory, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Qiyou Xu
- College of Life Sciences, Huzhou University, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, 313000, China.
| |
Collapse
|
11
|
Negoita F, Addinsall AB, Hellberg K, Bringas CF, Hafen PS, Sermersheim TJ, Agerholm M, Lewis CTA, Ahwazi D, Ling NXY, Larsen JK, Deshmukh AS, Hossain MA, Oakhill JS, Ochala J, Brault JJ, Sankar U, Drewry DH, Scott JW, Witczak CA, Sakamoto K. CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle. Mol Metab 2023; 75:101761. [PMID: 37380024 PMCID: PMC10362367 DOI: 10.1016/j.molmet.2023.101761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE The AMP-activated protein kinase (AMPK) gets activated in response to energetic stress such as contractions and plays a vital role in regulating various metabolic processes such as insulin-independent glucose uptake in skeletal muscle. The main upstream kinase that activates AMPK through phosphorylation of α-AMPK Thr172 in skeletal muscle is LKB1, however some studies have suggested that Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) acts as an alternative kinase to activate AMPK. We aimed to establish whether CaMKK2 is involved in activation of AMPK and promotion of glucose uptake following contractions in skeletal muscle. METHODS A recently developed CaMKK2 inhibitor (SGC-CAMKK2-1) alongside a structurally related but inactive compound (SGC-CAMKK2-1N), as well as CaMKK2 knock-out (KO) mice were used. In vitro kinase inhibition selectivity and efficacy assays, as well as cellular inhibition efficacy analyses of CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) were performed. Phosphorylation and activity of AMPK following contractions (ex vivo) in mouse skeletal muscles treated with/without CaMKK inhibitors or isolated from wild-type (WT)/CaMKK2 KO mice were assessed. Camkk2 mRNA in mouse tissues was measured by qPCR. CaMKK2 protein expression was assessed by immunoblotting with or without prior enrichment of calmodulin-binding proteins from skeletal muscle extracts, as well as by mass spectrometry-based proteomics of mouse skeletal muscle and C2C12 myotubes. RESULTS STO-609 and SGC-CAMKK2-1 were equally potent and effective in inhibiting CaMKK2 in cell-free and cell-based assays, but SGC-CAMKK2-1 was much more selective. Contraction-stimulated phosphorylation and activation of AMPK were not affected with CaMKK inhibitors or in CaMKK2 null muscles. Contraction-stimulated glucose uptake was comparable between WT and CaMKK2 KO muscle. Both CaMKK inhibitors (STO-609 and SGC-CAMKK2-1) and the inactive compound (SGC-CAMKK2-1N) significantly inhibited contraction-stimulated glucose uptake. SGC-CAMKK2-1 also inhibited glucose uptake induced by a pharmacological AMPK activator or insulin. Relatively low levels of Camkk2 mRNA were detected in mouse skeletal muscle, but neither CaMKK2 protein nor its derived peptides were detectable in mouse skeletal muscle tissue. CONCLUSIONS We demonstrate that pharmacological inhibition or genetic loss of CaMKK2 does not affect contraction-stimulated AMPK phosphorylation and activation, as well as glucose uptake in skeletal muscle. Previously observed inhibitory effect of STO-609 on AMPK activity and glucose uptake is likely due to off-target effects. CaMKK2 protein is either absent from adult murine skeletal muscle or below the detection limit of currently available methods.
Collapse
Affiliation(s)
- Florentina Negoita
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alex B Addinsall
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kristina Hellberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Conchita Fraguas Bringas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Paul S Hafen
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Division of Science, Indiana University Purdue University Columbus, Columbus, IN 47203, USA
| | - Tyler J Sermersheim
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Christopher T A Lewis
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Danial Ahwazi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Naomi X Y Ling
- Metabolic Signalling, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jeppe K Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Mohammad A Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan S Oakhill
- Metabolic Signalling, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Uma Sankar
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, VIC 3052, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052, Australia; St Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC 3065, Australia
| | - Carol A Witczak
- Department of Anatomy, Cell Biology & Physiology, and Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
Moghbeli M, Taghehchian N, Akhlaghipour I, Samsami Y, Maharati A. Role of forkhead box proteins in regulation of doxorubicin and paclitaxel responses in tumor cells: A comprehensive review. Int J Biol Macromol 2023; 248:125995. [PMID: 37499722 DOI: 10.1016/j.ijbiomac.2023.125995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Chemotherapy is one of the common first-line therapeutic methods in cancer patients. Despite the significant effects in improving the quality of life and survival of patients, chemo resistance is observed in a significant part of cancer patients, which leads to tumor recurrence and metastasis. Doxorubicin (DOX) and paclitaxel (PTX) are used as the first-line drugs in a wide range of tumors; however, DOX/PTX resistance limits their use in cancer patients. Considering the DOX/PTX side effects in normal tissues, identification of DOX/PTX resistant cancer patients is required to choose the most efficient therapeutic strategy for these patients. Investigating the molecular mechanisms involved in DOX/PTX response can help to improve the prognosis in cancer patients. Several cellular processes such as drug efflux, autophagy, and DNA repair are associated with chemo resistance that can be regulated by transcription factors as the main effectors in signaling pathways. Forkhead box (FOX) family of transcription factor has a key role in regulating cellular processes such as cell differentiation, migration, apoptosis, and proliferation. FOX deregulations have been associated with resistance to chemotherapy in different cancers. Therefore, we discussed the role of FOX protein family in DOX/PTX response. It has been reported that FOX proteins are mainly involved in DOX/PTX response by regulation of drug efflux, autophagy, structural proteins, and signaling pathways such as PI3K/AKT, NF-kb, and JNK. This review is an effective step in introducing the FOX protein family as the reliable prognostic markers and therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Dent JR, Stocks B, Campelj DG, Philp A. Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise. Semin Cell Dev Biol 2023; 143:3-16. [PMID: 35351374 DOI: 10.1016/j.semcdb.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/26/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Endurance exercise is well established to increase mitochondrial content and function in skeletal muscle, a process termed mitochondrial biogenesis. Current understanding is that exercise initiates skeletal muscle mitochondrial remodeling via modulation of cellular nutrient, energetic and contractile stress pathways. These subtle changes in the cellular milieu are sensed by numerous transduction pathways that serve to initiate and coordinate an increase in mitochondrial gene transcription and translation. The result of these acute signaling events is the promotion of growth and assembly of mitochondria, coupled to a greater capacity for aerobic ATP provision in skeletal muscle. The aim of this review is to highlight the acute metabolic events induced by endurance exercise and the subsequent molecular pathways that sense this transient change in cellular homeostasis to drive mitochondrial adaptation and remodeling.
Collapse
Affiliation(s)
- Jessica R Dent
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Dean G Campelj
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Medical School, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
14
|
Soleimani E, Abbasalizad Farhangi M. Protein Quality, Glycemic and Metabolic Indices and Anthropometric Features Among Overweight and Obese Adults. Nutr Metab Insights 2023; 16:11786388231181038. [PMID: 37435042 PMCID: PMC10331230 DOI: 10.1177/11786388231181038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 07/13/2023] Open
Abstract
Background Various studies have shown an inverse relationship between the quality of protein intake based on essential amino acids (EAAs) with obesity and its complications. We assumed that increasing EAAs-based protein intake quality improves glycemic and metabolic markers and anthropometric measurements in obese and overweight people. Methods This cross-sectional study included 180 obese and overweight participants aged 18 to 35. Dietary information was obtained using an 80-item food frequency questionnaire. The total intake of EAAs was calculated using the United States department of agriculture (USDA) database. Quality protein was defined as the ratio of EAAs (gr) to total dietary protein (gr). Sociodemographic status, physical activity (PA), and anthropometric characteristics were evaluated using a valid and reliable method. Analysis of covariance (ANCOVA) tests adjusted for sex, PA, age, energy, and body mass index (BMI) were used to measure this association. Results Protein quality intake was highest among the group with the lowest weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-to-hip ratio (WHR), and fat mass (FM); and on the other hand, the fat-free mass (FFM) has increased; also Increasing the quality of protein intake improved the lipid profile and some glycemic indices and insulin sensitivity, although this association was not significant. Conclusions Increasing the quality of protein intake significantly improved anthropometric measurements, and also improved some glycemic and metabolic indices although, their relationship was not significant.
Collapse
Affiliation(s)
- Ensiye Soleimani
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
15
|
Bian X, Wang Y, Yang R, Ma Y, Dong W, Guo C, Gao W. Anti-fatigue properties of the ethanol extract of Moringa oleifera leaves in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37062935 DOI: 10.1002/jsfa.12628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Moringa oleifera (M. oleifera) leaves are rich in nutrients and bioactive ingredients. This study was aimed at evaluating the anti-fatigue effect of the ethanol extract of M. oleifera leaves (MLEE) on mice and its primary mechanism of action using a weight-loaded forced swimming test. In the present study, MLEE was prepared by ultrasound-assisted extraction, and its anti-fatigue effect and antioxidant capacity were evaluated in mice. Mice were administrated MLEE (320 mg kg-1 body weight) for 15 days. RESULTS MLEE supplementation significantly increased levels of glucose and non-esterified fatty acids (NEFA), while decreasing levels of lactate and blood urea nitrogen in serum (P < 0.05); the levels of glycogen in the liver and muscle were also increased, as was the activity of glycogen synthase and the level of NEFA in muscle (P < 0.05). According to a Western blot analysis, MLEE increased the expression of AMPKα1, JNK, AKT and STAT3 in the muscle of mice. CONCLUSION Our findings indicate that MLEE has an anti-fatigue effect via the AMPK-linked route, which enables it to control energy metabolism and enhance antioxidant enzyme activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Yawen Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Renren Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Yuying Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Weiyun Dong
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| |
Collapse
|
16
|
Hu Z, Xu L, Song H, Feng J, Zhou C, Yang MJ, Shi P, Li YR, Guo YJ, Li HZ, Zhang T. Effect of heat and hypoxia stress on mitochondrion and energy metabolism in the gill of hard clam. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109556. [PMID: 36709861 DOI: 10.1016/j.cbpc.2023.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Aquatic animals suffer from heat and hypoxia stress more frequently due to global climate change and other anthropogenic activities. Heat and hypoxia stress can significantly affect mitochondrial function and energy metabolism. Here, the response and adaptation characteristics of mitochondria and energy metabolism in the gill of the hard clam Mercenaria mercenaria under heat (35 °C), hypoxia (0.2 mg/L), and heat plus hypoxia stress (35 °C, 0.2 mg/L) after 48 h exposure were investigated. Mitochondrial membrane potentials were depolarized under environmental stress. Mitochondrial fusion, fission and mitophagy played a key role in maintain mitochondrion function. The AMPK subunits showed different expression under environmental stress. Acceleration of enzyme activities (phosphofructokinase, pyruvate kinase and lactic dehydrogenase) and accumulation of anaerobic metabolites in glycolysis and TCA cycle implied that the anaerobic metabolism might play a key role in providing energy. Accumulation of amino acids might help to increase tolerance under heat and heat combined hypoxia stress. In addition, urea cycle played a key role in amino acid metabolism to prevent ammonia/nitrogen toxicity. This study improved our understanding of the mitochondrial and energy metabolism responses of marine bivalves exposed to environmental stress.
Collapse
Affiliation(s)
- Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Li Xu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Yong-Ren Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Yong-Jun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Hai-Zhou Li
- Shandong Fu Han Ocean Sci-Tech Co., Ltd, Haiyang 265100, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
17
|
Brooks GA, Osmond AD, Arevalo JA, Duong JJ, Curl CC, Moreno-Santillan DD, Leija RG. Lactate as a myokine and exerkine: drivers and signals of physiology and metabolism. J Appl Physiol (1985) 2023; 134:529-548. [PMID: 36633863 PMCID: PMC9970662 DOI: 10.1152/japplphysiol.00497.2022] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
No longer viewed as a metabolic waste product and cause of muscle fatigue, a contemporary view incorporates the roles of lactate in metabolism, sensing and signaling in normal as well as pathophysiological conditions. Lactate exists in millimolar concentrations in muscle, blood, and other tissues and can rise more than an order of magnitude as the result of increased production and clearance limitations. Lactate exerts its powerful driver-like influence by mass action, redox change, allosteric binding, and other mechanisms described in this article. Depending on the condition, such as during rest and exercise, following carbohydrate nutrition, injury, or pathology, lactate can serve as a myokine or exerkine with autocrine-, paracrine-, and endocrine-like functions that have important basic and translational implications. For instance, lactate signaling is: involved in reproductive biology, fueling the heart, muscle adaptation, and brain executive function, growth and development, and a treatment for inflammatory conditions. Lactate also works with many other mechanisms and factors in controlling cardiac output and pulmonary ventilation during exercise. Ironically, lactate can be disruptive of normal processes such as insulin secretion when insertion of lactate transporters into pancreatic β-cell membranes is not suppressed, and in carcinogenesis when factors that suppress carcinogenesis are inhibited, whereas factors that promote carcinogenesis are upregulated. Lactate signaling is important in areas of intermediary metabolism, redox biology, mitochondrial biogenesis, neurobiology, gut physiology, appetite regulation, nutrition, and overall health and vigor. The various roles of lactate as a myokine and exerkine are reviewed.NEW & NOTEWORTHY Lactate sensing and signaling is a relatively new and rapidly changing field. As a physiological signal lactate works both independently and in concert with other signals. Lactate operates via covalent binding and canonical signaling, redox change, and lactylation of DNA. Lactate can also serve as an element of feedback loops in cardiopulmonary regulation. From conception through aging lactate is not the only a myokine or exerkine, but it certainly deserves consideration as a physiological signal.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Diana D Moreno-Santillan
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| |
Collapse
|
18
|
Taurine Stimulates AMP-Activated Protein Kinase and Modulates the Skeletal Muscle Functions in Rats via the Induction of Intracellular Calcium Influx. Int J Mol Sci 2023; 24:ijms24044125. [PMID: 36835534 PMCID: PMC9962205 DOI: 10.3390/ijms24044125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Taurine (2-aminoethanesulfonic acid) is a free amino acid abundantly found in mammalian tissues. Taurine plays a role in the maintenance of skeletal muscle functions and is associated with exercise capacity. However, the mechanism underlying taurine function in skeletal muscles has not yet been elucidated. In this study, to investigate the mechanism of taurine function in the skeletal muscles, the effects of short-term administration of a relatively low dose of taurine on the skeletal muscles of Sprague-Dawley rats and the underlying mechanism of taurine function in cultured L6 myotubes were investigated. The results obtained in this study in rats and L6 cells indicate that taurine modulates the skeletal muscle function by stimulating the expression of genes and proteins associated with mitochondrial and respiratory metabolism through the activation of AMP-activated protein kinase via the calcium signaling pathway.
Collapse
|
19
|
Lebret B, Serviento AM, Renaudeau D. Pork quality traits and associated muscle metabolic changes in pigs under chronic prenatal and postnatal heat stress. J Anim Sci 2023; 101:skad305. [PMID: 37708312 PMCID: PMC10629440 DOI: 10.1093/jas/skad305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Chronic heat stress (HS) is a major concern affecting pig growth performance and metabolism, with potential consequences on carcass and meat quality traits. The objective of this study was to assess the influence of prenatal (PE) and growing (GE) thermal environments, and their combination, on muscle metabolism, carcass characteristics, and pork quality. From 6 to 109 d of gestation, 12 sows (1 per block) were kept under thermoneutral (TN) conditions (cyclic 18 to 24 °C; PTN) and 12 sows under chronic HS (cyclic 28 to 34 °C; PHS). Two female offspring per sow were selected based on body weight at weaning, for a total of 48 female pigs (12 blocks of 2 sisters from each PE), and one sister was placed in each GE. Gilts were housed from 82 to 140 d of age under cyclic GTN (18 to 24 °C; n = 24) or GHS (28 to 34 °C; n = 24) environments. Data were analyzed using a mixed model including PE, GE, and PE × GE interaction as main effects, and sire, sow within PE, pen within PE × GE, and slaughter day (for plasma, muscle, and meat traits) as random effects. No significant PE × GE interaction was found on any trait under study (P ≥ 0.05). Prenatal HS did not affect growth performance and carcass traits (P ≥ 0.05). Compared with GTN, GHS pigs had lower average daily feed intake, average daily gain, and hot carcass weight (P < 0.01), but similar carcass lean meat content (P ≥ 0.05). Prenatal HS had scarce effects on pork quality, with only higher a* and C* values (P < 0.05) in the Gluteus superficialis. Growing HS led to a higher pH 24 h (P < 0.05) in the Longissimus thoracis et lumborum (LTL) and ham muscles, and higher meat quality index in the ham muscles. In contrast, quality traits of the Semispinalis capitis (SC) were not affected by either PE or GE (P > 0.05). Except a tendency for a higher citrate synthase activity in the SC (P = 0.065), PHS did not affect muscle metabolism. Growing HS induced muscle-specific metabolic responses, with reduced glycolytic potential (P < 0.01) and metabolic enzyme activities (P < 0.05) in the glycolytic LTL, but not in the oxidative SC (P > 0.05). Plasma glucose content at slaughter was lower in the GHS compared with GTN pigs (P = 0.002), indicating an altered energy metabolism in pigs under GHS. Altogether, growing HS altered growth without affecting carcass traits, but improved technological quality of loin and ham. Prenatal HS, alone or combined with GHS, had limited or even no effect on carcass and pork quality.
Collapse
|
20
|
Higher Intake of Total Dietary Essential Amino Acids Is Associated with a Lower Prevalence of Metabolic Syndrome among Korean Adults. Nutrients 2022; 14:nu14224771. [PMID: 36432458 PMCID: PMC9694173 DOI: 10.3390/nu14224771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
We hypothesized that a well-balanced intake of total essential amino acids (EAAs) may be associated with lower prevalence of metabolic syndrome among Korean adults. This population-based cross-sectional study included 25,787 participants aged ≥30 years from the 2008-2019 Korea National Health and Nutrition Examination Survey. Dietary information was obtained from 24 h recall data. Demographic and lifestyle factors were assessed using self-administered questionnaires, and metabolic biomarkers were obtained from a health examination. Total essential amino acid score (EAAS) was calculated to determine whether essential amino acid (EAA) intake meets the recommended nutrient intake (RNI). Multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression models. After adjusting for multiple confounding factors, participants with higher EAAS had a significantly lower prevalence of high blood pressure (OR: 0.86, 95% CI: 0.75-0.98), hypertriglyceridemia (OR: 0.86, 95% CI: 0.76-0.98), and Metabolic syndrome (MetS) (OR: 0.86, 95% CI: 0.74-0.996). Spline regression analysis confirmed linearity of the association between total EAAS and MetS. EAA intake and MetS are associated with an inverse dose-response relationship in which metabolic disease may be prevented when the overall EAA intake meets the RNI.
Collapse
|
21
|
Rauckhorst AJ, Borcherding N, Pape DJ, Kraus AS, Scerbo DA, Taylor EB. Mouse tissue harvest-induced hypoxia rapidly alters the in vivo metabolome, between-genotype metabolite level differences, and 13C-tracing enrichments. Mol Metab 2022; 66:101596. [PMID: 36100179 PMCID: PMC9589196 DOI: 10.1016/j.molmet.2022.101596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Metabolomics as an approach to solve biological problems is exponentially increasing in use. Thus, this a pivotal time for the adoption of best practices. It is well known that disrupted tissue oxygen supply rapidly alters cellular energy charge. However, the speed and extent to which delayed mouse tissue freezing after dissection alters the broad metabolome is not well described. Furthermore, how tissue genotype may modulate such metabolomic drift and the degree to which traced 13C-isotopologue distributions may change have not been addressed. METHODS By combined liquid chromatography (LC)- and gas chromatography (GC)-mass spectrometry (MS), we measured how levels of 255 mouse liver metabolites changed following 30-second, 1-minute, 3-minute, and 10-minute freezing delays. We then performed test-of-concept delay-to-freeze experiments evaluating broad metabolomic drift in mouse heart and skeletal muscle, differential metabolomic change between wildtype (WT) and mitochondrial pyruvate carrier (MPC) knockout mouse livers, and shifts in 13C-isotopologue abundances and enrichments traced from 13C-labled glucose into mouse liver. RESULTS Our data demonstrate that delayed mouse tissue freezing after dissection leads to rapid hypoxia-driven remodeling of the broad metabolome, induction of both false-negative and false-positive between-genotype differences, and restructuring of 13C-isotopologue distributions. Notably, we show that increased purine nucleotide degradation products are an especially high dynamic range marker of delayed liver and heart freezing. CONCLUSIONS Our findings provide a previously absent, systematic illustration of the extensive, multi-domain metabolomic changes occurring within the early minutes of delayed tissue freezing. They also provide a novel, detailed resource of mouse liver ex vivo, hypoxic metabolomic remodeling.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel J Pape
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Alora S Kraus
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Diego A Scerbo
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
22
|
Zhang M, Gao X, Lyu M, Lin S, Luo X, You W, Ke C. AMPK regulates behavior and physiological plasticity of Haliotis discus hannai under different spectral compositions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113873. [PMID: 35839528 DOI: 10.1016/j.ecoenv.2022.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In natural environments, the spectral composition of incident light is often subject to drastic changes due to the abundance of suspended particles, floating animals, and plants in coastal waters. In this study, after four months of culturing under blue light (NB), orange light (NY), dark environment (ND), and natural light (NN), the shell length and weight-specific growth rate in Pacific abalone, Haliotis discus hannai, were ranked in the following order: NY > NN > ND > NB. To understand the growth differences in abalone under these different light environments, we first performed 24-h video monitoring and found that the cumulative movement distance and duration were lowest in group NB, whereas the cumulative movement distance and duration were significantly higher in group ND than in any other group (P < 0.05). In group NB, the time spent hidden underneath the attachment substrate accounted for 81% of the resting time, but this ratio was lowest in group ND, at only 37% (P < 0.05). Next, LC-MS metabolomics identified 201 and 105 metabolites in NB vs. NN, ND vs. NN, and NY vs. NN under the positive and negative ion modes, respectively. According to the fold changes and annotations for differential metabolites in the KEGG enrichment pathways, adenosine, NAD+, cGMP, and arachidonic acid were used as differential metabolism markers, and the AMPK signaling pathway was enriched in every comparison group, and thus investigated further. The gene sequences of three subtypes of AMPK were obtained by cloning and we found that the expression levels of AMPKα and AMPKγ, and the AMP content were significantly higher in group NB than in any other group (P < 0.05). In addition, the ATP contents and adenylate energy charge values were ranked in the following order: NY > NN > ND > NB. According to in situ hybridization analysis, the three subtype genes were widely expressed in the hepatopancreas. Finally, the contents of many lipid metabolites differed significantly among groups and the expression levels of the triglyceride hydrolysis-related gene hormone sensitive lipase and fatty acid oxidation-related gene carnitine palmitoyltransferase 1 were higher in groups ND and NB than in groups NN and NY according to fluorescence quantification PCR (P < 0.05). The expression levels of fatty acid synthase and acetyl-CoA carboxylase were significantly lower in groups ND and NB than in groups NN and NY (P < 0.05). These findings indicated that differences in the spectral composition of incident light could reshape the behavior and physiological metabolism in abalone by influencing the "energy switch" AMPK, thereby providing some insights into the mechanisms that allow nocturnal marine organisms to adapt to different lighting environments.
Collapse
Affiliation(s)
- Mo Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Xiaolong Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Shihui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
Mengeste AM, Nikolić N, Dalmao Fernandez A, Feng YZ, Nyman TA, Kersten S, Haugen F, Kase ET, Aas V, Rustan AC, Thoresen GH. Insight Into the Metabolic Adaptations of Electrically Pulse-Stimulated Human Myotubes Using Global Analysis of the Transcriptome and Proteome. Front Physiol 2022; 13:928195. [PMID: 35874526 PMCID: PMC9298736 DOI: 10.3389/fphys.2022.928195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Electrical pulse stimulation (EPS) has proven to be a useful tool to interrogate cell-specific responses to muscle contraction. In the present study, we aimed to uncover networks of signaling pathways and regulatory molecules responsible for the metabolic effects of exercise in human skeletal muscle cells exposed to chronic EPS. Differentiated myotubes from young male subjects were exposed to EPS protocol 1 (i.e. 2 ms, 10 V, and 0.1 Hz for 24 h), whereas myotubes from middle-aged women and men were exposed to protocol 2 (i.e. 2 ms, 30 V, and 1 Hz for 48 h). Fuel handling as well as the transcriptome, cellular proteome, and secreted proteins of EPS-treated myotubes from young male subjects were analyzed using a combination of high-throughput RNA sequencing, high-resolution liquid chromatography-tandem mass spectrometry, oxidation assay, and immunoblotting. The data showed that oxidative metabolism was enhanced in EPS-exposed myotubes from young male subjects. Moreover, a total of 81 differentially regulated proteins and 952 differentially expressed genes (DEGs) were observed in these cells after EPS protocol 1. We also found 61 overlapping genes while comparing the DEGs to mRNA expression in myotubes from the middle-aged group exposed to protocol 2, assessed by microarray. Gene ontology (GO) analysis indicated that significantly regulated proteins and genes were enriched in biological processes related to glycolytic pathways, positive regulation of fatty acid oxidation, and oxidative phosphorylation, as well as muscle contraction, autophagy/mitophagy, and oxidative stress. Additionally, proteomic identification of secreted proteins revealed extracellular levels of 137 proteins were changed in myotubes from young male subjects exposed to EPS protocol 1. Selected putative myokines were measured using ELISA or multiplex assay to validate the results. Collectively, our data provides new insight into the transcriptome, proteome and secreted proteins alterations following in vitro exercise and is a valuable resource for understanding the molecular mechanisms and regulatory molecules mediating the beneficial metabolic effects of exercise.
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Nataša Nikolić
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Andrea Dalmao Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Yuan Z Feng
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | - Fred Haugen
- Department of Work Psychology and Physiology, STAMI-The National Institute of Occupational Health, Oslo, Norway
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Vigdis Aas
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Mengeste AM, Katare P, Dalmao Fernandez A, Lund J, Bakke HG, Baker D, Bartesaghi S, Peng XR, Rustan AC, Thoresen GH, Kase ET. Knockdown of sarcolipin (SLN) impairs substrate utilization in human skeletal muscle cells. Mol Biol Rep 2022; 49:6005-6017. [PMID: 35364719 PMCID: PMC9270280 DOI: 10.1007/s11033-022-07387-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Recent studies have highlighted that uncoupling of sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA) by sarcolipin (SLN) increases ATP consumption and contributes to heat liberation. Exploiting this thermogenic mechanism in skeletal muscle may provide an attractive strategy to counteract obesity and associated metabolic disorders. In the present study, we have investigated the role of SLN on substrate metabolism in human skeletal muscle cells. METHODS AND RESULTS After generation of skeletal muscle cells with stable SLN knockdown (SLN-KD), cell viability, glucose and oleic acid (OA) metabolism, mitochondrial function, as well as gene expressions were determined. Depletion of SLN did not influence cell viability. However, glucose and OA oxidation were diminished in SLN-KD cells compared to control myotubes. Basal respiration measured by respirometry was also observed to be reduced in cells with SLN-KD. The metabolic perturbation in SLN-KD cells was reflected by reduced gene expression levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and forkhead box O1 (FOXO1). Furthermore, accumulation of OA was increased in cells with SLN-KD compared to control cells. These effects were accompanied by increased lipid formation and incorporation of OA into complex lipids. Additionally, formation of complex lipids and free fatty acid from de novo lipogenesis with acetate as substrate was enhanced in SLN-KD cells. Detection of lipid droplets using Oil red O staining also showed increased lipid accumulation in SLN-KD cells. CONCLUSIONS Overall, our study sheds light on the importance of SLN in maintaining metabolic homeostasis in human skeletal muscle. Findings from the current study suggest that therapeutic strategies involving SLN-mediated futile cycling of SERCA might have significant implications in the treatment of obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway.
| | - Parmeshwar Katare
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Andrea Dalmao Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Hege G Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
| | - David Baker
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefano Bartesaghi
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
| |
Collapse
|
25
|
Feng Z, Wei Y, Xu Y, Zhang R, Li M, Qin H, Gu R, Cai M. The anti-fatigue activity of corn peptides and their effect on gut bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3456-3466. [PMID: 34839540 DOI: 10.1002/jsfa.11693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/11/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Corn peptides (CPs) are rich in branched-chain amino acids such as leucine and have a variety of biological activities such as antioxidant and improved lipid distribution. In this article, we prepared CPs by enzymatic digestion of corn proteins and evaluated their anti-fatigue activity. RESULTS We evaluated the anti-fatigue effect of CPs through an exhaustive swimming experiment. The results showed that CPs were able to significantly reduce the rate of body weight gain and prolong the duration of exhaustive swimming. Besides, CPs reduced blood urea nitrogen (BUN) levels after exercise, while they significantly increased muscle glycogen and liver glycogen stores. They reduced muscle cell damage from exercise. In addition, CPs were effective in increasing AMPK, PGC-1α and PI3K protein expression levels and promoting Akt phosphorylation. Correlation analysis showed that CPs increased the abundance of probiotics such as Lactobacillus and Akkermansia in the gut microflora. CONCLUSION CPs, which enhanced exercise performance in mice and could modulate gut microbial composition, had significant anti-fatigue activity. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiyuan Feng
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area, Tianjin, China
| | - Ying Wei
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| | - Yaguang Xu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| | - Ruixue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| | - Mingliang Li
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| | - Huimin Qin
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area, Tianjin, China
| | - Ruizeng Gu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| | - Muyi Cai
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Fermentation Industries Co. Ltd, Beijing, China
| |
Collapse
|
26
|
Vincent A, Dessauge F, Gondret F, Lebret B, Le Floc'h N, Louveau I, Lefaucheur L. Poor hygiene of housing conditions influences energy metabolism in a muscle type-dependent manner in growing pigs differing in feed efficiency. Sci Rep 2022; 12:7991. [PMID: 35568703 PMCID: PMC9107456 DOI: 10.1038/s41598-022-12050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
The ability of pigs to cope with inflammatory challenges may by modified by selection for residual feed intake (RFI), a measure of feed efficiency. In the current study, we evaluated skeletal muscle metabolic responses to degraded hygiene conditions in pigs divergently selected for RFI. At 82 d of age, low RFI and high RFI pigs were housed in either poor or good hygiene conditions. After a 6-week challenge, the poor hygiene conditions induced a decrease in growth performance (P < 0.001) and in plasma IGF-I concentrations (P < 0.003) in both lines. In the slow-twitch oxidative semispinalis muscle, poor hygiene conditions induced a shift towards a more oxidative metabolism and an activation of the AMPK pathway in pigs of both RFI lines. In the fast-twitch glycolytic longississimus muscle, poor hygiene conditions were associated to a less glycolytic metabolism in the HRFI line only. Poor hygiene conditions also increased the protein level of lipidation of microtubule-associated protein 1 light-chain 3β (LC3-II) in both RFI lines, suggesting an activation of the autophagy pathway. Altogether, the data revealed muscle-type specific metabolic adaptations to poor hygiene conditions, which may be related to different strategies to fuel the activated immune system.
Collapse
Affiliation(s)
- Annie Vincent
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France.
| | | | | | | | | | | | | |
Collapse
|
27
|
Maruta H, Abe R, Yamashita H. Effect of Long-Term Supplementation with Acetic Acid on the Skeletal Muscle of Aging Sprague Dawley Rats. Int J Mol Sci 2022; 23:ijms23094691. [PMID: 35563082 PMCID: PMC9101554 DOI: 10.3390/ijms23094691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondrial function in skeletal muscle, which plays an essential role in oxidative capacity and physical activity, declines with aging. Acetic acid activates AMP-activated protein kinase (AMPK), which plays a key role in the regulation of whole-body energy by phosphorylating key metabolic enzymes in both biosynthetic and oxidative pathways and stimulates gene expression associated with slow-twitch fibers and mitochondria in skeletal muscle cells. In this study, we investigate whether long-term supplementation with acetic acid improves age-related changes in the skeletal muscle of aging rats in association with the activation of AMPK. Male Sprague Dawley (SD) rats were administered acetic acid orally from 37 to 56 weeks of age. Long-term supplementation with acetic acid decreased the expression of atrophy-related genes, such as atrogin-1, muscle RING-finger protein-1 (MuRF1), and transforming growth factor beta (TGF-β), activated AMPK, and affected the proliferation of mitochondria and type I fiber-related molecules in muscles. The findings suggest that acetic acid exhibits an anti-aging function in the skeletal muscles of aging rats.
Collapse
Affiliation(s)
- Hitomi Maruta
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
| | - Reina Abe
- Graduate School of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
| | - Hiromi Yamashita
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
- Graduate School of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Okayama, Japan;
- Correspondence: ; Tel.: +81-866-94-2150
| |
Collapse
|
28
|
Sabet N, Soltani Z, Khaksari M. The effects of exercise on kidney injury: the role of SIRT1. Mol Biol Rep 2022; 49:4025-4038. [PMID: 35449317 DOI: 10.1007/s11033-022-07122-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
In patients with kidney injury, muscle mass and strength decrease with altered muscle protein synthesis and degradation along with complications such as inflammation and low physical activity. A treatment strategy to maintain muscle metabolism in kidney injury is important. One of the proposed strategies in this regard is exercise, which in addition to inducing muscle hypertrophy, reducing plasma creatinine and urea and decreasing the severity of tubal injuries, can boost immune function and has anti-inflammatory effects. One of the molecules that have been considered as a target in the treatment of many diseases is silent information regulator 1 (SIRT1). Exercise increases the expression of SIRT1 and improves its activity. Therefore, studies that examined the effect of exercise on kidney injury considering the role of SIRT1 in this effect were reviewed to determine the direction of kidney injury research in future regarding to its prevalence, especially following diabetes, and lack of definitive treatment. In this review, we found that SIRT1 can be one of renoprotective target pathways of exercise. However, further studies are needed to determine the role of SIRT1 in different kidney injuries following exercise according to the type and severity of exercise, and the type of kidney injury.
Collapse
Affiliation(s)
- Nazanin Sabet
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.,Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran. .,Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
29
|
Zhang J, Gu Y, Dong X, Zheng Y, Meng G, Zhang Q, Liu L, Wu H, Zhang S, Wang Y, Zhang T, Wang X, Wang X, Sun S, Zhou M, Jia Q, Song K, Huang J, Huo J, Zhang B, Ding G, Niu K. Association between edible mushrooms consumption and handgrip strength: A large-scale population based on the TCLSIH cohort study. Clin Nutr 2022; 41:1197-1207. [DOI: 10.1016/j.clnu.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/03/2022]
|
30
|
Abstract
T lymphocytes (T cells) are divided into two functionally different subgroups the CD4+ T helper cells (Th) and the CD8+ cytotoxic T lymphocytes (CTL). Adequate CD4 and CD8 T cell activation to proliferation, clonal expansion and effector function is crucial for efficient clearance of infection by pathogens. Failure to do so may lead to T cell exhaustion. Upon activation by antigen presenting cells, T cells undergo metabolic reprograming that support effector functions. In this review we will discuss how metabolic reprograming dictates functionality during viral infections using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV) as examples. Moreover, we will briefly discuss T cell metabolic programs during bacterial infections exemplified by Mycobacterium tuberculosis (MT) infection.
Collapse
Affiliation(s)
| | - Bjørn Steen Skålhegg
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Intestinal AMPK modulation of microbiota mediates crosstalk with brown fat to control thermogenesis. Nat Commun 2022; 13:1135. [PMID: 35241650 PMCID: PMC8894485 DOI: 10.1038/s41467-022-28743-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/02/2022] [Indexed: 01/28/2023] Open
Abstract
The energy-dissipating capacity of brown adipose tissue through thermogenesis can be targeted to improve energy balance. Mammalian 5'-AMP-activated protein kinase, a key nutrient sensor for maintaining cellular energy status, is a known therapeutic target in Type II diabetes. Despite its well-established roles in regulating glucose metabolism in various tissues, the functions of AMPK in the intestine remain largely unexplored. Here we show that AMPKα1 deficiency in the intestine results in weight gain and impaired glucose tolerance under high fat diet feeding, while metformin administration fails to ameliorate these metabolic disorders in intestinal AMPKα1 knockout mice. Further, AMPKα1 in the intestine communicates with brown adipose tissue to promote thermogenesis. Mechanistically, we uncover a link between intestinal AMPKα1 activation and BAT thermogenic regulation through modulating anti-microbial peptide-controlled gut microbiota and the metabolites. Our findings identify AMPKα1-mediated mechanisms of intestine-BAT communication that may partially underlie the therapeutic effects of metformin.
Collapse
|
32
|
Nejabati HR, Ghaffari-Novin M, Fathi-Maroufi N, Faridvand Y, Holmberg HC, Hansson O, Nikanfar S, Nouri M. N1-Methylnicotinamide: Is It Time to Consider as a Dietary Supplement for Athletes? Curr Pharm Des 2022; 28:800-805. [DOI: 10.2174/1381612828666220211151204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Exercise is considered to be a “medicine” due to its modulatory roles in metabolic disorders such as diabetes and obesity. The intensity and duration of exercise determine the mechanism of energy production by various tissues of the body, especially by muscles, in which the requirement for adenosine triphosphate (ATP) increases by as much as 100-fold. Naturally, athletes try to improve their exercise performance by dietary supplementation with, e.g., vitamins, metabolites, and amino acids. MNAM, as a vitamin B3 metabolite, reduces serum levels and liver contents of triglycerides, and cholesterol and induces lipolysis. It stimulates gluconeogenesis and prohibits liver cholesterol and fatty acid synthesis through the expression of sirtuin1 (SIRT1). It seems that MNAM is not responsible for the actions of NNMT in the adipose tissues as MNAM inhibits the activity of NNMT in the adipose tissue and acts like inhibitors of its activity. NNMT-MNAM axis is more activated in the muscles of participants who were undergoing the high-volume-low-intensity exercise and caloric restriction. Therefore, MNAM could be an important myokine during exercise and fasting where it provides the required energy for muscles through the induction of lipolysis and gluconeogenesis in the liver and adipose tissues, respectively. Increased levels of MNAM in exercise and fasting led us to propose that the consumption of MNAM during training especially endurance training could boost exercise capacity and improves performance. Therefore, in this review, we shed light on the potential of MNAM as a dietary supplement in sports medicine.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Ghaffari-Novin
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Nazila Fathi-Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Ola Hansson
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Saba Nikanfar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
qu Y, Ji H, song W, Peng S, Zhan S, Wei LY, Chen M, Zhang D, Liu S. Anti-fatigue effect of Auxis thazard oligopeptide via modulation of AMPK/ PGC-1α pathway in mice. Food Funct 2022; 13:1641-1650. [DOI: 10.1039/d1fo03320d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the anti-fatigue effect and mechanism of Auxis thazard oligopeptide (ATO) were studied by exhaustive swimming in mice. The results showed that ATO could significantly prolong the exhaustive...
Collapse
|
34
|
Mengeste AM, Lund J, Katare P, Ghobadi R, Bakke HG, Lunde PK, Eide L, Mahony GO, Göpel S, Peng XR, Kase ET, Thoresen GH, Rustan AC. The small molecule SERCA activator CDN1163 increases energy metabolism in human skeletal muscle cells. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100060. [PMID: 34909682 PMCID: PMC8663964 DOI: 10.1016/j.crphar.2021.100060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background and objective A number of studies have highlighted muscle-specific mechanisms of thermogenesis involving futile cycling of Ca2+ driven by sarco (endo)plasmic reticulum Ca2+-ATPase (SERCA) and generating heat from ATP hydrolysis to be a promising strategy to counteract obesity and metabolic dysfunction. However, to the best of our knowledge, no experimental studies concerning the metabolic effects of pharmacologically targeting SERCA in human skeletal muscle cells have been reported. Thus, in the present study, we aimed to explore the effects of SERCA-activating compound, CDN1163, on energy metabolism in differentiated human skeletal muscle cells (myotubes). Methods In this study, we used primary myotube cultures derived from muscle biopsies of the musculus vastus lateralis and musculi interspinales from lean, healthy male donors. Energy metabolism in myotubes was studied using radioactive substrates. Oxygen consumption rate was assessed with the Seahorse XF24 bioanalyzer, whereas metabolic genes and protein expressions were determined by qPCR and immunoblotting, respectively. Results Both acute (4 h) and chronic (5 days) treatment of myotubes with CDN1163 showed increased uptake and oxidation of glucose, as well as complete fatty acid oxidation in the presence of carbonyl cyanide 4-(trifluromethoxy)phenylhydrazone (FCCP). These effects were supported by measurement of oxygen consumption rate, in which the oxidative spare capacity and maximal respiration were enhanced after CDN1163-treatment. In addition, chronic treatment with CDN1163 improved cellular uptake of oleic acid (OA) and fatty acid β-oxidation. The increased OA metabolism was accompanied by enhanced mRNA-expression of carnitine palmitoyl transferase (CPT) 1B, pyruvate dehydrogenase kinase (PDK) 4, as well as increased AMP-activated protein kinase (AMPK)Thr172 phosphorylation. Moreover, following chronic CDN1163 treatment, the expression levels of stearoyl-CoA desaturase (SCD) 1 was decreased together with de novo lipogenesis from acetic acid and formation of diacylglycerol (DAG) from OA. Conclusion Altogether, these results suggest that SERCA activation by CDN1163 enhances energy metabolism in human myotubes, which might be favourable in relation to disorders that are related to metabolic dysfunction such as obesity and type 2 diabetes mellitus. CDN1163 induced an increase in glucose and fatty acid metabolism in primary human myotubes. Myotubes treated with CDN1163 showed lower intramyocellular lipid accumulation and higher rate of β-oxidation. AMPK activity was upregulated in CDN1163-treated myotubes.
Collapse
Key Words
- AMPK
- AMPK, AMP-activated protein kinase
- ASM, acid-soluble metabolites
- CE, cholesteryl ester
- DAG, diacylglycerol
- FA, fatty acid
- FCCP, 4-(trifluromethoxy)phenylhydrazone
- Glucose metabolism
- Lipid metabolism
- OA, oleic acid
- OCR, oxygen consumption rate
- Obesity
- SCD1, stearoyl-CoA desaturase 1
- SERCA
- SERCA, sarco(endo)plasmic reticulum Ca2+-ATPase
- Skeletal muscle
- T2DM, type 2 diabetes mellitus
- Type 2 diabetes
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Parmeshwar Katare
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Roya Ghobadi
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Hege G Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway.,KG Jebsen Cardiac Research Centre, University of Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Norway
| | - Gavin O' Mahony
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sven Göpel
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| |
Collapse
|
35
|
Duan BB, Xu JW, Xing T, Li JL, Zhang L, Gao F. Creatine nitrate supplementation strengthens energy status and delays glycolysis of broiler muscle via inhibition of LKB1/AMPK pathway. Poult Sci 2021; 101:101653. [PMID: 35007932 PMCID: PMC8749301 DOI: 10.1016/j.psj.2021.101653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023] Open
Abstract
This study aimed to evaluate the effects of dietary creatine nitrate (CrN) on growth performance, meat quality, energy status, glycolysis, and related gene expression of liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway in Pectoralis major (PM) muscle of broilers. A total of 240 male Arbor Acres broilers (28-day-old) were randomly allocated to one of 5 dietary treatments: the basal diet (control group), and the basal diets supplemented with 600 mg/kg guanidinoacetic acid (GAA), 300, 600, or 900 mg/kg CrN (identified as GAA600, CrN300, CrN600, or CrN900, respectively). We found that dietary GAA and CrN supplementation for 14 d from d 28 to 42 did not affect broiler growth performance, carcass traits, and textural characteristics of breast muscle. GAA600, CrN600, and CrN900 treatments increased pH24h and decreased drip loss of PM muscle compared with the control (P < 0.05). The PM muscles of CrN600 and CrN900 groups showed higher glycogen concentration and lower lactic acid concentration accompanied by lower activities of phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) (P < 0.05). Simultaneously, GAA600 and all CrN treatments increased concentration of muscle creatine, phosphocreatine (PCr) and ATP, and decreased AMP concentration and AMP/ATP ratio (P < 0.05). Meanwhile, the concentrations of muscle creatine, PCr, and ATP were increased linearly, while muscle AMP concentration and AMP/ATP ratio were decreased linearly and quadratic as the dose of CrN increased (P < 0.05). GAA600, CrN600, and CrN900 treatments upregulated mRNA expression of CreaT in PM muscle, and CrN600 and CrN900 treatments downregulated GAMT expression in liver and PM muscle compared with the control or GAA600 groups (P < 0.05). The mRNA expression of muscle LKB1, AMPKα1, and AMPKα2 was downregulated linearly in response to the increasing CrN level (P < 0.05). Overall, CrN showed better efficacy on strengthening muscle energy status and improve meat quality than GAA at the some dose. These results indicate that CrN may be a potential replacement for GAA as a new creatine supplement.
Collapse
Affiliation(s)
- B B Duan
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - J W Xu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - T Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - J L Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - L Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - F Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
36
|
Meng X, Jayasundara N, Zhang J, Ren X, Gao B, Li J, Liu P. Integrated physiological, transcriptome and metabolome analyses of the hepatopancreas of the female swimming crab Portunus trituberculatus under ammonia exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113026. [PMID: 34839137 DOI: 10.1016/j.ecoenv.2021.113026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/06/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Ammonia is a common environmental pollutant in aquatic ecosystem and is also a significant concern in closed aquaculture systems. The threat of ammonia has been increasing with rising anthropogenic activities including intensified aquaculture. In this study, we aimed to investigate ammonia toxicity and metabolism mechanisms in the hepatopancreas, a major organ for Vitellogenin (Vtg) synthesis and defending against ammonia stress, of female swimming crab Portunus trituberculatus which is an important fishery and aquaculture species, by integrating physiological, transcriptome and metabolome analyses. The results revealed that ammonia exposure (10 mg/L, an environmentally relevant concentration) resulted in a remarkable reduction in vtg expression and depression of multiple signaling pathways for reproductive regulators including methyl farnesoate, ecdysone and neuroparsin, demonstrating for the first time that ammonia impairs swimming crab female reproduction. In addition, a number of important genes and metabolites in glycolysis, the Krebs cycle, fatty acid β-oxidation and synthesis were significantly downregulated, indicating that changes in ammonia levels lead to a general depression of energy metabolism in hepatopancreas. After ammonia exposure, an increased level of urea and a reduction of amino acid catabolism were observed in hepatopancreas, suggesting that urea cycle was utilized to biotransform ammonia, and amino acid catabolism was decreased to reduce endogenous ammonia generation. Furthermore, antioxidant systems were altered following ammonia exposure, which was accompanied by proteins and lipid oxidations, as well as cellular apoptosis. These results indicate that ammonia leads to metabolic suppression, oxidative stress and apoptosis in P. trituberculatus hepatopancreas. The findings improve the understanding for the mechanisms of ammonia toxicity and metabolism in P. trituberculatus, and provide valuable information for assessing potential ecological risk of environmental ammonia and improving aquaculture management.
Collapse
Affiliation(s)
- Xianliang Meng
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27713, United States
| | - Jingyan Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Xianyun Ren
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Baoquan Gao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Ping Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China.
| |
Collapse
|
37
|
Lin W, Jin Y, Hu X, Huang E, Zhu Q. AMPK/PGC-1α/GLUT4-Mediated Effect of Icariin on Hyperlipidemia-Induced Non-Alcoholic Fatty Liver Disease and Lipid Metabolism Disorder in Mice. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1407-1417. [PMID: 34906049 DOI: 10.1134/s0006297921110055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/21/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. Therapeutic activity of icariin, a major bioactive component of Epimedii Herba, in NAFLD is still unknown. Herein, the C57BL/6J mice were fed with a high-fat diet for 16 weeks to establish a NAFLD model. Mice were assigned to five groups: control group, NAFLD group, and icariin treatment groups. Effects of icariin on blood indices, glucose tolerance, insulin sensitivity, histopathological morphology, cell apoptosis, lipid accumulation, and AMPK signaling were analyzed. In addition, another cohort of mice were assigned to five groups: control group, NAFLD group, dorsomorphin treatment group, icariin treatment group, and dorsomorphin + icariin treatment group. Expression of proteins in liver tissues associated with AMPK signaling, and levels of ALT and AST were evaluated. Icariin attenuated the NAFLD-induced increase of the TG, TC, LDL-C, ALT, AST levels. HDL-C levels were affected neither by NAFLD nor by icariin. Furthermore, icariin treatment (100-200 mg/kg) counteracted the NAFLD-reduced glucose tolerance and insulin sensitivity and modulated histopathological changes, cell apoptosis, and lipid accumulation in liver tissues. Additionally, icariin mitigated the NAFLD-induced up-regulation of the cleaved caspase 3/9, SREBP-1c, and DGAT-2 levels, and enhanced the expression level of CPT-1, p-ACC/ACC, AMPKα1, PGC-1α, and GLUT4. Effects of icariin on the AMPK signaling and levels of AST and ALT could be reversed by AMPK inhibitor, dorsomorphin. This paper investigates the glucose-reducing and lipid-lowering effects of icariin in NAFLD. Moreover, icariin might function through activating the AMPKα1/PGC-1α/GLTU4 pathway.
Collapse
Affiliation(s)
- Wei Lin
- Department of General Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yin Jin
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xiang Hu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Erjiong Huang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Qihan Zhu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
38
|
Roberts FL, Markby GR. New Insights into Molecular Mechanisms Mediating Adaptation to Exercise; A Review Focusing on Mitochondrial Biogenesis, Mitochondrial Function, Mitophagy and Autophagy. Cells 2021; 10:cells10102639. [PMID: 34685618 PMCID: PMC8533934 DOI: 10.3390/cells10102639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise itself is fundamental for good health, and when practiced regularly confers a myriad of metabolic benefits in a range of tissues. These benefits are mediated by a range of adaptive responses in a coordinated, multi-organ manner. The continued understanding of the molecular mechanisms of action which confer beneficial effects of exercise on the body will identify more specific pathways which can be manipulated by therapeutic intervention in order to prevent or treat various metabolism-associated diseases. This is particularly important as exercise is not an available option to all and so novel methods must be identified to confer the beneficial effects of exercise in a therapeutic manner. This review will focus on key emerging molecular mechanisms of mitochondrial biogenesis, autophagy and mitophagy in selected, highly metabolic tissues, describing their regulation and contribution to beneficial adaptations to exercise.
Collapse
|
39
|
Mengeste AM, Rustan AC, Lund J. Skeletal muscle energy metabolism in obesity. Obesity (Silver Spring) 2021; 29:1582-1595. [PMID: 34464025 DOI: 10.1002/oby.23227] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Comparing energy metabolism in human skeletal muscle and primary skeletal muscle cells in obesity, while focusing on glucose and fatty acid metabolism, shows many common changes. Insulin-mediated glucose uptake in skeletal muscle and primary myotubes is decreased by obesity, whereas differences in basal glucose metabolism are inconsistent among studies. With respect to fatty acid metabolism, there is an increased uptake and storage of fatty acids and a reduced complete lipolysis, suggesting alterations in lipid turnover. In addition, fatty acid oxidation is decreased, probably at the level of complete oxidation, as β -oxidation may be enhanced in obesity, which indicates mitochondrial dysfunction. Metabolic changes in skeletal muscle with obesity promote metabolic inflexibility, ectopic lipid accumulation, and formation of toxic lipid intermediates. Skeletal muscle also acts as an endocrine organ, secreting myokines that participate in interorgan cross talk. This review highlights interventions and some possible targets for treatment through action on skeletal muscle energy metabolism. Effects of exercise in vivo on obesity have been compared with simulation of endurance exercise in vitro on myotubes (electrical pulse stimulation). Possible pharmaceutical targets, including signaling pathways and drug candidates that could modify lipid storage and turnover or increase mitochondrial function or cellular energy expenditure through adaptive thermogenic mechanisms, are discussed.
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Ahwazi D, Neopane K, Markby GR, Kopietz F, Ovens AJ, Dall M, Hassing AS, Gräsle P, Alshuweishi Y, Treebak JT, Salt IP, Göransson O, Zeqiraj E, Scott JW, Sakamoto K. Investigation of the specificity and mechanism of action of the ULK1/AMPK inhibitor SBI-0206965. Biochem J 2021; 478:2977-2997. [PMID: 34259310 PMCID: PMC8370752 DOI: 10.1042/bcj20210284] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
SBI-0206965, originally identified as an inhibitor of the autophagy initiator kinase ULK1, has recently been reported as a more potent and selective AMP-activated protein kinase (AMPK) inhibitor relative to the widely used, but promiscuous inhibitor Compound C/Dorsomorphin. Here, we studied the effects of SBI-0206965 on AMPK signalling and metabolic readouts in multiple cell types, including hepatocytes, skeletal muscle cells and adipocytes. We observed SBI-0206965 dose dependently attenuated AMPK activator (991)-stimulated ACC phosphorylation and inhibition of lipogenesis in hepatocytes. SBI-0206965 (≥25 μM) modestly inhibited AMPK signalling in C2C12 myotubes, but also inhibited insulin signalling, insulin-mediated/AMPK-independent glucose uptake, and AICA-riboside uptake. We performed an extended screen of SBI-0206965 against a panel of 140 human protein kinases in vitro, which showed SBI-0206965 inhibits several kinases, including members of AMPK-related kinases (NUAK1, MARK3/4), equally or more potently than AMPK or ULK1. This screen, together with molecular modelling, revealed that most SBI-0206965-sensitive kinases contain a large gatekeeper residue with a preference for methionine at this position. We observed that mutation of the gatekeeper methionine to a smaller side chain amino acid (threonine) rendered AMPK and ULK1 resistant to SBI-0206965 inhibition. These results demonstrate that although SBI-0206965 has utility for delineating AMPK or ULK1 signalling and cellular functions, the compound potently inhibits several other kinases and critical cellular functions such as glucose and nucleoside uptake. Our study demonstrates a role for the gatekeeper residue as a determinant of the inhibitor sensitivity and inhibitor-resistant mutant forms could be exploited as potential controls to probe specific cellular effects of SBI-0206965.
Collapse
Affiliation(s)
- Danial Ahwazi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Katyayanee Neopane
- Nestlé Institute of Health Sciences, Nestlé Research, Societé Produit de Nestlé S.A
- School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Greg R. Markby
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Franziska Kopietz
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ashley J. Ovens
- St Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anna S. Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Pamina Gräsle
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Yazeed Alshuweishi
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
- Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jonas T. Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ian P. Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Olga Göransson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, U.K
| | - John W. Scott
- St Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Parveen A, Bohnert KR, Tomaz da Silva M, Wen Y, Bhat R, Roy A, Kumar A. MyD88-mediated signaling intercedes in neurogenic muscle atrophy through multiple mechanisms. FASEB J 2021; 35:e21821. [PMID: 34325487 DOI: 10.1096/fj.202100777rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscle atrophy is a debilitating complication of many chronic disease states and disuse conditions including denervation. However, molecular and signaling mechanisms of muscle wasting remain less understood. Here, we demonstrate that the levels of several toll-like receptors (TLRs) and their downstream signaling adaptor, myeloid differentiation primary response 88 (MyD88), are induced in skeletal muscle of mice in response to sciatic nerve denervation. Muscle-specific ablation of MyD88 mitigates denervation-induced skeletal muscle atrophy in mice. Targeted ablation of MyD88 suppresses the components of ubiquitin-proteasome system, autophagy, and FOXO transcription factors in skeletal muscle during denervation. We also found that specific inhibition of MyD88 reduces the activation of canonical nuclear factor-kappa (NF-κB) pathway and expression of receptors for inflammatory cytokines in denervated muscle. In contrast, inhibition of MyD88 stimulates the activation of non-canonical NF-κB signaling in denervated skeletal muscle. Ablation of MyD88 also inhibits the denervation-induced increase in phosphorylation of AMPK without having any effect on the phosphorylation of mTOR. Moreover, targeted ablation of MyD88 inhibits the activation of a few components of the unfolded protein response (UPR) pathways, especially X-box protein 1 (XBP1). Importantly, myofiber-specific ablation of XBP1 mitigates denervation-induced skeletal muscle atrophy in mice. Collectively, our experiments suggest that TLR-MyD88 signaling mediates skeletal muscle wasting during denervation potentially through the activation of canonical NF-κB signaling, AMPK and UPR pathways.
Collapse
Affiliation(s)
- Arshiya Parveen
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Kyle R Bohnert
- Kinesiology Department, St. Ambrose University, Davenport, IA, USA
| | - Meiricris Tomaz da Silva
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Yefei Wen
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Raksha Bhat
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| |
Collapse
|
42
|
Hu X, Kong L, Xiao C, Zhu Q, Song Z. The AMPK-mTOR signaling pathway is involved in regulation of food intake in the hypothalamus of stressed chickens. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110979. [PMID: 33991669 DOI: 10.1016/j.cbpa.2021.110979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Glucocorticoids (GCs) can stimulate the appetite and AMPK in broilers. The activation of hypothalamic mTOR has been proposed as an important anorexigenic signal. However, inhibitory effect of AMPK activity on appetite and AMPK downstream signaling pathway under stress has not been reported. In this study, we performed an intracerebroventricular (icv) injection of compound C, an AMPK inhibitor, in GC-treated birds to explore the regulatory mechanism on appetite and AMPK downstream signaling pathway. A total of 48 7-day-old broilers, which had received an icv cannula, were randomly subjected to one of two treatments: subcutaneous injection of dexamethasone (DEX) or saline. After 3 days of continuous DEX injection, chicks of each group received an icv injection with either compound C (6 μg/2 μL) or vehicle (dimethyl sulfoxide, 2 μL). The results showed that body weight gain was reduced by the DEX treatment. Compared with the control, icv injection of compound C reduced feed intake at 0.5-1.5 h. In the DEX-treated group, the inhibitory effect of compound C on appetite remained apparent at 0.5-1 h. The DEX treatment increased the gene expression of liver kinase B1 (LKB1), neuropeptide Y (NPY), and decreased p-mTOR protein level. In stressed broilers, inhibition of AMPK relieved the decreased mTOR activity. A significant interaction was noted in DEX and compound C on protein expression of phospho-AMPK. Taken together, in stressed broilers, the central injection of compound C could inhibit central AMPK activity and reduce appetite, in which the AMPK/mTOR signaling pathway might be involved.
Collapse
Affiliation(s)
- Xiyi Hu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Linglian Kong
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chuanpi Xiao
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Qidong Zhu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
43
|
Rhein P, Desjardins EM, Rong P, Ahwazi D, Bonhoure N, Stolte J, Santos MD, Ovens AJ, Ehrlich AM, Sanchez Garcia JL, Ouyang Q, Yabut JM, Kjolby M, Membrez M, Jessen N, Oakhill JS, Treebak JT, Maire P, Scott JW, Sanders MJ, Descombes P, Chen S, Steinberg GR, Sakamoto K. Compound- and fiber type-selective requirement of AMPKγ3 for insulin-independent glucose uptake in skeletal muscle. Mol Metab 2021; 51:101228. [PMID: 33798773 PMCID: PMC8381060 DOI: 10.1016/j.molmet.2021.101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Objective The metabolic master-switch AMP-activated protein kinase (AMPK) mediates insulin-independent glucose uptake in muscle and regulates the metabolic activity of brown and beige adipose tissue (BAT). The regulatory AMPKγ3 isoform is uniquely expressed in skeletal muscle and potentially in BAT. Herein, we investigated the role that AMPKγ3 plays in mediating skeletal muscle glucose uptake and whole-body glucose clearance in response to small-molecule activators that act on AMPK via distinct mechanisms. We also assessed whether γ3 plays a role in adipose thermogenesis and browning. Methods Global AMPKγ3 knockout (KO) mice were generated. A systematic whole-body, tissue, and molecular phenotyping linked to glucose homeostasis was performed in γ3 KO and wild-type (WT) mice. Glucose uptake in glycolytic and oxidative skeletal muscle ex vivo as well as blood glucose clearance in response to small molecule AMPK activators that target the nucleotide-binding domain of the γ subunit (AICAR) and allosteric drug and metabolite (ADaM) site located at the interface of the α and β subunit (991, MK-8722) were assessed. Oxygen consumption, thermography, and molecular phenotyping with a β3-adrenergic receptor agonist (CL-316,243) treatment were performed to assess BAT thermogenesis, characteristics, and function. Results Genetic ablation of γ3 did not affect body weight, body composition, physical activity, and parameters associated with glucose homeostasis under chow or high-fat diet. γ3 deficiency had no effect on fiber-type composition, mitochondrial content and components, or insulin-stimulated glucose uptake in skeletal muscle. Glycolytic muscles in γ3 KO mice showed a partial loss of AMPKα2 activity, which was associated with reduced levels of AMPKα2 and β2 subunit isoforms. Notably, γ3 deficiency resulted in a selective loss of AICAR-, but not MK-8722-induced blood glucose-lowering in vivo and glucose uptake specifically in glycolytic muscle ex vivo. We detected γ3 in BAT and found that it preferentially interacts with α2 and β2. We observed no differences in oxygen consumption, thermogenesis, morphology of BAT and inguinal white adipose tissue (iWAT), or markers of BAT activity between WT and γ3 KO mice. Conclusions These results demonstrate that γ3 plays a key role in mediating AICAR- but not ADaM site binding drug-stimulated blood glucose clearance and glucose uptake specifically in glycolytic skeletal muscle. We also showed that γ3 is dispensable for β3-adrenergic receptor agonist-induced thermogenesis and browning of iWAT. Loss of AMPKγ3 reduces glucose uptake in glycolytic skeletal muscle and whole-body glucose clearance with AMP-mimetic drug. γ3 is not required for muscle glucose uptake and whole-body glucose clearance with ADaM site-targeted allosteric activators. γ3 is present and forms a trimeric complex with α2 and β2 in brown adipose tissue. γ3 is dispensable for adipose thermogenesis and browning in response to a β3-adrenergic receptor agonist.
Collapse
Affiliation(s)
- Philipp Rhein
- Nestlé Research, Société des Produits Nestlé S.A., EPFL Innovation Park, Lausanne, 1015, Switzerland; School of Life Sciences, EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Eric M Desjardins
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, L8N3Z5, Canada; Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N3Z5, Canada
| | - Ping Rong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Danial Ahwazi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Nicolas Bonhoure
- Nestlé Research, Société des Produits Nestlé S.A., EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Jens Stolte
- Nestlé Research, Société des Produits Nestlé S.A., EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Matthieu D Santos
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Ashley J Ovens
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - José L Sanchez Garcia
- Nestlé Research, Société des Produits Nestlé S.A., EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Qian Ouyang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Julian M Yabut
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, L8N3Z5, Canada; Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N3Z5, Canada
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Pharmacology and Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Mathieu Membrez
- Nestlé Research, Société des Produits Nestlé S.A., EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Pharmacology and Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - John W Scott
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia; Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Matthew J Sanders
- Nestlé Research, Société des Produits Nestlé S.A., EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Patrick Descombes
- Nestlé Research, Société des Produits Nestlé S.A., EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, L8N3Z5, Canada; Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N3Z5, Canada
| | - Kei Sakamoto
- Nestlé Research, Société des Produits Nestlé S.A., EPFL Innovation Park, Lausanne, 1015, Switzerland; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
44
|
Hou Y, Su L, Zhao Y, Liu C, Yao D, Zhang M, Zhao L, Jin Y. Effect of chronic AICAR treatment on muscle fiber composition and enzyme activity in skeletal muscle of rats. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1889563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yanru Hou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Yajuan Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Chang Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Duo Yao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
45
|
Ding LN, Cheng Y, Xu LY, Zhou LQ, Guan L, Liu HM, Zhang YX, Li RM, Xu JW. The β3 Adrenergic Receptor Agonist CL316243 Ameliorates the Metabolic Abnormalities of High-Fat Diet-Fed Rats by Activating AMPK/PGC-1α Signaling in Skeletal Muscle. Diabetes Metab Syndr Obes 2021; 14:1233-1241. [PMID: 33776460 PMCID: PMC7987271 DOI: 10.2147/dmso.s297351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Skeletal muscle has a major influence on whole-body metabolic homeostasis. In the present study, we aimed to determine the metabolic effects of the β3 adrenergic receptor agonist CL316243 (CL) in the skeletal muscle of high-fat diet-fed rats. METHODS Sprague-Dawley rats were randomly allocated to three groups, which were fed a control diet (C) or a high-fat diet (HF), and half of the latter were administered 1 mg/kg CL by gavage once weekly (HF+CL), for 12 weeks. At the end of this period, the serum lipid profile and glucose tolerance of the rats were evaluated. In addition, the phosphorylation and protein and mRNA expression of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator (PGC)-1α, and carnitine palmitoyl transferase (CPT)-1b in skeletal muscle were measured by Western blot analysis and qPCR. The direct effects of CL on the phosphorylation (p-) and expression of AMPK, PGC-1α, and CPT-1b were also evaluated by Western blotting and immunofluorescence in L6 myotubes. RESULTS CL administration ameliorated the abnormal lipid profile and glucose tolerance of the high-fat diet-fed rats. In addition, the expression of p-AMPK, PGC-1α, and CPT-1b in the soleus muscle was significantly increased by CL. CL (1 µM) also increased the protein expression of p-AMPK, PGC-1α, and CPT-1b in L6 myotubes. However, the effect of CL on PGC-1α protein expression was blocked by the AMPK antagonist compound C, which suggests that CL increases PGC-1α protein expression via AMPK. CONCLUSION Activation of the β3 adrenergic receptor in skeletal muscle ameliorates the metabolic abnormalities of high-fat diet-fed rats, at least in part via activation of the AMPK/PGC-1α pathway.
Collapse
Affiliation(s)
- Li-Na Ding
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Ya Cheng
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Lu-Yao Xu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Le-Quan Zhou
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Li Guan
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Hai-Mei Liu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Ya-Xing Zhang
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Run-Mei Li
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
| | - Jin-Wen Xu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, 510006, People’s Republic of China
- Correspondence: Jin-Wen Xu Guangzhou University of Chinese Medicine, University Town, Waihuan East Road 232, Guangzhou, 510006, People’s Republic of ChinaTel +86-20-39358028Fax +86-20-39358020 Email
| |
Collapse
|
46
|
Liu J, Deng K, Pan M, Liu G, Wu J, Yang M, Huang D, Zhang W, Mai K. Dietary carbohydrates influence muscle texture of olive flounder Paralichthys olivaceus through impacting mitochondria function and metabolism of glycogen and protein. Sci Rep 2020; 10:21811. [PMID: 33311521 PMCID: PMC7732841 DOI: 10.1038/s41598-020-76255-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
The present study was conducted to estimate the effects of dietary carbohydrates on muscle quality and the underlying mechanisms. Six isonitrogenous and isolipidic diets were formulated to contain graded levels of carbohydrates (0%, 8%, 12%, 16%, 20% and 24%, respectively). These diets were named as C0, C8, C12, C16, C20 and C24, respectively. After a 10-week feeding trial, results showed that the muscle pH, liquid holding capacity (LHC) and hardness were significantly decreased by the increasing dietary carbohydrate levels. Dietary carbohydrates significantly decreased the muscle fibre diameter, and the highest value was found in the C0 group. Accumulated glycogen and degenerated mitochondrial cristae were observed in the C24 group. Significantly higher contents of protein carbonyls were observed in the C20 group and C24 group (P < 0.05). There was a significant decrease of mtDNA copy number in the C24 group compared with that in the C0 and C8 groups. The AMP/ATP ratio in muscle decreased first and then increased with the increasing dietary carbohydrate levels. The dietary incorporation of carbohydrate significantly reduced the expression of opa1, pygm and genes involved in myogenesis (myf5 and myog). Meanwhile, proteolysis-related genes (murf-1, mafbx, capn2 and ctsl), pro-inflammatory cytokines (il-6 and tnf-α) and mstn were significantly up-regulated. In the C24 group, significant increase of phosphorylation of AMPK (Thr172), up-regulation of PGC-1α and GLUT4 were observed, while the phosphorylation level of S6 (Ser235/236) was significantly decreased. It was concluded that excessive dietary carbohydrate level (24%) had negative impacts on mitochondria function and promoted glycogen accumulation, and thereafter influenced the muscle quality of olive flounder. The activation of AMPK as well as the upregulation of PGC-1α and GLUT4 was the key mechanism.
Collapse
Affiliation(s)
- Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Kangyu Deng
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- Shenzhen Alpha Group Co., Ltd., Shenzhen, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Guangxia Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Jing Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Mengxi Yang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|
47
|
Chowdhary S, Madan S, Tomer D, Mavrakis M, Rikhy R. Mitochondrial morphology and activity regulate furrow ingression and contractile ring dynamics in Drosophila cellularization. Mol Biol Cell 2020; 31:2331-2347. [PMID: 32755438 PMCID: PMC7851960 DOI: 10.1091/mbc.e20-03-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are maternally inherited in many organisms. Mitochondrial morphology and activity regulation is essential for cell survival, differentiation, and migration. An analysis of mitochondrial dynamics and function in morphogenetic events in early metazoan embryogenesis has not been carried out. In our study we find a crucial role of mitochondrial morphology regulation in cell formation in Drosophila embryogenesis. We find that mitochondria are small and fragmented and translocate apically on microtubules and distribute progressively along the cell length during cellularization. Embryos mutant for the mitochondrial fission protein, Drp1 (dynamin-related protein 1), die in embryogenesis and show an accumulation of clustered mitochondria on the basal side in cellularization. Additionally, Drp1 mutant embryos contain lower levels of reactive oxygen species (ROS). ROS depletion was previously shown to decrease myosin II activity. Drp1 loss also leads to myosin II depletion at the membrane furrow, thereby resulting in decreased cell height and larger contractile ring area in cellularization similar to that in myosin II mutants. The mitochondrial morphology and cellularization defects in Drp1 mutants are suppressed by reducing mitochondrial fusion and increasing cytoplasmic ROS in superoxide dismutase mutants. Our data show a key role for mitochondrial morphology and activity in supporting the morphogenetic events that drive cellularization in Drosophila embryos.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Somya Madan
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Darshika Tomer
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Manos Mavrakis
- Aix Marseille University, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Richa Rikhy
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|
48
|
Maleki V, Mahdavi R, Hajizadeh-Sharafabad F, Alizadeh M. A Comprehensive Insight into Potential Roles of Taurine on Metabolic Variables in Type 2 Diabetes: A Systematic Review. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hajizadeh-Sharafabad
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Kolan SS, Li G, Wik JA, Malachin G, Guo S, Kolan P, Skålhegg BS. Cellular metabolism dictates T cell effector function in health and disease. Scand J Immunol 2020; 92:e12956. [PMID: 32767795 DOI: 10.1111/sji.12956] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
In a healthy person, metabolically quiescent T lymphocytes (T cells) circulate between lymph nodes and peripheral tissues in search of antigens. Upon infection, some T cells will encounter cognate antigens followed by proliferation and clonal expansion in a context-dependent manner, to become effector T cells. These events are accompanied by changes in cellular metabolism, known as metabolic reprogramming. The magnitude and variation of metabolic reprogramming are, in addition to antigens, dependent on factors such as nutrients and oxygen to ensure host survival during various diseases. Herein, we describe how metabolic programmes define T cell subset identity and effector functions. In addition, we will discuss how metabolic programs can be modulated and affect T cell activity in health and disease using cancer and autoimmunity as examples.
Collapse
Affiliation(s)
- Shrikant S Kolan
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gaoyang Li
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jonas A Wik
- Department of Pathology, Oslo University Hospital, Rikshopitalet, Oslo, Norway
| | - Giulia Malachin
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Shuai Guo
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Pratibha Kolan
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn S Skålhegg
- Division for Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
50
|
Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Mol Metab 2020; 40:101028. [PMID: 32504885 PMCID: PMC7356270 DOI: 10.1016/j.molmet.2020.101028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/05/2023] Open
Abstract
Objective Evidence for AMP-activated protein kinase (AMPK)-mediated regulation of skeletal muscle metabolism during exercise is mainly based on transgenic mouse models with chronic (lifelong) disruption of AMPK function. Findings based on such models are potentially biased by secondary effects related to a chronic lack of AMPK function. To study the direct effect(s) of AMPK on muscle metabolism during exercise, we generated a new mouse model with inducible muscle-specific deletion of AMPKα catalytic subunits in adult mice. Methods Tamoxifen-inducible and muscle-specific AMPKα1/α2 double KO mice (AMPKα imdKO) were generated by using the Cre/loxP system, with the Cre under the control of the human skeletal muscle actin (HSA) promoter. Results During treadmill running at the same relative exercise intensity, AMPKα imdKO mice showed greater depletion of muscle ATP, which was associated with accumulation of the deamination product IMP. Muscle-specific deletion of AMPKα in adult mice promptly reduced maximal running speed and muscle glycogen content and was associated with reduced expression of UGP2, a key component of the glycogen synthesis pathway. Muscle mitochondrial respiration, whole-body substrate utilization, and muscle glucose uptake and fatty acid (FA) oxidation during muscle contractile activity remained unaffected by muscle-specific deletion of AMPKα subunits in adult mice. Conclusions Inducible deletion of AMPKα subunits in adult mice reveals that AMPK is required for maintaining muscle ATP levels and nucleotide balance during exercise but is dispensable for regulating muscle glucose uptake, FA oxidation, and substrate utilization during exercise. Inducible deletion of AMPKα in adult mice disturbs nucleotide balance during exercise. Inducible deletion of AMPKα in adult mice lowers muscle glycogen content and reduces exercise capacity. Muscle mitochondrial respiration, and glucose uptake and FA oxidation during muscle contractions remain unaffected by AMPKα deletion.
Collapse
|