1
|
Iglesias-Carres L, Neilson AP. Utilizing preclinical models of genetic diversity to improve translation of phytochemical activities from rodents to humans and inform personalized nutrition. Food Funct 2021; 12:11077-11105. [PMID: 34672309 DOI: 10.1039/d1fo02782d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mouse models are an essential tool in different areas of research, including nutrition and phytochemical research. Traditional inbred mouse models have allowed the discovery of therapeutical targets and mechanisms of action and expanded our knowledge of health and disease. However, these models lack the genetic variability typically found in human populations, which hinders the translatability of the results found in mice to humans. The development of genetically diverse mouse models, such as the collaborative cross (CC) or the diversity outbred (DO) models, has been a useful tool to overcome this obstacle in many fields, such as cancer, immunology and toxicology. However, these tools have not yet been widely adopted in the field of phytochemical research. As demonstrated in other disciplines, use of CC and DO models has the potential to provide invaluable insights for translation of phytochemicals from rodents to humans, which are desperately needed given the challenges and numerous failed clinical trials in this field. These models may prove informative for personalized use of phytochemicals in humans, including: predicting interindividual variability in phytochemical bioavailability and efficacy, identifying genetic loci or genes governing response to phytochemicals, identifying phytochemical mechanisms of action and therapeutic targets, and understanding the impact of genetic variability on individual response to phytochemicals. Such insights would prove invaluable for personalized implementation of phytochemicals in humans. This review will focus on the current work performed with genetically diverse mouse populations, and the research opportunities and advantages that these models can offer to phytochemical research.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| |
Collapse
|
2
|
Buchanan RA, Foley KE, Pepper KW, Reagan AM, Keezer KJ, Hewes AA, Diemler CA, Preuss C, Soto I, John SWM, Howell GR. Meox2 Haploinsufficiency Accelerates Axonal Degeneration in DBA/2J Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:3283-3296. [PMID: 31369031 PMCID: PMC6676925 DOI: 10.1167/iovs.18-26126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Glaucoma is a complex disease with major risk factors including advancing age and increased intraocular pressure (IOP). Dissecting these earliest events will likely identify new avenues for therapeutics. Previously, we performed transcriptional profiling in DBA/2J (D2) mice, a widely used mouse model relevant to glaucoma. Here, we use these data to identify and test regulators of early gene expression changes in DBA/2J glaucoma. Methods Upstream regulator analysis (URA) in Ingenuity Pathway Analysis was performed to identify potential master regulators of differentially expressed genes. The function of one putative regulator, mesenchyme homeobox 2 (Meox2), was tested using a combination of genetic, biochemical, and immunofluorescence approaches. Results URA identified Meox2 as a potential regulator of early gene expression changes in the optic nerve head (ONH) of DBA/2J mice. Meox2 haploinsufficiency did not affect the characteristic diseases of the iris or IOP elevation seen in DBA/2J mice but did cause a significant increase in the numbers of eyes with axon damage compared to controls. While young mice appeared normal, aged Meox2 haploinsufficient DBA/2J mice showed a 44% reduction in MEOX2 protein levels. This correlated with modulation of age- and disease-specific vascular and myeloid alterations. Conclusions Our data support a model whereby Meox2 controls IOP-dependent vascular remodeling and neuroinflammation to promote axon survival. Promoting these earliest responses prior to IOP elevation may be a viable neuroprotective strategy to delay or prevent human glaucoma.
Collapse
Affiliation(s)
| | - Kate E Foley
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | | | | | - Kelly J Keezer
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Amanda A Hewes
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Cory A Diemler
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | | | - Ileana Soto
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States.,Department of Biomedical and Translational Sciences, Rowan University, Glassboro, New Jersey, United States
| | - Simon W M John
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States.,The Howard Hughes Medical Institute, Bar Harbor, Maine, United States.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, Maine, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States
| |
Collapse
|
3
|
Hem NA, Phie J, Chilton L, Kinobe R. A volume-pressure tail cuff method for hemodynamic parameters: Comparison of restraint and light isoflurane anesthesia in normotensive male Lewis rats. J Pharmacol Toxicol Methods 2019; 100:106601. [PMID: 31255746 DOI: 10.1016/j.vascn.2019.106601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 06/19/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION A volume-pressure sensor and tail-cuff method for monitoring blood pressure is non-invasive and inexpensive. This method requires animals to be restrained or subjected to anesthesia, but comparative effects of these manipulations on hemodynamic parameters have not been documented. METHODS Using a volume-pressure sensor and tail-cuff, we serially measured blood pressure and heart rate in normotensive adult male Lewis rats after light isoflurane-induced anesthesia (5% induction, 1% maintenance) and, following untrained restraint. Blood pressure was recorded until the acquisition of three complete measurements without the range of replicate mean arterial pressures exceeding 15 mmHg (steady-state). RESULTS Averages for the entire series of consecutive measurements indicated that restraint yielded significantly higher systolic and diastolic blood pressure than anesthesia (P < .05), but heart rate was not affected. Following stabilization at steady-state, there were no significant differences in intra- or inter-day hemodynamic values between the restraint and isoflurane groups. The inter-day coefficient of variation for systolic pressure was 13-23% for isoflurane and 9-14% for restraint. Bland-Altman analysis showed wide limits of agreement (±59 mmHg systolic; ±49 mmHg diastolic pressure) between restraint and isoflurane measurements. DISCUSSION Isoflurane caused more variability but there was agreement in BP evaluation by the isoflurane and restraint methods. Using the VPR system, light isoflurane-induced anesthesia and restraint could effectively be used to screen and quantify overt changes in hemodynamic parameters for cardiovascular research utilizing laboratory rodents.
Collapse
Affiliation(s)
- Nur-Aisha Hem
- College of Public Health, Medical and Veterinary Sciences; Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, 4811 Townsville, QLD, Australia
| | - James Phie
- Queensland Research Centre for Peripheral Vascular Diseases, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia; Department of Vascular and Endovascular Surgery, The Townsville Hospital, 4811 Townsville, QLD, Australia
| | - Lisa Chilton
- College of Public Health, Medical and Veterinary Sciences; Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, 4811 Townsville, QLD, Australia
| | - Robert Kinobe
- College of Public Health, Medical and Veterinary Sciences; Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, 4811 Townsville, QLD, Australia.
| |
Collapse
|
4
|
Shorter JR, Huang W, Beak JY, Hua K, Gatti DM, de Villena FPM, Pomp D, Jensen BC. Quantitative trait mapping in Diversity Outbred mice identifies two genomic regions associated with heart size. Mamm Genome 2018; 29:80-89. [PMID: 29279960 PMCID: PMC6340297 DOI: 10.1007/s00335-017-9730-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023]
Abstract
Heart size is an important factor in cardiac health and disease. In particular, increased heart weight is predictive of adverse cardiovascular outcomes in multiple large community-based studies. We use two cohorts of Diversity Outbred (DO) mice to investigate the role of genetics, sex, age, and diet on heart size. DO mice (n = 289) of both sexes from generation 10 were fed a standard chow diet, and analyzed at 12-15 weeks of age. Another cohort of female DO mice (n = 258) from generation 11 were fed either a high-fat, cholesterol-containing (HFC) diet or a low-fat, high-protein diet, and analyzed at 24-25 weeks. We did not observe an effect of diet on body or heart weight in generation 11 mice, although we previously reported an effect on other cardiovascular risk factors, including cholesterol, triglycerides, and insulin. We do observe a significant genetic effect on heart weight in this population. We identified two quantitative trait loci for heart weight, one (Hwtf1) at a genome-wide significance level of p ≤ 0.05 on MMU15 and one (Hwtf2) at a genome-wide suggestive level of p ≤ 0.1 on MMU10, that together explain 13.3% of the phenotypic variance. Hwtf1 contained collagen type XXII alpha 1 chain (Col22a1), and the NZO/HlLtJ and WSB/EiJ haplotypes were associated with larger hearts. This is consistent with heart tissue Col22a1 expression in DO founders and SNP patterns within Hwtf1 for Col22a1. Col22a1 has been previously associated with cardiac fibrosis in mice, suggesting that Col22a1 may be involved in pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- John R Shorter
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA.
| | - Wei Huang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ju Youn Beak
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kunjie Hua
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA
| | | | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel Pomp
- Department of Genetics, University of North Carolina, CB# 7264, Chapel Hill, NC, 27599, USA
| | - Brian C Jensen
- Division of Cardiology, Department of Medicine, University of North Carolina, 6012 Burnett-Womack Building, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Podliesna S, Bezzina CR, Lodder EM. Complex Genetics of Cardiovascular Traits in Mice: F2-Mapping of QTLs and Their Underlying Genes. Methods Mol Biol 2017; 1488:431-454. [PMID: 27933537 DOI: 10.1007/978-1-4939-6427-7_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this chapter, we will use the example of the identification of Tnni3k as a modulator of cardiac conduction to introduce you to the use of a murine F2-generation intercross as a powerful method for the identification of novel genes relevant for cardiovascular traits. Murine F2-progeny is a genetically diverse panel of mice with differences in phenotype manifestations, e.g. cardiovascular traits such as cardiomyopathy and ECG parameters. This chapter discusses the best strategies for using F2-mice for genetic mapping. Moreover, we provide an example of the feasibility of identification of new genes modulating cardiac function utilizing the technique of mapping quantitative trait loci (QTLs) and a systems genetics integration of available genetic, gene expression, and phenotypic data.
Collapse
Affiliation(s)
- Svitlana Podliesna
- Department of Clinical and Experimental Cardiology, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Elisabeth M Lodder
- Department of Clinical and Experimental Cardiology, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Sharma P, Abbasi C, Lazic S, Teng ACT, Wang D, Dubois N, Ignatchenko V, Wong V, Liu J, Araki T, Tiburcy M, Ackerley C, Zimmermann WH, Hamilton R, Sun Y, Liu PP, Keller G, Stagljar I, Scott IC, Kislinger T, Gramolini AO. Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function. Nat Commun 2015; 6:8391. [PMID: 26403541 DOI: 10.1038/ncomms9391] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/18/2015] [Indexed: 02/07/2023] Open
Abstract
Membrane proteins are crucial to heart function and development. Here we combine cationic silica-bead coating with shotgun proteomics to enrich for and identify plasma membrane-associated proteins from primary mouse neonatal and human fetal ventricular cardiomyocytes. We identify Tmem65 as a cardiac-enriched, intercalated disc protein that increases during development in both mouse and human hearts. Functional analysis of Tmem65 both in vitro using lentiviral shRNA-mediated knockdown in mouse cardiomyocytes and in vivo using morpholino-based knockdown in zebrafish show marked alterations in gap junction function and cardiac morphology. Molecular analyses suggest that Tmem65 interaction with connexin 43 (Cx43) is required for correct localization of Cx43 to the intercalated disc, since Tmem65 deletion results in marked internalization of Cx43, a shorter half-life through increased degradation, and loss of Cx43 function. Our data demonstrate that the membrane protein Tmem65 is an intercalated disc protein that interacts with and functionally regulates ventricular Cx43.
Collapse
Affiliation(s)
- Parveen Sharma
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Cynthia Abbasi
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Savo Lazic
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Allen C T Teng
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Dingyan Wang
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7
| | - Nicole Dubois
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Victoria Wong
- Departments of Molecular Genetics and Biochemistry, Donnelly Centre,, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Jun Liu
- Department of Mechanical and Industrial Engineering, Advanced Micro and Nanosystems Laboratory, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Toshiyuki Araki
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Malte Tiburcy
- Institute of Pharmacology, University Medical Center Göttingen and DZHK (German Center for Cardiovascular Research) partner site Göttingen, Göttingen 37075, Germany
| | - Cameron Ackerley
- The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Wolfram H Zimmermann
- Institute of Pharmacology, University Medical Center Göttingen and DZHK (German Center for Cardiovascular Research) partner site Göttingen, Göttingen 37075, Germany
| | - Robert Hamilton
- The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada M5G 1L7
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, Advanced Micro and Nanosystems Laboratory, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Peter P Liu
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Igor Stagljar
- Departments of Molecular Genetics and Biochemistry, Donnelly Centre,, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Ian C Scott
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.,Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada M5G 1L7
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Anthony O Gramolini
- Department of Physiology, University of Toronto, Toronto General Hospital Research Institute, Toronto, Ontario, Canada M5G 1L7.,Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
7
|
Howell GR, MacNicoll KH, Braine CE, Soto I, Macalinao DG, Sousa GL, John SWM. Combinatorial targeting of early pathways profoundly inhibits neurodegeneration in a mouse model of glaucoma. Neurobiol Dis 2014; 71:44-52. [PMID: 25132557 DOI: 10.1016/j.nbd.2014.07.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/27/2014] [Accepted: 07/16/2014] [Indexed: 12/18/2022] Open
Abstract
The endothelin system is implicated in various human and animal glaucomas. Targeting the endothelin system has great promise as a treatment for human glaucoma, but the cell types involved and the exact mechanisms of action are not clearly elucidated. Here, we report a detailed characterization of the endothelin system in specific cell types of the optic nerve head (ONH) during glaucoma in DBA/2J mice. First, we show that key components of the endothelin system are expressed in multiple cell types. We discover that endothelin 2 (EDN2) is expressed in astrocytes as well as microglia/monocytes in the ONH. The endothelin receptor type A (Ednra) is expressed in vascular endothelial cells, while the endothelin receptor type B (Ednrb) receptor is expressed in ONH astrocytes. Second, we show that Macitentan treatment protects from glaucoma. Macitentan is a novel, orally administered, dual endothelin receptor antagonist with greater affinity, efficacy and safety than previous antagonists. Finally, we test the combinatorial effect of targeting both the endothelin and complement systems as a treatment for glaucoma. Similar to endothelin, the complement system is implicated in a variety of human and animal glaucomas, and has great promise as a treatment target. We discovered that combined targeting of the endothelin (Bosentan) and complement (C1qa mutation) systems is profoundly protective. Remarkably, 80% of DBA/2J eyes subjected to this combined inhibition developed no detectable glaucoma. This opens an exciting new avenue for neuroprotection in glaucoma.
Collapse
Affiliation(s)
- Gareth R Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA.
| | | | | | - Ileana Soto
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | | | - Gregory L Sousa
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Simon W M John
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA; The Howard Hughes Medical Institute, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
8
|
Smolock EM, Ilyushkina IA, Ghazalpour A, Gerloff J, Murashev AN, Lusis AJ, Korshunov VA. Genetic locus on mouse chromosome 7 controls elevated heart rate. Physiol Genomics 2012; 44:689-98. [PMID: 22589454 DOI: 10.1152/physiolgenomics.00041.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Elevated heart rate (HR) is a risk factor for cardiovascular diseases. The goal of the study was to map HR trait in mice using quantitative trait locus (QTL) analysis followed by genome-wide association (GWA) analysis. The first approach provides mapping power and the second increases genome resolution. QTL analyses were performed in a C3HeB×SJL backcross. HR and systolic blood pressure (SBP) were measured by the tail-cuff plethysmography. HR was ∼80 beats/min higher in SJL compared with C3HeB. There was a wide distribution of the HR (536-763 beats/min) in N2 mice. We discovered a highly significant QTL (logarithm of odds = 6.7, P < 0.001) on chromosome 7 (41 cM) for HR in the C3HeB×SJL backcross. In the Hybrid Mouse Diversity Panel (58 strains, n = 5-6/strain) we found that HR (beats/min) ranged from 546 ± 12 in C58/J to 717 ± 7 in MA/MyJ mice. SBP (mmHg) ranged from 99 ± 6 in strain I/LnJ to 151 ± 4 in strain BXA4/PgnJ. GWA analyses were done using the HMDP, which revealed a locus (64.2-65.1 Mb) on chromosome 7 that colocalized with the QTL for elevated HR found in the C3HeB×SJL backcross. The peak association was observed for 17 SNPs that are localized within three GABA(A) receptor genes. In summary, we used a combined genetic approach to fine map a novel elevated HR locus on mouse chromosome 7.
Collapse
Affiliation(s)
- Elaine M Smolock
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Kozel BA, Knutsen RH, Ye L, Ciliberto CH, Broekelmann TJ, Mecham RP. Genetic modifiers of cardiovascular phenotype caused by elastin haploinsufficiency act by extrinsic noncomplementation. J Biol Chem 2011; 286:44926-36. [PMID: 22049077 PMCID: PMC3248007 DOI: 10.1074/jbc.m111.274779] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/15/2011] [Indexed: 12/21/2022] Open
Abstract
Elastin haploinsufficiency causes the cardiovascular complications associated with Williams-Beuren syndrome and isolated supravalvular aortic stenosis. Significant variability exists in the vascular pathology in these individuals. Using the Eln(+/-) mouse, we sought to identify the source of this variability. Following outcrossing of C57Bl/6J Eln(+/-), two backgrounds were identified whose cardiovascular parameters deviated significantly from the parental strain. F1 progeny of the C57Bl/6J; Eln(+/-)x129X1/SvJ were more hypertensive and their arteries less compliant. In contrast, Eln(+/-) animals crossed to DBA/2J were protected from the pathologic changes associated with elastin insufficiency. Among the crosses, aortic elastin and collagen content did not correlate with quantitative vasculopathy traits. Quantitative trait locus analysis performed on F2 C57; Eln(+/-)x129 intercrosses identified highly significant peaks on chromosome 1 (LOD 9.7) for systolic blood pressure and on chromosome 9 (LOD 8.7) for aortic diameter. Additional peaks were identified that affect only Eln(+/-), including a region upstream of Eln on chromosome 5 (LOD 4.5). Bioinformatic analysis of the quantitative trait locus peaks revealed several interesting candidates, including Ren1, Ncf1, and Nos1; genes whose functions are unrelated to elastic fiber assembly, but whose effects may synergize with elastin insufficiency to predispose to hypertension and stiffer blood vessels. Real time RT-PCR studies show background-specific increased expression of Ncf1 (a subunit of the NOX2 NAPDH oxidase) that parallel the presence of increased oxidative stress in Eln(+/-) aortas. This finding raises the possibility that polymorphisms in genes affecting the generation of reactive oxygen species alter cardiovascular function in individuals with elastin haploinsufficiency through extrinsic noncomplementation.
Collapse
Affiliation(s)
| | - Russell H. Knutsen
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Li Ye
- From the Departments of Pediatrics and
| | - Christopher H. Ciliberto
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Thomas J. Broekelmann
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert P. Mecham
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
10
|
Young CN, Davisson RL. In vivo assessment of neurocardiovascular regulation in the mouse: principles, progress, and prospects. Am J Physiol Heart Circ Physiol 2011; 301:H654-62. [PMID: 21705676 DOI: 10.1152/ajpheart.00355.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A growing body of evidence indicates that a number of common complex diseases, including hypertension, heart failure, and obesity, are characterized by alterations in central neurocardiovascular regulation. However, our understanding of how changes within the central nervous system contribute to the development and progression of these and other diseases remains unclear. As with many areas of cardiovascular research, the mouse has emerged as a key species for investigations of neuroregulatory processes because of its amenability to highly specific genetic manipulations. In parallel with the development of increasingly sophisticated murine models has come the miniaturization and advancement in methodologies for in vivo assessment of neurocardiovascular end points in the mouse. The following brief review will focus on a number of key direct and indirect experimental approaches currently in use, including measurement of arterial blood pressure, assessment of cardiovascular autonomic control, and evaluation of arterial baroreflex function. The advantages and limitations of each methodology are highlighted to allow for a critical evaluation by the reader when considering these approaches.
Collapse
Affiliation(s)
- Colin N Young
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853-6401, USA.
| | | |
Collapse
|
11
|
Identification of genes and networks driving cardiovascular and metabolic phenotypes in a mouse F2 intercross. PLoS One 2010; 5:e14319. [PMID: 21179467 PMCID: PMC3001864 DOI: 10.1371/journal.pone.0014319] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/03/2010] [Indexed: 12/21/2022] Open
Abstract
To identify the genes and pathways that underlie cardiovascular and metabolic phenotypes we performed an integrated analysis of a mouse C57BL/6JxA/J F2 (B6AF2) cross by relating genome-wide gene expression data from adipose, kidney, and liver tissues to physiological endpoints measured in the population. We have identified a large number of trait QTLs including loci driving variation in cardiac function on chromosomes 2 and 6 and a hotspot for adiposity, energy metabolism, and glucose traits on chromosome 8. Integration of adipose gene expression data identified a core set of genes that drive the chromosome 8 adiposity QTL. This chromosome 8 trans eQTL signature contains genes associated with mitochondrial function and oxidative phosphorylation and maps to a subnetwork with conserved function in humans that was previously implicated in human obesity. In addition, human eSNPs corresponding to orthologous genes from the signature show enrichment for association to type II diabetes in the DIAGRAM cohort, supporting the idea that the chromosome 8 locus perturbs a molecular network that in humans senses variations in DNA and in turn affects metabolic disease risk. We functionally validate predictions from this approach by demonstrating metabolic phenotypes in knockout mice for three genes from the trans eQTL signature, Akr1b8, Emr1, and Rgs2. In addition we show that the transcriptional signatures for knockout of two of these genes, Akr1b8 and Rgs2, map to the F2 network modules associated with the chromosome 8 trans eQTL signature and that these modules are in turn very significantly correlated with adiposity in the F2 population. Overall this study demonstrates how integrating gene expression data with QTL analysis in a network-based framework can aid in the elucidation of the molecular drivers of disease that can be translated from mice to humans.
Collapse
|
12
|
Barnabei MS, Palpant NJ, Metzger JM. Influence of genetic background on ex vivo and in vivo cardiac function in several commonly used inbred mouse strains. Physiol Genomics 2010; 42A:103-13. [PMID: 20627938 DOI: 10.1152/physiolgenomics.00071.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inbred mouse strains play a critical role in biomedical research. Genetic homogeneity within inbred strains and their general amenability to genetic manipulation have made them an ideal resource for dissecting the physiological function(s) of individual genes. However, the inbreeding that makes inbred mice so useful also results in genetic divergence between them. This genetic divergence is often unaccounted for but may be a confounding factor when comparing studies that have utilized distinct inbred strains. Here, we compared the cardiac function of C57BL/6J mice to seven other commonly used inbred mouse strains: FVB/NJ, DBA/2J, C3H/HeJ, BALB/cJ, 129X1/SvJ, C57BL/10SnJ, and 129S1/SvImJ. The assays used to compare cardiac function were the ex vivo isolated Langendorff heart preparation and in vivo real-time hemodynamic analysis using conductance micromanometry. We report significant strain-dependent differences in cardiac function between C57BL/6J and other commonly used inbred strains. C57BL/6J maintained better cardiac function than most inbred strains after ex vivo ischemia, particularly compared with 129S1/SvImJ, 129X1/SvJ, and C57BL/10SnJ strains. However, during in vivo acute hypoxia 129X1/SvJ and 129S1/SvImJ maintained relatively normal cardiac function, whereas C57BL/6J animals showed dramatic cardiac decompensation. Additionally, C3H/HeJ showed rapid and marked cardiac decompensation in response to esmolol infusion compared with effects of other strains. These findings demonstrate the complex effects of genetic divergence between inbred strains on cardiac function. These results may help inform analysis of gene ablation or transgenic studies and further demonstrate specific quantitative traits that could be useful in discovery of genetic modifiers relevant to cardiac health and disease.
Collapse
Affiliation(s)
- Matthew S Barnabei
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
13
|
Eisener-Dorman AF, Grabowski-Boase L, Steffy BM, Wiltshire T, Tarantino LM. Quantitative trait locus and haplotype mapping in closely related inbred strains identifies a locus for open field behavior. Mamm Genome 2010; 21:231-46. [DOI: 10.1007/s00335-010-9260-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
|
14
|
Massett MP, Fan R, Berk BC. Quantitative trait loci for exercise training responses in FVB/NJ and C57BL/6J mice. Physiol Genomics 2009; 40:15-22. [PMID: 19789284 DOI: 10.1152/physiolgenomics.00116.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The genetic factors determining the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with adaptation to exercise training in a cross between FVB/NJ (FVB) and C57BL/6J (B6) mice. Mice completed an exercise performance test before and after a 4-wk treadmill running program, and changes in exercise capacity, expressed as work (kg.m), were calculated. Changes in work in F(2) mice averaged 1.51 +/- 0.08 kg.m (94.3 +/- 7.3%), with a range of -1.67 to +4.55 kg.m. All F(2) mice (n = 188) were genotyped at 20-cM intervals with 103 single nucleotide polymorphisms (SNPs), and genomewide linkage scans were performed for pretraining, posttraining, and change in work. Significant QTL for pretraining work were located on chromosomes 14 at 4.0 cM [3.72 logarithm of odds (LOD)] and 19 at 34.4 cM (3.63 LOD). For posttraining work significant QTL were located on chromosomes 3 at 60 cM (4.66 LOD) and 14 at 26 cM (4.99 LOD). Suggestive QTL for changes in work were found on chromosomes 11 at 44.6 cM (2.30 LOD) and 14 at 36 cM (2.25 LOD). When pretraining work was used as a covariate, a potential QTL for change in work was identified on chromosome 6 at 68 cM (3.56 LOD). These data indicate that one or more QTL determine exercise capacity and training responses in mice. Furthermore, these data suggest that the genes that determine pretraining work and training responses may differ.
Collapse
Affiliation(s)
- Michael P Massett
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas 77845-4243, USA.
| | | | | |
Collapse
|
15
|
Feng M, Deerhake ME, Keating R, Thaisz J, Xu L, Tsaih SW, Smith R, Ishige T, Sugiyama F, Churchill GA, DiPetrillo K. Genetic analysis of blood pressure in 8 mouse intercross populations. Hypertension 2009; 54:802-9. [PMID: 19652078 DOI: 10.1161/hypertensionaha.109.134569] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genetic basis of hypertension is well established, yet very few genes that cause common forms of hypertension are known. Quantitative trait locus (QTL) analyses in rodent models can guide the search for human hypertension genes, but the excellent genetic resources for mice have been underused in this regard. To address this issue, we surveyed blood pressure variation in mice from 37 inbred strains and generated 2577 mice in 8 intercross populations to perform QTL analyses of blood pressure. We identified 14 blood pressure QTL in these populations, including > or =7 regions of the mouse genome not linked previously to blood pressure. Many QTL were detected in multiple crosses, either within our study or in studies published previously, which facilitates the use of bioinformatics methods to narrow the QTL and focus the search for candidate genes. The regions of the human genome that correspond to all but 1 of the 14 blood pressure QTL in mice are linked to blood pressure in humans, suggesting that these regions contain causal genes with a conserved role in blood pressure control. These results greatly expand our knowledge of the genomic regions underlying blood pressure regulation in mice and support future studies to identify the causal genes within these QTL intervals.
Collapse
Affiliation(s)
- Minjie Feng
- Novartis Institute for BioMedical Research, 1 Health Plaza, East Hanover, NJ 07936, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bailey JS, Grabowski-Boase L, Steffy BM, Wiltshire T, Churchill GA, Tarantino LM. Identification of quantitative trait loci for locomotor activation and anxiety using closely related inbred strains. GENES BRAIN AND BEHAVIOR 2009; 7:761-9. [PMID: 19130624 DOI: 10.1111/j.1601-183x.2008.00415.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We carried out a quantitative trait loci (QTL) mapping experiment in two phenotypically similar inbred mouse strains, C57BL/6J and C58/J, using the open-field assay, a well-established model of anxiety-related behavior in rodents. This intercross was initially carried out as a control cross for an ethylnitrosurea mutagenesis mapping study. Surprisingly, although open-field behavior is similar in the two strains, we identified significant QTL in their F2 progeny. Marker regression identified a locus on Chr 8 having associations with multiple open-field measures and a significant interaction between loci on Chr 13 and 17. Together, the Chr 8 locus and the interaction effect form the core set of QTL controlling these behaviors with additional loci on Chr 1 and 6 present in a subset of the behaviors.
Collapse
Affiliation(s)
- J S Bailey
- Genomics Institute of the Novartis Research Foundation, Department of Genetics, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Blizard DA, Lionikas A, Vandenbergh DJ, Vasilopoulos T, Gerhard GS, Griffith JW, Klein LC, Stout JT, Mack HA, Lakoski JM, Larsson L, Spicer JM, Vogler GP, McClearn GE. Blood pressure and heart rate QTL in mice of the B6/D2 lineage: sex differences and environmental influences. Physiol Genomics 2008; 36:158-66. [PMID: 19066325 DOI: 10.1152/physiolgenomics.00035.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A quantitative trait locus (QTL) approach was used to define the genetic architecture underlying variation in systolic blood pressure (SBP) and heart rate (HR), measured indirectly on seven occasions by the tail cuff procedure. The tests were conducted in 395 F(2) adult mice (197 males, 198 females) derived from a cross of the C57BL/6J (B6) and DBA/2J (D2) strains and in 22 BXD recombinant-inbred (RI) strains. Interval mapping of F(2) data for the first 5 days of measurement nominated one statistically significant and one suggestive QTL for SBP on chromosomes (Chr) 4 and 14, respectively, and two statistically significant QTL for HR on Chr 1 (which was specific to female mice) and Chr 5. New suggestive QTL emerged for SBP on Chr 3 (female-specific) and 8 and for HR on Chr 11 for measurements recorded several weeks after mice had undergone stressful blood sampling procedures. The two statistically significant HR QTL were confirmed by analyses of BXD RI strain means. Male and female F(2) mice did not differ in SBP or HR but RI strain analyses showed pronounced strain-by-sex interactions and a negative genetic correlation between the two measures in both sexes. Evidence for a role for mitochondrial DNA was found for both HR and SBP. QTL for HR and SBP may differ in males and females and may be sensitive to different environmental contexts.
Collapse
Affiliation(s)
- David A Blizard
- Center for Developmental & Health Genetics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abass SK, Hartsfield JK, Al-Qawasmi RA, Everett ET, Foroud TM, Roberts WE. Inheritance of susceptibility to root resorption associated with orthodontic force in mice. Am J Orthod Dentofacial Orthop 2008; 134:742-50. [DOI: 10.1016/j.ajodo.2007.04.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 04/01/2007] [Accepted: 04/01/2007] [Indexed: 11/25/2022]
|
19
|
Howden R, Liu E, Miller-DeGraff L, Keener HL, Walker C, Clark JA, Myers PH, Rouse DC, Wiltshire T, Kleeberger SR. The genetic contribution to heart rate and heart rate variability in quiescent mice. Am J Physiol Heart Circ Physiol 2008; 295:H59-68. [PMID: 18456734 DOI: 10.1152/ajpheart.00941.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent studies have suggested a genetic component to heart rate (HR) and HR variability (HRV). However, a systematic examination of the genetic contribution to the variation in HR and HRV has not been performed. This study investigated the genetic contribution to HR and HRV using a wide range of inbred and recombinant inbred (RI) mouse strains. Electrocardiogram data were recorded from 30 strains of inbred mice and 29 RI strains. Significant differences in mean HR and total power (TP) HRV were identified between inbred strains and RI strains. Multiple significant differences within the strain sets in mean low-frequency (LF) and high-frequency (HF) power were also found. No statistically significant concordance was found between strain distribution patterns for HR and HRV phenotypes. Genomewide interval mapping identified a significant quantitative trait locus (QTL) for HR [LOD (likelihood of the odds) score = 3.763] on chromosome 6 [peak at 53.69 megabases (Mb); designated HR 1 (Hr1)]. Suggestive QTLs for TP were found on chromosomes 2, 4, 5, 6, and 14. A suggestive QTL for LF was found on chromosome 16; for HF, we found one significant QTL on chromosome 5 (LOD score = 3.107) [peak at 53.56 Mb; designated HRV-high-frequency 1 (Hrvhf1)] and three suggestive QTLs on chromosomes 2, 11 and 15. In conclusion, the results demonstrate a strong genetic component in the regulation of resting HR and HRV evidenced by the significant differences between strains. A lack of correlation between HR and HRV phenotypes in some inbred strains suggests that different sets of genes control the phenotypes. Furthermore, QTLs were found that will provide important insight to the genetic regulation of HR and HRV at rest.
Collapse
Affiliation(s)
- Reuben Howden
- National Inst. of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sheehan S, Tsaih SW, King BL, Stanton C, Churchill GA, Paigen B, DiPetrillo K. Genetic analysis of albuminuria in a cross between C57BL/6J and DBA/2J mice. Am J Physiol Renal Physiol 2007; 293:F1649-56. [PMID: 17804484 DOI: 10.1152/ajprenal.00233.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a growing medical problem and a significant risk factor for the development of end-stage renal disease, cardiovascular disease, and cardiovascular mortality. The genetic basis of CKD is recognized, but knowledge of the specific genes that contribute to the onset and progression of kidney disease is limited, mainly because of the difficulty and expense of identifying genes underlying CKD in humans. Results from genetic studies of CKD in rodents often correspond to findings in humans; therefore, we used quantitative trait locus (QTL) analysis to detect genomic regions affecting albuminuria in a cross between C57BL/6J and DBA/2J mice, strains resistant and susceptible to CKD, respectively. We identified several independent and interacting loci affecting albuminuria, including one QTL on mouse chromosome (Chr) 2 that is concordant with QTL influencing urinary albumin excretion on rat Chr 3 and diabetic nephropathy on human Chr 20p. Because this QTL was identified in multiple mouse crosses, as well as in rats and in humans, we used comparative genomics, haplotype analysis, and expression profiling to narrow the initial QTL interval from 386 genes to 10 genes with known coding sequence polymorphisms or expression differences between the strains. These results support the continued use of multiple cross-mapping and cross-species comparisons to further our understanding of the genetic basis of kidney disease.
Collapse
|
21
|
Nishihara E, Tsaih SW, Tsukahara C, Langley S, Sheehan S, DiPetrillo K, Kunita S, Yagami KI, Churchill GA, Paigen B, Sugiyama F. Quantitative trait loci associated with blood pressure of metabolic syndrome in the progeny of NZO/HILtJxC3H/HeJ intercrosses. Mamm Genome 2007; 18:573-83. [PMID: 17641813 DOI: 10.1007/s00335-007-9033-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
In a previous study in 15 inbred mouse strains, we found highest and lowest systolic blood pressures in NZO/HILtJ mice (metabolic syndrome) and C3H/HeJ mice (common lean strain), respectively. To identify the loci involved in hypertension in metabolic syndrome, we performed quantitative trait locus (QTL) analysis for blood pressure with direction of cross as a covariate in segregating F2 males derived from NZO/HILtJ and C3H/HeJ mice. We detected three suggestive main-effect QTLs affecting systolic and diastolic blood pressures (SBP and DBP). We analyzed the first principle component (PC1) generated from SBP and DBP to investigate blood pressure. In addition to all the suggestive QTLs (Chrs 1, 3, and 8) in SBP and DBP, one suggestive QTL on Chr 4 was found in PC1 in the main scan. Simultaneous search identified two significant epistatic locus pairs (Chrs 1 and 4, Chrs 4 and 8) for PC1. Multiple regression analysis revealed three blood pressure QTLs (Bpq10, 100 cM on Chr 1; Bpq11, 6 cM on Chr 4; Bpq12, 29 cM on Chr 8) accounting for 29.4% of blood pressure variance. These were epistatic interaction QTLs constructing a small network centered on Chr 4, suggesting the importance of genetic interaction for development of hypertension. The blood pressure QTLs on Chrs 1, 4, and 8 were detected repeatedly in multiple studies using common inbred nonobese mouse strains, implying substantial QTL independent of development of obesity and insulin resistance. These results enhance our understanding of complicated genetic factors of hypertension in metabolic diseases.
Collapse
Affiliation(s)
- Eri Nishihara
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Valance D, Desprès G, Boissy A, Mignon-Grasteau S, Constantin P, Leterrier C. Genetic selection on a behavioural fear trait is associated with changes in heart rate variability in quail. GENES BRAIN AND BEHAVIOR 2007; 6:339-46. [PMID: 16879617 DOI: 10.1111/j.1601-183x.2006.00262.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study investigated whether genetic selection on a divergent behavioural trait of fearfulness (tonic immobility duration) was related to changes in the nervous control of the heart. Quail selected for either long or short tonic immobility (LTI or STI, respectively) duration was compared with an unselected control line (CTI). The autonomic control of the heart was assessed by heart rate variability analysis and pharmacological blockades. Quail were surgically fitted with a telemetric device. Heart rate before injection did not differ between the three lines. The vagal-sympathetic effect (VSE) at rest differed significantly from 1 in CTI and STI quail, suggesting that parasympathetic activity was dominant. In LTI quail, VSE did not differ from 1, suggesting a balance between parasympathetic and sympathetic activities. The intrinsic heart rate reached after the successive injections of propranolol and atropine did not differ between lines and was higher than the heart rate at rest in STI, which was in line with results of VSE at rest. After atropine injection, the sympathetic activity indicated by the low-frequency power was lower in CTI than in the two selected quail. After propranolol injection, the parasympathetic activity indicated by the root of the mean squares of successive differences and the high-frequency power was higher in STI than in CTI and LTI quail. Selection on tonic immobility duration thus appears to be associated with changes in the sympathovagal control of the heart, which may influence behavioural responses to stressful situations.
Collapse
Affiliation(s)
- D Valance
- UMR 6175, Physiologie de la Reproduction et des Comportements, INRA Centre de Tours, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
23
|
Silva GJJ, Pereira AC, Krieger EM, Krieger JE. Genetic mapping of a new heart rate QTL on chromosome 8 of spontaneously hypertensive rats. BMC MEDICAL GENETICS 2007; 8:17. [PMID: 17419875 PMCID: PMC1865373 DOI: 10.1186/1471-2350-8-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 04/09/2007] [Indexed: 01/19/2023]
Abstract
Background Tachycardia is commonly observed in hypertensive patients, predominantly mediated by regulatory mechanisms integrated within the autonomic nervous system. The genetic loci and genes associated with increased heart rate in hypertension, however, have not yet been identified. Methods An F2 intercross of Spontaneously Hypertensive Rats (SHR) × Brown Norway (BN) linkage analysis of quantitative trait loci mapping was utilized to identify candidate genes associated with an increased heart rate in arterial hypertension. Results Basal heart rate in SHR was higher compared to that of normotensive BN rats (365 ± 3 vs. 314 ± 6 bpm, p < 0.05 for SHR and BN, respectively). A total genome scan identified one quantitative trait locus in a 6.78 cM interval on rat chromosome 8 (8q22–q24) that was responsible for elevated heart rate. This interval contained 241 genes, of which 65 are known genes. Conclusion Our data suggest that an influential genetic region located on the rat chromosome 8 contributes to the regulation of heart rate. Candidate genes that have previously been associated with tachycardia and/or hypertension were found within this QTL, strengthening our hypothesis that these genes are, potentially, associated with the increase in heart rate in a hypertension rat model.
Collapse
Affiliation(s)
- Gustavo JJ Silva
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - Alexandre C Pereira
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - Eduardo M Krieger
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - José E Krieger
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor) da Faculdade de Medicina da Universidade de São Paulo, Brazil, Av. Dr. Enéas de Carvalho Aguiar, 44 São Paulo, Brazil
| |
Collapse
|
24
|
Solberg LC, Baum AE, Ahmadiyeh N, Shimomura K, Li R, Turek FW, Takahashi JS, Churchill GA, Redei EE. Genetic analysis of the stress-responsive adrenocortical axis. Physiol Genomics 2006; 27:362-9. [PMID: 16895972 DOI: 10.1152/physiolgenomics.00052.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The underlying genetic components contributing to individual variability in functions of the stress-responsive hypothalamic-pituitary-adrenal (HPA) axis are poorly understood. To determine genetic loci mediating three aspects of the adrenocortical function, we conducted a quantitative trait locus (QTL) analysis in the segregating F2 generation of a Wistar Kyoto (WKY) x Fischer 344 (F344) cross, two inbred rat strains that differ in several HPA axis measures. The following three components of adrenocortical function are known to be regulated by different mechanisms that are mediated via suprahypothalamic, hypothalamic, pituitary, and intra-adrenal influences: basal plasma corticosterone (Cort) levels, plasma Cort response to a 10-min restraint stress, and adrenal weight. Genome scans identified a complex genetic architecture for the basal Cort phenotype, including sex and maternal lineage effects. Pairwise interactions were also identified for this trait. We identified three significant and two suggestive QTLs for stress Cort, along with two pairs of interacting loci for this trait. Four highly significant and two suggestive loci were identified for adrenal weight, with no interacting loci. In contrast to basal Cort, no sex- or lineage-dependent QTL were identified for stress Cort or adrenal weight, despite the large sex differences in these phenotypes. We identified three nucleotide alterations in an obvious candidate gene mapped to the most significant QTL for stress Cort, Cort-binding globulin (CBG), one of which is known to alter CBG binding. This analysis confirms that three separate traits regulated by the HPA axis are controlled by multiple, but mainly nonoverlapping, QTLs.
Collapse
Affiliation(s)
- Leah C Solberg
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Hypertension is most often considered a disease of old age, but the precursors are often present in young children long before the clinically accepted definitions of hypertension in the adult are manifested. Essential hypertension is by far the most common form of the disease, comprising a complex interaction of genetic and environmental factors. Many individual genes that play a role in the maintenance of blood pressure have been identified; however, none has been shown specifically to be a component of essential hypertension. Hypertension is among the leading risk factors for coronary heart disease, stroke, and end-stage renal disease, making it critically important to identify individuals at risk early in life prior to manifestation of clinical signs and symptoms.
Collapse
Affiliation(s)
- John Edward Jones
- Department of Pediatrics and Physiology and Biophysics, Georgetown University Medical Center, F2004 PHC, 4000 Reservoir Road NW, Washington, DC 20057, USA
| | | |
Collapse
|
26
|
Abstract
In this review, we outline the application and contribution of transgenic technology to establishing the genetic basis of blood pressure regulation and its dysfunction. Apart from a small number of examples where high blood pressure is the result of single gene mutation, essential hypertension is the sum of interactions between multiple environmental and genetic factors. Candidate genes can be identified by a variety of means including linkage analysis, quantitative trait locus analysis, association studies, and genome-wide scans. To test the validity of candidate genes, it is valuable to model hypertension in laboratory animals. Animal models generated through selective breeding strategies are often complex, and the underlying mechanism of hypertension is not clear. A complementary strategy has been the use of transgenic technology. Here one gene can be selectively, tissue specifically, or developmentally overexpressed, knocked down, or knocked out. Although resulting phenotypes may still be complicated, the underlying genetic perturbation is a starting point for identifying interactions that lead to hypertension. We recognize that the development and maintenance of hypertension may involve many systems including the vascular, cardiac, and central nervous systems. However, given the central role of the kidney in normal and abnormal blood pressure regulation, we intend to limit our review to models with a broadly renal perspective.
Collapse
Affiliation(s)
- Linda J Mullins
- Molecular Physiology Laboratory, Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
27
|
Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, Bousser MG, Heutink P, Miner JH, Tournier-Lasserve E, John SWM. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 2006; 354:1489-96. [PMID: 16598045 DOI: 10.1056/nejmoa053727] [Citation(s) in RCA: 371] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Small-vessel diseases of the brain underlie 20 to 30 percent of ischemic strokes and a larger proportion of intracerebral hemorrhages. In this report, we show that a mutation in the mouse Col4a1 gene, encoding procollagen type IV alpha1, predisposes both newborn and adult mice to intracerebral hemorrhage. Surgical delivery of mutant mice alleviated birth-associated trauma and hemorrhage. We identified a COL4A1 mutation in a human family with small-vessel disease. We concluded that mutation of COL4A1 may cause a spectrum of cerebrovascular phenotypes and that persons with COL4A1 mutations may be predisposed to hemorrhage, especially after environmental stress.
Collapse
|
28
|
Laramie JM, Wilk JB, Hunt SC, Ellison RC, Chakravarti A, Boerwinkle E, Myers RH. Evidence for a gene influencing heart rate on chromosome 5p13-14 in a meta-analysis of genome-wide scans from the NHLBI Family Blood Pressure Program. BMC MEDICAL GENETICS 2006; 7:17. [PMID: 16509988 PMCID: PMC1413518 DOI: 10.1186/1471-2350-7-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 03/01/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Elevated resting heart rate has been shown in multiple studies to be a strong predictor of cardiovascular disease. Previous family studies have shown a significant heritable component to heart rate with several groups conducting genomic linkage scans to identify quantitative trait loci. METHODS We performed a genome-wide linkage scan to identify quantitative trait loci influencing resting heart rate among 3,282 Caucasians and 3,989 African-Americans in three independent networks comprising the Family Blood Pressure Program (FBPP) using 368 microsatellite markers. Mean heart rate measurements were used in a regression model including covariates for age, body mass index, pack-years, currently drinking alcohol (yes/no), hypertension status and medication usage to create a standardized residual for each gender/ethnic group within each study network. This residual was used in a nonparametric variance component model to generate a LOD score and a corresponding P value for each ethnic group within each study network. P values from each ethnic group and study network were merged using an adjusted Fisher's combining P values method and the resulting P values were converted to LOD scores. The entire analysis was redone after individuals currently taking beta-blocker medication were removed. RESULTS We identified significant evidence of linkage (LOD = 4.62) to chromosome 10 near 142.78 cM in the Caucasian group of HyperGEN. Between race and network groups we identified a LOD score of 1.86 on chromosome 5 (between 39.99 and 45.34 cM) in African-Americans in the GENOA network and the same region produced a LOD score of 1.12 among Caucasians within a different network (HyperGEN). Combining all network and race groups we identified a LOD score of 1.92 (P = 0.0013) on chromosome 5p13-14. We assessed heterogeneity for this locus between networks and ethnic groups and found significant evidence for low heterogeneity (P < or = 0.05). CONCLUSION We found replication (LOD > 1) between ethnic groups and between study networks with low heterogeneity on chromosome 5p13-14 suggesting that a gene in this region influences resting heart rate.
Collapse
Affiliation(s)
- Jason M Laramie
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Bioinformatics, Boston University, MA, USA
| | - Jemma B Wilk
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Steven C Hunt
- Cardiovascular Genetics, University of Utah, Salt Lake City, UT, USA
| | - R Curtis Ellison
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Aravinda Chakravarti
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas-Houston Health Science Center, Houston, TX, USA
| | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
29
|
Baum AE, Solberg LC, Churchill GA, Ahmadiyeh N, Takahashi JS, Redei EE. Test- and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality. Behav Brain Res 2006; 169:220-30. [PMID: 16490266 PMCID: PMC3762875 DOI: 10.1016/j.bbr.2006.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 01/04/2006] [Accepted: 01/12/2006] [Indexed: 11/13/2022]
Abstract
Inbred Wistar-Kyoto rats consistently display hypoactivity in tests of emotional behavior. We used them to test the hypothesis that the genetic factors underlying the behavioral decision-making process will vary in different environmental contexts. The contexts used were the open-field test (OFT), a novel environment with no explicit threats present, and the defensive-burying test (DB), a habituated environment into which a threat has been introduced. Rearing, a voluntary behavior was measured in both tests, and our study was the first to look for genetic loci affecting grooming, a relatively automatic, stress-responsive stereotyped behavior. Quantitative trait locus analysis was performed on a population of 486 F2 animals bred from reciprocal inter-crosses. The genetic architectures of DB and OFT rearing, and of DB and OFT grooming, were compared. There were no common loci affecting grooming behavior in both tests. These different contexts produced the stereotyped behavior via different pathways, and genetic factors seem to influence the decision-making pathways and not the expression of the behavior. Three loci were found that affected rearing behavior in both tests. However, in both contexts, other loci had greater effects on the behavior. Our results imply that environmental context's effects on decision-making vary depending on the category of behavior.
Collapse
Affiliation(s)
- Amber E. Baum
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Leah C. Solberg
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | - Nasim Ahmadiyeh
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
- Howard Hughe Medical Institute, Northwestern University, Evanston, IL 60208, USA
| | - Joseph S. Takahashi
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
- Howard Hughe Medical Institute, Northwestern University, Evanston, IL 60208, USA
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Corresponding author at: Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA. Tel.: +1 312 503 1790; fax: +1 312 503 0466. (E.E. Redei)
| |
Collapse
|
30
|
Peters LL, Zhang W, Lambert AJ, Brugnara C, Churchill GA, Platt OS. Quantitative trait loci for baseline white blood cell count, platelet count, and mean platelet volume. Mamm Genome 2005; 16:749-63. [PMID: 16261417 DOI: 10.1007/s00335-005-0063-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 06/29/2005] [Indexed: 11/29/2022]
Abstract
A substantial genetic contribution to baseline peripheral blood counts has been established. We performed quantitative trait locus/loci (QTL) analyses to identify chromosome (Chr) regions harboring genes influencing the baseline white blood cell (WBC) count, platelet (Plt) count, and mean platelet volume (MPV) in F(2) intercrosses between NZW/LacJ, SM/J, and C57BLKS/J inbred mice. We identified six significant WBC QTL: Wbcq1 (peak LOD score at 38 cM, Chr 1), Wbcq2 (42 cM, Chr 3), Wbcq3 (0 cM, Chr 15), Wbcq4 (58 cM, Chr 1), Wbcq5 (82 cM, Chr 1), and Wbcq6 (8 cM, Chr 14). Three significant Plt QTL were identified: Pltq1 (24 cM, Chr 2), Pltq2 (36 cM, Chr 7), and Pltq3 (10 cM, Chr 12). Two significant MPV QTL were identified, Mpvq1 (62 cM, Chr 15) and Mpvq2 (44 cM, Chr 8). In total, the WBC QTL accounted for up to 31% of the total variance in baseline WBC count, while the Plt and MPV QTL accounted for up to 30% and 49% of the total variance, respectively. These analyses underscore the genetic complexity underlying these traits in normal populations and provide the basis for future studies to identify novel genes involved in the regulation of mammalian hematopoiesis.
Collapse
Affiliation(s)
- Luanne L Peters
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Tsukahara C, Sugiyama F, Paigen B, Kunita S, Yagami KI. Blood pressure in 15 inbred mouse strains and its lack of relation with obesity and insulin resistance in the progeny of an NZO/HILtJ x C3H/HeJ intercross. Mamm Genome 2005; 15:943-50. [PMID: 15599552 DOI: 10.1007/s00335-004-2411-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 07/22/2004] [Indexed: 10/24/2022]
Abstract
We characterized the systolic and diastolic blood pressures of 10-week-old males from 15 inbred mouse strains and found that blood pressures among strains were continuously distributed and that strain C3H/HeJ had the lowest mean systolic and diastolic pressure (100.5 +/- 3.2 and 66.8 +/- 3.5 mmHg), and a strain with obesity and diabetes, NZO/HILtJ, had the highest (132.4 +/- 3.1 and 86.6 +/- 6.9 mmHg). To understand the relationship of blood pressure with insulin resistance and obesity, we produced F1 and F2 progeny from reciprocal crosses of NZO, the strain with obesity, diabetes, and high blood pressure, and the strain with the lowest blood pressures, C3H/HeJ. Mean systolic pressures of 10-week-old (NZO x C3H)F1 and (C3H x NZO)F1 males were similar to each other (114.9 +/- 3.8 and 117.2 +/- 5.0 mmHg) and were intermediate to those of the parental strains. Systolic pressure of F2 males (n = 223) was distributed normally about the mean, suggesting that blood pressure is a polygenic trait. The body mass index (BMI) and plasma insulin levels of F2 progeny correlated significantly and positively with plasma leptin levels, suggesting that obesity is associated with insulin resistance. In contrast, systolic pressure did not correlate with BMI, plasma leptin levels, and plasma insulin levels, suggesting that genes underlying the development of hypertension in this intercross are not associated with the development of obesity and insulin resistance. Our results demonstrate that the progeny of NZO and C3H intercrosses are a practical and powerful tool for identifying blood pressure genes and for understanding human polygenic hypertension.
Collapse
Affiliation(s)
- Chieko Tsukahara
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | | | | | | | | |
Collapse
|
32
|
Baum AE, Solberg LC, Kopp P, Ahmadiyeh N, Churchill G, Takahashi JS, Jameson JL, Redei EE. Quantitative trait loci associated with elevated thyroid-stimulating hormone in the Wistar-Kyoto rat. Endocrinology 2005; 146:870-8. [PMID: 15514085 PMCID: PMC3764449 DOI: 10.1210/en.2004-0948] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormones are essential for the regulation of developmental and physiological processes. The genetic factors underlying naturally occurring variability in mammalian thyroid function are, however, only partially understood. Genetic control of thyroid function can be studied with animal models such as the inbred Wistar-Kyoto (WKY) rat strain. Previous studies established that WKY rats have elevated TSH, slightly elevated total T3, and normal total T4 levels compared with Wistar controls. The present study confirmed a persistent 24-h elevation of TSH in WKY rats compared with the Fisher 344 (F344) rat, another inbred strain. Acute T3 challenge (25 microg/100 g body weight ip) suppressed serum TSH and T4 levels in both strains. Quantitative trait locus analysis of elevated TSH in a reciprocally bred WKY x F344 F2 population identified one highly significant locus on chromosome 6 (LOD=11.7, TSH-1) and one suggestive locus on chromosome 5 (LOD=2.3, TSH-2). The confidence interval of TSH-1 contains the TSH receptor and type 2 deiodinase genes, and TSH-2 contains the type 1 deiodinase gene. The WKY alleles of each gene contain sequence alterations, but additional studies are indicated to identify the specific gene or genes responsible for altered regulation of the thyroid axis. These findings suggest that one or more genetic alterations within the TSH-1 locus significantly contribute to the altered thyroid function tests of the WKY rat.
Collapse
Affiliation(s)
- Amber E Baum
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bayes factor analysis for the genetic background of physiological and vitality variables of F2 Iberian x Meishan newborn piglets. J Anim Sci 2005; 83:334-9. [PMID: 15644504 DOI: 10.2527/2005.832334x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Bayes factor (BF) procedure was applied to examine the additive genetic component of several physiological and vitality variables for newborn pigs. Nine variables were studied: heart rate, arterial oxygen saturation, rectal temperature (all at birth and 60 min later), birth weight, interval between birth and first teats contact, and interval between birth and first colostrum intake. The available numbers of data ranged from 288 (heart rate at 60 min) to 839 records (birth weight) from F(2) Iberian x Meishan newborn pigs. We compared a model with zero heritability (nonheritable) with the one where the additive genetic background was included. The BF was used to discriminate between both candidate models. Very strong evidence of genetic background was detected for heart rate 60 min after birth (BF = 48.90), and strong evidence was detected for rectal temperature at birth (BF = 13.82). Posterior modes (means) of heritabilities were 0.29 (0.32) and 0.40 (0.39), respectively. In addition, substantial evidence of absence of genetic background was detected for arterial oxygen saturation at birth.
Collapse
|
34
|
Solberg LC, Baum AE, Ahmadiyeh N, Shimomura K, Li R, Turek FW, Churchil GA, Takahashi JS, Redei EE. Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mamm Genome 2005; 15:648-62. [PMID: 15457344 PMCID: PMC3764448 DOI: 10.1007/s00335-004-2326-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
The Wistar-Kyoto (WKY) rat exhibits physiological and behavioral similarities to endophenotypes of human depression. In the forced swim test (FST), a well-characterized antidepressant-reversible test for behavioral despair in rodents, WKYs express characteristics of behavioral despair; increased immobility, and decreased climbing. To map genetic loci linked to behavior in the FST, we conducted a quantitative trait loci (QTL) analysis of the segregating F2 generation of a WKY x Fisher 344 (F344) reciprocal intercross. Using linear-model-based genome scans to include covariate (sex or lineage)-by-QTL interaction effects, four significant QTL influencing climbing behavior were identified. In addition, we identified three, seven, and two suggestive QTL for climbing, immobility, and swimming, respectively. One of these loci was pleiotropic, affecting both immobility and climbing. As found in human linkage studies, several of these QTL showed sex- and/or lineage-dependent effects. A simultaneous search strategy identified three epistatic locus pairs for climbing. Multiple regression analysis was employed to characterize the joint contributions of these QTL and to clarify the sex- and lineage-dependent effects. As expected for complex traits, FST behavior is influenced by multiple QTL of small effect, each contributing 5%-10%, accounting for a total 10%-30% of the phenotypic variance. A number of loci mapped in this study share overlapping candidate regions with previously identified emotionality QTL in mice as well as with susceptibility loci recognized by linkage or genome scan analyses for major depression or bipolar disorder in humans. The presence of these loci across species suggests that these QTL may represent universal genetic factors contributing to mood disorders.
Collapse
Affiliation(s)
- Leah C. Solberg
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, Ilinois, 60611, USA
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Ilinois 60208, USA
| | - Amber E. Baum
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, Ilinois, 60611, USA
- Department of Endocrinology and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ilinois, 60611, USA
| | - Nasim Ahmadiyeh
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, Ilinois, 60611, USA
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Ilinois 60208, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, Ilinois 60208, USA
| | - Kazuhiro Shimomura
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Ilinois 60208, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, Ilinois 60208, USA
| | - Renhua Li
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA
| | - Fred W. Turek
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Ilinois 60208, USA
| | | | - Joseph S. Takahashi
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Ilinois 60208, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, Ilinois 60208, USA
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, Ilinois, 60611, USA
| |
Collapse
|
35
|
Mindel G, Morrison AR. Is Hypertension a Disorder of Volume Control? What Is the Evidence? ACTA ACUST UNITED AC 2005; 101:p63-71. [PMID: 16020937 DOI: 10.1159/000086871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The etiological factors responsible for the hypertensive phenotype are complex and several experimental and clinical observations point to a major role of the kidney as being responsible. Genetic studies of uncommon diseases which express monogenetic inheritance all have in common a dysregulation of Na+ balance and volume expansion. Furthermore, epidemiological data suggest an increased incidence of hypertension in communities with high excretory rates of Na+. Experimental data also suggest that low birth weight is associated with an increase in the frequency of hypertension later in life and raises the possibility that intrauterine imprinting may contribute to the expression of the phenotype. Upregulation of the Na+/K+/2Cl- and thiazide-sensitive transporters in low birth weight animals may provide the physiological basis for these observations. In addition, low birth weight is associated with a decrease in nephron number. Therefore, low nephron number may induce adaptive changes in utero which influence volume homeostasis later in life and subtle gain of function mutations in one or more of these transporters may unmask defects in volume homeostasis with increasing salt intake. Finally, the high prevalence of hypertension in functionally anephric patience seems to respond to sustained maintenance of 'dry weight' through ultrafiltration.
Collapse
Affiliation(s)
- Graeme Mindel
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
36
|
Deschepper CF, Olson JL, Otis M, Gallo-Payet N. Characterization of blood pressure and morphological traits in cardiovascular-related organs in 13 different inbred mouse strains. J Appl Physiol (1985) 2004; 97:369-76. [PMID: 15047670 DOI: 10.1152/japplphysiol.00073.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better understand the contributions of various genetic backgrounds to complex quantitative phenotypes, we have measured several quantitative traits of cardiovascular interest [i.e., systolic blood pressure, weight (corrected by body weight) of several cardiac compartments and adrenals and kidneys, and histological correlates for kidneys and adrenals] in male and female mice from 13 different inbred strains. We selected strains so that each major genealogical group would be represented and to conform to priorities set by the Mouse Phenome Database project. Interstrain comparisons of phenotypes made it possible to identify strains that displayed values that belonged to either the low or the high end of the interstrain variance for quantitative traits, such as systolic blood pressure, body weight, left ventricular weight, and/or adrenocortical structure. For instance, both male and female C3H/HeJ and A/J mice displayed either low systolic blood pressure or low cardiac ventricular mass, respectively, and male C57BL6/J displayed low adrenal weight. Likewise, intersex comparisons made it possible to identify phenotypic values that were sexually dimorphic for some of the same traits. For instance, female AKR/J mice had relatively higher body weight and systolic blood pressure values than their male counterparts, perhaps constituting an animal model of the metabolic X syndrome. These strain- and sex-specific features will be of value both for future genetic and/or developmental studies and for the development of new animal models that will help in the generation of mechanistic hypotheses. All data have been deposited to the Mouse Phenome Database for future integration with the Mouse Genome Database and can be further analyzed and compared with tools available on the site.
Collapse
Affiliation(s)
- Christian F Deschepper
- Experimental Cardiovascular Biology Research Unit, Institut de recherches cliniques de Montréal, Quebec, Canada H2W 1R7.
| | | | | | | |
Collapse
|
37
|
He W, Miao FJP, Lin DCH, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H, Ling L. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 2004; 429:188-93. [PMID: 15141213 DOI: 10.1038/nature02488] [Citation(s) in RCA: 648] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 03/15/2004] [Indexed: 12/11/2022]
Abstract
The citric acid cycle is central to the regulation of energy homeostasis and cell metabolism. Mutations in enzymes that catalyse steps in the citric acid cycle result in human diseases with various clinical presentations. The intermediates of the citric acid cycle are present at micromolar concentration in blood and are regulated by respiration, metabolism and renal reabsorption/extrusion. Here we show that GPR91 (ref. 3), a previously orphan G-protein-coupled receptor (GPCR), functions as a receptor for the citric acid cycle intermediate succinate. We also report that GPR99 (ref. 4), a close relative of GPR91, responds to alpha-ketoglutarate, another intermediate in the citric acid cycle. Thus by acting as ligands for GPCRs, succinate and alpha-ketoglutarate are found to have unexpected signalling functions beyond their traditional roles. Furthermore, we show that succinate increases blood pressure in animals. The succinate-induced hypertensive effect involves the renin-angiotensin system and is abolished in GPR91-deficient mice. Our results indicate a possible role for GPR91 in renovascular hypertension, a disease closely linked to atherosclerosis, diabetes and renal failure.
Collapse
Affiliation(s)
- Weihai He
- Tularik Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
DiPetrillo K, Tsaih SW, Sheehan S, Johns C, Kelmenson P, Gavras H, Churchill GA, Paigen B. Genetic analysis of blood pressure in C3H/HeJ and SWR/J mice. Physiol Genomics 2004; 17:215-20. [PMID: 14996992 DOI: 10.1152/physiolgenomics.00212.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypertension is a complex phenotype induced by multiple environmental and genetic factors. Quantitative trait locus (QTL) analysis is a powerful method for identifying genomic regions underlying complex diseases. We conducted a QTL analysis of blood pressure in mice using 217 F2progeny (males and females) from a cross between the normotensive C3H/HeJ and hypertensive SWR/J inbred strains. Our analysis identified significant QTL controlling blood pressure on chromosome 1 [Chr 1; Bpq8; peak 78 cM; 95% confidence interval 64–106 cM; logarithm of the odds ratio (LOD) 3.5; peak marker D1Mit105] and on Chr 16 ( Bpq9; peak 56 cM; 95% confidence interval 46–58 cM; LOD 3.6; peak marker D16Mit158). Bpq8 was previously identified in a cross between C57BL/6J and A/J mice, and we narrowed this QTL from 42 to 18 cM (95% confidence interval 68–86 cM) by combining the data from these crosses. By examining Bpq8 for regions where ancestral alleles were conserved among the high allele strains (C57BL/6J, SWR/J) and different from the low allele strains (A/J, C3H/HeJ), we identified a 2.3-cM region where the high allele strains shared a common haplotype. Bpq8 is concordant with known QTL in both rat and human, suggesting that the causal gene underlying Bpq8 may be conserved as a disease gene in human hypertension.
Collapse
|
39
|
Martin LJ, Comuzzie AG, Sonnenberg GE, Myklebust J, James R, Marks J, Blangero J, Kissebah AH. Major quantitative trait locus for resting heart rate maps to a region on chromosome 4. Hypertension 2004; 43:1146-51. [PMID: 14993199 DOI: 10.1161/01.hyp.0000122873.42047.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multiple studies have identified resting heart rate as a risk factor for cardiovascular disease independent of other cardiovascular disease risk factors (such as dyslipidemia and hypertension). Previous studies have examined heart rate in hypertensive individuals, but little is known about the genetic determination of resting heart rate in a normal population. Therefore, our objective was to perform a genome screen on a population containing normotensive and hypertensive individuals. We performed variance decomposition linkage analysis using maximum likelihood methods at approximately 10 cM intervals in 2209 individuals of predominantly North European ancestry. We estimated the heritability of resting heart rate to be 26% and obtained significant evidence of linkage (logarithm of the odds [LOD]=3.9) for resting heart rate on chromosome 4q. This signal is in the same region as a quantitative trait locus (QTL) for long QT syndrome 4 and a QTL for heart rate in rats. Within the 1-LOD unit support interval, there are 2 strong candidates: ankyrin-B and myozenin 2.
Collapse
Affiliation(s)
- Lisa J Martin
- Department of Pediatrics, Center for Epidemiology and Biostatistics, Cincinnati Children's Hospital Medical Center, Mail Code 5041, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Schwartz F, Duka A, Triantafyllidi E, Johns C, Duka I, Cui J, Gavras H. Serial analysis of gene expression in mouse kidney following angiotensin II administration. Physiol Genomics 2003; 16:90-8. [PMID: 14570981 DOI: 10.1152/physiolgenomics.00108.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As a new line of inquiry into the molecular mechanisms underlying pathophysiological processes associated with angiotensin (ANG II)-dependent hypertension, we applied the method of serial analysis of gene expression (SAGE) to examine genome-wide transcription changes in the kidneys of mice that developed hypertension in response to chronic ANG II administration. Mice were infused subcutaneously via osmotic minipumps with ANG II for 7 days, and systolic blood pressure was measured by tail-cuff plethysmography. Subsequently, mice were euthanized, and the total RNA isolated from the kidneys was used to construct SAGE libraries. Comparison of 11,447 SAGE tags from the hypertensive kidneys, representing 5,740 unique transcripts, and 11,273 tags from the control kidneys, corresponding to 5,619 different transcripts, identified genes that are significantly ( P < 0.05) down- or upregulated in the hypertensive kidney. Our assessment of the genome-wide influence of ANG II resulted in the detection of several novel genes and in a recognition of potential new roles for the previously characterized genes, thus providing new probes with which to further explore the ANG II effects in normal and disease states.
Collapse
Affiliation(s)
- Faina Schwartz
- Department of Medicine, Hypertension Section, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Although the genetics of rare, monogenic, forms of human hypertension are fairly well defined, the genetics of the common polygenic form of human essential hypertension is only emerging. With the ability to control environmental variables, animal models have provided valuable tools with which to study blood pressure (BP) homeostasis. We have now studied BP genetics in a model consisting of 1,521 F2 mice from a series of (A/J × B6) intercrosses kept under standardized conditions. Using whole genome quantitative trait loci (QTL) mapping, we have identified four novel significant BP loci. These included Abbp1 on mouse chromosome MMU1 [maximum LOD score (MLS) at ∼35 cM = 6.8], Abbp2 on MMU4 (MLS at ∼25 cM = 9.8), Abbp3 on MMU7 (MLS at ∼25 cM = 5.4), and Abbp4 on MMU11 (MLS at ∼58 cM = 6.3). Compared with A/J homozygotes, homozygosity for the B6 alleles of Abbp1, Abbp2, or Abbp4 is independently associated with a 7–12 mmHg increase in BP. In contrast Abbp3 interacts epistatically with a locus on MMU17 (near D17Mit180) to modulate BPs in female (A/J × B6)F2 mice. Interestingly, Abbp4 on MMU11 is homologous to a major confirmed BP locus, BP1, on rat chromosome 10 and to a major confirmed BP locus, HYT1, on human chromosome 17. Defining the molecular differences between the A/J and the B6 alleles at these novel loci with major influences on the BP phenotype will contribute to our understanding of the complex genetics of BP control.
Collapse
Affiliation(s)
- David D L Woo
- David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | |
Collapse
|
42
|
Wong C, Mahapatra NR, Chitbangonsyn S, Mahboubi P, Mahata M, Mahata SK, O'Connor DT. The angiotensin II receptor (Agtr1a): functional regulatory polymorphisms in a locus genetically linked to blood pressure variation in the mouse. Physiol Genomics 2003; 14:83-93. [PMID: 12697907 DOI: 10.1152/physiolgenomics.00162.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypertension is a complex trait with multiple genetic determinants. A previous genome-wide linkage study of systolic blood pressure in a mouse genetic backcross implicated a region of chromosome 13 (LOD = 3.3 at 16.0 cM) as a determinant of blood pressure differences between a hereditary low blood pressure strain of Mus musculus (BPL/1) and Mus spretus (SPRET); at this locus, the unexpected effect of the BPL/1 allele was to increase blood pressure. A plausible candidate locus encoding angiotensin II receptor isoform 1a (Agtr1a) is also located at 16.0 cM on chromosome 13. We therefore investigated structural and functional differences at Agtr1a between BPL/1 and SPRET, as well as the BPH/2 strain. Resequencing Agtr1a in the three strains established the exon/intron and proximal promoter structure of the mouse gene. Coding exon 3 spanned 1,960 bp (with 26 SNPs), including the 1,077-bp/359-amino acid ORF (with 5 cSNPs, all of which were synonymous). Promoter sequences revealed a consensus TATA box, conserved G/C-rich regions, and a striking, lengthy simple sequence repeat region, composed of di-, tri-, tetra-, and penta-nucleotide repeats, whose overall length varied markedly among the strains. Twenty-five other SNPs and three single nucleotide deletions differentiated the strains' promoters, six of which were in likely functional promoter motifs. Agtr1a mRNA abundance in the adrenal gland in vivo was greater (P < 0.05) in BPL/1 than SPRET, consistent with the predicted effect of the BPL/1 allele to confer higher blood pressure. When Agtr1a promoters were subcloned into luciferase reporter plasmids and transfected into PC12 chromaffin cells, basal promoter expression was higher (P < 0.001) in BPL/1 than in SPRET, consistent with the endogenous mRNA results. In summary, Agtr1a on chromosome 13 is highly polymorphic between mouse strains, although the amino acid sequence specified by the ORF is invariant, even across mouse species. We conclude that polymorphisms in the Agtr1a promoter account for differences in gene expression in vivo between BPL/1 and SPRET, in a way consistent with the effects of alleles at this locus on chromosome 13 to affect blood pressure in the mouse genome-wide linkage study.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II/physiology
- Animals
- Blood Pressure/genetics
- Cell Line
- Chromaffin Cells/chemistry
- Chromaffin Cells/metabolism
- Conserved Sequence/genetics
- Conserved Sequence/physiology
- Exons/genetics
- Genetic Linkage/physiology
- Genetic Markers
- Genetic Variation/physiology
- Introns/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred Strains
- Muridae
- PC12 Cells
- Polymorphism, Genetic/physiology
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- RNA, Messenger/genetics
- Rats
- Receptor, Angiotensin, Type 1
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Clifford Wong
- Department of Medicine and Center for Molecular Genetics, University of California, and Veterans Affairs San Diego Healthcare System, San Diego, California 92161, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Chagnon YC, Rankinen T, Snyder EE, Weisnagel SJ, Pérusse L, Bouchard C. The human obesity gene map: the 2002 update. OBESITY RESEARCH 2003; 11:313-67. [PMID: 12634430 DOI: 10.1038/oby.2003.47] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This is the ninth update of the human obesity gene map, incorporating published results through October 2002 and continuing the previous format. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome-wide scans and various animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. For the first time, transgenic and knockout murine models exhibiting obesity as a phenotype are incorporated (N = 38). As of October 2002, 33 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and the causal genes or strong candidates have been identified for 23 of these syndromes. QTLs reported from animal models currently number 168; there are 68 human QTLs for obesity phenotypes from genome-wide scans. Additionally, significant linkage peaks with candidate genes have been identified in targeted studies. Seven genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 222 studies reporting positive associations with 71 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. More than 300 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Yvon C Chagnon
- Psychiatric Genetic Unit, Laval University Robert-Giffard Research Center, Beauport, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The Cannon lecture this year illustrates how knowledge of DNA sequences of complex living organisms is beginning to shape the landscape of physiology in the 21st century. Enormous challenges and opportunities now exist for physiologists to relate the galaxy of genes to normal and pathological functions. The first extensive genomic systems biology map for cardiovascular and renal function was completed last year as well as a new hypothesis-generating tool ("physiological profiling") that enables us to hypothesize relationships between specific genes responsible for the regulation of regulatory pathways. Techniques of chromosomal substitution (consomic and congenic rats) are beginning to confirm statistical results from linkage analysis studies, narrow the regions of genetic interest for positional cloning, and provide genetically well-defined control strains for physiological studies. Patterns of gene expression identified by microarray and mapping of expressed genes to chromosomal sites are adding to the understanding of systems physiology. The previously unimaginable goal of connecting approximately 36,000 genes to the complex functions of mammalian systems is indeed well underway.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|