1
|
张 竞, 何 静, 米 晓, 许 贤, 田 英, 燕 茹. [High homocysteine level promotes autophagy and apoptosis of mouse hippocampal HT22 cells through the Notch1/Hes1 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1796-1803. [PMID: 37933657 PMCID: PMC10630217 DOI: 10.12122/j.issn.1673-4254.2023.10.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To explore the mechanism of neuronal injury caused by hyperhomocysteinemia. METHODS Mouse hippocampal HT22 cells were treated with homocysteine (Hcy, 100 μmol/L), Hcy+folic acid+vitamin B12 (100+fv group) or folic acid+vitamin B12 (0+fv group), and the changes in cell autophagy and apoptosis were detected using transmission electron microscope (TEM) and flow cytometry. The expressions of Hes1, Hes5, Notch1, Jagged1, Bcl-2, Bax, P62 and LC3 in the treated cells were detected with Western blotting and real-time PCR. RESULTS Treatment with Hcy for 48 h significantly increased the number of dead cells in HT22 cell cultures. Flow cytometry showed that the percentage of apoptotic cells was significantly higher in cells treated with Hcy alone than in other treatment groups (P<0.05). TEM revealed obvious mitochondrial swelling and vacuolation and increased autophagy in Hcy-treated cells. Western blotting showed that the Bax/Bcl-2 ratio was significantly higher in Hcy-treated cells than in the blank control cells and cells in 100+fv group (P<0.05). The Hcy-treated cells showed a significantly lower relative expression of P62 than the blank control cells (P<0.05), a higher LC3II/LC3I ratio than the cells in the blank control and 100+fv groups (P<0.05), and lower expressions of HES1, HES5, Notch1 and Jagged1 proteins than the blank control cells (P<0.05). Interference with Hes1 siRNA significantly lowered the expression levels of Hes1 and Jagged1 without obviously affecting Notch1 expression in HT22 cells (P>0.05). CONCLUSION High Hcy levels promote autophagy and apoptosis and down-regulate Hes1 and Jagged1 expressions in HT22 cells.
Collapse
Affiliation(s)
- 竞文 张
- 宁夏医科大学基础医学院//国家卫生健康委员会代谢性心血管疾病研究重点实验室, 宁夏 银川 750004School of Basic Medical Sciences, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, University, Yinchuan 750004, China Yinchuan 750004, China
| | - 静 何
- 宁夏医科大学总医院, 宁夏 银川 750004General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - 晓娟 米
- 宁夏医科大学基础医学院//国家卫生健康委员会代谢性心血管疾病研究重点实验室, 宁夏 银川 750004School of Basic Medical Sciences, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, University, Yinchuan 750004, China Yinchuan 750004, China
| | - 贤瑞 许
- 宁夏医科大学总医院, 宁夏 银川 750004General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - 英 田
- 宁夏医科大学基础医学院//国家卫生健康委员会代谢性心血管疾病研究重点实验室, 宁夏 银川 750004School of Basic Medical Sciences, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, University, Yinchuan 750004, China Yinchuan 750004, China
| | - 茹 燕
- 宁夏医科大学总医院, 宁夏 银川 750004General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
2
|
Majumder A. Targeting Homocysteine and Hydrogen Sulfide Balance as Future Therapeutics in Cancer Treatment. Antioxidants (Basel) 2023; 12:1520. [PMID: 37627515 PMCID: PMC10451792 DOI: 10.3390/antiox12081520] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
A high level of homocysteine (Hcy) is associated with oxidative/ER stress, apoptosis, and impairment of angiogenesis, whereas hydrogen sulfide (H2S) has been found to reverse this condition. Recent studies have shown that cancer cells need to produce a high level of endogenous H2S to maintain cell proliferation, growth, viability, and migration. However, any novel mechanism that targets this balance of Hcy and H2S production has yet to be discovered or exploited. Cells require homocysteine metabolism via the methionine cycle for nucleotide synthesis, methylation, and reductive metabolism, and this pathway supports the high proliferative rate of cancer cells. Although the methionine cycle favors cancer cells for their survival and growth, this metabolism produces a massive amount of toxic Hcy that somehow cancer cells handle very well. Recently, research showed specific pathways important for balancing the antioxidative defense through H2S production in cancer cells. This review discusses the relationship between Hcy metabolism and the antiapoptotic, antioxidative, anti-inflammatory, and angiogenic effects of H2S in different cancer types. It also summarizes the historical understanding of targeting antioxidative defense systems, angiogenesis, and other protective mechanisms of cancer cells and the role of H2S production in the genesis, progression, and metastasis of cancer. This review defines a nexus of diet and precision medicine in targeting the delicate antioxidative system of cancer and explores possible future therapeutics that could exploit the Hcy and H2S balance.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Arutjunyan AV, Milyutina YP, Shcherbitskaia AD, Kerkeshko GO, Zalozniaia IV. Epigenetic Mechanisms Involved in the Effects of Maternal Hyperhomocysteinemia on the Functional State of Placenta and Nervous System Plasticity in the Offspring. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:435-456. [PMID: 37080931 DOI: 10.1134/s0006297923040016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
According to modern view, susceptibility to diseases, specifically to cognitive and neuropsychiatric disorders, can form during embryonic development. Adverse factors affecting mother during the pregnancy increase the risk of developing pathologies. Despite the association between elevated maternal blood homocysteine (Hcy) and fetal brain impairments, as well as cognitive deficits in the offspring, the role of brain plasticity in the development of these pathologies remains poorly studied. Here, we review the data on the negative impact of hyperhomocysteinemia (HHcy) on the neural plasticity, in particular, its possible influence on the offspring brain plasticity through epigenetic mechanisms, such as changes in intracellular methylation potential, activity of DNA methyltransferases, DNA methylation, histone modifications, and microRNA expression in brain cells. Since placenta plays a key role in the transport of nutrients and transmission of signals from mother to fetus, its dysfunction due to aberrant epigenetic regulation can affect the development of fetal CNS. The review also presents the data on the impact of maternal HHcy on the epigenetic regulation in the placenta. The data presented in the review are not only interesting from purely scientific point of view, but can help in understanding the role of HHcy and epigenetic mechanisms in the pathogenesis of diseases, such as pregnancy pathologies resulting in the delayed development of fetal brain, cognitive impairments in the offspring during childhood, and neuropsychiatric and neurodegenerative disorders later in life, as well as in the search for approaches for their prevention using neuroprotectors.
Collapse
Affiliation(s)
- Alexander V Arutjunyan
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia.
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Yulia P Milyutina
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| | - Anastasia D Shcherbitskaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | - Gleb O Kerkeshko
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Irina V Zalozniaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
4
|
Chaturvedi P, Kalani A, Chaturvedi P, Kalani K, Verma VK, Tyagi SC. Exercise mitigates calpain induced Purkinje cell loss in diabetes. Life Sci 2022; 308:120982. [PMID: 36150460 DOI: 10.1016/j.lfs.2022.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Calpain-1 is a ubiquitous calcium dependent cysteine protease and found in cytoplasm as well as mitochondria. We have earlier reported that active calpain-1 is translocated from cytosol to mitochondria and activates MMP9. Calpain-1 activation is detrimental to the heart in several different ways, but there is little evidence that it can degrade Purkinje cell protein (PCP-4) and impair contractility in diabetes. Our hypothesis is that in diabetes, PCP-4 is degraded by calpain-1, causing contractile dysfunction that can be mitigated by exercise. To test this hypothesis, we recruited four groups of mice, 1) db/+ control, 2) db/+ with exercise, 3) db/db, 4) db/db with exercise. The mice were exercised on treadmill for 8 weeks as per American Veterinary Research Guidelines. Adding calcium to isolated cardiomyocytes caused them to lose shape and die. Compared with live myocytes, we observed high calpain-1 levels as well as significantly lower levels of PCP-4 and increased levels of calmodulin and calmodulin kinase II (CaMKII) in dead myocytes. We used the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) plasmid to knock down calpain-1 in HL-1 myocytes which restored the levels of PCP-4 along with calmodulin and CaMKII. In vivo, we found upregulated levels of calpain-1 in db/db mice (diabetic) as compared to db/+ which were mitigated in the exercised mice. Conclusively our data strongly suggests that in diabetes there is high induction of calpain-1 with degrades PCP-4, a protein important for contractility and exercise can mitigate this.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Anuradha Kalani
- Department of Physiology and Biophysics, University of Louisville, KY, USA; Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, U.P., India.
| | - Poonam Chaturvedi
- Department of Physiotherapy, Lovely Professional University, Phagwara, Punjab, India
| | - Komal Kalani
- Department of Chemistry, Biotechnology Sciences and Engineering Building, University of Texas at San Antonio, San Antonio, TX, USA
| | - Vinod K Verma
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, U.P., India
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, KY, USA
| |
Collapse
|
5
|
Homocysteine as a Predictor of Paroxysmal Atrial Fibrillation-Related Events: A Scoping Review of the Literature. Diagnostics (Basel) 2022; 12:diagnostics12092192. [PMID: 36140593 PMCID: PMC9498051 DOI: 10.3390/diagnostics12092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/06/2022] Open
Abstract
High levels of homocysteine (Hcy) have been linked with adverse cardiovascular outcomes, such as arrhythmias and stroke. In the context of paroxysmal atrial fibrillation (PAF), hyperhomocysteinemia has been demonstrated to be an independent predictor of future events. The aim of this report was to address the potential value of Hcy levels in predicting future paroxysms of atrial fibrillation (AF), as well as to identify the potential mechanisms of action. We searched PubMed and the Cochrane Database on 16 January 2022. Keywords used were homocysteine or hyperhomocysteinemia paired with a total of 67 different keywords or phrases that have been implicated with the pathogenesis of AF. We included primary reports of clinical and non-clinical data in the English language, as well as systematic reviews with or without meta-analyses. We placed no time constraints on our search strategy, which yielded 3748 results. Following title review, 3293 reports were excluded and 455 reports were used for title and abstract review, after which 109 reports were finally used for full-text review. Our review indicates that Hcy levels seem to hold a predictive value in PAF. Herein, potential mechanisms of action are presented and special considerations are made for clinically relevant diagnostic procedures that could complement plasma levels in the prediction of future PAF events. Finally, gaps of evidence are identified and considerations for future clinical trial design are presented.
Collapse
|
6
|
Deng Z, Yao J, Xiao N, Han Y, Wu X, Ci C, Chen K, Geng X. DNA methyltransferase 1 (DNMT1) suppresses mitophagy and aggravates heart failure via the microRNA-152-3p/ETS1/RhoH axis. J Transl Med 2022; 102:782-793. [PMID: 35149775 DOI: 10.1038/s41374-022-00740-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) shows close link with heart disease. This study aimed to define the role DNMT1 plays in heart failure and determine the underlying mechanism. Expression of microRNA (miR)-152-3p, DNMT1, E26 transformation specific-1 (ETS1) and ras homolog gene family member H (RhoH) was determined by RT-qPCR and/or western blot analysis. The interaction between miR-152-3p and ETS1 was predicted and verified. Methylation of the miR-152-3p promoter region was assessed using methylation-specific PCR. H9c2 cells were chosen for in vitro assays to examine the regulatory role of DNMT1 in autophagy and mitophagy with respect to miR-152-3p/ETS1/RhoH. Doxorubicin (DOX)-induced rat models of heart failure were employed for in vivo validation. DNMT1 expression was upregulated in the heart tissues of DOX-induced rats, where it showed an inverse correlation with miR-152-3p expression. Moreover, DNMT1 was shown to enhance methylation of the miR-152-3p promoter region and suppress its expression, leading to inhibition of mitophagy in H9c2 cells. In addition, DNMT1 enhanced expression of ETS1, which further elevated RhoH expression. Moreover, ETS1-elevated RhoH reduced cell viability and promoted autophagy and mitophagy in H9c2 cells upon treatment with DOX. Next, in vivo results demonstrated that depletion of DNMT1 protected rats from heart failure in a miR-152-3p/ETS1/RhoH-dependent manner. Overall, these findings indicate that DNMT1 may inhibit expression of miR-152-3p by promoting the methylation of miR-152-3p and enhancing the expression of ETS1, thereby inducing RHOH transcriptional activation and inhibiting mitochondrial autophagy, ultimately promoting the development of heart failure.
Collapse
Affiliation(s)
- Zhuojun Deng
- Department of General Practice Medicine, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, China
| | - Jiaqi Yao
- Department of Cardiology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, China
| | - Na Xiao
- Department of Cardiology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, China
| | - Yu Han
- Department of Cardiology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, China
| | - Xuan Wu
- Department of Cardiology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, China
| | - Caizhe Ci
- Department of Cardiology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, China
| | - Ke Chen
- Department of Cardiology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, China
| | - Xiaoyong Geng
- Department of Cardiology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, China.
| |
Collapse
|
7
|
Wang YY, Gao B, Yang Y, Jia SB, Ma XP, Zhang MH, Wang LJ, Ma AQ, Zhang QN. Histone deacetylase 3 suppresses the expression of SHP-1 via deacetylation of DNMT1 to promote heart failure. Life Sci 2021; 292:119552. [PMID: 33932446 DOI: 10.1016/j.lfs.2021.119552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
AIMS Heart failure (HF) is a progressive disease with recurrent hospitalizations and high mortality. However, the mechanisms underlying HF remain unclear. The present study aimed to explore the regulatory mechanism of histone deacetylase 3 (HDAC3) and DNA methyltransferase 1 (DNMT1)/Src homology domain 2-containing tyrosine phosphatase-1 (SHP-1) axis in HF. METHODS The HF rat models and hypertrophy cell models were established. The characteristic parameters of the heart were detected by echocardiography. A multichannel physiological signal acquisition system was used to detect the hemodynamic parameters. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of HDAC3, DNMT1, and SHP-1 mRNAs, while Western blot was applied to analyze the expression of proteins. Masson staining was used to analyze the degree of collagen fiber infiltration. TdT-mediated DUTP nick end labeling (TUNEL) staining was performed to analyze the apoptosis of myocardial tissue cells. Co-immunoprecipitation (co-IP) was conducted to study the interaction between HDAC3 and DNMT1. Flow cytometry was used to analyze the apoptosis. KEY FINDINGS HDAC3 and DNMT1 were highly expressed in HF rat and hypertrophy cell models. HDAC3 modified DNMT1 through deacetylation to inhibit ubiquitination-mediated degradation, which promoted the expression of DNMT1. DNMT1 inhibited SHP-1 expression via methylation in the promoter region. In summary, HDAC3 modified DNMT1 by deacetylation to suppress SHP-1 expression, which in turn led to the development of cardiomyocyte hypertrophy-induced HF. SIGNIFICANCE This study provided potential therapeutic targets for HF treatment.
Collapse
Affiliation(s)
- Yi-Yong Wang
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, China; Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bin Gao
- Department of Cardiology, Zhongwei City People Hospital, China
| | - Yong Yang
- Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Shao-Bin Jia
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, China
| | - Xue-Ping Ma
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, China
| | - Ming-Hao Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Li-Juan Wang
- Department of Cardiovascular Medicine, The Second People's Hospital of Yinchuan City, China
| | - Ai-Qun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, China.
| | - Qin-Ning Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
8
|
Singh M, Hardin SJ, George AK, Eyob W, Stanisic D, Pushpakumar S, Tyagi SC. Epigenetics, 1-Carbon Metabolism, and Homocysteine During Dysbiosis. Front Physiol 2021; 11:617953. [PMID: 33708132 PMCID: PMC7940193 DOI: 10.3389/fphys.2020.617953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023] Open
Abstract
Although a high-fat diet (HFD) induces gut dysbiosis and cardiovascular system remodeling, the precise mechanism is unclear. We hypothesize that HFD instigates dysbiosis and cardiac muscle remodeling by inducing matrix metalloproteinases (MMPs), which leads to an increase in white adipose tissue, and treatment with lactobacillus (a ketone body donor from lactate; the substrate for the mitochondria) reverses dysbiosis-induced cardiac injury, in part, by increasing lipolysis (PGC-1α, and UCP1) and adipose tissue browning and decreasing lipogenesis. To test this hypothesis, we used wild type (WT) mice fed with HFD for 16 weeks with/without a probiotic (PB) in water. Cardiac injury was measured by CKMB activity which was found to be robust in HFD-fed mice. Interestingly, CKMB activity was normalized post PB treatment. Levels of free fatty acids (FFAs) and methylation were increased but butyrate was decreased in HFD mice, suggesting an epigenetically governed 1-carbon metabolism along with dysbiosis. Levels of PGC-1α and UCP1 were measured by Western blot analysis, and MMP activity was scored via zymography. Collagen histology was also performed. Contraction of the isolated myocytes was measured employing the ion-optic system, and functions of the heart were estimated by echocardiography. Our results suggest that mice on HFD gained weight and exhibited an increase in blood pressure. These effects were normalized by PB. Levels of fibrosis and MMP-2 activity were robust in HFD mice, and treatment with PB mitigated the fibrosis. Myocyte calcium-dependent contraction was disrupted by HFD, and treatment with PB could restore its function. We conclude that HFD induces dysbiosis, and treatment with PB creates eubiosis and browning of the adipose tissue.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Shanna J Hardin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
9
|
Colpaert RMW, Calore M. Epigenetics and microRNAs in cardiovascular diseases. Genomics 2021; 113:540-551. [PMID: 33482325 DOI: 10.1016/j.ygeno.2020.12.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are among the leading causes of mortality worldwide. Besides environmental and genetic changes, these disorders can be influenced by processes which do not affect DNA sequence yet still play an important role in gene expression and which can be inherited. These so-called 'epigenetic' changes include DNA methylation, histone modifications, and ATP-dependent chromatin remodeling enzymes, which influence chromatin remodeling and gene expression. Next to these, microRNAs are non-coding RNA molecules that silence genes post-transcriptionally. Both epigenetic factors and microRNAs are known to influence cardiac development and homeostasis, in an individual fashion but also in a complex regulatory network. In this review, we will discuss how epigenetic factors and microRNAs interact with each other and how together they can influence cardiovascular diseases.
Collapse
Affiliation(s)
- Robin M W Colpaert
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Faculty of Science and Engineering, Maastricht University, the Netherlands
| | - Martina Calore
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Faculty of Science and Engineering, Maastricht University, the Netherlands.
| |
Collapse
|
10
|
Russell-Hallinan A, Neary R, Watson CJ, Baugh JA. Repurposing From Oncology to Cardiology: Low-Dose 5-Azacytidine Attenuates Pathological Cardiac Remodeling in Response to Pressure Overload Injury. J Cardiovasc Pharmacol Ther 2020; 26:375-385. [PMID: 33264040 DOI: 10.1177/1074248420979235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Recent evidence suggests that transcriptional reprogramming is involved in the pathogenesis of cardiac remodeling (cardiomyocyte hypertrophy and fibrosis) and the development of heart failure. 5-Azacytidine (5aza), an inhibitor of DNA methylation approved for hematological malignancies, has previously demonstrated beneficial effects on cardiac remodeling in hypertension. The aim of our work was to investigate whether pressure overload is associated with alterations in DNA methylation and if intervention with low-dose 5aza can attenuate the associated pathological changes. METHODS AND RESULTS C57Bl6/J mice underwent surgical constriction of the aortic arch for 8 weeks. Mice began treatment 4 weeks post-surgery with either vehicle or 5aza (5 mg/kg). Cardiac structure and function was examined in vivo using echocardiography followed by post mortem histological assessment of hypertrophy and fibrosis. Global DNA methylation was examined by immunostaining for 5-methylcytosine (5MeC) and assessment of DNA methyltransferase expression. The results highlighted that pressure overload-induced pathological cardiac remodeling is associated with increased DNA methylation (elevated cardiac 5MeC positivity and Dnmt1 expression). Administration of 5aza attenuated pathological remodeling and diastolic dysfunction. These beneficial changes were mirrored by a treatment-related reduction in global 5MeC levels and expression of Dnmt1 and Dnmt3B in the heart. CONCLUSION DNA methylation plays an important role in the pathogenesis of pressure overload-induced cardiac remodeling. Therapeutic intervention with 5aza, at a dose 5 times lower than clinically given for oncology treatment, attenuated myocardial hypertrophy and fibrosis. Our work supports the rationale for its potential use in cardiac pathologies associated with aberrant cardiac wound healing.
Collapse
Affiliation(s)
- Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, 1596Queen's University Belfast, Northern Ireland, United Kingdom.,UCD School of Medicine, Conway Institute, 231327University College Dublin, Belfield, Dublin, Ireland
| | - Roisin Neary
- UCD School of Medicine, Conway Institute, 231327University College Dublin, Belfield, Dublin, Ireland
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, 1596Queen's University Belfast, Northern Ireland, United Kingdom
| | - John A Baugh
- UCD School of Medicine, Conway Institute, 231327University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
11
|
Zhou Y, Li M, Song J, Shi Y, Qin X, Gao Z, Lv Y, Du G. The cardioprotective effects of the new crystal form of puerarin in isoproterenol-induced myocardial ischemia rats based on metabolomics. Sci Rep 2020; 10:17787. [PMID: 33082379 PMCID: PMC7575583 DOI: 10.1038/s41598-020-74246-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Puerarin has shown unique pharmacological effects on myocardial ischemia (MI). Changing the crystal form is an effective approach to improve the cardioprotective effects of puerarin. However, the mechanisms of the new crystal form of puerarin are unclear. In this study, an electrocardiogram, echocardiography, cardiac marker enzymatic activity, oxidative stress indices, and myocardial histology analysis of cardiac tissues were performed to evaluate the cardioprotective effects of the new crystal form of puerarin. Moreover, serum and cardiac tissue metabolomics based on nuclear magnetic resonance (NMR) were used to investigate the potential mechanism of the new crystal form. The results indicated that the new crystal form of puerarin (30 mg/kg) could improve oxidative stress indices, and these improvements were similar to those of the original crystal form of puerarin (120 mg/kg). The new crystal form of puerarin (30 mg/kg) could effectively improve the activities of cardiac marker enzymes, and the improvement effects were better than those of the original crystal form (120 mg/kg). Moreover, metabolomics analysis showed that amino acid metabolism, oxidative stress and energy metabolism were disturbed after MI and could be improved by puerarin. These results demonstrated that the new crystal form of puerarin was effective in treating MI.
Collapse
Affiliation(s)
- Yuzhi Zhou
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China.,Shandong Province Key Laboratory of Polymorph Drugs, Shandong Yikang Pharmaceutical Co. Ltd, No. 3288, Yikang Avenue, Tengzhou, 277513, China.,Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Mengru Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Jia Song
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Yongqiang Shi
- Shandong Province Key Laboratory of Polymorph Drugs, Shandong Yikang Pharmaceutical Co. Ltd, No. 3288, Yikang Avenue, Tengzhou, 277513, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Zhaolin Gao
- Shandong Province Key Laboratory of Polymorph Drugs, Shandong Yikang Pharmaceutical Co. Ltd, No. 3288, Yikang Avenue, Tengzhou, 277513, China
| | - Yang Lv
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China
| | - Guanhua Du
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China.
| |
Collapse
|
12
|
Yang M, Zhang Y, Ren J. Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165836. [PMID: 32413386 DOI: 10.1016/j.bbadis.2020.165836] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Acetylation belongs to a class of post-translational modification (PTM) processes that epigenetically regulate gene expression and gene transcriptional activity. Reversible histone acetylation on lysine residues governs the interactions between DNA and histones to mediate chromatin remodeling and gene transcription. Non-histone protein acetylation complicates cellular function whereas acetylation of key mitochondrial enzymes regulates bioenergetic metabolism. Acetylation and deacetylation of functional proteins are essential to the delicated homeostatic regulation of embryonic development, postnatal maturation, cardiomyocyte differentiation, cardiac remodeling and onset of various cardiovascular diseases including obesity, diabetes mellitus, cardiometabolic diseases, ischemia-reperfusion injury, cardiac remodeling, hypertension, and arrhythmias. Histone acetyltransferase (HATs) and histone deacetylases (HDACs) are essential enzymes mainly responsible for the regulation of lysine acetylation levels, thus providing possible drugable targets for therapeutic interventions in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China.
| |
Collapse
|
13
|
Calderón-Larrañaga A, Saadeh M, Hooshmand B, Refsum H, Smith AD, Marengoni A, Vetrano DL. Association of Homocysteine, Methionine, and MTHFR 677C>T Polymorphism With Rate of Cardiovascular Multimorbidity Development in Older Adults in Sweden. JAMA Netw Open 2020; 3:e205316. [PMID: 32432712 PMCID: PMC7240355 DOI: 10.1001/jamanetworkopen.2020.5316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPORTANCE Strong evidence links high total serum homocysteine (tHcy) and low methionine (Met) levels with higher risk of ischemic disease, but other cardiovascular (CV) diseases may also be associated with their pleiotropic effects. OBJECTIVES To investigate the association of serum concentrations of tHcy and Met with the rate of CV multimorbidity development in older adults and to explore the role of methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphism in this association. DESIGN, SETTING, AND PARTICIPANTS The Swedish National Study on Aging and Care in Kungsholmen is a cohort study of randomly selected individuals aged 60 years or older. The present study included data on 1969 individuals with complete information and without CV diseases at baseline, collected from the baseline examination (2001-2004) to the fourth follow-up (2013-2016). Data analysis was conducted from January to May 2019. EXPOSURES Concentrations of tHcy and Met were measured from nonfasting venous blood samples. The Met:tHcy ratio was considered a possible indicator of methylation activity. MTHFR status was dichotomized as any T carriers vs noncarriers. MAIN OUTCOME AND MEASURES The number of CV diseases at each wave was ascertained based on medical interviews and records, laboratory test results, and drug data. Linear mixed models were used to study the association of baseline tHcy and Met levels and the rate of CV multimorbidity development, adjusting for sociodemographic characteristics, CV risk factors, chronic disease burden, and drug use. RESULTS Of 1969 participants, most were women (1261 [64.0%]), with a mean (SD) age of 70.9 (9.8) years; 1703 participants (86.6%) had at least a high school level of education. Baseline measurements of serum tHcy, Met, and the Met:tHcy ratio were associated with the rate of CV disease accumulation (tHcy: β = 0.023 per year; 95% CI, 0.015 to 0.030; P < .001; Met: β = -0.007 per year; 95% CI, -0.013 to -0.001; P = .02; Met:tHcy ratio: β = -0.017 per year; 95% CI, -0.023 to -0.011; P < .001). The association between low Met concentrations and the rate of CV multimorbidity development was restricted to the group with CT/TT alleles of MTHFR (β = 0.023 per year; 95% CI, 0.006 to 0.041; P = .009). Results remained largely significant when individual CV diseases were removed from the total count 1 at a time (eg, ischemic heart disease, tHcy: β = 0.023 per year; 95% CI, 0.013 to 0.027; P < .001; Met: β = -0.006 per year; 95% CI, -0.011 to -0.0003; P = .04; Met:tHcy ratio: β = -0.015 per year; 95% CI, -0.020 to -0.009; P < .001). CONCLUSIONS AND RELEVANCE In this study, high tHcy and low Met levels were associated with faster CV multimorbidity development in older age. The interactive association of Met concentrations and MTHFR polymorphism, together with the association found for the Met:tHcy ratio, point toward the relevance of impaired methylation in the pathogenesis of CV aging.
Collapse
Affiliation(s)
- Amaia Calderón-Larrañaga
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Marguerita Saadeh
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Babak Hooshmand
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - A. David Smith
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Alessandra Marengoni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Davide L. Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Department of Geriatrics, Fondazione Policlinico “A. Gemelli” IRCCS and Catholic University of Rome, Rome, Italy
| |
Collapse
|
14
|
Panda SP, Panigrahy UP, Prasanth D, Gorla US, Guntupalli C, Panda DP, Jena BR. A trimethoxy flavonoid isolated from stem extract of Tabebuia chrysantha suppresses angiogenesis in angiosarcoma. J Pharm Pharmacol 2020; 72:990-999. [PMID: 32311118 DOI: 10.1111/jphp.13272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/21/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVES This research aimed to evaluate the antiangiogenic activity of isolated flavonoid 4a,5,8,8a-tetrahydro-5-hydroxy-3,7,8-trimethoxy-2-(3,4-dimethoxyphenyl) chromen-4-one (TMF) from Tabebuia chrysantha. STAT3-MMP9 signalling is a signal transduction mechanism that promotes angiogenesis in various cancers. METHODS The tumour xenografting chicken embryo chorioallantoic membrane (CAM) model-based ex vivo assay was used to evaluate the activity of TMF. The Western blot, densitometric analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to evaluate the activity of the MMP9. Zebrafish embryos were used to evaluate embryotoxicity, and in vitro free radical scavenging activity of flavonoid was also elucidated. KEY FINDINGS This research assessed the high level of STAT3, p-ERK, VEGF-R and MMP9 in the tissue extract of the control group, and also, the suppression of angiogenesis in the treatment groups was due to scavenged ROS and RNS, dephosphorylation of STAT3 and ERK, and suppression of MMP9 gene expression. CONCLUSION The isolated flavonoid named TMF from T. chrysantha functions as specific regulators of target proteins of angiosarcoma. The STAT3-MMP9 signalling may be used as an effective prognostic marker of angiosarcoma.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology research division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | | | - Dsnbk Prasanth
- Pharmacology research division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Uma Sankar Gorla
- Pharmacology research division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Chakravarthi Guntupalli
- Pharmacology research division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | | | - Bikash Ranjan Jena
- Southern Institute of Medical Sciences (SIMS college of Pharmacy), Guntur, India
| |
Collapse
|
15
|
Deng B, Luo Q, Halim A, Liu Q, Zhang B, Song G. The Antiangiogenesis Role of Histone Deacetylase Inhibitors: Their Potential Application to Tumor Therapy and Tissue Repair. DNA Cell Biol 2019; 39:167-176. [PMID: 31808715 DOI: 10.1089/dna.2019.4877] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis, a process of new blood vessel formation from existing blood vessels, plays an important role in tumor growth and the tissue repair process. It is generally acknowledged that angiogenesis might contribute two both processes. In tumor growth, angiogenesis often increases oncogenic signaling, and in tissue repair, it decreases the stiffness of wound tissue and potentially exacerbates scar formation, resulting in pain and poor function. These poor outcomes are due to an increase in the expression of important genes involved in angiogenesis, such as hypoxia-inducible factor-1 alpha (HIF-1α) and its transcriptional target vascular endothelial growth factor (VEGF). Therefore, this adverse effect of angiogenesis should be taken into consideration. Limiting vessel growth instead of boosting growth may be beneficial for favorable long-term healing outcomes. Posttranslational modifications, including acetylation, which is mediated by histone acetyltransferases, and deacetylation, which is mediated by histone deacetylases (HDACs), are critical to HIF-1α function. Most studies have indicated that HDAC inhibitors (HDACIs) show great promise as antiangiogenic agents in the early phase of clinical trials. In this review, we discuss the role of the HDACs HIF-1α and VEGF in angiogenesis. Furthermore, we also discuss the molecular and cellular underpinnings of the effects of HDACIs on antiangiogenesis, which creates new avenues for anticancer therapeutics and the repair of wounded tissue.
Collapse
Affiliation(s)
- Bin Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Alexander Halim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qiuping Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bingyu Zhang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Wu X, Dai L, Zhang Z, Zheng J, Zhao J. Overexpression of microRNA-203 can downregulate survivin and function as a potential therapeutic target in papillary thyroid cancer. Oncol Lett 2019; 19:61-68. [PMID: 31897115 PMCID: PMC6924108 DOI: 10.3892/ol.2019.11082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid carcinoma. PTC has a considerably high five-year survival rate; however, the possibility of recurrence is also high. Therefore, there is a requirement to clarify the molecular mechanism of PTC to promote understanding regarding the development of the disease and further improve prognosis. A number of studies have demonstrated that microRNAs (miRNAs or miRs) contribute to the progression of PTC. The present study revealed that the expression level of miR-203 was significantly lower in PTC tissues and cell lines compared with in the normal controls. In addition, inhibition of miR-203 was identified to be associated with an overexpression of survivin, which was observed in PTC samples. miR-203 regulates the expression of Bcl-2 via its downstream regulator survivin. Furthermore, the present study identified that inhibition of miR-203 histone acetylation was associated with high expression levels of miR-203 in PTC tissue samples. In summary, the results indicate that miR-203 functions as a biomarker and may serve as a candidate target for the development of novel therapeutic strategies to treat PTC.
Collapse
Affiliation(s)
- Xianjiang Wu
- Department of Thyroid Surgery, Ningbo No. 2 Hospital, Ningbo Medical University, Ningbo, Zhejiang 315010, P.R. China
| | - Lei Dai
- Department of Thyroid Surgery, Ningbo No. 2 Hospital, Ningbo Medical University, Ningbo, Zhejiang 315010, P.R. China
| | - Zhoujing Zhang
- Department of Thyroid Surgery, Ningbo No. 2 Hospital, Ningbo Medical University, Ningbo, Zhejiang 315010, P.R. China
| | - Jueru Zheng
- Department of Thyroid Surgery, Ningbo No. 2 Hospital, Ningbo Medical University, Ningbo, Zhejiang 315010, P.R. China
| | - Jianpei Zhao
- Department of Thyroid Surgery, Ningbo No. 2 Hospital, Ningbo Medical University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
17
|
George AK, Singh M, Pushpakumar S, Homme RP, Hardin SJ, Tyagi SC. Dysbiotic 1-carbon metabolism in cardiac muscle remodeling. J Cell Physiol 2019; 235:2590-2598. [PMID: 31489638 DOI: 10.1002/jcp.29163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022]
Abstract
Unless there is a genetic defect/mutation/deletion in a gene, the causation of a given disease is chronic dysregulation of gut metabolism. Most of the time, if not always, starts within the gut; that is what we eat. Recent research shows that the imbalance between good versus bad microbial population, especially in the gut, causes systemic diseases. Thus, an appropriate balance of the gut microbiota (eubiosis over dysbiosis) needs to be maintained for normal health (Veeranki and Tyagi, 2017, Journal of Cellular Physiology, 232, 2929-2930). However, during various diseases such as metabolic syndrome, inflammatory bowel disease, diabetes, obesity, and hypertension the dysbiotic gut environment tends to prevail. Our research focuses on homocysteine (Hcy) metabolism that occupies a center-stage in many biochemically relevant epigenetic mechanisms. For example, dysbiotic bacteria methylate promoters to inhibit gene activities. Interestingly, the product of the 1-carbon metabolism is Hcy, unequivocally. Emerging studies show that host resistance to various antibiotics occurs due to inverton promoter inhibition, presumably because of promoter methylation. This results from modification of host promoters by bacterial products leading to loss of host's ability to drug compatibility and system sensitivity. In this study, we focus on the role of high methionine diet (HMD), an ingredient rich in red meat and measure the effects of a probiotic on cardiac muscle remodeling and its functions. We employed wild type (WT) and cystathionine beta-synthase heterozygote knockout (CBS+/- ) mice with and without HMD and with and without a probiotic; PB (Lactobacillus) in drinking water for 16 weeks. Results indicate that matrix metalloproteinase-2 (MMP-2) activity was robust in CBS+/- fed with HMD and that it was successfully attenuated by the PB treatment. Cardiomyocyte contractility and ECHO data revealed mitigation of the cardiac dysfunction in CBS+/- + HMD mice treated with PB. In conclusion, our data suggest that probiotics can potentially reverse the Hcy-meditated cardiac dysfunction.
Collapse
Affiliation(s)
- Akash K George
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - S Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Rubens P Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Shanna J Hardin
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
18
|
Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci 2019; 20:ijms20133140. [PMID: 31252610 PMCID: PMC6651274 DOI: 10.3390/ijms20133140] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) exerts a wide range of biological effects and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Although mechanisms of HHcy toxicity are not fully uncovered, there has been a significant progress in their understanding. The picture emerging from the studies of homocysteine (Hcy) metabolism and pathophysiology is a complex one, as Hcy and its metabolites affect biomolecules and processes in a tissue- and sex-specific manner. Because of their connection to one carbon metabolism and editing mechanisms in protein biosynthesis, Hcy and its metabolites impair epigenetic control of gene expression mediated by DNA methylation, histone modifications, and non-coding RNA, which underlies the pathology of human disease. In this review we summarize the recent evidence showing that epigenetic dysregulation of gene expression, mediated by changes in DNA methylation and histone N-homocysteinylation, is a pathogenic consequence of HHcy in many human diseases. These findings provide new insights into the mechanisms of human disease induced by Hcy and its metabolites, and suggest therapeutic targets for the prevention and/or treatment.
Collapse
|
19
|
Liang H, Xie X, Song X, Huang M, Su T, Chang X, Liang B, Huang D. Orphan nuclear receptor NR4A1 suppresses hyperhomocysteinemia-induced hepatic steatosis in vitro and in vivo. FEBS Lett 2019; 593:1061-1071. [PMID: 30973961 DOI: 10.1002/1873-3468.13384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
Abstract
Homocysteine (Hcy) is associated with nonalcoholic fatty liver disease (NAFLD). orphan nuclear receptor subfamily 4 group A member 1 (NR4A1) is involved in hepatic lipid metabolism. However, the potential role of NR4A1 in Hcy-associated NAFLD remains elusive. We aimed to elucidate the regulation of NR4A1 and its significance in Hcy-induced NAFLD. Hcy induced steatosis and elevated the expression of CD36 and FATP2 in HepG2 cells. Furthermore, Hcy enhanced p300 and decreased HDAC7 recruitment to the NR4A1 promoter, resulting in histone H3K27 hyperacetylation and NR4A1 upregulation. Moreover, NR4A1 depletion not only mimicked but also exaggerated the effects of Hcy on steatosis, whereas NR4A1 agonist Cytosporone B (CsnB) blocked Hcy-induced steatosis. In hyperhomocysteinemia (HHcy) mice, CsnB attenuated HHcy-induced hepatic steatosis. Thus, Hcy transiently and rapidly induces NR4A1 expression to reduce Hcy-induced steatosis.
Collapse
Affiliation(s)
- Hongjin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
- Department of Rheumatology, the First Affiliated Hospital, Shantou University Medical College, China
| | - Xina Xie
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
- Health Science Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
| | - Meihui Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
- Department of Pathology and Central Laboratory, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, China
| | - Ting Su
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
| | - Xiaolan Chang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
| | - Bin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, China
| |
Collapse
|
20
|
Jakubowski H. Homocysteine Modification in Protein Structure/Function and Human Disease. Physiol Rev 2019; 99:555-604. [PMID: 30427275 DOI: 10.1152/physrev.00003.2018] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies established that elevated homocysteine, an important intermediate in folate, vitamin B12, and one carbon metabolism, is associated with poor health, including heart and brain diseases. Earlier studies show that patients with severe hyperhomocysteinemia, first identified in the 1960s, exhibit neurological and cardiovascular abnormalities and premature death due to vascular complications. Although homocysteine is considered to be a nonprotein amino acid, studies over the past 2 decades have led to discoveries of protein-related homocysteine metabolism and mechanisms by which homocysteine can become a component of proteins. Homocysteine-containing proteins lose their biological function and acquire cytotoxic, proinflammatory, proatherothrombotic, and proneuropathic properties, which can account for the various disease phenotypes associated with hyperhomocysteinemia. This review describes mechanisms by which hyperhomocysteinemia affects cellular proteostasis, provides a comprehensive account of the biological chemistry of homocysteine-containing proteins, and discusses pathophysiological consequences and clinical implications of their formation.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health , Newark, New Jersey ; and Department of Biochemistry and Biotechnology, Poznań University of Life Sciences , Poznań , Poland
| |
Collapse
|
21
|
Li S, Luo XM, Peng BH, Yang CJ, Peng C. [Interactive regulatory effect of histone H3K9ac acetylation and histone H3K9me3 methylation on cardiomyogenesis in mice]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:950-954. [PMID: 30477629 PMCID: PMC7389033 DOI: 10.7499/j.issn.1008-8830.2018.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the interactive regulatory effect of histone acetylation and methylation on cardiomyogenesis, and to provide a theoretical basis for the prevention and treatment of congenital heart disease. METHODS A total of 24 Kunming mice were randomly divided into embryo day 14.5 (ED 14.5) group, embryo day 16.5 (ED 16.5) group, postnatal day 0.5 (PND 0.5) group, and postnatal day 7 (PND 7) group, with 6 mice in each group, and the heart tissue of fetal and neonatal mice was collected. Colorimetry was used to measure the activities of histone acetylases (HATs) and histone methyltransferases (HMTs) in the myocardium. Western blot was used to measure the expression of H3K9ac and H3K9me3 in the myocardium. RESULTS Colorimetry showed that the activities of HATs and HMTs were higher before birth and were lower after birth. There was a significant difference in the activity of HATs in the myocardium between the PND 0.5 and PND 7 groups and the ED 14.5 group (P<0.05), as well as between the PND 7 group and the ED 16.5 group (P<0.05). There was also a significant difference in the activity of HMTs in the myocardium between the PND 7 group and the ED 14.5 and ED 16.5 groups (P<0.05). Western blot showed higher expression of H3K9ac and H3K9me3 before birth and lower expression of H3K9ac and H3K9me3 after birth, and there were significant differences in the expression H3K9ac and H3K9me3 in the myocardium between the PND 0.5 and PND 7 groups and the ED 14.5 and ED 16.5 groups (P<0.05). CONCLUSIONS The dynamic expression of HATs, HMTs, H3K9ac, and H3K9me3 is observed during cardiomyogenesis, suggesting that histone H3K9ac acetylation and histone H3K9me3 methylation mediated by HATs and HMTs may play a role in interactive regulation during cardiomyogenesis.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China.
| | | | | | | | | |
Collapse
|
22
|
Majumder A, Singh M, Behera J, Theilen NT, George AK, Tyagi N, Metreveli N, Tyagi SC. Hydrogen sulfide alleviates hyperhomocysteinemia-mediated skeletal muscle atrophy via mitigation of oxidative and endoplasmic reticulum stress injury. Am J Physiol Cell Physiol 2018; 315:C609-C622. [PMID: 30110564 DOI: 10.1152/ajpcell.00147.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although hyperhomocysteinemia (HHcy) occurs because of the deficiency in cystathionine-β-synthase (CBS) causing skeletal muscle dysfunction, it is still unclear whether this effect is mediated through oxidative stress, endoplasmic reticulum (ER) stress, or both. Nevertheless, there is no treatment option available to improve HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is an antioxidant compound, and patients with CBS mutation do not produce H2S. In this study, we hypothesized that H2S mitigates HHcy-induced redox imbalance/ER stress during skeletal muscle atrophy via JNK phosphorylation. We used CBS+/- mice to study HHcy-mediated muscle atrophy, and treated them with sodium hydrogen sulfide (NaHS; an H2S donor). Proteins and mRNAs were examined by Western blots and quantitative PCR. Proinflammatory cytokines were also measured. Muscle mass and strength were studied via fatigue susceptibility test. Our data revealed that HHcy was detrimental to skeletal mass, particularly gastrocnemius and quadriceps muscle weight. We noticed that oxidative stress was reversed by NaHS in homocysteine (Hcy)-treated C2C12 cells. Interestingly, ER stress markers (GRP78, ATF6, pIRE1α, and pJNK) were elevated in vivo and in vitro, and NaHS mitigated these effects. Additionally, we observed that JNK phosphorylation was upregulated in C2C12 after Hcy treatment, but NaHS could not reduce this effect. Furthermore, inflammatory cytokines IL-6 and TNF-α were higher in plasma from CBS as compared with wild-type mice. FOXO1-mediated Atrogin-1 and MuRF-1 upregulation were attenuated by NaHS. Functional studies revealed that NaHS administration improved muscle fatigability in CBS+/- mice. In conclusion, our work provides evidence that NaHS is beneficial in mitigating HHcy-mediated skeletal injury incited by oxidative/ER stress responses.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Physiology, University of Louisville School of Medicine , Louisville, Kentucky.,Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine , Louisville, Kentucky
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine , Louisville, Kentucky
| | - Jyotirmaya Behera
- Department of Physiology, University of Louisville School of Medicine , Louisville, Kentucky
| | - Nicholas T Theilen
- Department of Physiology, University of Louisville School of Medicine , Louisville, Kentucky
| | - Akash K George
- Department of Physiology, University of Louisville School of Medicine , Louisville, Kentucky
| | - Neetu Tyagi
- Department of Physiology, University of Louisville School of Medicine , Louisville, Kentucky
| | - Naira Metreveli
- Department of Physiology, University of Louisville School of Medicine , Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine , Louisville, Kentucky
| |
Collapse
|
23
|
Jiang W, Agrawal DK, Boosani CS. Cell‑specific histone modifications in atherosclerosis (Review). Mol Med Rep 2018; 18:1215-1224. [PMID: 29901135 PMCID: PMC6072136 DOI: 10.3892/mmr.2018.9142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Histone modifications are the key epigenetic mechanisms that have been identified to regulate gene expression in many human diseases. However, in the early developmental stages, such as in utero and the postnatal stages, histone modifications are essential for gene regulation and cell growth. Atherosclerosis represents a classical example of the involvement of different cell types, and their cumulative effects in the development of atheroma and the progression of the disease. Post translational modifications on proteins either induces their functional activity or renders them inactive. Post translational modifications such as methylation or acetylation on histones have been well characterized, and their role in enhancing or inhibiting specific gene expression was clearly elucidated. In the present review article, the critical roles of different histone modifications that occur in atherosclerosis have been summarized. Different histone proteins have been identified to serve a critical role in the development of atherosclerosis. Specifically, histone methylation and histone acetylation in monocytes, macrophages, vascular smooth muscle cells and in endothelial cells during the progression of atherosclerosis, have been well reported. In recent years, different target molecules and genes that regulate histone modifications have been examined for their effects in the treatment of atherosclerosis in animal models and in clinical trials. An increasing body of evidence suggests that these epigenetic changes resulting from DNA methylation and non-coding RNA may also be associated with histone modifications, thereby indicating that novel therapeutic strategies can be developed by targeting these post translational modifications, which may in turn aid in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wanlin Jiang
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Chandra S Boosani
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
24
|
Russell‐Hallinan A, Watson CJ, Baugh JA. Epigenetics of Aberrant Cardiac Wound Healing. Compr Physiol 2018; 8:451-491. [DOI: 10.1002/cphy.c170029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Abstract
Mitochondrial dysfunction underlines a multitude of pathologies; however, studies are scarce that rescue the mitochondria for cellular resuscitation. Exploration into the protective role of mitochondrial transcription factor A (TFAM) and its mitochondrial functions respective to cardiomyocyte death are in need of further investigation. TFAM is a gene regulator that acts to mitigate calcium mishandling and ROS production by wrapping around mitochondrial DNA (mtDNA) complexes. TFAM's regulatory functions over serca2a, NFAT, and Lon protease contribute to cardiomyocyte stability. Calcium- and ROS-dependent proteases, calpains, and matrix metalloproteinases (MMPs) are abundantly found upregulated in the failing heart. TFAM's regulatory role over ROS production and calcium mishandling leads to further investigation into the cardioprotective role of exogenous TFAM. In an effort to restabilize physiological and contractile activity of cardiomyocytes in HF models, we propose that TFAM-packed exosomes (TFAM-PE) will act therapeutically by mitigating mitochondrial dysfunction. Notably, this is the first mention of exosomal delivery of transcription factors in the literature. Here we elucidate the role of TFAM in mitochondrial rescue and focus on its therapeutic potential.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| |
Collapse
|
26
|
Ling L, Chen L, Zhang C, Gui S, Zhao H, Li Z. High glucose induces podocyte epithelial‑to‑mesenchymal transition by demethylation‑mediated enhancement of MMP9 expression. Mol Med Rep 2018; 17:5642-5651. [PMID: 29436620 PMCID: PMC5866005 DOI: 10.3892/mmr.2018.8554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 10/30/2017] [Indexed: 01/13/2023] Open
Abstract
Abnormal expression of matrix metalloproteinase 9 (MMP9) is correlated with podocyte epithelial-to-mesenchymal transition (EMT) in diabetic nephropathy (DN). However, the mechanisms underlying this process are not well defined. Site-specific demethylation may sustain high expression levels of target genes. In the present study, in order to investigate the association between DNA demethylation of MMP9 promoter and podocyte EMT in DN, human podocytes were cultured in high-glucose (HG) medium and a rat model of DN was established by intraperitoneal injection of streptozotocin (STZ) to determine whether site-specific demethylation of the MMP9 promoter was involved in regulating podocyte EMT in DN. The MTT assay was used to assess the effects of HG culture on the growth of podocytes, and the demethylation status of the MMP9 promoter was assessed by bisulfite sequencing polymerase chain reaction. mRNA and protein expression levels of MMP9, α-smooth muscle actin (α-SMA), podocalyxin and fibronectin-1 in podocytes were assessed by reverse transcription-quantitative PCR (RT-qPCR) and western blot analyses. The results demonstrated that HG treatment up regulated the expression of MMP9, α-SMA and fibronectin-1, but down regulated the expression of podocalyxin in podocytes. The MMP9 promoter region was revealed to contain a variety of demethylated CpG sites, and HG treatment reduced the rate of MMP9 promotermethylation, which, in turn, enhanced its promoter activity. In summary, these data suggested that demethylation of the MMP9 promoter may serve an important role in podocyte EMT in DN. The demethylation status of the MMP9 promoter maybe used as an important prognostic marker of DN in clinic.
Collapse
Affiliation(s)
- Li Ling
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Libo Chen
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Changning Zhang
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Shuyan Gui
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Haiyan Zhao
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Zhengzhang Li
- Department of Endocrinology, Guangdong Medical College Affiliated Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518052, P.R. China
| |
Collapse
|
27
|
Epigenetic modifications in hyperhomocysteinemia: potential role in diabetic retinopathy and age-related macular degeneration. Oncotarget 2018; 9:12562-12590. [PMID: 29560091 PMCID: PMC5849155 DOI: 10.18632/oncotarget.24333] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/24/2018] [Indexed: 02/03/2023] Open
Abstract
To study Hyperhomocysteinemia (HHcy)-induced epigenetic modifications as potential mechanisms of blood retinal barrier (BRB) dysfunction, retinas isolated from three- week-old mice with elevated level of Homocysteine (Hcy) due to lack of the enzyme cystathionine β-synthase (cbs-/- , cbs+/- and cbs+/+ ), human retinal endothelial cells (HRECs), and human retinal pigmented epithelial cells (ARPE-19) treated with or without Hcy were evaluated for (1) histone deacetylases (HDAC), (2) DNA methylation (DNMT), and (3) miRNA analysis. Differentially expressed miRNAs in mice with HHcy were further compared with miRNA analysis of diabetic mice retinas (STZ) and miRNAs within the exosomes released from Hcy-treated RPEs. Differentially expressed miRNAs were further evaluated for predicted target genes and associated pathways using Ingenuity Pathway Analysis. HHcy significantly increased HDAC and DNMT activity in HRECs, ARPE-19, and cbs mice retinas, whereas inhibition of HDAC and DNMT decreased Hcy-induced BRB dysfunction. MiRNA profiling detected 127 miRNAs in cbs+/- and 39 miRNAs in cbs-/- mice retinas, which were significantly differentially expressed compared to cbs+/+ . MiRNA pathway analysis showed their involvement in HDAC and DNMT activation, endoplasmic reticulum (ER), and oxidative stresses, inflammation, hypoxia, and angiogenesis pathways. Hcy-induced epigenetic modifications may be involved in retinopathies associated with HHcy, such as age-related macular degeneration and diabetic retinopathy.
Collapse
|
28
|
Kresovich JK, Zhang Z, Fang F, Zheng Y, Sanchez-Guerra M, Joyce BT, Zhong J, Chervona Y, Wang S, Chang D, McCracken JP, Díaz A, Bonzini M, Carugno M, Koutrakis P, Kang CM, Bian S, Gao T, Byun HM, Schwartz J, Baccarelli AA, Hou L. Histone 3 modifications and blood pressure in the Beijing Truck Driver Air Pollution Study. Biomarkers 2017; 22:584-593. [PMID: 28678539 DOI: 10.1080/1354750x.2017.1347961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Histone modifications regulate gene expression; dysregulation has been linked with cardiovascular diseases. Associations between histone modification levels and blood pressure in humans are unclear. OBJECTIVE We examine the relationship between global histone concentrations and various markers of blood pressure. MATERIALS AND METHODS Using the Beijing Truck Driver Air Pollution Study, we investigated global peripheral white blood cell histone modifications (H3K9ac, H3K9me3, H3K27me3, and H3K36me3) associations with pre- and post-work measurements of systolic (SBP) and diastolic (DBP) blood pressure, mean arterial pressure (MAP), and pulse pressure (PP) using multivariable mixed-effect models. RESULTS H3K9ac was negatively associated with pre-work SBP and MAP; H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP; and H3K27me3 was negatively associated with pre-work SBP. Among office workers, H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP. Among truck drivers, H3K9ac and H3K27me were negatively associated with pre-work SBP, and H3K27me3 was positively associated with post-work PP. DISCUSSION AND CONCLUSION Epigenome-wide H3K9ac, H3K9me3, and H3K27me3 were negatively associated with multiple pre-work blood pressure measures. These associations substantially changed during the day, suggesting an influence of daily activities. Blood-based histone modification biomarkers are potential candidates for studies requiring estimations of morning/pre-work blood pressure.
Collapse
Affiliation(s)
- Jacob K Kresovich
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,b Division of Epidemiology and Biostatistics, School of Public Health , University of Illinois-Chicago , Chicago , IL , USA
| | - Zhou Zhang
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,c Driskill Graduate Program in Life Sciences, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| | - Fang Fang
- d Department of Epidemiology, College for Public Health and Social Justice , Saint Louis University , Saint Louis , MO , USA
| | - Yinan Zheng
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,e Institute for Public Health and Medicine, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| | - Marco Sanchez-Guerra
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA.,g Department of Developmental Neurobiology , National Institute of Perinatology , Mexico City , Mexico
| | - Brian T Joyce
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,b Division of Epidemiology and Biostatistics, School of Public Health , University of Illinois-Chicago , Chicago , IL , USA
| | - Jia Zhong
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Yana Chervona
- h Department of Environmental Medicine , New York University School of Medicine , New York , NY , USA
| | - Sheng Wang
- i Department of Occupational and Environmental Health , Peking University Health Science Center, Peking University , Beijing , China
| | - Dou Chang
- j Department of Safety Engineering , China Institute of Industrial Relations , Beijing , China
| | - John P McCracken
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Anaite Díaz
- k Center for Health Studies , Universidad del Valle de Guatemala , Guatemala City , Guatemala
| | - Matteo Bonzini
- l Department of Clinical Sciences and Community Medicine , University of Milan and IRCCS Fondazione Ca' Granda OspedaleMaggiore Policlinico , Milan , Italy
| | - Michele Carugno
- l Department of Clinical Sciences and Community Medicine , University of Milan and IRCCS Fondazione Ca' Granda OspedaleMaggiore Policlinico , Milan , Italy
| | - Petros Koutrakis
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Choong-Min Kang
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Shurui Bian
- c Driskill Graduate Program in Life Sciences, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| | - Tao Gao
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Hyang-Min Byun
- m Human Nutrition Research Centre, Institute of Cellular Medicine , Newcastle University , Newcastle upon Tyne , United Kingdom
| | - Joel Schwartz
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Andrea A Baccarelli
- f Department of Environmental Health, Harvard T.H. Chan School of Public Health , Harvard University , Boston , MA , USA
| | - Lifang Hou
- a Department of Preventive Medicine , Northwestern University Feinberg School of Medicine , Chicago , IL , USA.,n Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine , Northwestern University , Chicago , IL , USA
| |
Collapse
|
29
|
H 2S and homocysteine control a novel feedback regulation of cystathionine beta synthase and cystathionine gamma lyase in cardiomyocytes. Sci Rep 2017. [PMID: 28623294 PMCID: PMC5473925 DOI: 10.1038/s41598-017-03776-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hydrogen sulfide (H2S), a cardioprotective gas, is endogenously produced from homocysteine by cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE) enzymes. However, effect of H2S or homocysteine on CBS and CSE expression, and cross-talk between CBS and CSE are unclear. We hypothesize that homocysteine and H2S regulate CBS and CSE expressions in a dose dependent manner in cardiomyocytes, and CBS deficiency induces cardiac CSE expression. To test the hypothesis, we treated murine atrial HL1 cardiomyocytes with increasing doses of homocysteine or Na2S/GYY4137, a H2S donor, and measured the levels of CBS and CSE. We found that homocysteine upregulates CSE but downregulates CBS whereas Na2S/GYY4137 downregulates CSE but upregulates CBS in a dose-dependent manner. Moreover, the Na2S-treatment downregulates specificity protein-1 (SP1), an inducer for CSE, and upregulates miR-133a that targets SP1 and inhibits cardiomyocytes hypertrophy. Conversely, in the homocysteine-treated cardiomyocytes, CBS and miR-133a were downregulated and hypertrophy was induced. In vivo studies using CBS+/-, a model for hyperhomocysteinemia, and sibling CBS+/+ control mice revealed that deficiency of CBS upregulates cardiac CSE, plausibly by inducing SP1. In conclusion, we revealed a novel mechanism for H2S-mediated regulation of homocysteine metabolism in cardiomyocytes, and a negative feedback regulation between CBS and CSE in the heart.
Collapse
|
30
|
Majumder A, Behera J, Jeremic N, Tyagi SC. Hypermethylation: Causes and Consequences in Skeletal Muscle Myopathy. J Cell Biochem 2017; 118:2108-2117. [PMID: 27982479 DOI: 10.1002/jcb.25841] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
A detrimental consequence of hypermethylation is hyperhomocysteinemia (HHcy), that causes oxidative stress, inflammation, and matrix degradation, which leads to multi-pathology in different organs. Although, it is well known that hypermethylation leads to overall gene silencing and hypomethylation leads to overall gene activation, the role of such process in skeletal muscle dysfunction during HHcy condition is unclear. In this study, we emphasized the multiple mechanisms including epigenetic alteration by which HHcy causes skeletal muscle myopathy. This review also highlights possible role of methylation, histone modification, and RNA interference in skeletal muscle dysfunction during HHcy condition and potential therapeutic molecules, putative challenges, and methodologies to deal with HHcy mediated skeletal muscle dysfunction. We also highlighted that B vitamins (mainly B12 and B6), with folic acid supplementation, could be useful as an adjuvant therapy to reverse these consequences associated with this HHcy conditions in skeletal muscle. However, we would recommend to further study involving long-term trials could help to assess efficacy of the use of these therapeutic agents. J. Cell. Biochem. 118: 2108-2117, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, 40202.,Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| | - Jyotirmaya Behera
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| | - Nevena Jeremic
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| | - Suresh C Tyagi
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, 40202.,Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40202
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The goal of this review was to systematically analyze recent studies updating our knowledge on the role of epigenetic mechanisms in childhood asthma. RECENT FINDINGS A systematic literature search was conducted that identified 23 fresh articles published within the last 5 years reporting the results of human studies on the relationships between epigenetic modifications and childhood asthma or its/related phenotypes. In almost all these studies, meaningful associations between levels of epigenetic marks (DNA methylation and/or histone modifications) and pediatric asthma or its/related phenotypes have been observed. In addition, many studies identified by our screening analyzed those associations in the context of environmental factors, such as pollution, tobacco smoke, farming, or diet, showing in a huge majority a modifying effect of those exposures. SUMMARY The results of our systematic literature search provide a strong support for the role of epigenetic mechanisms in (mediating the effects of environmental exposure on) pediatric asthma. This knowledge may possibly be translated into diagnostic and/or therapeutic approaches.
Collapse
|
32
|
Pourrajab F, Sharifi M, Hekmatimoghaddam S, Khanaghaei M, Rahaie M. Elevated levels of miR-499 protect ischemic myocardium against uric acid in patients undergoing off-pump CABG. COR ET VASA 2016. [DOI: 10.1016/j.crvasa.2016.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Strauss E, Supinski W, Radziemski A, Oszkinis G, Pawlak AL, Gluszek J. Is hyperhomocysteinemia a causal factor for heart failure? The impact of the functional variants of MTHFR and PON1 on ischemic and non-ischemic etiology. Int J Cardiol 2016; 228:37-44. [PMID: 27863359 DOI: 10.1016/j.ijcard.2016.11.213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/06/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Hyperhomocysteinemia was found to be uniformly associated with the development of heart failure (HF) and HF mortality; however, it is uncertain whether this relation is causative or not. We used Mendelian randomization to examine the associations of the methylene tetrahydrofolate gene (MTHFR) and paraoxonase 1 gene (PON1) variants as a proxy for lifelong exposure to high Hcy and Hcy-thiolactone concentrations with the development of HF in men aged ≤60years and the occurrence of adverse effects at one-year follow-up. METHODS The study enrolled 172 men with HF: 117 with ischemic etiology (iHF) related to coronary artery disease (CAD) and 55 with non-ischemic etiology (niHF) related to dilated cardiomyopathy (DCM). The reference group of 329 CAD patients without HF and the control group of 384 men were also analyzed. RESULTS Hyperhomocysteinemia (OR=2.0, P<0.05) and the MTHFR 677TT/1298AA, 677CC/1298CC genotypes (OR=1.6, P=0.03) were associated with HF regardless of its etiology, especially among normotensives (OR=4.6, P=0.001 and OR=2.3, P=0.003, respectively). In niHF, the PON1 162AA (OR=2.3, P=0.03) and 575AG+GG (OR=0.46, P=0.01) genotypes also influenced the risk. The interaction between HDLC<1mmol/L and the PON1 575GG genotype was found to influence the risk of iHF (OR=7.2, P=0.009). Hyperhomocysteinemia improved the classification of niHF patients as 'high-risk' by 10.1%. Ejection fraction <30% and DCM increased the probability of HF death or re-hospitalization within one year. CONCLUSION Our results provide evidence that hyperhomocysteinemia is a causal factor for niHF in DCM, while dysfunctional HDL could contribute to the pathogenesis of iHF.
Collapse
Affiliation(s)
- Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; Department of General and Vascular Surgery, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland.
| | - Wieslaw Supinski
- Regional Public Hospital, Dekerta 1, 66-400 Gorzow Wielkopolski, Poland
| | - Artur Radziemski
- Department of Hypertension, Angiology and Internal Medicine, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland
| | - Grzegorz Oszkinis
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland
| | - Andrzej Leon Pawlak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Jerzy Gluszek
- The State Higher Vocational School in Kalisz, Nowy Swiat 4, 62-800 Kalisz, Poland
| |
Collapse
|
34
|
Chaturvedi P, Tyagi SC. Epigenetic silencing of TIMP4 in heart failure. J Cell Mol Med 2016; 20:2089-2101. [PMID: 27396717 PMCID: PMC5082395 DOI: 10.1111/jcmm.12901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
Tissue inhibitor of matrix metalloprotease 4 (TIMP4) is endogenously one of the key modulators of matrix metalloprotease 9 (MMP9) and we have reported earlier that cardiac specific TIMP4 instigates contractility and helps in differentiation of cardiac progenitor cells. Although studies show that the expression of TIMP4 goes down in heart failure but the mechanism is unknown. This study aims to determine the mechanism of silencing of TIMP4 in heart failure progression created by aorta-vena cava (AV) fistula. We hypothesize that there is epigenetic silencing of TIMP4 in heart failure. To validate this hypothesis, we created heart failure model by creating AV fistula in C57BL/6 mice and looked into the promoter methylation (methylation specific PCR, high resolution melting, methylation sensitive restriction enzyme and Na bisulphite treatment followed by sequencing), histone modification (ChIP assay) and microRNAs that regulate TIMP4 (mir122a) and MMP9 (mir29b and mir455-5p). The physiological parameters in terms of cardiac function after AV fistula were assessed by echocardiography. We observed that there are 7 CpG islands in the TIMP4 promoter which get methylated during the progression of heart failure which leads to its epigenetic silencing. In addition, the up-regulated levels of mir122a in part, contribute to regulation of TIMP4. Consequently, MMP9 gets up-regulated and leads to cardiac remodeling. This is a novel report to explain the epigenetic silencing of TIMP4 in heart failure.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA.
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
35
|
Abstract
Although cardiac resuscitation can revive the whole body, the mechanisms are unclear. To this end, we propose that reviving a dead/dysfunctional cardiomyocyte will shed light on resuscitation mechanisms and pave the way to treat cardiac myopathies. The degradation of the myocyte cytoskeleton by the proteasome system which involves calpains, ubiquitin, caspases and matrix metalloproteases is the main focus of this review. The activation of calpains beyond the calpastatin-mediated inhibition due to extensive calcium harbor can lead to titin degradation, damage to the sarcomere and contractile dysfunction. The ubiquitin proteasome system can disturb the protein homeostasis within the cell and generate a dysfunctional myocyte. The matrix metalloproteases disrupt the collagen/elastin ratio and connexins to generate arrhythmias. The concept of cardiac resuscitation stems from protecting the myocyte cytoskeleton and keeping the protein homeostasis intact through management of the degradation machinery. In this regard, proteasome inhibitors for the degradation machinery have an elegant space. Recently exosomes have been identified potentially, as carriers of microRNAs or proteins that can modify the target cells. Exosomes loaded with the inhibitor "cargo" which comprises microRNAs, siRNAs or proteins to inhibit the degradation machinery can be a method of choice for cardiac resuscitation-a process difficult to execute.
Collapse
|
36
|
Kunkel GH, Chaturvedi P, Tyagi SC. Epigenetic revival of a dead cardiomyocyte through mitochondrial interventions. Biomol Concepts 2016. [PMID: 26203602 DOI: 10.1515/bmc-2015-0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction has been reported to underline heart failure, and our earlier report suggests that mitochondrial fusion and fission contributes significantly to volume overload heart failure. Although ample studies highlight mitochondrial dysfunction to be a major cause, studies are lacking to uncover the role of mitochondrial epigenetics, i.e. epigenetic modifications of mtDNA in cardiomyocyte function. Additionally, mitochondrial proteases like calpain and Lon proteases are underexplored. Cardiomyopathies are correlated to mitochondrial damage via increased reactive oxygen species production and free calcium within cardiomyocytes. These abnormalities drive increased proteolytic activity from matrix metalloproteinases and calpains, respectively. These proteases degrade the cytoskeleton of the cardiomyocyte and lead to myocyte death. mtDNA methylation is another factor that can lead to myocyte death by silencing several genes of mitochondria or upregulating the expression of mitochondrial proteases by hypomethylation. Cardiomyocyte resuscitation can occur through mitochondrial interventions by decreasing the proteolytic activity and reverting back the epigenetic changes in the mtDNA which lead to myocyte dysfunction. Epigenetic changes in the mtDNA are triggered by environmental factors like pollution and eating habits with cigarette smoking. An analysis of mitochondrial epigenetics in cigarette-smoking mothers will reveal an underlying novel mechanism leading to mitochondrial dysfunction and eventually heart failure. This review is focused on the mitochondrial dysfunction mechanisms that can be reverted back to resuscitate cardiomyocytes.
Collapse
|
37
|
Yugendran T, Harish BN. Global DNA Methylation Level among Ciprofloxacin-Resistant Clinical Isolates of Escherichia coli. J Clin Diagn Res 2016; 10:DC27-30. [PMID: 27437217 DOI: 10.7860/jcdr/2016/19034.7830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/07/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Fluoroquinolone resistant clinical isolates belonging to the family Enterobacteriaceae is a major public health concern in India. Data analysis in JIPMER hospital revealed 10% rise in fluoroquinolone resistance within a span of three years suggestive of the possible involvement of mechanism/s other than QRDR capable of imparting fluoroquinolone resistance. DNA methylation regulates gene expression. Moreover, methylated cytosine is a mutational hotspot. Thus, DNA methylation can alter bacterial gene expression profile as well as facilitate the bacteria in accumulating mutations possibly leading to increased antimicrobial resistance. Therefore, the present study was carried out to identify the potential involvement of DNA methylation in ciprofloxacin resistance. AIM To elucidate and compare the methylation level of genomic and plasmid DNA among clinical isolates of E. coli sensitive and resistant to ciprofloxacin. MATERIALS AND METHODS The study included 40 clinical E. coli isolates of which, 30 were ciprofloxacin-resistant and 10 were sensitive to ciprofloxacin. Genomic DNA (gDNA) and plasmid DNA were extracted and quantified. Methylation levels were elucidated using 5-mC DNA ELISA kit (Zymoresearch, California, USA) as per kit protocol and guidelines. STATISTICAL ANALYSIS Spearman correlation 2-tailed test. A p-value <0.05 was considered significant. RESULTS The MIC values of sensitive and resistant strains against ciprofloxacin ranged from 0.125 μg/mL - 0.75 μg/mL and 8 μg/mL - >256 μg/mL respectively. No difference was found in plasmid DNA methylation level but, the gDNA methylation level of the resistant strains significantly differed from that of the sensitive strains. Based on Spearman correlation test gDNA methylation level of bacteria was found to be inversely proportional to its MIC against ciprofloxacin with p= -0.956 (p-value < 0.0001). CONCLUSION The influence of DNA methylation over plasmid-mediated quinolone resistance needs to be further confirmed by bisulphite DNA sequencing of the plasmid-borne genes. Extensive usage of ciprofloxacin has led to rise in ciprofloxacin resistance possibly induced by DNA methylation. Thus rational usage of ciprofloxacin in a clinical setting is essential to combat the further development of ciprofloxacin resistance. Hypomethylated genes and adenine methylation needs to identified to fill up gaps in knowledge concerning the involvement of DNA methylation in fluoroquinolone resistance exhibited by E. coli.
Collapse
|
38
|
Circulating miR-126 and miR-499 reflect progression of cardiovascular disease; correlations with uric acid and ejection fraction. Heart Int 2016; 11:e1-e9. [PMID: 27924211 PMCID: PMC5056629 DOI: 10.5301/heartint.5000226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The aim of this study was to assess plasma levels of endothelium- and heart-associated microRNAs (miRNAs) miR-126 and miR-499, respectively, using quantitative reverse transcriptase polymerase chain reaction. METHODS A two-step analysis was conducted on 75 patients undergoing off-pomp coronary artery bypass graft (CABG) surgery. Five biomarkers of inflammation and cardiac injury were assessed in addition to the above-mentioned miRNAs. RESULTS Plasma concentrations of miRNAs were found to be significantly correlated with plasma levels of cardiac troponin I (cTnI) (miR-499, r 0.49, p~0.002; miR-126, r = 0.30, p~0.001), indicating cardiac damage. Data analysis revealed that miR-499 had higher sensitivity and specificity for cardiac injury than miR-126, which reflects more endothelial activation. Interestingly, a strong correlation was observed between both miRNAs and uric acid (UA) levels with ventricular contractility measured as ejection fraction (EF) (miR-499/EF%, r = 0.58, p~0.004; UA/EF%, r = -0.6, p~0.006; UA/miR-499, r = -0.34; UA/miR-126, r = 0.5, p~0.01). CONCLUSIONS In patients undergoing CABG, circulating miR-126/499 is associated with presentation of traditional risk factors and reflects post-operative response to injury. Plasma pool of miRNAs likely reflects extracellular miRNAs which are proportional to intracellular miRNA levels. Therefore, circulating levels of these miRNAs have prognostic implications in detection of higher risk of future cardiovascular events.
Collapse
|
39
|
Chaturvedi P, Kamat PK, Kalani A, Familtseva A, Tyagi SC. High Methionine Diet Poses Cardiac Threat: A Molecular Insight. J Cell Physiol 2016; 231:1554-61. [PMID: 26565991 DOI: 10.1002/jcp.25247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
High methionine diet (HMD) for example red meat which includes lamb, beef, pork can pose cardiac threat and vascular dysfunction but the mechanisms are unclear. We hypothesize that a diet rich in methionine can malfunction the cardiovascular system in three ways: (1) by augmenting oxidative stress; (2) by inflammatory manifestations; and (3) by matrix/vascular remodeling. To test this hypothesis we used four groups of mice: (1) WT; (2) WT + methionine; (3) CBS(+/-) ; (4) CBS(+/-) +methionine. We observed high oxidative stress in mice fed with methionine which was even higher in CBS(+/-) and CBS(+/-) +methionine. Higher oxidative stress was indicated by high levels of SOD-1 in methionine fed mouse hearts whereas IL-1β, IL-6, TNFα, and TLR4 showed high inflammatory manifestations. The upregulated levels of eNOS/iNOS and upregulated levels of MMP2/MMP9 along with high collagen deposition indicated vascular and matrix remodeling in methionine fed mouse. We evaluated the cardiac function which was dysregulated in the mice fed with HMD. These mice had decreased ejection fraction and left ventricular dysfunction which subsequently leads to adverse cardiac remodeling. In conclusion, our study clearly shows that HMD poses a cardiac threat by increasing oxidative stress, inflammatory manifestations, matrix/vascular remodeling, and decreased cardiac function.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Pradip K Kamat
- Department of Anesthesiology, University of Florida, Gainesville, Florida
| | - Anuradha Kalani
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Anastasia Familtseva
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
40
|
Pushpakumar S, Kundu S, Narayanan N, Sen U. DNA hypermethylation in hyperhomocysteinemia contributes to abnormal extracellular matrix metabolism in the kidney. FASEB J 2015. [PMID: 26224753 DOI: 10.1096/fj.15-272443] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hyperhomocysteinemia (HHcy) is prevalent in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Emerging studies suggest that epigenetic mechanisms contribute to the development and progression of fibrosis in CKD. HHcy and its intermediates are known to alter the DNA methylation pattern, which is a critical regulator of epigenetic information. In this study, we hypothesized that HHcy causes renovascular remodeling by DNA hypermethylation, leading to glomerulosclerosis. We also evaluated whether the DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5-Aza) could modulate extracellular matrix (ECM) metabolism and reduce renovascular fibrosis. C57BL/6J (wild-type) and cystathionine-β-synthase (CBS(+/-)) mice, treated without or with 5-Aza (0.5 mg/kg body weight, i.p.), were used. CBS(+/-) mice showed high plasma Hcy levels, hypertension, and significant glomerular and arteriolar injury. 5-Aza treatment normalized blood pressure and reversed renal injury. CBS(+/-) mice showed global hypermethylation and up-regulation of DNA methyltransferase-1 and -3a. Methylation-specific PCR showed an imbalance between matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1 and -2 and also increased collagen and galectin-3 expression. 5-Aza reduced abnormal DNA methylation and restored the MMP-9/TIMP-1, -2 balance. In conclusion, our data suggest that during HHcy, abnormal DNA methylation and an imbalance between MMP-9 and TIMP-1 and -2 lead to ECM remodeling and renal fibrosis.
Collapse
Affiliation(s)
- Sathnur Pushpakumar
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Nithya Narayanan
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
41
|
Castegna A, Iacobazzi V, Infantino V. The mitochondrial side of epigenetics. Physiol Genomics 2015; 47:299-307. [PMID: 26038395 DOI: 10.1152/physiolgenomics.00096.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 05/26/2015] [Indexed: 12/31/2022] Open
Abstract
The bidirectional cross talk between nuclear and mitochondrial DNA is essential for cellular homeostasis and proper functioning. Mitochondria depend on nuclear contribution for much of their functionality, but their activities have been recently recognized to control nuclear gene expression as well as cell function in many different ways. Epigenetic mechanisms, which tune gene expression in response to environmental stimuli, are key regulatory events at the interplay between mitochondrial and nuclear interactions. Emerging findings indicate that epigenetic factors can be targets or instruments of mitochondrial-nuclear cross talk. Additionally, the growing interest into mtDNA epigenetic modifications opens new avenues into the interaction mechanisms between mitochondria and nucleus. In this review we summarize the points of mitochondrial and nuclear reciprocal control involving epigenetic factors, focusing on the role of mitochondrial genome and metabolism in shaping epigenetic modulation of gene expression. The relevance of the new findings on the methylation of mtDNA is also highlighted as a new frontier in the complex scenario of mitochondrial-nuclear communication.
Collapse
Affiliation(s)
- Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," Bari, Italy;
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, Bari, Italy; and
| | | |
Collapse
|
42
|
Chaturvedi P, Kalani A, Medina I, Familtseva A, Tyagi SC. Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise. J Cell Mol Med 2015; 19:2153-61. [PMID: 25824442 PMCID: PMC4568920 DOI: 10.1111/jcmm.12589] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
'Cardiosomes' (exosomes from cardiomyocytes) have recently emerged as nanovesicles (30-100 nm) released in the cardiosphere by myocytes and cardiac progenitor cells, though their role in diabetes remains elusive. Diabetic cardiovascular complications are unequivocally benefitted from exercise; however, the molecular mechanisms need exploration. This novel study is based on our observation that exercise brings down the levels of activated (Matrix Metalloprotease 9) in db/db mice in a model of type 2 diabetes. We hypothesize that exosomes that are released during exercise contain microRNAs (mir455, mir29b, mir323-5p and mir466) that bind to the 3' region of MMP9 and downregulate its expression, hence mitigating the deleterious downstream effects of MMP9, which causes extracellular matrix remodeling. First, we confirmed the presence of exosomes in the heart tissue and serum by electron microscopy and flow cytometry, respectively, in the four treatment groups: (i) db/control, (ii) db/control+exercise, (iii) db/db and (iv) db/db+exercise. Use of exosomal markers CD81, Flottilin 1, and acetylcholinesterase activity in the isolated exosomes confirmed enhanced exosomal release in the exercise group. The microRNAs isolated from the exosomes contained mir455, mir29b, mir323-5p and mir466 as quantified by qRTPCR, however, mir29b and mir455 showed highest upregulation. We performed 2D zymography which revealed significantly lowered activity of MMP9 in the db/db exercise group as compared to non-exercise group. The immunohistochemical analysis further confirmed the downregulated expression of MMP9 after exercise. Since MMP9 is involved in matrix degradation and leads to fibrosis and myocyte uncoupling, the present study provides a strong evidence how exercise can mitigate these conditions in diabetic patients.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Ilza Medina
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Anastasia Familtseva
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
43
|
Homocysteine thiolactone and N-homocysteinylated protein induce pro-atherogenic changes in gene expression in human vascular endothelial cells. Amino Acids 2015; 47:1319-39. [PMID: 25802182 PMCID: PMC4458266 DOI: 10.1007/s00726-015-1956-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/04/2015] [Indexed: 12/11/2022]
Abstract
Genetic or nutritional deficiencies in homocysteine (Hcy) metabolism lead to hyperhomocysteinemia (HHcy) and cause endothelial dysfunction, a hallmark of atherosclerosis. In addition to Hcy, related metabolites accumulate in HHcy but their role in endothelial dysfunction is unknown. Here, we examine how Hcy-thiolactone, N-Hcy-protein, and Hcy affect gene expression and molecular pathways in human umbilical vein endothelial cells. We used microarray technology, real-time quantitative polymerase chain reaction, and bioinformatic analysis with PANTHER, DAVID, and Ingenuity Pathway Analysis (IPA) resources. We identified 47, 113, and 30 mRNAs regulated by N-Hcy-protein, Hcy-thiolactone, and Hcy, respectively, and found that each metabolite induced a unique pattern of gene expression. Top molecular pathways affected by Hcy-thiolactone were chromatin organization, one-carbon metabolism, and lipid-related processes [−log(P value) = 20–31]. Top pathways affected by N-Hcy-protein and Hcy were blood coagulation, sulfur amino acid metabolism, and lipid metabolism [−log(P value)] = 4–11; also affected by Hcy-thiolactone, [−log(P value) = 8–14]. Top disease related to Hcy-thiolactone, N-Hcy-protein, and Hcy was ‘atherosclerosis, coronary heart disease’ [−log(P value) = 9–16]. Top-scored biological networks affected by Hcy-thiolactone (score = 34–40) were cardiovascular disease and function; those affected by N-Hcy-protein (score = 24–35) were ‘small molecule biochemistry, neurological disease,’ and ‘cardiovascular system development and function’; and those affected by Hcy (score = 25–37) were ‘amino acid metabolism, lipid metabolism,’ ‘cellular movement, and cardiovascular and nervous system development and function.’ These results indicate that each Hcy metabolite uniquely modulates gene expression in pathways important for vascular homeostasis and identify new genes and pathways that are linked to HHcy-induced endothelial dysfunction and vascular disease.
Collapse
|
44
|
Harb H, Renz H. Update on epigenetics in allergic disease. J Allergy Clin Immunol 2015; 135:15-24. [PMID: 25567039 DOI: 10.1016/j.jaci.2014.11.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
Chronic inflammatory diseases, including allergies and asthma, are the result of complex gene-environment interactions. One of the most challenging questions in this regard relates to the biochemical mechanism of how exogenous environmental trigger factors modulate and modify gene expression, subsequently leading to the development of chronic inflammatory conditions. Epigenetics comprises the umbrella of biochemical reactions and mechanisms, such as DNA methylation and chromatin modifications on histones and other structures. Recently, several lifestyle and environmental factors have been investigated in terms of such biochemical interactions with the gene expression-regulating machinery: allergens; microbes and microbial compounds; dietary factors, including vitamin B12, folic acid, and fish oil; obesity; and stress. This article aims to update recent developments in this context with an emphasis on allergy and asthma research.
Collapse
Affiliation(s)
- Hani Harb
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany
| | - Harald Renz
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
45
|
Iacobazzi V, Infantino V, Castegna A, Andria G. Hyperhomocysteinemia: related genetic diseases and congenital defects, abnormal DNA methylation and newborn screening issues. Mol Genet Metab 2014; 113:27-33. [PMID: 25087163 DOI: 10.1016/j.ymgme.2014.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 01/25/2023]
Abstract
Homocysteine, a sulfur-containing amino acid derived from the methionine metabolism, is located at the branch point of two pathways of the methionine cycle, i.e. remethylation and transsulfuration. Gene abnormalities in the enzymes catalyzing reactions in both pathways lead to hyperhomocysteinemia. Hyperhomocysteinemia is associated with increased risk for congenital disorders, including neural tube closure defects, heart defects, cleft lip/palate, Down syndrome, and multi-system abnormalities in adults. Since hyperhomocysteinemia is known to affect the extent of DNA methylation, it is likely that abnormal DNA methylation during embryogenesis, may be a pathogenic factor for these congenital disorders. In this review we highlight the importance of homocysteinemia by describing the genes encoding for enzymes of homocysteine metabolism relevant to the clinical practice, especially cystathionine-β-synthase and methylenetetrahydrofolate reductase mutations, and the impairment of related metabolites levels. Moreover, a possible correlation between hyperhomocysteine and congenital disorders through the involvement of abnormal DNA methylation during embryogenesis is discussed. Finally, the relevance of present and future diagnostic tools such as tandem mass spectrometry and next generation sequencing in newborn screening is highlighted.
Collapse
Affiliation(s)
- Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, Bari, Italy.
| | | | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Generoso Andria
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| |
Collapse
|