1
|
Liu L, Davidorf B, Dong P, Peng A, Song Q, He Z. Decoding the mosaic of inflammatory bowel disease: Illuminating insights with single-cell RNA technology. Comput Struct Biotechnol J 2024; 23:2911-2923. [PMID: 39421242 PMCID: PMC11485491 DOI: 10.1016/j.csbj.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammatory bowel diseases (IBD), comprising ulcerative colitis (UC) and Crohn's disease (CD), are complex chronic inflammatory intestinal conditions with a multifaceted pathology, influenced by immune dysregulation and genetic susceptibility. The challenges in understanding IBD mechanisms and implementing precision medicine include deciphering the contributions of individual immune and non-immune cell populations, pinpointing specific dysregulated genes and pathways, developing predictive models for treatment response, and advancing molecular technologies. Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to address these challenges, offering comprehensive transcriptome profiles of various cell types at the individual cell level in IBD patients, overcoming limitations of bulk RNA sequencing. Additionally, single-cell proteomics analysis, T-cell receptor repertoire analysis, and epigenetic profiling provide a comprehensive view of IBD pathogenesis and personalized therapy. This review summarizes significant advancements in single-cell sequencing technologies for enhancing our understanding of IBD, covering pathogenesis, diagnosis, treatment, and prognosis. Furthermore, we discuss the challenges that persist in the context of IBD research, including the need for longitudinal studies, integration of multiple single-cell and spatial transcriptomics technologies, and the potential of microbial single-cell RNA-seq to shed light on the role of the gut microbiome in IBD.
Collapse
Affiliation(s)
- Liang Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Davidorf
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peixian Dong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alice Peng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zhiheng He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Vemuri K, Radi SH, Sladek FM, Verzi MP. Multiple roles and regulatory mechanisms of the transcription factor HNF4 in the intestine. Front Endocrinol (Lausanne) 2023; 14:1232569. [PMID: 37635981 PMCID: PMC10450339 DOI: 10.3389/fendo.2023.1232569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) drives a complex array of transcriptional programs across multiple organs. Beyond its previously documented function in the liver, HNF4α has crucial roles in the kidney, intestine, and pancreas. In the intestine, a multitude of functions have been attributed to HNF4 and its accessory transcription factors, including but not limited to, intestinal maturation, differentiation, regeneration, and stem cell renewal. Functional redundancy between HNF4α and its intestine-restricted paralog HNF4γ, and co-regulation with other transcription factors drive these functions. Dysregulated expression of HNF4 results in a wide range of disease manifestations, including the development of a chronic inflammatory state in the intestine. In this review, we focus on the multiple molecular mechanisms of HNF4 in the intestine and explore translational opportunities. We aim to introduce new perspectives in understanding intestinal genetics and the complexity of gastrointestinal disorders through the lens of HNF4 transcription factors.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sarah H. Radi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
3
|
Chaukimath P, Frankel G, Visweswariah SS. The metabolic impact of bacterial infection in the gut. FEBS J 2023; 290:3928-3945. [PMID: 35731686 DOI: 10.1111/febs.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 08/17/2023]
Abstract
Bacterial infections of the gut are one of the major causes of morbidity and mortality worldwide. The interplay between the pathogen and the host is finely balanced, with the bacteria evolving to proliferate and establish infection. In contrast, the host mounts a response to first restrict and then eliminate the infection. The intestine is a rapidly proliferating tissue, and metabolism is tuned to cater to the demands of proliferation and differentiation along the crypt-villus axis (CVA) in the gut. As bacterial pathogens encounter the intestinal epithelium, they elicit changes in the host cell, and core metabolic pathways such as the tricarboxylic acid (TCA) cycle, lipid metabolism and glycolysis are affected. This review highlights the mechanisms utilized by diverse gut bacterial pathogens to subvert host metabolism and describes host responses to the infection.
Collapse
Affiliation(s)
- Pooja Chaukimath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College, London, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
4
|
Thüring EM, Hartmann C, Schwietzer YA, Ebnet K. TMIGD1: Emerging functions of a tumor supressor and adhesion receptor. Oncogene 2023:10.1038/s41388-023-02696-5. [PMID: 37087524 DOI: 10.1038/s41388-023-02696-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The development of multicellular organisms depends on cell adhesion molecules (CAMs) that connect cells to build tissues. The immunoglobulin superfamily (IgSF) constitutes one of the largest families of CAMs. Members of this family regulate such diverse processes like synapse formation, spermatogenesis, leukocyte-endothelial interactions, or epithelial cell-cell adhesion. Through their extracellular domains, they undergo homophilic and heterophilic interactions in cis and trans. Their cytoplasmic domains frequently bind scaffolding proteins to assemble signaling complexes. Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is a IgSF member with two Ig-like domains and a short cytoplasmic tail that contains a PDZ domain-binding motif. Recent observations indicate that TMIGD1 has pleiotropic functions in epithelial cells and has a critical role in suppressing malignant cell behavior. Here, we review the molecular characteristics of TMIGD1, its interaction with cytoplasmic scaffolding proteins, the regulation of its expression, and its downregulation in colorectal and renal cancers.
Collapse
Affiliation(s)
- Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Ysabel A Schwietzer
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
| |
Collapse
|
5
|
Johnson TO, Akinsanmi AO, Ejembi SA, Adeyemi OE, Oche JR, Johnson GI, Adegboyega AE. Modern drug discovery for inflammatory bowel disease: The role of computational methods. World J Gastroenterol 2023; 29:310-331. [PMID: 36687123 PMCID: PMC9846937 DOI: 10.3748/wjg.v29.i2.310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) comprising ulcerative colitis, Crohn’s disease and microscopic colitis are characterized by chronic inflammation of the gastrointestinal tract. IBD has spread around the world and is becoming more prevalent at an alarming rate in developing countries whose societies have become more westernized. Cell therapy, intestinal microecology, apheresis therapy, exosome therapy and small molecules are emerging therapeutic options for IBD. Currently, it is thought that low-molecular-mass substances with good oral bio-availability and the ability to permeate the cell membrane to regulate the action of elements of the inflammatory signaling pathway are effective therapeutic options for the treatment of IBD. Several small molecule inhibitors are being developed as a promising alternative for IBD therapy. The use of highly efficient and time-saving techniques, such as computational methods, is still a viable option for the development of these small molecule drugs. The computer-aided (in silico) discovery approach is one drug development technique that has mostly proven efficacy. Computational approaches when combined with traditional drug development methodology dramatically boost the likelihood of drug discovery in a sustainable and cost-effective manner. This review focuses on the modern drug discovery approaches for the design of novel IBD drugs with an emphasis on the role of computational methods. Some computational approaches to IBD genomic studies, target identification, and virtual screening for the discovery of new drugs and in the repurposing of existing drugs are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jane-Rose Oche
- Department of Biochemistry, University of Jos, Jos 930222, Plateau, Nigeria
| | - Grace Inioluwa Johnson
- Faculty of Clinical Sciences, College of Health Sciences, University of Jos, Jos 930222, Plateau, Nigeria
| | | |
Collapse
|
6
|
Kopper JJ, Iennarella-Servantez C, Jergens AE, Sahoo DK, Guillot E, Bourgois-Mochel A, Martinez MN, Allenspach K, Mochel JP. Harnessing the Biology of Canine Intestinal Organoids to Heighten Understanding of Inflammatory Bowel Disease Pathogenesis and Accelerate Drug Discovery: A One Health Approach. FRONTIERS IN TOXICOLOGY 2022; 3:773953. [PMID: 35295115 PMCID: PMC8915821 DOI: 10.3389/ftox.2021.773953] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
In a recent issue of the Lancet, the prevalence of Inflammatory Bowel Disease (IBD) was estimated at 7 million worldwide. Overall, the burden of IBD is rising globally, with direct and indirect healthcare costs ranging between $14.6 and $31.6 billion in the U.S. alone in 2014. There is currently no cure for IBD, and up to 40% of patients do not respond to medical therapy. Although the exact determinants of the disease pathophysiology remain unknown, the prevailing hypothesis involves complex interplay among host genetics, the intestinal microenvironment (primarily bacteria and dietary constituents), and the mucosal immune system. Importantly, multiple chronic diseases leading to high morbidity and mortality in modern western societies, including type II diabetes, IBD and colorectal cancer, have epidemiologically been linked to the consumption of high-calorie, low-fiber, high monosaccharide, and high-fat diets (HFD). More specifically, data from our laboratory and others have shown that repeated consumption of HFD triggers dysbiotic changes of the gut microbiome concomitant with a state of chronic intestinal inflammation and increased intestinal permeability. However, progress in our understanding of the effect of dietary interventions on IBD pathogenesis has been hampered by a lack of relevant animal models. Additionally, current in vitro cell culture systems are unable to emulate the in vivo interplay between the gut microbiome and the intestinal epithelium in a realistic and translatable way. There remains, therefore, a critical need to develop translatable in vitro and in vivo models that faithfully recapitulate human gut-specific physiological functions to facilitate detailed mechanistic studies on the impact of dietary interventions on gut homeostasis. While the study of murine models has been pivotal in advancing genetic and cellular discoveries, these animal systems often lack key clinical signs and temporal pathological changes representative of IBD. Specifically, some limitations of the mouse model are associated with the use of genetic knockouts to induce immune deficiency and disease. This is vastly different from the natural course of IBD developing in immunologically competent hosts, as is the case in humans and dogs. Noteworthily, abundant literature suggests that canine and human IBD share common clinical and molecular features, such that preclinical studies in dogs with naturally occurring IBD present an opportunity to further our understanding on disease pathogenesis and streamline the development of new therapeutic strategies. Using a stepwise approach, in vitro mechanistic studies investigating the contribution of dietary interventions to chronic intestinal inflammation and "gut leakiness" could be performed in intestinal organoids and organoid derived monolayers. The biologic potential of organoids stems from the method's ability to harness hard-wired cellular programming such that the complexity of the disease background can be reflected more accurately. Likewise, the effect of therapeutic drug candidates could be evaluated in organoids prior to longitudinal studies in dog and human patients with IBD. In this review, we will discuss the value (and limitations) of intestinal organoids derived from a spontaneous animal disease model of IBD (i.e., the dog), and how it can heighten understanding of the interplay between dietary interventions, the gut microbiota and intestinal inflammation. We will also review how intestinal organoids could be used to streamline the preclinical development of therapeutic drug candidates for IBD patients and their best four-legged friends.
Collapse
Affiliation(s)
- Jamie J Kopper
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Chelsea Iennarella-Servantez
- SMART Pharmacology, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Albert E Jergens
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Dipak K Sahoo
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Emilie Guillot
- 3D Health Solutions, Inc., ISU Research Park, Ames, IA, United States
| | - Agnes Bourgois-Mochel
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, MD, United States
| | - Karin Allenspach
- Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,3D Health Solutions, Inc., ISU Research Park, Ames, IA, United States
| | - Jonathan P Mochel
- SMART Pharmacology, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,SMART Translational Medicine, Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.,3D Health Solutions, Inc., ISU Research Park, Ames, IA, United States
| |
Collapse
|
7
|
James KR, Elmentaite R, Teichmann SA, Hold GL. Redefining intestinal immunity with single-cell transcriptomics. Mucosal Immunol 2022; 15:531-541. [PMID: 34848830 PMCID: PMC8630196 DOI: 10.1038/s41385-021-00470-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023]
Abstract
The intestinal immune system represents the largest collection of immune cells in the body and is continually exposed to antigens from food and the microbiota. Here we discuss the contribution of single-cell transcriptomics in shaping our understanding of this complex system. We consider the impact on resolving early intestine development, engagement with the neighbouring microbiota, diversity of intestinal immune cells, compartmentalisation within the intestines and interactions with non-immune cells. Finally, we offer a perspective on open questions about gut immunity that evolving single-cell technologies are well placed to address.
Collapse
Affiliation(s)
- Kylie Renee James
- grid.415306.50000 0000 9983 6924Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2006 Australia
| | - Rasa Elmentaite
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK
| | - Sarah Amalia Teichmann
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK ,grid.5335.00000000121885934Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, NSW CB3 0HE UK
| | - Georgina Louise Hold
- grid.1005.40000 0004 4902 0432University of New South Wales Microbiome Research Centre, Sydney, NSW 2217 Australia
| |
Collapse
|
8
|
Lazebnik LB, Golovanova EV, Volel BA, Korochanskaya NV, Lyalyukova EA, Mokshina MV, Mekhtiev SN, Mekhtieva OA, Metsaeva ZV, Petelin DS, Simanenkov VI, Sitkin SI, Cheremushkin SV, Chernogorova MV, Khavkin АI. Functional gastrointestinal disorders. Overlap syndrome Clinical guidelines of the Russian Scientific Medical Society of Internal Medicine and Gastroenterological Scientific Society of Russia. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021:5-117. [DOI: 10.31146/1682-8658-ecg-192-8-5-117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Affiliation(s)
- L. B. Lazebnik
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - E. V. Golovanova
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - B. A. Volel
- I. M. Sechenov First Moscow Medical State University
| | - N. V. Korochanskaya
- Federal State Budgetary Educational Institution of Higher Education “Kuban State Medical University” Health Ministry of Russian Federation; State Budgetary Institution of Health Care “Region Clinic Hospital Nr 2” Health Ministry of Krasnodar Region
| | - E. A. Lyalyukova
- FSBEI VO “Omsk State Medical University” of the Ministry of Health
| | - M. V. Mokshina
- Institute of therapy a. instrumental diagnostics of FSBEI VO “Pacifi c State Medical Unuversity”
| | | | | | - Z. V. Metsaeva
- Republican clinical hospital of Health Care Ministry of Northen Ossetia- Alania Republic
| | - D. S. Petelin
- I. M. Sechenov First Moscow Medical State University
| | - V. I. Simanenkov
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. I. Sitkin
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. V. Cheremushkin
- Federal State Budgetary Educational Institution of Higher Education “A. I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russion Federation
| | - M. V. Chernogorova
- Moscow regional research and clinical Institute of M. F. Vladimirsky; GBUZ MO “Podolsk City Clinical Hospital No. 3”
| | - А. I. Khavkin
- FSBAI HPE “N. I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation
| |
Collapse
|
9
|
Sawazumi T, Baba T, Iwasawa T, Arai H, Matsumura M, Takemura T, Sugiyama M, Sekiya M, Saigusa Y, Ogura T, Inayama Y, Ohashi K, Okudela K. Prognostic impact of HNF4α expression in interstitial lung disease. Pathol Int 2021; 72:25-34. [PMID: 34643024 DOI: 10.1111/pin.13176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Pneumocyte injury is a crucial factor influencing the severity of interstitial lung disease (ILD). In this study, we investigated the potential of hepatocyte nuclear factor α (HNF4α) as an immunohistochemical marker to detect pneumocyte injury and as a prognostic marker. Surgical lung biopsy specimens were collected from 309 patients with different types of ILDs (61 idiopathic pulmonary fibrosis (IPF), 173 non-IPF, and 75 unclassifiable ILD). HNF4α expression were examined and the frequency of positive cells (per mm2 ) was calculated. HNF4α was strongly expressed in regenerating pneumocytes present on fibroblastic foci, Masson bodies/organizing alveoli. In the non-IPF and unclassifiable ILD groups, cases with high frequency expression showed significantly poorer outcome. Particularly, in the unclassifiable ILD group, the prognostic impact was more significant (death due to ILD, log-rank test, p < 0.0001), with a 10-year survival rate (hazard ratio 11.1, Wald test, p = 0.0003), as compared to the non-IPF group (log-rank test, p = 0.0269; hazard ratio 2.7, Wald test, p = 0.0334). Multivariable analysis focusing on the unclassifiable ILD group confirmed that the frequent HNF4α expression was an independent prognostic factor (hazard ratio 28.6; Wald test, p = 0.0033). Thus, HNF4α can be utilized as an immunohistochemical marker for pneumocyte injury and have prognostic impact particularly in unclassifiable ILD.
Collapse
Affiliation(s)
- Tomoe Sawazumi
- Division of Pathology, Yokohama City University Medical Center Hospital, Yokohama, Japan.,Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohisa Baba
- Division of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center Hospital, Yokohama, Japan
| | - Tae Iwasawa
- Division of Radiology, Kanagawa Cardiovascular and Respiratory Center Hospital, Yokohama, Japan
| | - Hiromasa Arai
- Division of General Thoracic Surgery, Kanagawa Cardiovascular and Respiratory Center Hospital, Yokohama, Japan
| | - Mai Matsumura
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tamiko Takemura
- Division of Pathology, Kanagawa Cardiovascular and Respiratory Center Hospital, Yokohama, Japan
| | - Misaki Sugiyama
- Division of Pathology, Kanagawa Cardiovascular and Respiratory Center Hospital, Yokohama, Japan
| | - Motoki Sekiya
- Division of Pathology, Kanagawa Cardiovascular and Respiratory Center Hospital, Yokohama, Japan
| | - Yusuke Saigusa
- Department of Biostatistics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Ogura
- Division of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center Hospital, Yokohama, Japan
| | - Yoshiaki Inayama
- Division of Pathology, Yokohama City University Medical Center Hospital, Yokohama, Japan
| | - Kenichi Ohashi
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
10
|
Good M, Chu T, Shaw P, McClain L, Chamberlain A, Castro C, Rimer JM, Mihi B, Gong Q, Nolan LS, Cooksey K, Linneman L, Agrawal P, Finegold DN, Peters D. Global hypermethylation of intestinal epithelial cells is a hallmark feature of neonatal surgical necrotizing enterocolitis. Clin Epigenetics 2020; 12:190. [PMID: 33308304 PMCID: PMC7730811 DOI: 10.1186/s13148-020-00983-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) remains one of the overall leading causes of death in premature infants, and the pathogenesis is unpredictable and not well characterized. The aim of our study was to determine the molecular phenotype of NEC via transcriptomic and epithelial cell-specific epigenomic analysis, with a specific focus on DNA methylation. METHODS Using laser capture microdissection, epithelial cell-specific methylation signatures were characterized by whole-genome bisulfite sequencing of ileal and colonic samples at the time of surgery for NEC and after NEC had healed at reanastomosis (n = 40). RNA sequencing was also performed to determine the transcriptomic profile of these samples, and a comparison was made to the methylome data. RESULTS We found that surgical NEC has a considerable impact on the epigenome by broadly increasing DNA methylation levels, although these effects are less pronounced in genomic regions associated with the regulation of gene expression. Furthermore, NEC-related DNA methylation signatures were influenced by tissue of origin, with significant differences being noted between colon and ileum. We also identified numerous transcriptional changes in NEC and clear associations between gene expression and DNA methylation. CONCLUSIONS We have defined the intestinal epigenomic and transcriptomic signatures during surgical NEC, which will advance our understanding of disease pathogenesis and may enable the development of novel precision medicine approaches for NEC prediction, diagnosis and phenotyping.
Collapse
Affiliation(s)
- Misty Good
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine/St. Louis Children's Hospital, 660 S. Euclid Ave. Campus, Box 8208, St. Louis, MO, 63110, USA.
| | - Tianjiao Chu
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Patricia Shaw
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Lora McClain
- Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Austin Chamberlain
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- PathGroup, Brentwood, TN, USA
| | - Carlos Castro
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Jamie M Rimer
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine/St. Louis Children's Hospital, 660 S. Euclid Ave. Campus, Box 8208, St. Louis, MO, 63110, USA
| | - Belgacem Mihi
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine/St. Louis Children's Hospital, 660 S. Euclid Ave. Campus, Box 8208, St. Louis, MO, 63110, USA
| | - Qingqing Gong
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine/St. Louis Children's Hospital, 660 S. Euclid Ave. Campus, Box 8208, St. Louis, MO, 63110, USA
| | - Lila S Nolan
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine/St. Louis Children's Hospital, 660 S. Euclid Ave. Campus, Box 8208, St. Louis, MO, 63110, USA
| | - Krista Cooksey
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine/St. Louis Children's Hospital, 660 S. Euclid Ave. Campus, Box 8208, St. Louis, MO, 63110, USA
| | - Laura Linneman
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine/St. Louis Children's Hospital, 660 S. Euclid Ave. Campus, Box 8208, St. Louis, MO, 63110, USA
| | - Pranjal Agrawal
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine/St. Louis Children's Hospital, 660 S. Euclid Ave. Campus, Box 8208, St. Louis, MO, 63110, USA
| | | | - David Peters
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.
- Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Magee-Womens Research Institute, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Rees WD, Tandun R, Yau E, Zachos NC, Steiner TS. Regenerative Intestinal Stem Cells Induced by Acute and Chronic Injury: The Saving Grace of the Epithelium? Front Cell Dev Biol 2020; 8:583919. [PMID: 33282867 PMCID: PMC7688923 DOI: 10.3389/fcell.2020.583919] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The intestinal epithelium is replenished every 3-4 days through an orderly process that maintains important secretory and absorptive functions while preserving a continuous mucosal barrier. Intestinal epithelial cells (IECs) derive from a stable population of intestinal stem cells (ISCs) that reside in the basal crypts. When intestinal injury reaches the crypts and damages IECs, a mechanism to replace them is needed. Recent research has highlighted the existence of distinct populations of acute and chronic damage-associated ISCs and their roles in maintaining homeostasis in several intestinal perturbation models. What remains unknown is how the damage-associated regenerative ISC population functions in the setting of chronic inflammation, as opposed to acute injury. What long-term consequences result from persistent inflammation and other cellular insults to the ISC niche? What particular "regenerative" cell types provide the most efficacious restorative properties? Which differentiated IECs maintain the ability to de-differentiate and restore the ISC niche? This review will cover the latest research on damage-associated regenerative ISCs and epigenetic factors that determine ISC fate, as well as provide opinions on future studies that need to be undertaken to understand the repercussions of the emergence of these cells, their contribution to relapses in inflammatory bowel disease, and their potential use in therapeutics for chronic intestinal diseases.
Collapse
Affiliation(s)
- William D Rees
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Rene Tandun
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Enoch Yau
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Theodore S Steiner
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
12
|
Smillie CS, Biton M, Ordovas-Montanes J, Sullivan KM, Burgin G, Graham DB, Herbst RH, Rogel N, Slyper M, Waldman J, Sud M, Andrews E, Velonias G, Haber AL, Jagadeesh K, Vickovic S, Yao J, Stevens C, Dionne D, Nguyen LT, Villani AC, Hofree M, Creasey EA, Huang H, Rozenblatt-Rosen O, Garber JJ, Khalili H, Desch AN, Daly MJ, Ananthakrishnan AN, Shalek AK, Xavier RJ, Regev A. Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis. Cell 2020; 178:714-730.e22. [PMID: 31348891 DOI: 10.1016/j.cell.2019.06.029] [Citation(s) in RCA: 760] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/25/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022]
Abstract
Genome-wide association studies (GWAS) have revealed risk alleles for ulcerative colitis (UC). To understand their cell type specificities and pathways of action, we generate an atlas of 366,650 cells from the colon mucosa of 18 UC patients and 12 healthy individuals, revealing 51 epithelial, stromal, and immune cell subsets, including BEST4+ enterocytes, microfold-like cells, and IL13RA2+IL11+ inflammatory fibroblasts, which we associate with resistance to anti-TNF treatment. Inflammatory fibroblasts, inflammatory monocytes, microfold-like cells, and T cells that co-express CD8 and IL-17 expand with disease, forming intercellular interaction hubs. Many UC risk genes are cell type specific and co-regulated within relatively few gene modules, suggesting convergence onto limited sets of cell types and pathways. Using this observation, we nominate and infer functions for specific risk genes across GWAS loci. Our work provides a framework for interrogating complex human diseases and mapping risk variants to cell types and pathways.
Collapse
Affiliation(s)
| | - Moshe Biton
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Department of Molecular Biology, MGH, Boston, MA, USA
| | - Jose Ordovas-Montanes
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, USA; Department of Chemistry, MIT, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Keri M Sullivan
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
| | - Grace Burgin
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Daniel B Graham
- Department of Molecular Biology, MGH, Boston, MA, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA; Broad Institute, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Rebecca H Herbst
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Noga Rogel
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Malika Sud
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Elizabeth Andrews
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
| | - Gabriella Velonias
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
| | - Adam L Haber
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | | | - Sanja Vickovic
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Junmei Yao
- Center for Computational and Integrative Biology, MGH, Boston, MA, USA
| | | | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Lan T Nguyen
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Alexandra-Chloé Villani
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | | | - Hailiang Huang
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Analytical and Translational Genetics Unit, MGH, Boston, MA, USA
| | | | - John J Garber
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
| | - Hamed Khalili
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA
| | - A Nicole Desch
- Broad Institute, Cambridge, MA, USA; Center for Computational and Integrative Biology, MGH, Boston, MA, USA
| | - Mark J Daly
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Analytical and Translational Genetics Unit, MGH, Boston, MA, USA; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ashwin N Ananthakrishnan
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA.
| | - Alex K Shalek
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, USA; Department of Chemistry, MIT, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| | - Ramnik J Xavier
- Department of Molecular Biology, MGH, Boston, MA, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, MGH, Boston, MA, USA; Broad Institute, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA; Center for Computational and Integrative Biology, MGH, Boston, MA, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA.
| |
Collapse
|
13
|
Ikpa PT, Meijsen KF, Nieuwenhuijze ND, Dulla K, de Jonge HR, Bijvelds MJ. Transcriptome analysis of the distal small intestine of Cftr null mice. Genomics 2020; 112:1139-1150. [DOI: 10.1016/j.ygeno.2019.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022]
|
14
|
Tunçer S, Sade-Memişoğlu A, Keşküş AG, Sheraj I, Güner G, Akyol A, Banerjee S. Enhanced expression of HNF4α during intestinal epithelial differentiation is involved in the activation of ER stress. FEBS J 2019; 287:2504-2523. [PMID: 31762160 DOI: 10.1111/febs.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/17/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023]
Abstract
Intestinal epithelial cells are derived from stem cells at the crypts that undergo differentiation into transit-amplifying cells, which in turn form terminally differentiated enterocytes as these cells reach the villus. Extensive alterations in both transcriptional and translational programs occur during differentiation, which can induce the activation of cellular stress responses such as ER stress-related unfolded protein response (UPR) and autophagy, particularly in the cells that are already committed to becoming absorptive cells. Using an epithelial cell model of enterocyte differentiation, we report a mechanistic study connecting enterocyte differentiation to UPR and autophagy. We report that differentiated colon epithelial cells showed increased cytosolic Ca2+ levels and activation of all three pathways of UPR: inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like ER kinase, and activating transcription factor 6 (ATF6) compared to the undifferentiated cells. Enhanced UPR in the differentiated cells was accompanied by the induction of autophagy as evidenced by increased ratio of light chain 3 II/I, upregulation of Beclin-1, and downregulation of p62. We show for the first time that mechanistically, the upregulation of hepatocyte nuclear factor 4α (HNF4α) during differentiation led to increased promoter binding and transcriptional upregulation of two major proteins of UPR: X-box binding protein-1 and ATF6, implicating HNF4α as a key regulator of UPR response during differentiation. Integrating wet-lab with in silico analyses, the present study links differentiation to cellular stress responses, and highlights the importance of transcription factor signaling and cross-talk between the cellular events in the regulation of intestinal cell differentiation.
Collapse
Affiliation(s)
- Sinem Tunçer
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Aslı Sade-Memişoğlu
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Ayşe Gökçe Keşküş
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Güneş Güner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Aytekin Akyol
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey.,Department of Biological Sciences and Cancer Systems Biology Laboratory (CanSyl), Orta Dogu Teknik Universitesi, Ankara, Turkey
| |
Collapse
|
15
|
Yeh MM, Bosch DE, Daoud SS. Role of hepatocyte nuclear factor 4-alpha in gastrointestinal and liver diseases. World J Gastroenterol 2019; 25:4074-4091. [PMID: 31435165 PMCID: PMC6700705 DOI: 10.3748/wjg.v25.i30.4074] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) is a highly conserved member of nuclear receptor superfamily of ligand-dependent transcription factors that is expressed in liver and gastrointestinal organs (pancreas, stomach, and intestine). In liver, HNF4α is best known for its role as a master regulator of liver-specific gene expression and essential for adult and fetal liver function. Dysregulation of HNF4α expression has been associated with many human diseases such as ulcerative colitis, colon cancer, maturity-onset diabetes of the young, liver cirrhosis, and hepatocellular carcinoma. However, the precise role of HNF4α in the etiology of these human pathogenesis is not well understood. Limited information is known about the role of HNF4α isoforms in liver and gastrointestinal disease progression. There is, therefore, a critical need to know how disruption of the expression of these isoforms may impact on disease progression and phenotypes. In this review, we will update our current understanding on the role of HNF4α in human liver and gastrointestinal diseases. We further provide additional information on possible use of HNF4α as a target for potential therapeutic approaches.
Collapse
Affiliation(s)
- Matthew M Yeh
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Dustin E Bosch
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Sayed S Daoud
- Department of Pharmaceutical Sciences, Washington State University Health Sciences, Spokane, WA 99210, United States
| |
Collapse
|
16
|
Gao Y, Yan Y, Guo J, Zhang Q, Bi D, Wang F, Chang Z, Lu L, Yao X, Wei Q. HNF‑4α downregulation promotes tumor migration and invasion by regulating E‑cadherin in renal cell carcinoma. Oncol Rep 2019; 42:1066-1074. [PMID: 31322246 PMCID: PMC6667891 DOI: 10.3892/or.2019.7214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/18/2019] [Indexed: 12/19/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common malignant disease of the kidneys in adults. Patients with metastatic RCC have an unusually poor prognosis and exhibit resistance to all current therapies. Therefore, it is necessary to explore novel molecules involved in the progression of RCC and to identify effective therapeutic targets. Hepatocyte nuclear factor-4α (HNF-4α) serves an important role in hepatocyte differentiation and is involved in the progression of liver cancer; however, the functional role of HNF-4α has not been well established in RCC. The present study reported that HNF-4α expression was markedly downregulated in RCC tissue samples compared with in normal controls by immunohistochemistry and RNA-sequencing analysis. Statistical analysis demonstrated that HNF-4α downregulation was significantly associated with tumor stage, recurrence, metastasis and poor prognosis in patients with RCC. Furthermore, wound-healing and Transwell assays revealed that downregulation of HNF-4α promoted cell migration and invasion by transcriptionally regulating E-cadherin in RCC. Finally, a positive correlation was revealed between HNF-4α expression and E-cadherin expression, and patients with low E-cadherin expression also had a poor prognosis. These findings may provide novel insights into the biological effects of HNF-4α and lay the foundation for the discovery of molecular therapeutic targets in RCC.
Collapse
Affiliation(s)
- Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yang Yan
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Jing Guo
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Qian Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Fen Wang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Ling Lu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Xudong Yao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
17
|
Larsen S, Davidsen J, Dahlgaard K, Pedersen OB, Troelsen JT. HNF4α and CDX2 Regulate Intestinal YAP1 Promoter Activity. Int J Mol Sci 2019; 20:ijms20122981. [PMID: 31216773 PMCID: PMC6627140 DOI: 10.3390/ijms20122981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 01/06/2023] Open
Abstract
The Hippo pathway is important for tissue homeostasis, regulation of organ size and growth in most tissues. The co-transcription factor yes-associated protein 1 (YAP1) serves as a main downstream effector of the Hippo pathway and its dysregulation increases cancer development and blocks colonic tissue repair. Nevertheless, little is known about the transcriptional regulation of YAP1 in intestinal cells. The aim of this study to identify gene control regions in the YAP1 gene and transcription factors important for intestinal expression. Bioinformatic analysis of caudal type homeobox 2 (CDX2) and hepatocyte nuclear factor 4 alpha (HNF4α) chromatin immunoprecipitated DNA from differentiated Caco-2 cells revealed potential intragenic enhancers in the YAP1 gene. Transfection of luciferase-expressing YAP1 promoter-reporter constructs containing the potential enhancer regions validated one potent enhancer of the YAP1 promoter activity in Caco-2 and T84 cells. Two potential CDX2 and one HNF4α binding sites were identified in the enhancer by in silico transcription factor binding site analysis and protein-DNA binding was confirmed in vitro using electrophoretic mobility shift assay. It was found by chromatin immunoprecipitation experiments that CDX2 and HNF4α bind to the YAP1 enhancer in Caco-2 cells. These results reveal a previously unknown enhancer of the YAP1 promoter activity in the YAP1 gene, with importance for high expression levels in intestinal epithelial cells. Additionally, CDX2 and HNF4α binding are important for the YAP1 enhancer activity in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sylvester Larsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Johanne Davidsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Surgery, Center for Surgical Science, Enhanced Perioperative Oncology (EPEONC) Consortium, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark.
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Ole B Pedersen
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| |
Collapse
|
18
|
Kumar N, Tsai YH, Chen L, Zhou A, Banerjee KK, Saxena M, Huang S, Toke NH, Xing J, Shivdasani RA, Spence JR, Verzi MP. The lineage-specific transcription factor CDX2 navigates dynamic chromatin to control distinct stages of intestine development. Development 2019; 146:dev172189. [PMID: 30745430 PMCID: PMC6432663 DOI: 10.1242/dev.172189] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Lineage-restricted transcription factors, such as the intestine-specifying factor CDX2, often have dual requirements across developmental time. Embryonic loss of CDX2 triggers homeotic transformation of intestinal fate, whereas adult-onset loss compromises crucial physiological functions but preserves intestinal identity. It is unclear how such diverse requirements are executed across the developmental continuum. Using primary and engineered human tissues, mouse genetics, and a multi-omics approach, we demonstrate that divergent CDX2 loss-of-function phenotypes in embryonic versus adult intestines correspond to divergent CDX2 chromatin-binding profiles in embryonic versus adult stages. CDX2 binds and activates distinct target genes in developing versus adult mouse and human intestinal cells. We find that temporal shifts in chromatin accessibility correspond to these context-specific CDX2 activities. Thus, CDX2 is not sufficient to activate a mature intestinal program; rather, CDX2 responds to its environment, targeting stage-specific genes to contribute to either intestinal patterning or mature intestinal function. This study provides insights into the mechanisms through which lineage-specific regulatory factors achieve divergent functions over developmental time.
Collapse
Affiliation(s)
- Namit Kumar
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lei Chen
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Anbo Zhou
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Kushal K Banerjee
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Madhurima Saxena
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Sha Huang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalie H Toke
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Michael P Verzi
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
19
|
Induction of Hepatic Metabolic Functions by a Novel Variant of Hepatocyte Nuclear Factor 4γ. Mol Cell Biol 2018; 38:MCB.00213-18. [PMID: 30224520 DOI: 10.1128/mcb.00213-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a critical factor for hepatocyte differentiation. HNF4α expression is decreased in hepatocellular carcinoma (HCC), which suggests a role in repression of hepatocyte dedifferentiation. In the present study, hepatic expression of HNF4γ was increased in liver-specific Hnf4a-null mice. The HNF4γ whose expression was increased contained two variants, a known short variant, designated HNF4γ1, and a novel long variant, designated HNF4γ2. HNF4G2 mRNA was highly expressed in small intestine, and the transactivation potential of HNF4γ2 was the strongest among these variants, but the potential of HNF4γ1 was the lowest. Cotransfection experiments revealed that HNF4γ1 repressed HNF4α- and HNF4γ2-dependent transactivation, while HNF4γ2 promoted HNF4α-dependent transactivation. HNF4γ1 and HNF4γ2 were able to bind to the HNF4α binding sites with an affinity similar to that of HNF4α. Furthermore, HNF4γ2, but not HNF4γ1, robustly induced the expression of typical HNF4α target genes to a greater degree than HNF4α. Additionally, HNF4γ2 suppressed proliferation of hepatoma cells as well as HNF4α and HNF4γ1 did, and HNF4γ2 induced critical hepatic functions, such as glucose and urea production, and cytochrome P450 1A2 activity more strongly than HNF4α and HNF4γ1 did. These results indicate that HNF4γ2 has potential for redifferentiation of HCC and thus may be explored as a target for HCC therapy.
Collapse
|
20
|
Moor AE, Harnik Y, Ben-Moshe S, Massasa EE, Rozenberg M, Eilam R, Bahar Halpern K, Itzkovitz S. Spatial Reconstruction of Single Enterocytes Uncovers Broad Zonation along the Intestinal Villus Axis. Cell 2018; 175:1156-1167.e15. [PMID: 30270040 DOI: 10.1016/j.cell.2018.08.063] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/29/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
The intestinal epithelium is a highly structured tissue composed of repeating crypt-villus units. Enterocytes perform the diverse tasks of absorbing a wide range of nutrients while protecting the body from the harsh bacterium-rich environment. It is unknown whether these tasks are spatially zonated along the villus axis. Here, we extracted a large panel of landmark genes characterized by transcriptomics of laser capture microdissected villus segments and utilized it for single-cell spatial reconstruction, uncovering broad zonation of enterocyte function along the villus. We found that enterocytes at villus bottoms express an anti-bacterial gene program in a microbiome-dependent manner. They next shift to sequential expression of carbohydrates, peptides, and fat absorption machineries in distinct villus compartments. Finally, they induce a Cd73 immune-modulatory program at the villus tips. Our approach can be used to uncover zonation patterns in other organs when prior knowledge of landmark genes is lacking.
Collapse
Affiliation(s)
- Andreas E Moor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Yotam Harnik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Efi E Massasa
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Milena Rozenberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Babeu JP, Jones C, Geha S, Carrier JC, Boudreau F. P1 promoter-driven HNF4α isoforms are specifically repressed by β-catenin signaling in colorectal cancer cells. J Cell Sci 2018; 131:jcs.214734. [PMID: 29898915 DOI: 10.1242/jcs.214734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
HNF4α is a key nuclear receptor for regulating gene expression in the gut. Although both P1 and P2 isoform classes of HNF4α are expressed in colonic epithelium, specific inhibition of P1 isoforms is commonly found in colorectal cancer. Previous studies have suggested that P1 and P2 isoforms might regulate different cellular functions. Despite these advances, it remains unclear whether these isoform classes are functionally divergent in the context of human biology. Here, the consequences of specific inhibition of P1 or P2 isoform expression was measured in a human colorectal cancer cell transcriptome. Results indicate that P1 isoforms were specifically associated with the control of cell metabolism, whereas P2 isoforms globally supported aberrant oncogenic signalization, promoting cancer cell survival and progression. P1 promoter-driven isoform expression was found to be repressed by β-catenin, one of the earliest oncogenic pathways to be activated during colon tumorigenesis. These findings identify a novel cascade by which the expression of P1 isoforms is rapidly shut down in the early stages of colon tumorigenesis, allowing a change in HNF4α-dependent transcriptome, thereby promoting colorectal cancer progression.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jean-Philippe Babeu
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - Christine Jones
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - Julie C Carrier
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - François Boudreau
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8.
| |
Collapse
|
22
|
Davidsen J, Larsen S, Coskun M, Gögenur I, Dahlgaard K, Bennett EP, Troelsen JT. The VTI1A-TCF4 colon cancer fusion protein is a dominant negative regulator of Wnt signaling and is transcriptionally regulated by intestinal homeodomain factor CDX2. PLoS One 2018; 13:e0200215. [PMID: 29975781 PMCID: PMC6033461 DOI: 10.1371/journal.pone.0200215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023] Open
Abstract
Sequencing of primary colorectal tumors has identified a gene fusion in approximately 3% of colorectal cancer patients of the VTI1A and TCF7L2 genes, encoding a VTI1A-TCF4 fusion protein containing a truncated TCF4. As dysregulation of the Wnt signaling pathway is associated with colorectal cancer development and progression, the functional properties and transcriptional regulation of the VTI1A-TCF4 fusion protein may also play a role in these processes. Functional characteristics of the VTI1A-TCF4 fusion protein in Wnt signaling were analyzed in NCI-H508 and LS174T colon cancer cell lines. The NCI-H508 cell line, containing the VTI1A-TCF7L2 fusion gene, showed no active Wnt signaling, and overexpression of the VTI1A-TCF4 fusion protein in LS174T cells along with a Wnt signaling luciferase reporter plasmid showed inhibition of activity. The transcriptional regulation of the VTI1A-TCF4 fusion gene was investigated in LS174T cells where the activity of the VTI1A promoter was compared to that of the TCF7L2 promoter, and the transcription factor CDX2 was analyzed for gene regulatory activity of the VTI1A promoter through luciferase reporter gene assay using colon cancer cell lines as a model. Transfection of LS174T cells showed that the VTI1A promoter is highly active compared to the TCF7L2 promoter, and that CDX2 activates transcription of VTI1A. These results suggest that the VTI1A-TCF4 fusion protein is a dominant negative regulator of the Wnt signaling pathway, and that transcription of VTI1A is activated by CDX2.
Collapse
Affiliation(s)
- Johanne Davidsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Sylvester Larsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Clinical Immunology, Naestved Hospital, Naestved, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, Herlev Hospital, Herlev, Denmark
| | - Ismail Gögenur
- Department of Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Eric Paul Bennett
- Copenhagen Center for Glycomics, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
23
|
Lindeboom RG, van Voorthuijsen L, Oost KC, Rodríguez-Colman MJ, Luna-Velez MV, Furlan C, Baraille F, Jansen PW, Ribeiro A, Burgering BM, Snippert HJ, Vermeulen M. Integrative multi-omics analysis of intestinal organoid differentiation. Mol Syst Biol 2018; 14:e8227. [PMID: 29945941 PMCID: PMC6018986 DOI: 10.15252/msb.20188227] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022] Open
Abstract
Intestinal organoids accurately recapitulate epithelial homeostasis in vivo, thereby representing a powerful in vitro system to investigate lineage specification and cellular differentiation. Here, we applied a multi-omics framework on stem cell-enriched and stem cell-depleted mouse intestinal organoids to obtain a holistic view of the molecular mechanisms that drive differential gene expression during adult intestinal stem cell differentiation. Our data revealed a global rewiring of the transcriptome and proteome between intestinal stem cells and enterocytes, with the majority of dynamic protein expression being transcription-driven. Integrating absolute mRNA and protein copy numbers revealed post-transcriptional regulation of gene expression. Probing the epigenetic landscape identified a large number of cell-type-specific regulatory elements, which revealed Hnf4g as a major driver of enterocyte differentiation. In summary, by applying an integrative systems biology approach, we uncovered multiple layers of gene expression regulation, which contribute to lineage specification and plasticity of the mouse small intestinal epithelium.
Collapse
Affiliation(s)
- Rik Gh Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Lisa van Voorthuijsen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Koen C Oost
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Maria J Rodríguez-Colman
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Maria V Luna-Velez
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Cristina Furlan
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Floriane Baraille
- Centre de Recherche des Cordeliers, INSERM, IHU ICAN, Sorbonne Université Université Paris Descartes, Paris, France
| | - Pascal Wtc Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Agnès Ribeiro
- Centre de Recherche des Cordeliers, INSERM, IHU ICAN, Sorbonne Université Université Paris Descartes, Paris, France
| | - Boudewijn Mt Burgering
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hugo J Snippert
- Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Davison JM, Lickwar CR, Song L, Breton G, Crawford GE, Rawls JF. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha. Genome Res 2017; 27:1195-1206. [PMID: 28385711 PMCID: PMC5495071 DOI: 10.1101/gr.220111.116] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.
Collapse
Affiliation(s)
- James M Davison
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA
| | - Lingyun Song
- Department of Pediatrics, Division of Medical Genetics, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Ghislain Breton
- Department of Integrative Biology and Pharmacology, McGovern Medical School, Houston, Texas 77030, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
25
|
Yang H, Xiong X, Wang X, Li T, Yin Y. Effects of weaning on intestinal crypt epithelial cells in piglets. Sci Rep 2016; 6:36939. [PMID: 27830738 PMCID: PMC5103268 DOI: 10.1038/srep36939] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023] Open
Abstract
Intestinal epithelial cells in the crypt proliferate in piglets in response to weaning. However, the underlying mechanism has been unclear. We examined 40 piglets from eight litters (five piglets per litter) that were weaned at the age of 14 d, and one piglet from each litter was randomly selected for closer investigation. Based on the distended intestinal sac method, we isolated crypt epithelial cells from the mid-jejunum on Days 0, 1, 3, 5, and 7 post-weaning. Protein expression was analyzed using either isobaric tags for relative and absolute quantification or western blotting. Proteins related to the cell cycle, organization of the cellular macromolecular complex subunit, localization of cellular macromolecules, Golgi vesicle transport, fatty acid metabolism, oxidative phosphorylation, and translational initiation were mainly down-regulated, while those involved in glycolysis, cell cycle arrest, protein catabolism, and cellular amino acid metabolism were up-regulated. The amount of proteins active in the mTOR signaling pathway was generally decreased over time. These results indicate that weaning influences energy metabolism, cellular macromolecule organization and localization, and protein metabolism, thereby affecting the proliferation of intestinal epithelial cells in weaned piglets. Moreover, those cellular processes are possibly controlled by that signaling pathway.
Collapse
Affiliation(s)
- Huansheng Yang
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Xia Xiong
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Xiaocheng Wang
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Tiejun Li
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yulong Yin
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region, Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| |
Collapse
|
26
|
Yang H, Wang X, Xiong X, Yin Y. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis. Sci Rep 2016; 6:31917. [PMID: 27558220 PMCID: PMC4997266 DOI: 10.1038/srep31917] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/25/2016] [Indexed: 01/21/2023] Open
Abstract
Intestinal epithelial cells continuously migrate and mature along crypt-villus axis (CVA), while the changes in energy metabolism during maturation are unclear in neonates. The present study was conducted to test the hypothesis that the energy metabolism in intestinal epithelial cells would be changed during maturation along CVA in neonates. Eight 21-day-old suckling piglets were used. Intestinal epithelial cells were isolated sequentially along CVA, and proteomics was used to analyze the changes in proteins expression in epithelial cells along CVA. The identified differentially expressed proteins were mainly involved in cellular process, metabolic process, biological regulation, pigmentation, multicellular organizational process and so on. The energy metabolism in intestinal epithelial cells of piglets was increased from the bottom of crypt to the top of villi. Moreover, the expression of proteins related to the metabolism of glucose, most of amino acids, and fatty acids was increased in intestinal epithelial cells during maturation along CVA, while the expression of proteins related to glutamine metabolism was decreased from crypt to villus tip. The expression of proteins involved in citrate cycle was also increased intestinal epithelial cells during maturation along CVA. Moreover, dietary supplementation with different energy sources had different effects on intestinal structure of weaned piglets.
Collapse
Affiliation(s)
- Huansheng Yang
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center of Healthy Breeding Livestock &Poultry, Human Engineering &Research Center of Animal &Poultry Science, Key Lab Agroecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Fujian Aonong Bio-Technology Co., Ltd., Xiamen, China
| | - Xiaocheng Wang
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center of Healthy Breeding Livestock &Poultry, Human Engineering &Research Center of Animal &Poultry Science, Key Lab Agroecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Xia Xiong
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center of Healthy Breeding Livestock &Poultry, Human Engineering &Research Center of Animal &Poultry Science, Key Lab Agroecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yulong Yin
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center of Healthy Breeding Livestock &Poultry, Human Engineering &Research Center of Animal &Poultry Science, Key Lab Agroecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| |
Collapse
|
27
|
Sousa JF, Nam KT, Petersen CP, Lee HJ, Yang HK, Kim WH, Goldenring JR. miR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the upregulation of metaplasia markers in the stomach. Gut 2016; 65:914-24. [PMID: 25800782 PMCID: PMC4922252 DOI: 10.1136/gutjnl-2014-308759] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM) are considered neoplastic precursors of gastric adenocarcinoma and are both marked by gene expression alterations in comparison to normal stomach. Since miRNAs are important regulators of gene expression, we sought to investigate the role of miRNAs on the development of stomach metaplasias. DESIGN We performed miRNA profiling using a quantitative reverse transcription-PCR approach on laser capture microdissected human intestinal metaplasia and SPEM. Data integration of the miRNA profile with a previous mRNA profile from the same samples was performed to detect potential miRNA-mRNA regulatory circuits. Transfection of gastric cancer cell lines with selected miRNA mimics and inhibitors was used to evaluate their effects on the expression of putative targets and additional metaplasia markers. RESULTS We identified several genes as potential targets of miRNAs altered during metaplasia progression. We showed evidence that HNF4γ (upregulated in intestinal metaplasia) is targeted by miR-30 and that miR-194 targets a known co-regulator of HNF4 activity, NR2F2 (downregulated in intestinal metaplasia). Intestinal metaplasia markers such as VIL1, TFF2 and TFF3 were downregulated after overexpression of miR-30a in a HNF4γ-dependent manner. In addition, overexpression of HNF4γ was sufficient to induce the expression of VIL1 and this effect was potentiated by downregulation of NR2F2. CONCLUSIONS The interplay of the two transcription factors HNF4γ and NR2F2 and their coordinate regulation by miR-30 and miR-194, respectively, represent a miRNA to transcription factor network responsible for the expression of intestinal transcripts in stomach cell lineages during the development of intestinal metaplasia.
Collapse
Affiliation(s)
- Josane F. Sousa
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| | - Ki Taek Nam
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea 120-752,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea 120-752
| | - Christine P. Petersen
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| | - Hyuk-Joon Lee
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - James R. Goldenring
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| |
Collapse
|
28
|
Vellinga TT, den Uil S, Rinkes IHB, Marvin D, Ponsioen B, Alvarez-Varela A, Fatrai S, Scheele C, Zwijnenburg DA, Snippert H, Vermeulen L, Medema JP, Stockmann HB, Koster J, Fijneman RJA, de Rooij J, Kranenburg O. Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene 2016; 35:5263-5271. [PMID: 26996663 DOI: 10.1038/onc.2016.60] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/16/2022]
Abstract
Gene expression-based classification systems have identified an aggressive colon cancer subtype with mesenchymal features, possibly reflecting epithelial-to-mesenchymal transition (EMT) of tumor cells. However, stromal fibroblasts contribute extensively to the mesenchymal phenotype of aggressive colon tumors, challenging the notion of tumor EMT. To separately study the neoplastic and stromal compartments of colon tumors, we have generated a stroma gene filter (SGF). Comparative analysis of stromahigh and stromalow tumors shows that the neoplastic cells in stromahigh tumors express specific EMT drivers (ZEB2, TWIST1, TWIST2) and that 98% of differentially expressed genes are strongly correlated with them. Analysis of differential gene expression between mesenchymal and epithelial cancer cell lines revealed that hepatocyte nuclear factor 4α (HNF4α), a transcriptional activator of intestinal (epithelial) differentiation, and its target genes are highly expressed in epithelial cancer cell lines. However, mesenchymal-type cancer cell lines expressed only part of the mesenchymal genes expressed by tumor-derived neoplastic cells, suggesting that external cues were lacking. We found that collagen-I dominates the extracellular matrix in aggressive colon cancer. Mimicking the tumor microenvironment by replacing laminin-rich Matrigel with collagen-I was sufficient to induce tumor-specific mesenchymal gene expression, suppression of HNF4α and its target genes, and collective tumor cell invasion of patient-derived colon tumor organoids. The data connect collagen-rich stroma to mesenchymal gene expression in neoplastic cells and to collective tumor cell invasion. Targeting the tumor-collagen interface may therefore be explored as a novel strategy in the treatment of aggressive colon cancer.
Collapse
Affiliation(s)
- T T Vellinga
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S den Uil
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - I H B Rinkes
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D Marvin
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B Ponsioen
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Alvarez-Varela
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Fatrai
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Scheele
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D A Zwijnenburg
- Department of Oncogenomics, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - H Snippert
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Vermeulen
- Center of Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - J P Medema
- Center of Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - H B Stockmann
- Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - J Koster
- Center of Experimental and Molecular Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | - R J A Fijneman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J de Rooij
- Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - O Kranenburg
- Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Yang H, Xiong X, Yin Y. Metabolomic analysis of intestinal epithelial cell maturation along the crypt–villus axis. RSC Adv 2016. [DOI: 10.1039/c5ra27722a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The present experiment showed a gradual change in the metabolism of intestinal epithelial cells during maturation along CVA. Metabolism of fatty acids, amino acids, and glucose was significantly different between villus and crypt cells.
Collapse
Affiliation(s)
- Huansheng Yang
- Chinese Academy of Science
- Institute of Subtropical Agriculture
- Research Center of Healthy Breeding Livestock & Poultry
- Human Engineering & Research Center of Animal & Poultry Science
- Key Lab Agroecology Processing Subtropical Region
| | - Xia Xiong
- Chinese Academy of Science
- Institute of Subtropical Agriculture
- Research Center of Healthy Breeding Livestock & Poultry
- Human Engineering & Research Center of Animal & Poultry Science
- Key Lab Agroecology Processing Subtropical Region
| | - Yulong Yin
- Chinese Academy of Science
- Institute of Subtropical Agriculture
- Research Center of Healthy Breeding Livestock & Poultry
- Human Engineering & Research Center of Animal & Poultry Science
- Key Lab Agroecology Processing Subtropical Region
| |
Collapse
|
30
|
Thyroid-Stimulating Hormone Increases HNF-4α Phosphorylation via cAMP/PKA Pathway in the Liver. Sci Rep 2015; 5:13409. [PMID: 26302721 PMCID: PMC4548215 DOI: 10.1038/srep13409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/27/2015] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte nuclear factor-4 alpha (HNF-4α) is an orphan nuclear receptor with important roles in hepatic metabolism. Protein phosphorylation plays a functional role in its nuclear localization, DNA binding, and transactivation. Thyroid-stimulating hormone (TSH) is a hormone produced by the anterior pituitary gland, whose direct effect on the metabolic pathway has been observed. Our previous study demonstrated that TSH significantly decreases hepatic nuclear HNF-4α expression. However, whether TSH can influence HNF-4α phosphorylation is unclear. Here, we discovered that TSH can increase HNF-4α phosphorylation and modulate its subcellularlocalization. When HepG2 cells were treated with TSH, the phosphorylation of HNF-4α increased and its nuclear localization was interrupted. Cytoplasmic HNF-4α increased, while nuclear HNF-4α decreased. When the cAMP/PKA pathway was inhibited by the PKA inhibitor H89 and the adenylate cyclase (AC) inhibitor SQ22536, the TSH-mediated phosphorylation of HNF-4α was disrupted. When Tshr was silenced in mice, the phosphorylation of HNF-4α decreased, and cytoplasmic HNF-4α decreased while nuclear HNF-4α increased. In conclusion, our study revealed a novel mechanism by which TSH regulated the hepatic HNF-4α subcellular localization, suggesting the possibility that one of the effects of TSH is to reduce the expression of HNF-4α target genes.
Collapse
|
31
|
Baraille F, Ayari S, Carrière V, Osinski C, Garbin K, Blondeau B, Guillemain G, Serradas P, Rousset M, Lacasa M, Cardot P, Ribeiro A. Glucose Tolerance Is Improved in Mice Invalidated for the Nuclear Receptor HNF-4γ: A Critical Role for Enteroendocrine Cell Lineage. Diabetes 2015; 64:2744-56. [PMID: 25829452 DOI: 10.2337/db14-0993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/21/2015] [Indexed: 11/13/2022]
Abstract
Intestine contributes to energy homeostasis through the absorption, metabolism, and transfer of nutrients to the organism. We demonstrated previously that hepatocyte nuclear receptor-4α (HNF-4α) controls intestinal epithelium homeostasis and intestinal absorption of dietary lipids. HNF-4γ, the other HNF-4 form highly expressed in intestine, is much less studied. In HNF-4γ knockout mice, we detect an exaggerated insulin peak and improvement in glucose tolerance during oral but not intraperitoneal glucose tolerance tests, highlighting the involvement of intestine. Moreover, the enteroendocrine L-type cell lineage is modified, as assessed by the increased expression of transcription factors Isl1, Foxa1/2, and Hnf4a, leading to an increase of both GLP-1-positive cell number and basal and stimulated GLP-1 plasma levels potentiating the glucose-stimulated insulin secretion. Using the GLP-1 antagonist exendin (9-39), we demonstrate a direct effect of GLP-1 on improved glucose tolerance. GLP-1 exerts a trophic effect on pancreatic β-cells, and we report an increase of the β-cell fraction correlated with an augmented number of proliferative islet cells and with resistance to streptozotocin-induced diabetes. In conclusion, the loss of HNF-4γ improves glucose homeostasis through a modulation of the enteroendocrine cell lineage.
Collapse
Affiliation(s)
- Floriane Baraille
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Sami Ayari
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Véronique Carrière
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Céline Osinski
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Kevin Garbin
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Bertrand Blondeau
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Ghislaine Guillemain
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Patricia Serradas
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Monique Rousset
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Michel Lacasa
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Philippe Cardot
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Agnès Ribeiro
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
32
|
Bae JM, Lee TH, Cho NY, Kim TY, Kang GH. Loss of CDX2 expression is associated with poor prognosis in colorectal cancer patients. World J Gastroenterol 2015; 21:1457-1467. [PMID: 25663765 PMCID: PMC4316088 DOI: 10.3748/wjg.v21.i5.1457] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/04/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the clinicopathologic characteristics and prognostic implications associated with loss of CDX2 expression in colorectal cancers (CRCs).
METHODS: We immunohistochemically evaluated CDX2 expression in 713 CRCs and paired our findings to clinicopathologic and molecular characteristics of each individual. Endpoints included cytokeratin 7 and CK20 expression, microsatellite instability, CpG island methylator phenotype, and KRAS and BRAF mutation statuses. Univariate and multivariate survival analysis was performed to reveal the prognostic value of CDX2 downregulation.
RESULTS: CDX2 expression was lost in 42 (5.9%) patients. Moreover, loss of CDX2 expression was associated with proximal location, infiltrative growth, advanced T, N, M and overall stage. On microscopic examination, loss of CDX2 expression was associated with poor differentiation, increased number of tumor-infiltrating lymphocytes, luminal serration and mucin production. Loss of CDX2 expression was also associated with increased CK7 expression, decreased CK20 expression, CpG island methylator phenotype, microsatellite instability and BRAF mutation. In a univariate survival analysis, patients with loss of CDX2 expression showed worse overall survival (P < 0.001) and progression-free survival (P < 0.001). In a multivariate survival analysis, loss of CDX2 expression was an independent poor prognostic factor of overall survival [hazard ratio (HR) = 1.72, 95%CI: 1.04-2.85, P = 0.034] and progression-free survival (HR = 1.94, 95%CI: 1.22-3.07, P = 0.005).
CONCLUSION: Loss of CDX2 expression is associated with aggressive clinical behavior and can be used as a prognostic marker in CRCs.
Collapse
|
33
|
Sheaffer KL, Kim R, Aoki R, Elliott EN, Schug J, Burger L, Schübeler D, Kaestner KH. DNA methylation is required for the control of stem cell differentiation in the small intestine. Genes Dev 2014; 28:652-64. [PMID: 24637118 PMCID: PMC3967052 DOI: 10.1101/gad.230318.113] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is a tight correlation between the epigenetic status of genes and expression changes during differentiation. Sheaffer et al. used acute deletion of Dnmt1 to reduce DNA methylation maintenance in the intestinal epithelium. This caused crypt expansion and decreased differentiation. DNA methylation was dynamic at enhancers during the rapid transition from stem to differentiated epithelial cells. These findings reveal that the loss of DNA methylation at intestinal stem cell gene enhancers causes inappropriate gene expression and delayed differentiation. The mammalian intestinal epithelium has a unique organization in which crypts harboring stem cells produce progenitors and finally clonal populations of differentiated cells. Remarkably, the epithelium is replaced every 3–5 d throughout adult life. Disrupted maintenance of the intricate balance of proliferation and differentiation leads to loss of epithelial integrity or barrier function or to cancer. There is a tight correlation between the epigenetic status of genes and expression changes during differentiation; however, the mechanism of how changes in DNA methylation direct gene expression and the progression from stem cells to their differentiated descendants is unclear. Using conditional gene ablation of the maintenance methyltransferase Dnmt1, we demonstrate that reducing DNA methylation causes intestinal crypt expansion in vivo. Determination of the base-resolution DNA methylome in intestinal stem cells and their differentiated descendants shows that DNA methylation is dynamic at enhancers, which are often associated with genes important for both stem cell maintenance and differentiation. We establish that the loss of DNA methylation at intestinal stem cell gene enhancers causes inappropriate gene expression and delayed differentiation.
Collapse
Affiliation(s)
- Karyn L Sheaffer
- Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Babeu JP, Boudreau F. Hepatocyte nuclear factor 4-alpha involvement in liver and intestinal inflammatory networks. World J Gastroenterol 2014; 20:22-30. [PMID: 24415854 PMCID: PMC3886012 DOI: 10.3748/wjg.v20.i1.22] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/12/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4-α) is a nuclear receptor regulating metabolism, cell junctions, differentiation and proliferation in liver and intestinal epithelial cells. Mutations within the HNF4A gene are associated with human diseases such as maturity-onset diabetes of the young. Recently, HNF4A has also been described as a susceptibility gene for ulcerative colitis in genome-wide association studies. In addition, specific HNF4A genetic variants have been identified in pediatric cohorts of Crohn’s disease. Results obtained from knockout mice supported that HNF4-α can protect the intestinal mucosae against inflammation. However, the exact molecular links behind HNF4-α and inflammatory bowel diseases remains elusive. In this review, we will summarize the current knowledge about the role of HNF4-α and its isoforms in inflammation. Specific nature of HNF4-α P1 and P2 classes of isoforms will be summarized. HNF4-α role as a hepatocyte mediator for cytokines relays during liver inflammation will be integrated based on documented examples of the literature. Conclusions that can be made from these earlier liver studies will serve as a basis to extrapolate correlations and divergences applicable to intestinal inflammation. Finally, potential functional roles for HNF4-α isoforms in protecting the intestinal mucosae from chronic and pathological inflammation will be presented.
Collapse
|
35
|
Brink-Jensen K, Bak S, Jørgensen K, Ekstrøm CT. Integrative analysis of metabolomics and transcriptomics data: a unified model framework to identify underlying system pathways. PLoS One 2013; 8:e72116. [PMID: 24086255 PMCID: PMC3783437 DOI: 10.1371/journal.pone.0072116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/07/2013] [Indexed: 11/24/2022] Open
Abstract
The abundance of high-dimensional measurements in the form of gene expression and mass spectroscopy calls for models to elucidate the underlying biological system. For widely studied organisms like yeast, it is possible to incorporate prior knowledge from a variety of databases, an approach used in several recent studies. However if such information is not available for a particular organism these methods fall short. In this paper we propose a statistical method that is applicable to a dataset consisting of Liquid Chromatography-Mass Spectroscopy (LC-MS) and gene expression (DNA microarray) measurements from the same samples, to identify genes controlling the production of metabolites. Due to the high dimensionality of both LC-MS and DNA microarray data, dimension reduction and variable selection are key elements of the analysis. Our proposed approach starts by identifying the basis functions (“building blocks”) that constitute the output from a mass spectrometry experiment. Subsequently, the weights of these basis functions are related to the observations from the corresponding gene expression data in order to identify which genes are associated with specific patterns seen in the metabolite data. The modeling framework is extremely flexible as well as computationally fast and can accommodate treatment effects and other variables related to the experimental design. We demonstrate that within the proposed framework, genes regulating the production of specific metabolites can be identified correctly unless the variation in the noise is more than twice that of the signal.
Collapse
Affiliation(s)
- Kasper Brink-Jensen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Søren Bak
- Department of Plant Biology and Biotechnology, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Jørgensen
- Department of Plant Biology and Biotechnology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Thorn Ekstrøm
- Department of Biostatistics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
36
|
Cuperlovic-Culf M, Belacel N, Culf A. Integrated analysis of transcriptomics and metabolomics profiles. ACTA ACUST UNITED AC 2013; 2:497-509. [PMID: 23495739 DOI: 10.1517/17530059.2.5.497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Integrated analysis of transcriptomics and metabolomics data has the potential greatly to increase our understanding of metabolic networks and biological systems leading to various potential clinical applications. OBJECTIVE The aim is to present different applications as well as analysis tools utilized for the parallel study of gene and metabolite expressions. METHODS Publications dealing with integrated analysis of gene and metabolite expression data as well as publications describing tools that can be used for integrated analysis are reviewed. RESULTS/CONCLUSION The full benefit of integrated analysis can be achieved only if data from all utilized methods are treated equally by multidisciplinary teams. This approach can lead to advances in functional genomics with possible clinical developments in diagnostics and improved drug target selection.
Collapse
Affiliation(s)
- Miroslava Cuperlovic-Culf
- Institute for Information Technology, National Research Council of Canada, 55 Crowley Farm Road, Suit 1100, Moncton, NB E1A 7R1, Canada +1 506 861 0952 ; +1 506 851 3630 ;
| | | | | |
Collapse
|
37
|
Polyunsaturated fatty acids in inflammatory bowel diseases: a reappraisal of effects and therapeutic approaches. Inflamm Bowel Dis 2013; 19:650-61. [PMID: 23328774 DOI: 10.1097/mib.0b013e3182810122] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent epidemiological studies highlight the key role of the type of consumed unsaturated fatty acid and the development of ulcerative colitis (UC). We aimed to review the potential mechanisms behind the antiinflammatory effects of unsaturated fatty acids on intestinal inflammation, to discuss their potential limitations, and to propose a new reappraisal of polyunsaturated fatty acids (PUFAs) in the pathophysiology of inflammatory bowel disease (IBD). A literature search using PubMed was carried out to identify relevant studies (basic science, epidemiological studies, or clinical trials) with unsaturated fatty acids and IBD. Only articles published in English were included. IBD patients exhibit an altered lipid metabolism. While in vitro and in vivo studies have demonstrated the antiinflammatory properties of n-3 polyunsaturated fatty acids in experimental models IBD, results of clinical trials have been disappointing. In addition, the impact of fatty acid on innate immunity as an alternative therapeutic approach is explored. This may offer insight into therapeutic avenues for designing n-3 PUFA diet therapy for IBD.
Collapse
|
38
|
Gougelet A, Colnot S. MicroRNA-feedback loop as a key modulator of liver tumorigenesis and inflammation. World J Gastroenterol 2013; 19:440-4. [PMID: 23382622 PMCID: PMC3558567 DOI: 10.3748/wjg.v19.i4.440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/26/2012] [Accepted: 12/15/2012] [Indexed: 02/06/2023] Open
Abstract
A recent work of Iliopoulos et al published in Cell highlighted a circuit orchestrated by microRNAs (miRNAs) that results in liver tumorigenesis and inflammation. This feedback loop, governed by miR-24 and miR-629, promotes a hepatocyte nuclear factor-4α transient inhibition resulting in miR-124 induction and signal transducer and activator of transcription 3 activation. These promising data support the use of miRNA mimics or inhibitors as potent therapeutic approaches in liver cancer.
Collapse
|
39
|
Roff AN, Panganiban RP, Bond JS, Ishmael FT. Post-transcriptional regulation of meprin α by the RNA-binding proteins Hu antigen R (HuR) and tristetraprolin (TTP). J Biol Chem 2012; 288:4733-43. [PMID: 23269677 DOI: 10.1074/jbc.m112.444208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meprins are multimeric proteases that are implicated in inflammatory bowel disease by both genetic association studies and functional studies in knock-out mice. Patients with inflammatory bowel disease show decreased colonic expression of meprin α, although regulation of expression, particularly under inflammatory stimuli, has not been studied. The studies herein demonstrate that the human meprin α transcript is bound and stabilized by Hu antigen R at baseline, and that treatment with the inflammatory stimulus phorbol 12-myristate 13-acetate downregulates meprin α expression by inducing tristetraprolin. The enhanced binding of tristetraprolin to the MEP1A 3'-UTR results in destabilization of the transcript and occurs at a discrete site from Hu antigen R. This is the first report to describe a mechanism for post-transcriptional regulation of meprin α and will help clarify the role of meprins in the inflammatory response and disease.
Collapse
Affiliation(s)
- Alanna N Roff
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
40
|
Egerod KL, Engelstoft MS, Grunddal KV, Nøhr MK, Secher A, Sakata I, Pedersen J, Windeløv JA, Füchtbauer EM, Olsen J, Sundler F, Christensen JP, Wierup N, Olsen JV, Holst JJ, Zigman JM, Poulsen SS, Schwartz TW. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology 2012; 153:5782-95. [PMID: 23064014 PMCID: PMC7958714 DOI: 10.1210/en.2012-1595] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enteroendocrine cells such as duodenal cholecystokinin (CCK cells) are generally thought to be confined to certain segments of the gastrointestinal (GI) tract and to store and release peptides derived from only a single peptide precursor. In the current study, however, transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the CCK promoter demonstrated a distribution pattern of CCK-eGFP positive cells that extended throughout the intestine. Quantitative PCR and liquid chromatography-mass spectrometry proteomic analyses of isolated, FACS-purified CCK-eGFP-positive cells demonstrated expression of not only CCK but also glucagon-like peptide 1 (GLP-1), gastric inhibitory peptide (GIP), peptide YY (PYY), neurotensin, and secretin, but not somatostatin. Immunohistochemistry confirmed this expression pattern. The broad coexpression phenomenon was observed both in crypts and villi as demonstrated by immunohistochemistry and FACS analysis of separated cell populations. Single-cell quantitative PCR indicated that approximately half of the duodenal CCK-eGFP cells express one peptide precursor in addition to CCK, whereas an additional smaller fraction expresses two peptide precursors in addition to CCK. The coexpression pattern was further confirmed through a cell ablation study based on expression of the human diphtheria toxin receptor under the control of the proglucagon promoter, in which activation of the receptor resulted in a marked reduction not only in GLP-1 cells, but also PYY, neurotensin, GIP, CCK, and secretin cells, whereas somatostatin cells were spared. Key elements of the coexpression pattern were confirmed by immunohistochemical double staining in human small intestine. It is concluded that a lineage of mature enteroendocrine cells have the ability to coexpress members of a group of functionally related peptides: CCK, secretin, GIP, GLP-1, PYY, and neurotensin, suggesting a potential therapeutic target for the treatment and prevention of diabetes and obesity.
Collapse
Affiliation(s)
- Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, 2200 Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding. Mol Cell Biol 2012; 33:281-92. [PMID: 23129810 DOI: 10.1128/mcb.01185-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors.
Collapse
|
42
|
Frochot V, Alqub M, Cattin AL, Carrière V, Houllier A, Baraille F, Barbot L, Saint-Just S, Ribeiro A, Lacasa M, Cardot P, Chambaz J, Rousset M, Lacorte JM. The transcription factor HNF-4α: a key factor of the intestinal uptake of fatty acids in mouse. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1253-63. [PMID: 22461026 DOI: 10.1152/ajpgi.00329.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With an excessive postprandial accumulation of intestine-derived, triglyceride-rich lipoproteins being a risk factor of cardiovascular diseases, it is essential to characterize the mechanisms controlling the intestinal absorption of dietary lipids. Our aim was to investigate the role of the transcription factor hepatocyte nuclear factor (HNF)-4α in this process. We used transgenic mice with a specific and inducible intestinal knockout of Hnf-4α gene. One hour after a lipid bolus, in the presence of the lipase inhibitor tyloxapol, lower amounts of triglycerides were found in both plasma and intestinal epithelium of the intestine-specific Hnf-4α knockout (Hnf-4α(intΔ)) mice compared with the Hnf-4α(loxP/loxP) control mice. These discrepancies were due to a net decrease of the intestinal uptake of fatty acid in Hnf-4α(intΔ) mice compared with Hnf-4α(loxP/loxP) mice, as assessed by the amount of radioactivity that was recovered in intestine and plasma after gavage with labeled triolein or oleic acid, or in intestinal epithelial cells isolated from jejunum after a supply of labeled oleic acid-containing micelles. This decreased fatty acid uptake was associated with significant lower levels of the fatty acid transport protein-4 mRNA and protein along the intestinal tract and with a lower acyl-CoA synthetase activity in Hnf-4α(intΔ) mice compared with the control mice. We conclude that the transcription factor HNF-4α is a key factor of the intestinal absorption of dietary lipids, which controls this process as early as in the initial step of fatty acid uptake by enterocytes.
Collapse
Affiliation(s)
- Vincent Frochot
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMRS, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abnormal Wnt and PI3Kinase signaling in the malformed intestine of lama5 deficient mice. PLoS One 2012; 7:e37710. [PMID: 22666383 PMCID: PMC3364287 DOI: 10.1371/journal.pone.0037710] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 04/27/2012] [Indexed: 01/22/2023] Open
Abstract
Laminins are major constituents of basement membranes and are essential for tissue homeostasis. Laminin-511 is highly expressed in the intestine and its absence causes severe malformation of the intestine and embryonic lethality. To understand the mechanistic role of laminin-511 in tissue homeostasis, we used RNA profiling of embryonic intestinal tissue of lama5 knockout mice and identified a lama5 specific gene expression signature. By combining cell culture experiments with mediated knockdown approaches, we provide a mechanistic link between laminin α5 gene deficiency and the physiological phenotype. We show that laminin α5 plays a crucial role in both epithelial and mesenchymal cell behavior by inhibiting Wnt and activating PI3K signaling. We conclude that conflicting signals are elicited in the absence of lama5, which alter cell adhesion, migration as well as epithelial and muscle differentiation. Conversely, adhesion to laminin-511 may serve as a potent regulator of known interconnected PI3K/Akt and Wnt signaling pathways. Thus deregulated adhesion to laminin-511 may be instrumental in diseases such as human pathologies of the gut where laminin-511 is abnormally expressed as it is shown here.
Collapse
|
44
|
Hansen M, Gerds TA, Nielsen OH, Seidelin JB, Troelsen JT, Olsen J. pcaGoPromoter--an R package for biological and regulatory interpretation of principal components in genome-wide gene expression data. PLoS One 2012; 7:e32394. [PMID: 22384239 PMCID: PMC3288097 DOI: 10.1371/journal.pone.0032394] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/30/2012] [Indexed: 12/25/2022] Open
Abstract
Analyzing data obtained from genome-wide gene expression experiments is challenging due to the quantity of variables, the need for multivariate analyses, and the demands of managing large amounts of data. Here we present the R package pcaGoPromoter, which facilitates the interpretation of genome-wide expression data and overcomes the aforementioned problems. In the first step, principal component analysis (PCA) is applied to survey any differences between experiments and possible groupings. The next step is the interpretation of the principal components with respect to both biological function and regulation by predicted transcription factor binding sites. The robustness of the results is evaluated using cross-validation, and illustrative plots of PCA scores and gene ontology terms are available. pcaGoPromoter works with any platform that uses gene symbols or Entrez IDs as probe identifiers. In addition, support for several popular Affymetrix GeneChip platforms is provided. To illustrate the features of the pcaGoPromoter package a serum stimulation experiment was performed and the genome-wide gene expression in the resulting samples was profiled using the Affymetrix Human Genome U133 Plus 2.0 chip. Array data were analyzed using pcaGoPromoter package tools, resulting in a clear separation of the experiments into three groups: controls, serum only and serum with inhibitor. Functional annotation of the axes in the PCA score plot showed the expected serum-promoted biological processes, e.g., cell cycle progression and the predicted involvement of expected transcription factors, including E2F. In addition, unexpected results, e.g., cholesterol synthesis in serum-depleted cells and NF-κB activation in inhibitor treated cells, were noted. In summary, the pcaGoPromoter R package provides a collection of tools for analyzing gene expression data. These tools give an overview of the input data via PCA, functional interpretation by gene ontology terms (biological processes), and an indication of the involvement of possible transcription factors.
Collapse
Affiliation(s)
- Morten Hansen
- Department of Cellular & Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Thorvald Troelsen
- Department of Cellular & Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Science, Models and Systems, University of Roskilde, Roskilde, Denmark
| | - Jørgen Olsen
- Department of Cellular & Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
45
|
Coskun M, Olsen AK, Holm TL, Kvist PH, Nielsen OH, Riis LB, Olsen J, Troelsen JT. TNF-α-induced down-regulation of CDX2 suppresses MEP1A expression in colitis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:843-51. [PMID: 22326557 DOI: 10.1016/j.bbadis.2012.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS High levels of pro-inflammatory cytokines are linked to inflammatory bowel disease (IBD). The transcription factor Caudal-related homeobox transcription factor 2 (CDX2) plays a crucial role in differentiation of intestinal epithelium and regulates IBD-susceptibility genes, including meprin 1A (MEP1A). The aim was to investigate the expression of CDX2 and MEP1A in colitis; to assess if they are regulated by tumor necrosis factor-α (TNF-α), and finally to reveal if CDX2 is involved in a TNF-α-induced down-regulation of MEP1A. METHODS Expression of CDX2 and MEP1A was investigated in colonic biopsies of ulcerative colitis (UC) patients and in dextran sodium sulfate (DSS)-induced colitis. CDX2 protein expression was investigated by immunoblotting and immunohistochemical procedures. CDX2 and MEP1A regulation was examined in TNF-α-treated Caco-2 cells by reverse transcription-polymerase chain reaction and with reporter gene assays, and the effect of anti-TNF-α treatment was assessed using infliximab. Finally, in vivo CDX2-DNA interactions were investigated by chromatin immunoprecipitation. RESULTS The CDX2 and MEP1A mRNA expression was significantly decreased in active UC patients and in DSS-colitis. Colonic biopsy specimens from active UC showed markedly decreased CDX2 staining. TNF-α treatment diminished the CDX2 and MEP1A mRNA levels, a decrease which, was counteracted by infliximab treatment. Reporter gene assays showed significantly reduced CDX2 and MEP1A activity upon TNF-α stimulation. Finally, TNF-α impaired the ability of CDX2 to interact and activate its own, as well as the MEP1A expression. CONCLUSIONS The present results indicate that a TNF-α-mediated down-regulation of CDX2 can be related to suppressed expression of MEP1A during intestinal inflammation.
Collapse
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Olsen AK, Boyd M, Danielsen ET, Troelsen JT. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks. Am J Physiol Gastrointest Liver Physiol 2012; 302:G277-86. [PMID: 22094602 DOI: 10.1152/ajpgi.00362.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell or tissue type. Novel methods including ChIP-chip and ChIP-Seq have been applied to analyze known transcription factors and their interacting regulatory DNA elements in the intestine. The intestine is an example of a dynamic tissue where stem cells in the crypt proliferate and undergo a differentiation process toward the villus. During this differentiation process, specific regulatory networks of transcription factors are activated to target specific genes, which determine the intestinal cell fate. The expanding genomewide mapping of transcription factor binding sites and construction of transcriptional regulatory networks provide new insight into how intestinal differentiation occurs. This review summarizes the current overview of the transcriptional regulatory networks driving epithelial differentiation in adult intestine. The novel technologies that have been implied to study these networks are presented and their prospects for implications in future research are also addressed.
Collapse
Affiliation(s)
- Anders Krüger Olsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
47
|
Harper J, Mould A, Andrews RM, Bikoff EK, Robertson EJ. The transcriptional repressor Blimp1/Prdm1 regulates postnatal reprogramming of intestinal enterocytes. Proc Natl Acad Sci U S A 2011; 108:10585-90. [PMID: 21670299 PMCID: PMC3127883 DOI: 10.1073/pnas.1105852108] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Female mammals produce milk to feed their newborn offspring before teeth develop and permit the consumption of solid food. Intestinal enterocytes dramatically alter their biochemical signature during the suckling-to-weaning transition. The transcriptional repressor Blimp1 is strongly expressed in immature enterocytes in utero, but these are gradually replaced by Blimp1(-) crypt-derived adult enterocytes. Here we used a conditional inactivation strategy to eliminate Blimp1 function in the developing intestinal epithelium. There was no noticeable effect on gross morphology or formation of mature cell types before birth. However, survival of mutant neonates was severely compromised. Transcriptional profiling experiments reveal global changes in gene expression patterns. Key components of the adult enterocyte biochemical signature were substantially and prematurely activated. In contrast, those required for processing maternal milk were markedly reduced. Thus, we conclude Blimp1 governs the developmental switch responsible for postnatal intestinal maturation.
Collapse
Affiliation(s)
- James Harper
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Arne Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Robert M. Andrews
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton-Cambridge CB10 1SA, United Kingdom
| | - Elizabeth K. Bikoff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| | - Elizabeth J. Robertson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; and
| |
Collapse
|
48
|
Tremblay E, Ferretti E, Babakissa C, Seidman EG, Levy E, Ménard D, Beaulieu JF. Gene-expression profile analysis in the mid-gestation human intestine discloses greater functional immaturity of the colon as compared with the ileum. J Pediatr Gastroenterol Nutr 2011; 52:670-678. [PMID: 21478755 DOI: 10.1097/mpg.0b013e3182078370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND OBJECTIVES The occurrence of many neonatal inflammatory intestinal diseases in preterm infants highlights the susceptibility of the immature intestine to responding inadequately to nutrients and microbes. A better understanding of functional intestinal development is essential for the design of optimal treatments ensuring survival and growth of premature infants. The purpose of this study was to evaluate the gene expression profiles of the human ileum and colon at mid-gestation because these 2 segments are considered to be similar at this stage and are the sites of the most frequent pathologies in preterm infants. SUBJECTS AND METHODS We compared the gene-expression profiles of human fetal small and large intestines using a cDNA microarray and analyzed the data with Ingenuity Pathway Analysis software. RESULTS We found that a significant proportion of the genes was differentially expressed in the 2 segments. Gene cluster analysis revealed an even higher level of transcriptional dissimilarity at the functional level. For instance, segment-specific/overexpressed gene clusters in the ileum included genes involved with amino acid, vitamin, and mineral metabolism, reflecting the higher level of maturity of the small intestine as compared with the colon in which genes involved with cell cycle, cell death, and cell signaling were the predominant clusters of genes expressed. CONCLUSIONS Functional clustering analysis of the differentially expressed genes revealed important functional differences between the 2 segments and a relative immaturity of the colon, suggesting that already at mid-gestation, the 2 intestinal segments should be considered as 2 distinct organs.
Collapse
Affiliation(s)
- Eric Tremblay
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Cattaneo E, Laczko E, Buffoli F, Zorzi F, Bianco MA, Menigatti M, Bartosova Z, Haider R, Helmchen B, Sabates-Bellver J, Tiwari A, Jiricny J, Marra G. Preinvasive colorectal lesion transcriptomes correlate with endoscopic morphology (polypoid vs. nonpolypoid). EMBO Mol Med 2011; 3:334-47. [PMID: 21538994 PMCID: PMC3377079 DOI: 10.1002/emmm.201100141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 01/10/2023] Open
Abstract
Improved colonoscopy is revealing precancerous lesions that were frequently missed in the past, and ∼30% of those detected today have nonpolypoid morphologies ranging from slightly raised to depressed. To characterize these lesions molecularly, we assessed transcription of 23,768 genes in 42 precancerous lesions (25 slightly elevated nonpolypoid and 17 pedunculated polypoid), each with corresponding samples of normal mucosa. Nonpolypoid versus polypoid morphology explained most gene expression variance among samples; histology, size, and degree of dysplasia were also linked to specific patterns. Expression changes in polypoid lesions frequently affected cell-cycling pathways, whereas cell-survival dysregulation predominated in nonpolypoid lesions. The latter also displayed fewer and less dramatic expression changes than polypoid lesions. Paradigmatic of this trend was progressive loss through the normal > nonpolypoid > polypoid > cancer sequence of TMIGD1 mRNA and protein. This finding, along with TMIGD1 protein expression patterns in tissues and cell lines, suggests that TMIGD1 might be associated with intestinal-cell differentiation. We conclude that molecular dysregulation in slightly elevated, nonpolypoid, precancerous colorectal lesions may be somewhat less severe than that observed in classic adenomatous polyps.
Collapse
Affiliation(s)
- Elisa Cattaneo
- Institute of Molecular Cancer Research, University of Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Berrabah W, Aumercier P, Lefebvre P, Staels B. Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS Lett 2011; 585:1640-50. [PMID: 21486568 DOI: 10.1016/j.febslet.2011.03.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/30/2011] [Indexed: 12/24/2022]
Abstract
Nuclear receptors (NRs) are molecular transducers of endocrine and dietary signals allowing tissues to adapt their transcriptional responses to endogenous or exogenous cues. These signals act in many cases as specific ligands, converting of NRs into transcriptionally active molecules. This on-off mechanism needs, however, to be finely tuned with respect to the tissue environment and adjusted to the organism needs. These subtle adjustments of NR transcriptional activity are brought about by post-translational modifications (PTMs), which can be, in the case of orphan NRs, the sole regulatory mechanism. The role of PTMs, with a more specific focus on phosphorylation, affecting the functions of NR controlling metabolic events is described in this review.
Collapse
Affiliation(s)
- Wahiba Berrabah
- Université Lille Nord de France, INSERM, U1011, Lille, France
| | | | | | | |
Collapse
|