1
|
Jing S, Geng C, Liu P, Wang D, Li Q, Li A. Serotonergic input from the dorsal raphe nucleus shapes learning-associated odor responses in the olfactory bulb. Acta Physiol (Oxf) 2024; 240:e14198. [PMID: 38958443 DOI: 10.1111/apha.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
AIM Neural activity in the olfactory bulb (OB) can represent odor information during different brain and behavioral states. For example, the odor responses of mitral/tufted (M/T) cells in the OB change during learning of odor-discrimination tasks and, at the network level, beta power increases and the high gamma (HG) power decreases during odor presentation in such tasks. However, the neural mechanisms underlying these observations remain poorly understood. Here, we investigate whether serotonergic modulation from the dorsal raphe nucleus (DRN) to the OB is involved in shaping activity during the learning process in a go/no-go task in mice. METHODS Fiber photometry was used to record the population activity of DRN serotonergic neurons during a go/no-go task. In vivo electrophysiology was used to record neural activity (single units and local field potentials) in the OB during the go/no-go task. Real-time place preference (RTPP) and intracranial light administration in a specific subarea (iClass) tests were used to assess the ability of mice to encoding reward information. RESULTS Odor-evoked population activity in serotonergic neurons in the DRN was shaped during the learning process in a go/no-go task. In the OB, neural activity from oscillations to single cells showed complex, learning-associated changes and ability to encode information during an odor discrimination task. However, these properties were not observed after ablation of DRN serotonergic neurons. CONCLUSION The activity of neural networks and single cells in the OB, and their ability to encode information about odor value, are shaped by serotonergic projections from the DRN.
Collapse
Affiliation(s)
- Siqi Jing
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Qun Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Zhao X, Zou H, Wang M, Wang J, Wang T, Wang L, Chen X. Conformal Neuromorphic Bioelectronics for Sense Digitalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403444. [PMID: 38934554 DOI: 10.1002/adma.202403444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Sense digitalization, the process of transforming sensory experiences into digital data, is an emerging research frontier that links the physical world with human perception and interaction. Inspired by the adaptability, fault tolerance, robustness, and energy efficiency of biological senses, this field drives the development of numerous innovative digitalization techniques. Neuromorphic bioelectronics, characterized by biomimetic adaptability, stand out for their seamless bidirectional interactions with biological entities through stimulus-response and feedback loops, incorporating bio-neuromorphic intelligence for information exchange. This review illustrates recent progress in sensory digitalization, encompassing not only the digital representation of physical sensations such as touch, light, and temperature, correlating to tactile, visual, and thermal perceptions, but also the detection of biochemical stimuli such as gases, ions, and neurotransmitters, mirroring olfactory, gustatory, and neural processes. It thoroughly examines the material design, device manufacturing, and system integration, offering detailed insights. However, the field faces significant challenges, including the development of new device/system paradigms, forging genuine connections with biological systems, ensuring compatibility with the semiconductor industry and overcoming the absence of standardization. Future ambition includes realization of biocompatible neural prosthetics, exoskeletons, soft humanoid robots, and cybernetic devices that integrate smoothly with both biological tissues and artificial components.
Collapse
Affiliation(s)
- Xiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Haochen Zou
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 200433, China
| | - Jianwu Wang
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX) Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiaodong Chen
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX) Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
3
|
Zhou Z, Yang X, Mao A, Xu H, Lin C, Yang M, Hu W, Shao J, Xu P, Li Y, Li W, Lin R, Zhang R, Xie Q, Xu Z, Meng W. Deficiency of CAMSAP2 impairs olfaction and the morphogenesis of mitral cells. EMBO Rep 2024; 25:2861-2877. [PMID: 38839944 PMCID: PMC11239855 DOI: 10.1038/s44319-024-00166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
In developing olfactory bulb (OB), mitral cells (MCs) remodel their dendrites to establish the precise olfactory circuit, and these circuits are critical for individuals to sense odors and elicit behaviors for survival. However, how microtubules (MTs) participate in the process of dendritic remodeling remains elusive. Here, we reveal that calmodulin-regulated spectrin-associated proteins (CAMSAPs), a family of proteins that bind to the minus-end of the noncentrosomal MTs, play a crucial part in the development of MC dendrites. We observed that Camsap2 knockout (KO) males are infertile while the reproductive tract is normal. Further study showed that the infertility was due to the severe defects of mating behavior in male mice. Besides, mice with loss-of-function displayed defects in the sense of smell. Furthermore, we found that the deficiency of CAMSAP2 impairs the classical morphology of MCs, and the CAMSAP2-dependent dendritic remodeling process is responsible for this defect. Thus, our findings demonstrate that CAMSAP2 plays a vital role in regulating the development of MCs.
Collapse
Affiliation(s)
- Zhengrong Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- Neuroscience Center, Department of Basic Medical Sciences, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Xiaojuan Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Aihua Mao
- Biology Department, College of Sciences, Shantou University, 515063, Shantou, China
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Chunnuan Lin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mengge Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weichang Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinhui Shao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Peipei Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuejia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenguang Li
- Animal Laboratory Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruifan Lin
- Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qi Xie
- Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
4
|
Vaikakkara Chithran A, Allan DW, O'Connor TP. Adult expression of the cell adhesion protein Fasciclin 3 is required for the maintenance of adult olfactory interneurons. J Cell Sci 2024; 137:jcs261759. [PMID: 38934299 DOI: 10.1242/jcs.261759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The proper functioning of the nervous system is dependent on the establishment and maintenance of intricate networks of neurons that form functional neural circuits. Once neural circuits are assembled during development, a distinct set of molecular programs is likely required to maintain their connectivity throughout the lifetime of the organism. Here, we demonstrate that Fasciclin 3 (Fas3), an axon guidance cell adhesion protein, is necessary for the maintenance of the olfactory circuit in adult Drosophila. We utilized the TARGET system to spatiotemporally knockdown Fas3 in selected populations of adult neurons. Our findings show that Fas3 knockdown results in the death of olfactory circuit neurons and reduced survival of adults. We also demonstrated that Fas3 knockdown activates caspase-3-mediated cell death in olfactory local interneurons, which can be rescued by overexpressing baculovirus p35, an anti-apoptotic protein. This work adds to the growing set of evidence indicating a crucial role for axon guidance proteins in the maintenance of neuronal circuits in adults.
Collapse
Affiliation(s)
- Aarya Vaikakkara Chithran
- Graduate Program in Neuroscience, 3402-2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy P O'Connor
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Kawamata I, Nishiyama K, Matsumoto D, Ichiseki S, Keya JJ, Okuyama K, Ichikawa M, Kabir AMR, Sato Y, Inoue D, Murata S, Sada K, Kakugo A, Nomura SIM. Autonomous assembly and disassembly of gliding molecular robots regulated by a DNA-based molecular controller. SCIENCE ADVANCES 2024; 10:eadn4490. [PMID: 38820146 PMCID: PMC11141615 DOI: 10.1126/sciadv.adn4490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
In recent years, there has been a growing interest in engineering dynamic and autonomous systems with robotic functionalities using biomolecules. Specifically, the ability of molecular motors to convert chemical energy to mechanical forces and the programmability of DNA are regarded as promising components for these systems. However, current systems rely on the manual addition of external stimuli, limiting the potential for autonomous molecular systems. Here, we show that DNA-based cascade reactions can act as a molecular controller that drives the autonomous assembly and disassembly of DNA-functionalized microtubules propelled by kinesins. The DNA controller is designed to produce two different DNA strands that program the interaction between the microtubules. The gliding microtubules integrated with the controller autonomously assemble to bundle-like structures and disassemble into discrete filaments without external stimuli, which is observable by fluorescence microscopy. We believe this approach to be a starting point toward more autonomous behavior of motor protein-based multicomponent systems with robotic functionalities.
Collapse
Affiliation(s)
- Ibuki Kawamata
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kohei Nishiyama
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Daiki Matsumoto
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Shosei Ichiseki
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Jakia J. Keya
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kohei Okuyama
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Daisuke Inoue
- Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan
| | - Satoshi Murata
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
6
|
Gong H, Zhu C, Han D, Liu S. Secreted Glycoproteins That Regulate Synaptic Function: the Dispatchers in the Central Nervous System. Mol Neurobiol 2024; 61:2719-2727. [PMID: 37924485 DOI: 10.1007/s12035-023-03731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Glycoproteins are proteins that contain oligosaccharide chains. As widely distributed functional proteins in the body, glycoproteins are essential for cellular development, cellular function maintenance, and intercellular communication. Glycoproteins not only play a role in the cell and the membrane, but they are also secreted in the intercell. These secreted glycoproteins are critical to the central nervous system for neurodevelopment and synaptic transmission. More specifically, secreted glycoproteins play indispensable roles in neurite growth mediation, axon guiding, synaptogenesis, neuronal differentiation, the release of synaptic vesicles, subunit composition of neurotransmitter receptors, and neurotransmitter receptor trafficking among other things. Abnormal expressions of secreted glycoproteins in the central nervous system are associated with abnormal neuron development, impaired synaptic organization/transmission, and neuropsychiatric disorders. This article reviews the secreted glycoproteins that regulate neuronal development and synaptic function in the central nervous system, and the molecular mechanism of these regulations, providing reference for research about synaptic function regulation and related central nervous system diseases.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Di Han
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Kapıcı Y, Koparal M, Aslan S. Evaluation of Nasal Mucociliary Clearance Time in Patients with Schizophrenia. Indian J Otolaryngol Head Neck Surg 2024; 76:1580-1585. [PMID: 38566639 PMCID: PMC10982144 DOI: 10.1007/s12070-023-04363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/14/2023] [Indexed: 04/04/2024] Open
Abstract
Nasal mucociliary clearance time (NMCT) is prolonged in patients with olfactory disorders. It is essential to differentially diagnose conductive and neural olfactory disorders. Here, we used the mucociliary clearance test to investigate a disease associated with neural olfactory disorders, i.e. schizophrenia. Data on age, gender, and duration of disease were collected. The study involved 56 schizophrenia patients and 56 healthy controls. There was no significant difference between the groups regarding age and gender (p = 0.459 and p = 0.768 respectively). Mean NMCT of patients with schizophrenia was 13.82 ± 3.22 min and mean NMCT of healthy controls was 10.15 ± 2.94 min. There was significant difference between the groups regarding NMCT (p < 0.001). In the patient group, there was a significant positive correlation between duration of disease, age, and NMCT (Pearson r = 0.286, p = 0.032, and Pearson r = 0.522, p < 0.001 respectively). This study has shown a prolonged NMCT in patients with schizophrenia compared to the healthy control group.
Collapse
Affiliation(s)
- Yaşar Kapıcı
- Department of Psychiatry, Adana 5 Ocak State Hospital, Adana, Turkey
| | - Mehtap Koparal
- Department of Otolaryngology, Adıyaman University Faculty of Medicine, Adıyaman, Turkey
| | - Sefer Aslan
- Department of Internal Medicine, Adıyaman Training and Research Hospital, Adıyaman, Turkey
| |
Collapse
|
8
|
Kawai F. Somatic ion channels and action potentials in olfactory receptor cells and vomeronasal receptor cells. J Neurophysiol 2024; 131:455-471. [PMID: 38264787 DOI: 10.1152/jn.00137.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Olfactory receptor cells are primary sensory neurons that catch odor molecules in the olfactory system, and vomeronasal receptor cells catch pheromones in the vomeronasal system. When odor or pheromone molecules bind to receptor proteins expressed on the membrane of the olfactory cilia or vomeronasal microvilli, receptor potentials are generated in their receptor cells. This initial excitation is transmitted to the soma via dendrites, and action potentials are generated in the soma and/or axon and transmitted to the central nervous system. Thus, olfactory and vomeronasal receptor cells play an important role in converting chemical signals into electrical signals. In this review, the electrophysiological characteristics of ion channels in the somatic membrane of olfactory receptor cells and vomeronasal receptor cells in various species are described and the differences between the action potential dynamics of olfactory receptor cells and vomeronasal receptor cells are compared.
Collapse
Affiliation(s)
- Fusao Kawai
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
9
|
Liu D, Lu J, Wei L, Yao M, Yang H, Lv P, Wang H, Zhu Y, Zhu Z, Zhang X, Chen J, Yang QX, Zhang B. Olfactory deficit: a potential functional marker across the Alzheimer's disease continuum. Front Neurosci 2024; 18:1309482. [PMID: 38435057 PMCID: PMC10907997 DOI: 10.3389/fnins.2024.1309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent form of dementia that affects an estimated 32 million individuals globally. Identifying early indicators is vital for screening at-risk populations and implementing timely interventions. At present, there is an urgent need for early and sensitive biomarkers to screen individuals at risk of AD. Among all sensory biomarkers, olfaction is currently one of the most promising indicators for AD. Olfactory dysfunction signifies a decline in the ability to detect, identify, or remember odors. Within the spectrum of AD, impairment in olfactory identification precedes detectable cognitive impairments, including mild cognitive impairment (MCI) and even the stage of subjective cognitive decline (SCD), by several years. Olfactory impairment is closely linked to the clinical symptoms and neuropathological biomarkers of AD, accompanied by significant structural and functional abnormalities in the brain. Olfactory behavior examination can subjectively evaluate the abilities of olfactory identification, threshold, and discrimination. Olfactory functional magnetic resonance imaging (fMRI) can provide a relatively objective assessment of olfactory capabilities, with the potential to become a promising tool for exploring the neural mechanisms of olfactory damage in AD. Here, we provide a timely review of recent literature on the characteristics, neuropathology, and examination of olfactory dysfunction in the AD continuum. We focus on the early changes in olfactory indicators detected by behavioral and fMRI assessments and discuss the potential of these techniques in MCI and preclinical AD. Despite the challenges and limitations of existing research, olfactory dysfunction has demonstrated its value in assessing neurodegenerative diseases and may serve as an early indicator of AD in the future.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liangpeng Wei
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mei Yao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huiquan Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haoyao Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yajing Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing X. Yang
- Department of Radiology, Center for NMR Research, Penn State University College of Medicine, Hershey, PA, United States
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
- Institute of Brain Science, Nanjing University, Nanjing, China
- Jiangsu Provincial Medical Key Discipline (Laboratory), Nanjing, China
| |
Collapse
|
10
|
Koparal M, Kapici Y, Aslan S, Hepkarsi S, Karataş M, Yılmazer C. Evaluation of Nasal Mucociliary Clearance as an Indicator of Nasal Function in Obsessive-Compulsive Patients: A Cross-Sectional Study. Indian J Otolaryngol Head Neck Surg 2023; 75:3263-3267. [PMID: 37974878 PMCID: PMC10645981 DOI: 10.1007/s12070-023-03972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/12/2023] [Indexed: 11/19/2023] Open
Abstract
This clinical study aimed to compare the mucociliary clearance time in patients with OCD, a disease associated with neural olfactory disorders, with a healthy control group. The mucociliary clearance time of fifty-one patients with OCD and fifty-two healthy patients (control group) was compared. The saccharin nasal mucociliary clearance test (NMCT) was applied and recorded the sociodemographic data of all participants. The NMCT was longer in OCD patients than healthy controls. There was no statistically significant difference in sociodemographic data between the groups. Our results show that olfactory transmission pathways may be affected in OCD patients. Supplementary Information The online version contains supplementary material available at 10.1007/s12070-023-03972-2.
Collapse
Affiliation(s)
- Mehtap Koparal
- Department of Otolaryngology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Yasar Kapici
- Kahta State Hospital Psychiatry Clinic, Adiyaman, Turkey
| | - Sefer Aslan
- Department of Internal Medicine, Adıyaman Training and Research Hospital, Adiyaman, Turkey
| | - Sevinc Hepkarsi
- Department of Otolaryngology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Mehmet Karataş
- Department of Otolaryngology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Cüneyt Yılmazer
- Department of Otolaryngology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
11
|
Zavatone-Veth JA, Masset P, Tong WL, Zak JD, Murthy VN, Pehlevan C. Neural Circuits for Fast Poisson Compressed Sensing in the Olfactory Bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545947. [PMID: 37961548 PMCID: PMC10634677 DOI: 10.1101/2023.06.21.545947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Within a single sniff, the mammalian olfactory system can decode the identity and concentration of odorants wafted on turbulent plumes of air. Yet, it must do so given access only to the noisy, dimensionally-reduced representation of the odor world provided by olfactory receptor neurons. As a result, the olfactory system must solve a compressed sensing problem, relying on the fact that only a handful of the millions of possible odorants are present in a given scene. Inspired by this principle, past works have proposed normative compressed sensing models for olfactory decoding. However, these models have not captured the unique anatomy and physiology of the olfactory bulb, nor have they shown that sensing can be achieved within the 100-millisecond timescale of a single sniff. Here, we propose a rate-based Poisson compressed sensing circuit model for the olfactory bulb. This model maps onto the neuron classes of the olfactory bulb, and recapitulates salient features of their connectivity and physiology. For circuit sizes comparable to the human olfactory bulb, we show that this model can accurately detect tens of odors within the timescale of a single sniff. We also show that this model can perform Bayesian posterior sampling for accurate uncertainty estimation. Fast inference is possible only if the geometry of the neural code is chosen to match receptor properties, yielding a distributed neural code that is not axis-aligned to individual odor identities. Our results illustrate how normative modeling can help us map function onto specific neural circuits to generate new hypotheses.
Collapse
Affiliation(s)
- Jacob A Zavatone-Veth
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Physics, Harvard University Cambridge, MA 02138
| | - Paul Masset
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA 02138
| | - William L Tong
- Center for Brain Science, Harvard University Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| | - Joseph D Zak
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL 60607
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University Cambridge, MA 02138
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University Cambridge, MA 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University Cambridge, MA 02138
| |
Collapse
|
12
|
Chun SY, Song YG, Kim JE, Kwon JU, Soh K, Kwon JY, Kang CY, Yoon JH. An Artificial Olfactory System Based on a Chemi-Memristive Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302219. [PMID: 37116944 DOI: 10.1002/adma.202302219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Technologies based on the fusion of gas sensors and neuromorphic computing to mimic the olfactory system have immense potential. However, the implementation of neuromorphic olfactory systems remains in a state of infancy because conventional gas sensors lack the necessary functions. Therefore, this study proposes a hysteretic "chemi-memristive gas sensor" based on oxygen vacancy chemi-memristive dynamics that differ from that of conventional gas sensors. After the memristive switching operation, the redox reaction with the external gas molecules is enhanced, resulting in the generation and elimination of oxygen vacancies that induce rapid current changes. In addition, the pre-generated oxygen vacancies enhance the post-sensing properties. Therefore, fast responses, short recovery times, and hysteretic gas response are achieved by the proposed sensor at room temperature. Based on the advantageous functionality of the sensor, device-level olfactory systems that can monitor the history of input gas stimuli are experimentally demonstrated as a potential application. Moreover, analog conductance modulation induced by oxidizing and reducing gases enables the conversion of external gas stimuli into synaptic weights and hence the realization of typical synaptic functionalities without an additional device or circuit. The proposed chemi-memristive device represents an advance in the bioinspired technology adopted in creating artificial intelligence systems.
Collapse
Affiliation(s)
- Suk Yeop Chun
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Young Geun Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
| | - Ji Eun Kim
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Uk Kwon
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Keunho Soh
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ju Young Kwon
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
| | - Chong-Yun Kang
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jung Ho Yoon
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
| |
Collapse
|
13
|
Athanassi A, Breton M, Chalençon L, Brunelin J, Didier A, Bath K, Mandairon N. Chronic unpredictable mild stress alters odor hedonics and adult olfactory neurogenesis in mice. Front Neurosci 2023; 17:1224941. [PMID: 37600017 PMCID: PMC10435088 DOI: 10.3389/fnins.2023.1224941] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Experiencing chronic stress significantly increases the risk for depression. Depression is a complex disorder with varied symptoms across patients. However, feeling of sadness and decreased motivation, and diminished feeling of pleasure (anhedonia) appear to be core to most depressive pathology. Odorants are potent signals that serve a critical role in social interactions, avoiding danger, and consummatory behaviors. Diminished quality of olfactory function is associated with negative effects on quality of life leading to and aggravating the symptoms of depression. Odor hedonic value (I like or I dislike this smell) is a dominant feature of olfaction and guides approach or avoidance behavior of the odor source. The neural representation of the hedonic value of odorants is carried by the granule cells in the olfactory bulb, which functions to modulate the cortical relay of olfactory information. The granule cells of the olfactory bulb and those of the dentate gyrus are the two major populations of cells in the adult brain with continued neurogenesis into adulthood. In hippocampus, decreased neurogenesis has been linked to development or maintenance of depression symptoms. Here, we hypothesize that chronic mild stress can alter olfactory hedonics through effects on the olfactory bulb neurogenesis, contributing to the broader anhedonia phenotype in stress-associated depression. To test this, mice were subjected to chronic unpredictable mild stress and then tested on measures of depressive-like behaviors, odor hedonics, and measures of olfactory neurogenesis. Chronic unpredictable mild stress led to a selective effect on odor hedonics, diminishing attraction to pleasant but not unpleasant odorants, an effect that was accompanied by a specific decrease in adult neurogenesis and of the percentage of adult-born cells responding to pleasant odorants in the olfactory bulb.
Collapse
Affiliation(s)
- Anna Athanassi
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Marine Breton
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Laura Chalençon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Jérome Brunelin
- Centre Hospitalier Le Vinatier, Bron, France
- INSERM, U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Anne Didier
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Kevin Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, United States
- Department of Psychiatry, Columbia University Medical College, New York, NY, United States
| | - Nathalie Mandairon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| |
Collapse
|
14
|
Xing Z, Zogona D, Wu T, Pan S, Xu X. Applications, challenges and prospects of bionic nose in rapid perception of volatile organic compounds of food. Food Chem 2023; 415:135650. [PMID: 36868065 DOI: 10.1016/j.foodchem.2023.135650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Bionic nose, a technology that mimics the human olfactory system, has been widely used to assess food quality due to their high sensitivity, low cost, portability and simplicity. This review briefly describes that bionic noses with multiple transduction mechanisms are developed based on gas molecules' physical properties: electrical conductivity, visible optical absorption, and mass sensing. To enhance their superior sensing performance and meet the growing demand for applications, a range of strategies have been developed, such as peripheral substitutions, molecular backbones, and ligand metals that can finely tune the properties of sensitive materials. In addition, challenges and prospects coexist are covered. Cross-selective receptors of bionic nose will help and guide the selection of the best array for a particular application scenario. It provides an odour-based monitoring tool for rapid, reliable and online assessment of food safety and quality.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China; Shenzhen Institute of Nutrition and Health, Shenzhen, Guangdong 518038, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture,Genome Analysis Laboratory of the Ministry of Agriculture,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518038, China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China; Shenzhen Institute of Nutrition and Health, Shenzhen, Guangdong 518038, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture,Genome Analysis Laboratory of the Ministry of Agriculture,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518038, China.
| |
Collapse
|
15
|
Bidel F, Meirovitch Y, Schalek RL, Lu X, Pavarino EC, Yang F, Peleg A, Wu Y, Shomrat T, Berger DR, Shaked A, Lichtman JW, Hochner B. Connectomics of the Octopus vulgaris vertical lobe provides insight into conserved and novel principles of a memory acquisition network. eLife 2023; 12:e84257. [PMID: 37410519 PMCID: PMC10325715 DOI: 10.7554/elife.84257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
Here, we present the first analysis of the connectome of a small volume of the Octopus vulgaris vertical lobe (VL), a brain structure mediating the acquisition of long-term memory in this behaviorally advanced mollusk. Serial section electron microscopy revealed new types of interneurons, cellular components of extensive modulatory systems, and multiple synaptic motifs. The sensory input to the VL is conveyed via~1.8 × 106 axons that sparsely innervate two parallel and interconnected feedforward networks formed by the two types of amacrine interneurons (AM), simple AMs (SAMs) and complex AMs (CAMs). SAMs make up 89.3% of the~25 × 106VL cells, each receiving a synaptic input from only a single input neuron on its non-bifurcating primary neurite, suggesting that each input neuron is represented in only~12 ± 3.4SAMs. This synaptic site is likely a 'memory site' as it is endowed with LTP. The CAMs, a newly described AM type, comprise 1.6% of the VL cells. Their bifurcating neurites integrate multiple inputs from the input axons and SAMs. While the SAM network appears to feedforward sparse 'memorizable' sensory representations to the VL output layer, the CAMs appear to monitor global activity and feedforward a balancing inhibition for 'sharpening' the stimulus-specific VL output. While sharing morphological and wiring features with circuits supporting associative learning in other animals, the VL has evolved a unique circuit that enables associative learning based on feedforward information flow.
Collapse
Affiliation(s)
- Flavie Bidel
- Department of Neurobiology, Silberman Institute of Life Sciences, The Hebrew UniversityJerusalemIsrael
| | - Yaron Meirovitch
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Richard Lee Schalek
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Xiaotang Lu
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | | | - Fuming Yang
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Adi Peleg
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic CenterMichmoretIsrael
| | - Daniel Raimund Berger
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Adi Shaked
- Department of Neurobiology, Silberman Institute of Life Sciences, The Hebrew UniversityJerusalemIsrael
| | - Jeff William Lichtman
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Binyamin Hochner
- Department of Neurobiology, Silberman Institute of Life Sciences, The Hebrew UniversityJerusalemIsrael
| |
Collapse
|
16
|
Alvites R, Caine A, Cherubini GB, Prada J, Varejão ASP, Maurício AC. The Olfactory Bulb in Companion Animals-Anatomy, Physiology, and Clinical Importance. Brain Sci 2023; 13:brainsci13050713. [PMID: 37239185 DOI: 10.3390/brainsci13050713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The Olfactory Bulb is a component of the Olfactory System, in which it plays an essential role as an interface between the peripheral components and the cerebral cortex responsible for olfactory interpretation and discrimination. It is in this element that the first selective integration of olfactory stimuli occurs through a complex cell interaction that forwards the received olfactory information to higher cortical centers. Considering its position in the organizational hierarchy of the olfactory system, it is now known that changes in the Olfactory Bulb can lead to olfactory abnormalities. Through imaging techniques, it was possible to establish relationships between the occurrence of changes secondary to brain aging and senility, neurodegenerative diseases, head trauma, and infectious diseases with a decrease in the size of the Olfactory Bulb and in olfactory acuity. In companion animals, this relationship has also been identified, with observations of relations between the cranial conformation, the disposition, size, and shape of the Olfactory Bulb, and the occurrence of structural alterations associated with diseases with different etiologies. However, greater difficulty in quantitatively assessing olfactory acuity in animals and a manifestly smaller number of studies dedicated to this topic maintain a lack of concrete and unequivocal results in this field of veterinary sciences. The aim of this work is to revisit the Olfactory Bulb in companion animals in all its dimensions, review its anatomy and histological characteristics, physiological integration in the olfactory system, importance as a potential early indicator of the establishment of specific pathologies, as well as techniques of imaging evaluation for its in vivo clinical exploration.
Collapse
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Abby Caine
- Dick White Referrals, Station Farm, London Road, Six Mile Bottom, Cambridgeshire CB8 0UH, UK
| | - Giunio Bruto Cherubini
- Department of Veterinary Sciences, Veterinary Teaching Hospital "Mario Modenato", University of Pisa, Via Livornese Lato Monte, San Piero a Grado, 56122 Pisa, Italy
| | - Justina Prada
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Artur Severo P Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
17
|
Duan Y, Wang S, Yuan Q, Shi Y, Jiang N, Jiang D, Song J, Wang P, Zhuang L. Long-Term Flexible Neural Interface for Synchronous Recording of Cross-Regional Sensory Processing along the Olfactory Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205768. [PMID: 37035943 DOI: 10.1002/smll.202205768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/04/2023] [Indexed: 06/19/2023]
Abstract
Humans perceive the world through five senses, of which olfaction is the oldest evolutionary sense that enables the detection of chemicals in the external environment. Recent progress in bioinspired electronics has boosted the development of artificial sensory systems. Here, a biohybrid olfactory system is proposed by integrating living mammals with implantable flexible neural electrodes, to employ the outstanding properties of mammalian olfactory system. In olfactory perception, the peripheral organ-olfactory epithelium (OE) projects axons into the olfactory relay station-olfactory bulb (OB). The olfactory information encoded in the neural activity is recorded from both OE and OB simultaneously using flexible neural electrodes. Results reveal that spontaneous slow oscillations (<12 Hz) in both OE and OB closely follow respiration. This respiration-locked rhythm modulates the amplitude of fast oscillations (>20 Hz), which are associated with odor perception. Further, by extracting the characteristics of odor-evoked oscillatory signals, responses of different odors are identified and classified with 80% accuracy. This study demonstrates for the first time that the flexible electrode enables chronic stable electrophysiological recordings of the peripheral and central olfactory system in vivo. Overall, the method provides a novel neural interface for olfactory biosensing and cognitive processing.
Collapse
Affiliation(s)
- Yan Duan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
| | - Suhao Wang
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
| | - Yingqian Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
| | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310012, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
18
|
Hu R, Shankar J, Dong GZ, Villar PS, Araneda RC. α 2-Adrenergic modulation of I h in adult-born granule cells in the olfactory bulb. Front Cell Neurosci 2023; 16:1055569. [PMID: 36687519 PMCID: PMC9853206 DOI: 10.3389/fncel.2022.1055569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 01/09/2023] Open
Abstract
In the olfactory bulb (OB), a large population of axon-less inhibitory interneurons, the granule cells (GCs), coordinate network activity and tune the output of principal neurons, the mitral and tufted cells (MCs), through dendrodendritic interactions. Furthermore, GCs undergo neurogenesis throughout life, providing a source of plasticity to the neural network of the OB. The function and integration of GCs in the OB are regulated by several afferent neuromodulatory signals, including noradrenaline (NA), a state-dependent neuromodulator that plays a crucial role in the regulation of cortical function and task-specific decision processes. However, the mechanisms by which NA regulates GC function are not fully understood. Here, we show that NA modulates hyperpolarization-activated currents (Ih) via the activation of α2-adrenergic receptors (ARs) in adult-born GCs (abGCs), thus directly acting on channels that play essential roles in regulating neuronal excitability and network oscillations in the brain. This modulation affects the dendrodendritic output of GCs leading to an enhancement of lateral inhibition onto the MCs. Furthermore, we show that NA modulates subthreshold resonance in GCs, which could affect the temporal integration of abGCs. Together, these results provide a novel mechanism by which a state-dependent neuromodulator acting on Ih can regulate GC function in the OB.
Collapse
|
19
|
Histology and ultrastructure of olfactory and nasal respiratory mucosae in suckling and adult African grasscutters (Thryonomys swinderianus- Temminck, 1827). ZOOMORPHOLOGY 2023. [DOI: 10.1007/s00435-022-00590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Zhang T, Ren W, Xiao F, Li J, Zu B, Dou X. Engineered olfactory system for in vitro artificial nose. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Rava A, La Rosa P, Palladino G, Dragotto J, Totaro A, Tiberi J, Canterini S, Oddi S, Fiorenza MT. The appearance of phagocytic microglia in the postnatal brain of Niemann Pick type C mice is developmentally regulated and underscores shortfalls in fine odor discrimination. J Cell Physiol 2022; 237:4563-4579. [PMID: 36322609 PMCID: PMC7613956 DOI: 10.1002/jcp.30909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
The loss of NPC1 or NPC2 function results in cholesterol and sphingolipid dyshomeostasis that impairs developmental trajectories, predisposing the postnatal brain to the appearance of pathological signs, including progressive and stereotyped Purkinje cell loss and microgliosis. Despite increasing evidence reporting the activation of pro-inflammatory microglia as a cardinal event of NPC1 disease progression at symptomatic stages both in patients and preclinical models, how microglia cells respond to altered neurodevelopmental dynamics remains not completely understood. To gain an insight on this issue, we have characterized patterns of microglia activation in the early postnatal cerebellum and young adult olfactory bulb of the hypomorphic Npc1nmf164 mouse model. Previous evidence has shown that both these areas display a number of anomalies affecting neuron and glial cell proliferation and differentiation, which largely anticipate cellular changes and clinical signs, raising our interest on how microglia interplay to these changes. Even so, to separate the contribution of cues provided by the dysfunctional microenvironment we have also studied microglia isolated from mice of increasing ages and cultured in vitro for 1 week. Our findings show that microglia of both cerebellum and olfactory bulb of Npc1nmf164 mice adopt an activated phenotype, characterized by increased cell proliferation, enlarged soma size and de-ramified processes, as well as a robust phagocytic activity, in a time- and space-specific manner. Enhanced phagocytosis associates with a profound remodeling of gene expression signatures towards gene products involved in chemotaxis, cell recognition and engulfment, including Cd68 and Trem2. These early changes in microglia morphology and activities are induced by region-specific developmental anomalies that likely anticipate alterations in neuronal connectivity. As a proof of concept, we show that microglia activation within the granule cell layer and glomerular layer of the olfactory bulb of Npc1nmf164 mice is associated with shortfalls in fine odor discrimination.
Collapse
Affiliation(s)
- Alessandro Rava
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| | - Giampiero Palladino
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Jessica Dragotto
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Antonio Totaro
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| | - Jessica Tiberi
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- PhD program in Behavioral Neuroscience University La Sapienza Rome Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
| | - Sergio Oddi
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
- Faculty of Veterinary Medicine University of Teramo Teramo Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology University La Sapienza Rome Italy
- European Center for Brain Research IRCCS Fondazione Santa Lucia Rome Italy
| |
Collapse
|
22
|
Drinking behaviour of llamas (Lama glama) in choice tests for fresh or saline water. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Hussan MT, Sakai A, Matsui H. Glutamatergic pathways in the brains of turtles: A comparative perspective among reptiles, birds, and mammals. Front Neuroanat 2022; 16:937504. [PMID: 36059432 PMCID: PMC9428285 DOI: 10.3389/fnana.2022.937504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glutamate acts as the main excitatory neurotransmitter in the brain and plays a vital role in physiological and pathological neuronal functions. In mammals, glutamate can cause detrimental excitotoxic effects under anoxic conditions. In contrast, Trachemys scripta, a freshwater turtle, is one of the most anoxia-tolerant animals, being able to survive up to months without oxygen. Therefore, turtles have been investigated to assess the molecular mechanisms of neuroprotective strategies used by them in anoxic conditions, such as maintaining low levels of glutamate, increasing adenosine and GABA, upregulating heat shock proteins, and downregulating KATP channels. These mechanisms of anoxia tolerance of the turtle brain may be applied to finding therapeutics for human glutamatergic neurological disorders such as brain injury or cerebral stroke due to ischemia. Despite the importance of glutamate as a neurotransmitter and of the turtle as an ideal research model, the glutamatergic circuits in the turtle brain remain less described whereas they have been well studied in mammalian and avian brains. In reptiles, particularly in the turtle brain, glutamatergic neurons have been identified by examining the expression of vesicular glutamate transporters (VGLUTs). In certain areas of the brain, some ionotropic glutamate receptors (GluRs) have been immunohistochemically studied, implying that there are glutamatergic target areas. Based on the expression patterns of these glutamate-related molecules and fiber connection data of the turtle brain that is available in the literature, many candidate glutamatergic circuits could be clarified, such as the olfactory circuit, hippocampal–septal pathway, corticostriatal pathway, visual pathway, auditory pathway, and granule cell–Purkinje cell pathway. This review summarizes the probable glutamatergic pathways and the distribution of glutamatergic neurons in the pallium of the turtle brain and compares them with those of avian and mammalian brains. The integrated knowledge of glutamatergic pathways serves as the fundamental basis for further functional studies in the turtle brain, which would provide insights on physiological and pathological mechanisms of glutamate regulation as well as neural circuits in different species.
Collapse
Affiliation(s)
- Mohammad Tufazzal Hussan
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Anatomy and Histology, Patuakhali Science and Technology University, Barishal, Bangladesh
- *Correspondence: Mohammad Tufazzal Hussan,
| | - Akiko Sakai
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
- Hideaki Matsui,
| |
Collapse
|
24
|
Olfactory impairment in psychiatric disorders: Does nasal inflammation impact disease psychophysiology? Transl Psychiatry 2022; 12:314. [PMID: 35927242 PMCID: PMC9352903 DOI: 10.1038/s41398-022-02081-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Olfactory impairments contribute to the psychopathology of mental illnesses such as schizophrenia and depression. Recent neuroscience research has shed light on the previously underappreciated olfactory neural circuits involved in regulation of higher brain functions. Although environmental factors such as air pollutants and respiratory viral infections are known to contribute to the risk for psychiatric disorders, the role of nasal inflammation in neurobehavioral outcomes and disease pathophysiology remains poorly understood. Here, we will first provide an overview of published findings on the impact of nasal inflammation in the olfactory system. We will then summarize clinical studies on olfactory impairments in schizophrenia and depression, followed by preclinical evidence on the neurobehavioral outcomes produced by olfactory dysfunction. Lastly, we will discuss the potential impact of nasal inflammation on brain development and function, as well as how we can address the role of nasal inflammation in the pathophysiological mechanisms underlying psychiatric disorders. Considering the current outbreak of Coronavirus Disease 2019 (COVID-19), which often causes nasal inflammation and serious adverse effects for olfactory function that might result in long-lasting neuropsychiatric sequelae, this line of research is particularly critical to understanding of the potential significance of nasal inflammation in the pathophysiology of psychiatric disorders.
Collapse
|
25
|
Micarelli A, Mrakic-Sposta S, Micarelli B, Malacrida S, Misici I, Carbini V, Iennaco I, Caputo S, Vezzoli A, Alessandrini M. Smell Impairment in Stage I-II Obesity: Correlation with Biochemical Regulators and Clinical Aspects. Laryngoscope 2022; 132:2028-2035. [PMID: 35906890 DOI: 10.1002/lary.30325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To evaluate the differences in olfactory sensitivity, nutritional habits, levels of modulators of feeding and smell, bioelectrical impedance analysis (BIA) measures and metabolic assays between two groups of participants with stage I and II obesity and reciprocal relationships between these parameters. METHODS Eighteen participants with stage I (11 female; mean age = 54.3 ± 13.1 years) and 20 participants with stage II (10 female; mean age = 54.5 ± 11.9) obesity underwent a food frequency questionnaire and Sniffin' Sticks® test battery, anthropometric parameters, and BIA measurements as well as metabolic assays (including plasma levels of leptin, insulin, ghrelin, glucose, insulin-like growth factor-1 [IGF-1] and usual laboratory parameters). RESULTS The stage II obesity participants demonstrated significant higher levels of insulin and leptin and lower levels of ghrelin and IGF-1, a reduction in odor identification (OI) and in total olfactory score, and an increase in visceral and total fat percentage. Among a mosaic of multiple correlations, ghrelin was found to positively correlate with OI and leptin negatively with odor discrimination. CONCLUSION The present study expands the notions positing the olfactory perception - and its connections with metabolic cues, foods habits and BIA measures - changes across the two most important obesity stages. This could ameliorate clinical and research deepening of obesity-related olfactory behavior with possible consequences on diagnosis, treatment and prevention of onset and development of obesity, thus opening possible future strategies involving multidisciplinary contributions. LEVEL OF EVIDENCE Level 3 Laryngoscope, 2022.
Collapse
Affiliation(s)
- Alessandro Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | | | - Beatrice Micarelli
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Ilaria Misici
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Valentina Carbini
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | - Ilaria Iennaco
- Unit of Neuroscience, Rehabilitation and Sensory Organs, UNITER ONLUS, Rome, Italy
| | | | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), Milan, Italy
| | - Marco Alessandrini
- University of Rome Tor Vergata, Department of Clinical Sciences and Translational Medicine - ENT Unit, Rome, Italy
| |
Collapse
|
26
|
Park JW, Wang X, Xu RH. Revealing the mystery of persistent smell loss in Long COVID patients. Int J Biol Sci 2022; 18:4795-4808. [PMID: 35874953 PMCID: PMC9305264 DOI: 10.7150/ijbs.73485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022] Open
Abstract
COVID-19 is hopefully approaching its end in many countries as herd immunity develops and weaker strains of SARS-CoV-2 dominate. However, a new concern occurs over the long-term effects of COVID-19, collectively called "Long COVID", as some symptoms of the nervous system last even after patients recover from COVID-19. This review focuses on studies of anosmia, i.e., impairment of smell, which is the most common sensory defect during the disease course and is caused by olfactory dysfunctions. It remains mysterious how the olfactory functions are affected since the virus can't invade olfactory receptor neurons. We describe several leading hypotheses about the mystery in hope to provide insights into the pathophysiology and treatment strategies for anosmia.
Collapse
Affiliation(s)
- Jung Woo Park
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Xiaoyan Wang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| |
Collapse
|
27
|
Emery BA, Hu X, Maugeri L, Khanzada S, Klutsch D, Altuntac E, Amin H. Large-scale Multimodal Recordings on a High-density Neurochip: Olfactory Bulb and Hippocampal Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3111-3114. [PMID: 36085999 DOI: 10.1109/embc48229.2022.9871961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A striking example of the brain's complexity and continued plasticity is the addition of new neuronal components to a circuit in a process called neurogenesis. Two brain regions exhibit profound circuit remodeling through this process - the olfactory bulb and hippocampus. However, how local network changes in both regions influence global circuit rewiring and dynamic network features remain largely unexplored due to the lack of spatiotemporal resolution technology and large-scale electrophysiological activity recordings. Here, we demonstrate large-scale recordings using a high-density neurochip to reveal multimodal circuit-wide electrophysiological properties and layer-specific functional connectivity in the olfactory bulb and hippocampal networks. Our findings illustrate simultaneous recordings from the entire network, which allows us to quantify synchronous electrophysiological parameter differences and layer-specific waveform markers. Examining pairwise cross-covariance between active electrode pairs reveals individual neuronal ensemble contributions to synchronous activation between layers and hub microcircuits, demonstrating network-wide rewiring. Our study suggests a novel tool to address the computational implications of large-scale activity patterns in functional multimodal neurogenic circuits.
Collapse
|
28
|
Dopamine Modulates the Processing of Food Odour in the Ventral Striatum. Biomedicines 2022; 10:biomedicines10051126. [PMID: 35625863 PMCID: PMC9138215 DOI: 10.3390/biomedicines10051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Food odour is a potent stimulus of food intake. Odour coding in the brain occurs in synergy or competition with other sensory information and internal signals. For eliciting feeding behaviour, food odour coding has to gain signification through enrichment with additional labelling in the brain. Since the ventral striatum, at the crossroads of olfactory and reward pathways, receives a rich dopaminergic innervation, we hypothesized that dopamine plays a role in food odour information processing in the ventral striatum. Using single neurones recordings in anesthetised rats, we show that some ventral striatum neurones respond to food odour. This neuronal network displays a variety of responses (excitation, inhibition, rhythmic activity in phase with respiration). The localization of recorded neurones in a 3-dimensional brain model suggests the spatial segregation of this food-odour responsive population. Using local field potentials recordings, we found that the neural population response to food odour was characterized by an increase of power in the beta-band frequency. This response was modulated by dopamine, as evidenced by its depression following administration of the dopaminergic D1 and D2 antagonists SCH23390 and raclopride. Our results suggest that dopamine improves food odour processing in the ventral striatum.
Collapse
|
29
|
Arakawa H, Higuchi Y. Exocrine scent marking: Coordinative role of arginine vasopressin in the systemic regulation of social signaling behaviors. Neurosci Biobehav Rev 2022; 136:104597. [PMID: 35248677 DOI: 10.1016/j.neubiorev.2022.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Arginine vasopressin (AVP) is a neurohypophysial hormone that coordinatively regulates central socio-emotional behavior and peripheral control of antidiuretic fluid homeostasis. Most mammals, including rodents, utilize exocrine or urine-contained scent marking as a social signaling tool that facilitates social adaptation. The exocrine scent marking behavior is postulated to fine-tune sensory and cognitive abilities to recognize key social features via exocrine/urinary olfactory cues and subsequently control exocrine deposition or urinary marking through the mediation of osmotic fluid balance. AVP is implicated as a major player in controlling both recognition and signaling responses. This review provides constructive hypotheses on the coordinative processes of the AVP neurohypophysial circuits in the systemic regulations of fluid control and social-communicative behavior, via the expression of exocrine scent marking, and further emphasizes a potential role of AVP in a common mechanism underlying social communication in rodents.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan.
| | - Yuki Higuchi
- Depertment of Systems Physiology, University of the Ryukyus School of Medicine, Okinawa, Japan
| |
Collapse
|
30
|
Kelly AM. A consideration of brain networks modulating social behavior. Horm Behav 2022; 141:105138. [PMID: 35219166 DOI: 10.1016/j.yhbeh.2022.105138] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022]
Abstract
A primary goal of the field of behavioral neuroendocrinology is to understand how the brain modulates complex behavior. Over the last 20 years we have proposed various brain networks to explain behavioral regulation, however, the parameters by which these networks are identified are often ill-defined and reflect our personal scientific biases based on our area of expertise. In this perspective article, I question our characterization of brain networks underlying behavior and their utility. Using the Social Behavior Network as a primary example, I outline issues with brain networks commonly discussed in the field of behavioral neuroendocrinology, argue that we reconsider how we identify brain networks underlying behavior, and urge the future use of analytical tools developed by the field of Network Neuroscience. With modern statistical/mathematical tools and state of the art technology for brain imaging, we can strive to minimize our bias and generate brain networks that may more accurately reflect how the brain produces behavior.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States of America.
| |
Collapse
|
31
|
Chen Z, Padmanabhan K. Top-down feedback enables flexible coding strategies in the olfactory cortex. Cell Rep 2022; 38:110545. [PMID: 35320723 DOI: 10.1016/j.celrep.2022.110545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/03/2022] Open
Abstract
In chemical sensation, multiple models have been proposed to explain how odors are represented in the olfactory cortex. One hypothesis is that the combinatorial identity of active neurons within sniff-related time windows is critical, whereas another model proposes that it is the temporal structure of neural activity that is essential for encoding odor information. We find that top-down feedback to the main olfactory bulb dictates the information transmitted to the piriform cortex and switches between these coding strategies. Using a detailed network model, we demonstrate that feedback control of inhibition influences the excitation-inhibition balance in mitral cells, restructuring the dynamics of piriform cortical cells. This results in performance improvement in odor discrimination tasks. These findings present a framework for early olfactory computation, where top-down feedback to the bulb flexibly shapes the temporal structure of neural activity in the piriform cortex, allowing the early olfactory system to dynamically switch between two distinct coding models.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, Neuroscience Graduate Program, Del Monte Institute for Neuroscience, Center for Visual Sciences, Intellectual and Developmental Disability Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
32
|
Bayesian-based decipherment of in-depth information in bacterial chemical sensing beyond pleasant/unpleasant responses. Sci Rep 2022; 12:2965. [PMID: 35194068 PMCID: PMC8863824 DOI: 10.1038/s41598-022-06732-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022] Open
Abstract
Chemical sensing is vital to the survival of all organisms. Bacterial chemotaxis is conducted by multiple receptors that sense chemicals to regulate a single signalling system controlling the transition between the direction (clockwise vs. counterclockwise) of flagellar rotation. Such an integrated system seems better suited to judge chemicals as either favourable or unfavourable, but not for identification purposes though differences in their affinities to the receptors may cause difference in response strength. Here, an experimental setup was developed to monitor behaviours of multiple cells stimulated simultaneously as well as a statistical framework based on Bayesian inferences. Although responses of individual cells varied substantially, ensemble averaging of the time courses seemed characteristic to attractant species, indicating we can extract information of input chemical species from responses of the bacterium. Furthermore, two similar, but distinct, beverages elicited attractant responses of cells with profiles distinguishable with the Bayesian procedure. These results provide a basis for novel bio-inspired sensors that could be used with other cell types to sense wider ranges of chemicals.
Collapse
|
33
|
de Lima LS, Mortari MR. Therapeutic nanoparticles in the brain: A review of types, physicochemical properties and challenges. Int J Pharm 2022; 612:121367. [PMID: 34896565 DOI: 10.1016/j.ijpharm.2021.121367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
One of the main obstacles in the treatment of neurological diseases, perhaps the biggest one, is the delivery of therapeutic compounds to the central nervous system, and nanoparticles are promising tools to overcome this challenge. Different types of nanoparticles may be used as delivery systems, including liposomes, carbon nanotubes, and dendrimers. Nevertheless, these nanoparticles must display characteristics to be useful in brain drug delivery, such as stability, permeability to blood vessels, biocompatibility, and specificity. All of these aspects are intrinsically related to the physicochemical properties of nanoformulations: size, composition, electric charge, hydrophobicity, mucoadherence, permeability to the blood-brain barrier, and many others. Furthermore, there are challenging hindrances involved in the development and application of nanoparticles - hence the importance of studying and understanding these pharmaceutical tools.
Collapse
Affiliation(s)
- Larissa Silva de Lima
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, 70910-900 Brasilia, Distrito Federal, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, 70910-900 Brasilia, Distrito Federal, Brazil.
| |
Collapse
|
34
|
Histology and lectin histochemistry in the vomeronasal organ of Korean native cattle, Bos taurus coreanae. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.4.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
35
|
Tavoni G, Kersen DEC, Balasubramanian V. Cortical feedback and gating in odor discrimination and generalization. PLoS Comput Biol 2021; 17:e1009479. [PMID: 34634035 PMCID: PMC8530364 DOI: 10.1371/journal.pcbi.1009479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
A central question in neuroscience is how context changes perception. In the olfactory system, for example, experiments show that task demands can drive divergence and convergence of cortical odor responses, likely underpinning olfactory discrimination and generalization. Here, we propose a simple statistical mechanism for this effect based on unstructured feedback from the central brain to the olfactory bulb, which represents the context associated with an odor, and sufficiently selective cortical gating of sensory inputs. Strikingly, the model predicts that both convergence and divergence of cortical odor patterns should increase when odors are initially more similar, an effect reported in recent experiments. The theory in turn predicts reversals of these trends following experimental manipulations and in neurological conditions that increase cortical excitability.
Collapse
Affiliation(s)
- Gaia Tavoni
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David E. Chen Kersen
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
36
|
Ceanga M, Dahab M, Witte OW, Keiner S. Adult Neurogenesis and Stroke: A Tale of Two Neurogenic Niches. Front Neurosci 2021; 15:700297. [PMID: 34447293 PMCID: PMC8382802 DOI: 10.3389/fnins.2021.700297] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023] Open
Abstract
In the aftermath of an acute stroke, numerous signaling cascades that reshape the brain both in the perilesional zone as well as in more distal regions are activated. Despite continuous improvement in the acute treatment of stroke and the sustained research efforts into the pathophysiology of stroke, we critically lag in our integrated understanding of the delayed and chronic responses to ischemic injury. As such, the beneficial or maladaptive effect of some stroke-induced cellular responses is unclear, restricting the advancement of therapeutic strategies to target long-term complications. A prominent delayed effect of stroke is the robust increase in adult neurogenesis, which raises hopes for a regenerative strategy to counter neurological deficits in stroke survivors. In the adult brain, two regions are known to generate new neurons from endogenous stem cells: the subventricular zone (SVZ) and the dentate subgranular zone (SGZ) of the hippocampus. While both niches respond with an increase in neurogenesis post-stroke, there are significant regional differences in the ensuing stages of survival, migration, and maturation, which may differently influence functional outcome. External interventions such as rehabilitative training add a further layer of complexity by independently modulating the process of adult neurogenesis. In this review we summarize the current knowledge regarding the effects of ischemic stroke on neurogenesis in the SVZ and in the SGZ, and the influence of exogenous stimuli such as motor activity or enriched environment (EE). In addition, we discuss the contribution of SVZ or SGZ post-stroke neurogenesis to sensory, motor and cognitive recovery.
Collapse
Affiliation(s)
- Mihai Ceanga
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Mahmoud Dahab
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Silke Keiner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
37
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
38
|
Field evidence supporting monitoring of chemical information on pathways by male African elephants. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Smell compounds classification using UMAP to increase knowledge of odors and molecular structures linkages. PLoS One 2021; 16:e0252486. [PMID: 34048487 PMCID: PMC8162648 DOI: 10.1371/journal.pone.0252486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022] Open
Abstract
This study aims to highlight the relationships between the structure of smell compounds and their odors. For this purpose, heterogeneous data sources were screened, and 6038 odorant compounds and their known associated odors (162 odor notes) were compiled, each individual molecule being represented with a set of 1024 structural fingerprint. Several dimensional reduction techniques (PCA, MDS, t-SNE and UMAP) with two clustering methods (k-means and agglomerative hierarchical clustering AHC) were assessed based on the calculated fingerprints. The combination of UMAP with k-means and AHC methods allowed to obtain a good representativeness of odors by clusters, as well as the best visualization of the proximity of odorants on the basis of their molecular structures. The presence or absence of molecular substructures has been calculated on odorant in order to link chemical groups to odors. The results of this analysis bring out some associations for both the odor notes and the chemical structures of the molecules such as "woody" and "spicy" notes with allylic and bicyclic structures, "balsamic" notes with unsaturated rings, both "sulfurous" and "citrus" with aldehydes, alcohols, carboxylic acids, amines and sulfur compounds, and "oily", "fatty" and "fruity" characterized by esters and with long carbon chains. Overall, the use of UMAP associated to clustering is a promising method to suggest hypotheses on the odorant structure-odor relationships.
Collapse
|
40
|
Kymre JH, Liu X, Ian E, Berge CN, Wang G, Berg BG, Zhao X, Chu X. Distinct protocerebral neuropils associated with attractive and aversive female-produced odorants in the male moth brain. eLife 2021; 10:65683. [PMID: 33988500 PMCID: PMC8154038 DOI: 10.7554/elife.65683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Abstract
The pheromone system of heliothine moths is an optimal model for studying principles underlying higher-order olfactory processing. In Helicoverpa armigera, three male-specific glomeruli receive input about three female-produced signals, the primary pheromone component, serving as an attractant, and two minor constituents, serving a dual function, that is, attraction versus inhibition of attraction. From the antennal-lobe glomeruli, the information is conveyed to higher olfactory centers, including the lateral protocerebrum, via three main paths – of which the medial tract is the most prominent. In this study, we traced physiologically identified medial-tract projection neurons from each of the three male-specific glomeruli with the aim of mapping their terminal branches in the lateral protocerebrum. Our data suggest that the neurons’ widespread projections are organized according to behavioral significance, including a spatial separation of signals representing attraction versus inhibition – however, with a unique capacity of switching behavioral consequence based on the amount of the minor components.
Collapse
Affiliation(s)
- Jonas Hansen Kymre
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - XiaoLan Liu
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Elena Ian
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christoffer Nerland Berge
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - GuiRong Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bente Gunnveig Berg
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - XinCheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xi Chu
- Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
41
|
Weiss L, Manzini I, Hassenklöver T. Olfaction across the water-air interface in anuran amphibians. Cell Tissue Res 2021; 383:301-325. [PMID: 33496878 PMCID: PMC7873119 DOI: 10.1007/s00441-020-03377-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Extant anuran amphibians originate from an evolutionary intersection eventually leading to fully terrestrial tetrapods. In many ways, they have to deal with exposure to both terrestrial and aquatic environments: (i) phylogenetically, as derivatives of the first tetrapod group that conquered the terrestrial environment in evolution; (ii) ontogenetically, with a development that includes aquatic and terrestrial stages connected via metamorphic remodeling; and (iii) individually, with common changes in habitat during the life cycle. Our knowledge about the structural organization and function of the amphibian olfactory system and its relevance still lags behind findings on mammals. It is a formidable challenge to reveal underlying general principles of circuity-related, cellular, and molecular properties that are beneficial for an optimized sense of smell in water and air. Recent findings in structural organization coupled with behavioral observations could help to understand the importance of the sense of smell in this evolutionarily important animal group. We describe the structure of the peripheral olfactory organ, the olfactory bulb, and higher olfactory centers on a tissue, cellular, and molecular levels. Differences and similarities between the olfactory systems of anurans and other vertebrates are reviewed. Special emphasis lies on adaptations that are connected to the distinct demands of olfaction in water and air environment. These particular adaptations are discussed in light of evolutionary trends, ontogenetic development, and ecological demands.
Collapse
Affiliation(s)
- Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
| |
Collapse
|
42
|
Zhuang L, Wei X, Jiang N, Yuan Q, Qin C, Jiang D, Liu M, Zhang Y, Wang P. A biohybrid nose for evaluation of odor masking in the peripheral olfactory system. Biosens Bioelectron 2020; 171:112737. [PMID: 33080464 DOI: 10.1016/j.bios.2020.112737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
Olfaction is a synthetic sense in which odor mixtures elicit emergent perceptions at the expense of perceiving the individual components. The most common result of mixing two odors is masking one component by another. However, there is lack of analytical techniques for measuring the sense of smell, which is mediated by cross-odorant interactions. Here, we propose a biohybrid nose for objective and quantitative evaluation of malodor masking efficiency of perfumed products. This biohybrid nose is constructed by integrating mammalian olfactory epithelium with microelectrode array chip to read out the olfactory information as electrical signal from multiple tissue sites. The intrinsic odor response of olfactory epithelium is found to be represented by widespread spatiotemporal oscillatory activity. The masking efficiency of fragrance is quantified by calculating the relative difference between the malodor and the binary mixture (malodor + fragrance) response patterns. Results indicate that masking efficiency of fragrance is concentration-dependent, whereas completely masking may occurs when fragrance is employed at a concentration 2-3 orders of magnitude higher than malodor. This study demonstrates for the first time that capitalizing on the biological sense of smell to create biohybrid system provides an effective technique to resolve more complex biosensing-related issues such as odor interactions in mixtures.
Collapse
Affiliation(s)
- Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chunlian Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanning Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
43
|
Guarneros M, Martínez-Gómez M, Arteaga L. Alteraciones del olfato en la obesidad. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aun cuando el sentido del olfato es fundamental para la percepción de los alimentos, su relación con la obesidad ha sido poco investigada. Este artículo es una revisión de la literatura sobre esa relación. La evidencia actual tanto en animales como en humanos apoya la hipótesis de que el olfato está alterado en esta condición. Estudios recientes señalan que los individuos obesos podrían tener una mayor sensibilidad a los olores de alimentos altos en calorías, y menor para los de bajo valor calórico incluidos los no asociados con alimentos. El estudio de la percepción quimiosensorial es un área prometedora para avanzar en el entendimiento de los mecanismos involucrados en la obesidad.
Collapse
|
44
|
Liu S. Dopamine Suppresses Synaptic Responses of Fan Cells in the Lateral Entorhinal Cortex to Olfactory Bulb Input in Mice. Front Cell Neurosci 2020; 14:181. [PMID: 32625065 PMCID: PMC7316158 DOI: 10.3389/fncel.2020.00181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/27/2020] [Indexed: 01/11/2023] Open
Abstract
The lateral entorhinal cortex (LEC) is involved in odor discrimination, odor-associative multimodal memory, and neurological or neuropsychiatric disorders. It receives direct axonal projections from both olfactory bulb (OB) output neurons and midbrain dopaminergic neurons. However, the cellular targets in LEC receiving direct synaptic input from OB output neuron, the functional characteristics of these synapses, and whether or how dopamine (DA) modulates the OB-LEC pathway remain undetermined. We addressed these questions in the present study by combing optogenetic and electrophysiological approaches with four major findings: (1) selective activation of OB input elicited glutamate-mediated monosynaptic responses in all fan cells, the major output neurons in layer II of the LEC; (2) this excitatory synaptic transmission exhibited robust paired-pulse facilitation (PPF), a presynaptically derived short-term synaptic plasticity; (3) DA dramatically attenuated the strength of the OB input-fan cell synaptic transmission via activation of D1 receptors; and (4) DA altered the PPF of this transmission but neither intrinsic properties of postsynaptic neurons nor the kinetic profile of postsynaptic responses, suggesting that presynaptic mechanisms underlie the DA inhibitory actions. This study for the first time demonstrates the FCs in the LEC layer II as the postsynaptic target of direct OB input and characterizes DA modulation of the OB input-fan cell pathway. These findings set the foundation for future studies to examine the synaptic transmission from the OB output neuron axon terminals to other potential cell types in the LEC and to pinpoint the pathophysiological mechanisms underlying olfactory deficits associated with DA-relevant neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shaolin Liu
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
45
|
CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb. J Neurosci 2020; 40:6189-6206. [PMID: 32605937 DOI: 10.1523/jneurosci.0769-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023] Open
Abstract
Delineation of functional synaptic connections is fundamental to understanding sensory processing. Olfactory signals are synaptically processed initially in the olfactory bulb (OB) where neural circuits are formed among inhibitory interneurons and the output neurons mitral cells (MCs) and tufted cells (TCs). TCs function in parallel with but differently from MCs and are further classified into multiple subpopulations based on their anatomic and functional heterogeneities. Here, we combined optogenetics with electrophysiology to characterize the synaptic transmission from a subpopulation of TCs, which exclusively express the neuropeptide cholecystokinin (CCK), to two groups of spatially segregated GABAergic interneurons, granule cells (GCs) and glomerular interneurons in mice of both sexes with four major findings. First, CCKergic TCs receive direct input from the olfactory sensory neurons (OSNs). This monosynaptic transmission exhibits high fidelity in response to repetitive OSN input. Second, CCKergic TCs drive GCs through two functionally distinct types of monosynaptic connections: (1) dendrodendritic synapses onto GC distal dendrites via their lateral dendrites in the superficial external plexiform layer (EPL); (2) axodendritic synapses onto GC proximal dendrites via their axon collaterals or terminals in the internal plexiform layer (IPL) on both sides of each bulb. Third, CCKergic TCs monosynaptically excite two subpopulations of inhibitory glomerular interneurons via dendrodendritic synapses. Finally, sniff-like patterned activation of CCKergic TCs induces robust frequency-dependent depression of the dendrodendritic synapses but facilitation of the axodendritic synapses. These results demonstrated important roles of the CCKergic TCs in olfactory processing by orchestrating OB inhibitory activities.SIGNIFICANCE STATEMENT Neuronal morphology and organization in the olfactory bulb (OB) have been extensively studied, however, the functional operation of neuronal interactions is not fully understood. We combined optogenetic and electrophysiological approaches to investigate the functional operation of synaptic connections between a specific population of excitatory output neuron and inhibitory interneurons in the OB. We found that these output neurons formed distinct types of synapses with two populations of spatially segregated interneurons. The functional characteristics of these synapses vary significantly depending on the presynaptic compartments so that these output neurons can dynamically rebalance inhibitory feedback or feedforward to other neurons types in the OB in response to dynamic rhythmic inputs.
Collapse
|
46
|
Liu S. Dopaminergic Modulation of Glomerular Circuits in the Mouse Olfactory Bulb. Front Cell Neurosci 2020; 14:172. [PMID: 32595457 PMCID: PMC7304284 DOI: 10.3389/fncel.2020.00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/20/2020] [Indexed: 01/11/2023] Open
Abstract
Dopaminergic neurons are located in several brain areas including the olfactory bulb (OB) and involved in many physiological and pathophysiological processes. In the OB, dopamine (DA) is released exclusively by a population of interneurons termed short axon cells (SACs) in the glomerular layer, the initial synaptic integration site of the whole olfactory system. SACs corelease GABA and extend their processes to many glomeruli forming the interglomerular circuit. Two major groups of DA receptors D1-like (D1LRs) and D2-like (D2LRs) types are differentially distributed in the OB, i.e., D1LRs are broadly present except the most superficial olfactory nerve (ON) layer while D2LRs are predominantly confined to the ON and glomerular layers, suggesting that they mediate different physiological functions. In contrast to the well-known D2LR-mediated presynaptic inhibition of ON terminals in the OB, the cellular and circuit targets of the D1LR-mediated DA actions remain unclear even though D1LR activation improves odor detection and discrimination. We recently demonstrated that endogenous DA released from SACs or exogenous DA excites a population of excitatory glomerular neurons termed external tufted cells (ETCs) via D1LRs. But the physiological significance of this D1LR activation is largely unknown. In the present study, we addressed these questions by a systematic examination of exogenous DA actions on synaptic activities and excitabilities in most glomerular neurons and OB output neurons with the following major findings: (1) DA via D1LRs enhances OB output by potentiating the ETC-mediated feedforward excitation to the OB output neurons but suppresses spontaneous excitatory synaptic activities in both types of inhibitory glomerular interneurons periglomerular (PGCs) and SACs; (2) this suppression of excitatory synaptic activities in PGCs and SACs depends on activation of GABAB receptors; (3) DA via D1LRs augments spontaneous inhibitory synaptic activities in all glomerular neurons and OB output neurons; (4) DA selectively activates SACs via D1LRs. These findings suggest that activation of D1LRs elevates the system’s sensitivity to odor stimuli and provide a mechanistic basis for the functional roles of DA in modulating odor detection and discrimination.
Collapse
Affiliation(s)
- Shaolin Liu
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
47
|
Lane G, Zhou G, Noto T, Zelano C. Assessment of direct knowledge of the human olfactory system. Exp Neurol 2020; 329:113304. [PMID: 32278646 DOI: 10.1016/j.expneurol.2020.113304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
48
|
Nasal Drug Delivery of Anticancer Drugs for the Treatment of Glioblastoma: Preclinical and Clinical Trials. Molecules 2019; 24:molecules24234312. [PMID: 31779126 PMCID: PMC6930669 DOI: 10.3390/molecules24234312] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal form of brain tumor, being characterized by the rapid growth and invasion of the surrounding tissue. The current standard treatment for glioblastoma is surgery, followed by radiotherapy and concurrent chemotherapy, typically with temozolomide. Although extensive research has been carried out over the past years to develop a more effective therapeutic strategy for the treatment of GBM, efforts have not provided major improvements in terms of the overall survival of patients. Consequently, new therapeutic approaches are urgently needed. Overcoming the blood–brain barrier (BBB) is a major challenge in the development of therapies for central nervous system (CNS) disorders. In this context, the intranasal route of drug administration has been proposed as a non-invasive alternative route for directly targeting the CNS. This route of drug administration bypasses the BBB and reduces the systemic side effects. Recently, several formulations have been developed for further enhancing nose-to-brain transport, mainly with the use of nano-sized and nanostructured drug delivery systems. The focus of this review is to provide an overview of the strategies that have been developed for delivering anticancer compounds for the treatment of GBM while using nasal administration. In particular, the specific properties of nanomedicines proposed for nose-to-brain delivery will be critically evaluated. The preclinical and clinical data considered supporting the idea that nasal delivery of anticancer drugs may represent a breakthrough advancement in the fight against GBM.
Collapse
|
49
|
Vidybida AK. Possible Stochastic Mechanism for Improving the Selectivity of Olfactory Projection Neurons. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Abstract
Odorant molecules stimulate olfactory receptor neurons, and axons of these neurons project into the main olfactory bulb where they synapse onto mitral and tufted cells. These project to the primary olfactory cortex including the anterior olfactory nucleus (AON), the piriform cortex, amygdala, and the entorhinal cortex. The properties of mitral cells have been investigated extensively, but how odor information is processed in subsequent brain regions is less well known. In the present study, we recorded the electrical activity of AON neurons in anesthetized rats. Most AON cells fired in bursts of 2-10 spikes separated by very short intervals (<20 ms), in a period linked to the respiratory rhythm. Simultaneous recordings from adjacent neurons revealed that the rhythms of adjacent cells, while locked to the same underlying rhythm, showed marked differences in phase. We studied the responses of AON cells to brief high-frequency stimulation of the lateral olfactory tract, mimicking brief activation of mitral cells by odor. In different cells, such stimuli evoked transient or sustained bursts during stimulation or, more commonly, post-stimulation bursts after inhibition during stimulation. This suggests that, in AON cells, phase shifts occur as a result of post-inhibitory rebound firing, following inhibition by mitral cell input, and we discuss how this supports processing of odor information in the olfactory pathway. Cells were tested for their responsiveness to a social odor (the bedding of a strange male) among other simple and complex odors tested. In total, 11 cells responded strongly and repeatedly to bedding odor, and these responses were diverse, including excitation (transient or sustained), inhibition, and activation after odor presentation, indicating that AON neurons respond not only to the type of complex odor but also to temporal features of odor application.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Chiharu Tsuji
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Maja Lozic
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Mike Ludwig
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- Department of ImmunologyCentre for NeuroendocrinologyUniversity of PretoriaPretoriaSouth Africa
| | - Gareth Leng
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|