1
|
Fan D, Feng H, Song M, Tan P. Gene expression profiles, potential targets and treatments of cardiac remodeling. Mol Cell Biochem 2024:10.1007/s11010-024-05126-6. [PMID: 39367915 DOI: 10.1007/s11010-024-05126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Hypertensive and ischemic heart diseases have high morbidity all over the world, and they primarily contribute to heart failure associated with high mortality. Cardiac remodeling, as a basic pathological process in heart diseases, is mainly comprised of cardiac hypertrophy and fibrosis, as well as cell death which occurs especially in the ischemic cardiomyopathy. Myocardial remodeling has been widely investigated by a variety of animal models, including pressure overload, angiotensin II stimulation, and myocardial infarction. Pressure overload can cause compensatory cardiac hypertrophy at the early stage, followed by decompensatory hypertrophy and heart failure at the end. Recently, RNA sequencing and differentially expressed gene (DEG) analyses have been extensively employed to elucidate the molecular mechanisms of cardiac remodeling and related heart failure, which also provide potential targets for high-throughput drug screenings. In this review, we summarize recent advancements in gene expression profiling, related gene functions, and signaling pathways pertinent to myocardial remodeling induced by pressure overload at distinct stages, ischemia-reperfusion, myocardial infarction, and diabetes. We also discuss the effects of sex differences and inflammation on DEGs and their transcriptional regulatory mechanisms in cardiac remodeling. Additionally, we summarize emerging therapeutic agents and strategies aimed at modulating gene expression profiles during myocardial remodeling.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China.
| | - Han Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Mengyu Song
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Penglin Tan
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| |
Collapse
|
2
|
Liang T, Liu J, Liu F, Su X, Li X, Zeng J, Chen F, Wen H, Chen Y, Tao J, Lei Q, Li G, Cheng P. Application of Pro-angiogenic Biomaterials in Myocardial Infarction. ACS OMEGA 2024; 9:37505-37529. [PMID: 39281944 PMCID: PMC11391569 DOI: 10.1021/acsomega.4c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Biomaterials have potential applications in the treatment of myocardial infarction (MI). These biomaterials have the ability to mechanically support the ventricular wall and to modulate the inflammatory, metabolic, and local electrophysiological microenvironment. In addition, they can play an equally important role in promoting angiogenesis, which is the primary prerequisite for the treatment of MI. A variety of biomaterials are known to exert pro-angiogenic effects, but the pro-angiogenic mechanisms and functions of different biomaterials are complex and diverse, and have not yet been systematically described. This review will focus on the pro-angiogenesis of biomaterials and systematically describe the mechanisms and functions of different biomaterials in promoting angiogenesis in MI.
Collapse
Affiliation(s)
- Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Xiaohan Su
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xue Li
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiao Zeng
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Heling Wen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yu Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
3
|
Baidya SK, Patel T, Himaja A, Banerjee S, Das S, Ghosh B, Jha T, Adhikari N. Biphenylsulfonamides as effective MMP-2 inhibitors with promising antileukemic efficacy: Synthesis, in vitro biological evaluation, molecular docking, and MD simulation analysis. Drug Dev Res 2024; 85:e22255. [PMID: 39233391 DOI: 10.1002/ddr.22255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Overexpression of matrix metalloproteinase-2 (MMP-2) possesses a correlation with leukemia especially chronic myeloid leukemia (CML). However, no such MMP-2 inhibitor has come out in the market to date for treating leukemia. In this study, synthesis, biological evaluation, and molecular modeling studies of a set of biphenylsulfonamide derivatives as promising MMP-2 inhibitors were performed, focusing on their potential applications as antileukemic therapeutics. Compounds DH-18 and DH-19 exerted the most effective MMP-2 inhibition (IC50 of 139.45 nM and 115.16 nM, respectively) with potent antileukemic efficacy against the CML cell line K562 (IC50 of 0.338 µM and 0.398 µM, respectively). The lead molecules DH-18 and DH-19 reduced the MMP-2 expression by 21.3% and 17.8%, respectively with effective apoptotic induction (45.4% and 39.8%, respectively) in the K562 cell line. Moreover, both these compounds significantly arrested different phases of the cell cycle. Again, both these molecules depicted promising antiangiogenic efficacy in the ACHN cell line. Nevertheless, the molecular docking and molecular dynamics (MD) simulation studies revealed that DH-18 formed strong bidentate chelation with the catalytic Zn2+ ion through the hydroxamate zinc binding group (ZBG). Apart from that, the MD simulation study also disclosed stable binding interactions of DH-18 and MMP-2 along with crucial interactions with active site amino acid residues namely His120, Glu121, His124, His130, Pro140, and Tyr142. In a nutshell, this study highlighted the importance of biphenylsulfonamide-based novel and promising MMP-2 inhibitors to open up a new avenue for potential therapy against CML.
Collapse
Affiliation(s)
- Sandip K Baidya
- Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Natural Science Laboratory, Jadavpur University, Kolkata, India
- School of Pharmacy, Sister Nivedita University, Kolkata, India
| | - Tarun Patel
- Department of Pharmacy, Epigenetic Research Laboratory, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Ambati Himaja
- Department of Pharmacy, Epigenetic Research Laboratory, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Suvankar Banerjee
- Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Natural Science Laboratory, Jadavpur University, Kolkata, India
| | - Sanjib Das
- Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Natural Science Laboratory, Jadavpur University, Kolkata, India
- School of Pharmacy, Sister Nivedita University, Kolkata, India
| | - Balaram Ghosh
- Department of Pharmacy, Epigenetic Research Laboratory, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Tarun Jha
- Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Natural Science Laboratory, Jadavpur University, Kolkata, India
| | - Nilanjan Adhikari
- Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Natural Science Laboratory, Jadavpur University, Kolkata, India
| |
Collapse
|
4
|
Slavich M, Paci G, Fragasso G, Mapelli P. Cardiac fibroblast activation: The lower the better. Int J Cardiol 2024; 409:132162. [PMID: 38754585 DOI: 10.1016/j.ijcard.2024.132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Affiliation(s)
- M Slavich
- Department of Cardiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - G Paci
- Department of Cardiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - G Fragasso
- Department of Cardiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P Mapelli
- Vita-Salute San Raffaele University, Milan, Italy; Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
5
|
Han Y, Shao Z, Zhang Y, Zhao H, Sun Z, Yang C, Tang H, Han Y, Gao C. 3D matrix stiffness modulation unveils cardiac fibroblast phenotypic switching. Sci Rep 2024; 14:17015. [PMID: 39043765 PMCID: PMC11266583 DOI: 10.1038/s41598-024-67646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
This study investigates how dynamic fluctuations in matrix stiffness affect the behavior of cardiac fibroblasts (CFs) within a three-dimensional (3D) hydrogel environment. Using hybrid hydrogels with tunable stiffness, we created an in vitro model to mimic the varying stiffness of the cardiac microenvironment. By manipulating hydrogel stiffness, we examined CF responses, particularly the expression of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation. Our findings reveal that increased matrix stiffness promotes the differentiation of CFs into myofibroblasts, while matrix softening reverses this process. Additionally, we identified the role of focal adhesions and integrin β1 in mediating stiffness-induced phenotypic switching. This study provides significant insights into the mechanobiology of cardiac fibrosis and suggests that modulating matrix stiffness could be a potential therapeutic strategy for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yan Han
- Department of Structural Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Zehua Shao
- Department of Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Yuanhao Zhang
- Department of Structural Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zirui Sun
- Department of Structural Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Chaokuan Yang
- Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Hao Tang
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, 451464, Henan, China.
| | - Yu Han
- Department of Structural Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China.
| | - Chuanyu Gao
- Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China.
| |
Collapse
|
6
|
Wu W, Zhou S, Fei G, Wang R. The role of long noncoding RNA MEG3 in fibrosis diseases. Postgrad Med J 2024; 100:529-538. [PMID: 38430191 DOI: 10.1093/postmj/qgad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 03/03/2024]
Abstract
Fibrosis is a prevalent pathological condition observed in various organs and tissues. It primarily arises from the excessive and abnormal accumulation of the extracellular matrix, resulting in the structural and functional impairment of tissues and organs, which can culminate in death. Many forms of fibrosis, including liver, cardiac, pulmonary, and renal fibrosis, are considered irreversible. Maternally expressed gene 3 (MEG3) is an imprinted RNA gene. Historically, the downregulation of MEG3 has been linked to tumor pathogenesis. However, recent studies indicate an emerging association of MEG3 with fibrotic diseases. In this review, we delve into the current understanding of MEG3's role in fibrosis, aiming to shed light on the molecular mechanisms of fibrosis and the potential of MEG3 as a novel therapeutic target.
Collapse
Affiliation(s)
- Wenlong Wu
- Department of Respiratory and Critical Care Medicine, The First Afiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, The First Afiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Afiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
7
|
Shi Y, Yu C. U shape association between triglyceride glucose index and congestive heart failure in patients with diabetes and prediabetes. Nutr Metab (Lond) 2024; 21:42. [PMID: 38956581 PMCID: PMC11221084 DOI: 10.1186/s12986-024-00819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND While previous population studies have shown that higher triglyceride-glucose (TyG) index values are associated with an increased risk of congestive heart failure (CHF), the relationship between TyG and CHF in patients with abnormal glucose metabolism remains understudied. This study aimed to evaluate the association between TyG and CHF in individuals with diabetes and prediabetes. METHODS The study population was derived from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. The exposure variable, TyG, was calculated based on triglyceride and fasting blood glucose levels, while the outcome of interest was CHF. A multivariate logistic regression analysis was employed to assess the association between TyG and CHF. RESULTS A total of 13,644 patients with diabetes and prediabetes were included in this study. The results from the fitting curve analysis demonstrated a non-linear U-shaped correlation between TyG and CHF. Additionally, linear logistic regression analysis showed that each additional unit of TyG was associated with a non-significant odds ratio (OR) of 1.03 (95%CI: 0.88-1.22, P = 0.697) for the prevalence of CHF. A two-piecewise logistic regression model was used to calculate the threshold effect of the TyG. The log likelihood ratio test (p < 0.05) indicated that the two-piecewise logistic regression model was superior to the single-line logistic regression model. The TyG tangent point was observed at 8.60, and on the left side of this point, there existed a negative correlation between TyG and CHF (OR: 0.54, 95%CI: 0.36-0.81). Conversely, on the right side of the inflection point, a significant 28% increase in the prevalence of CHF was observed per unit increment in TyG (OR: 1.28, 95%CI: 1.04-1.56). CONCLUSIONS The findings from this study suggest a U-shaped correlation between TyG and CHF, indicating that both elevated and reduced levels of TyG are associated with an increased prevalence of CHF.
Collapse
Affiliation(s)
- Yumeng Shi
- Department of Cardiovascular Medicine, the Second Affiliated Hospital, Nanchang of Jiangxi, Jiangxi Medical College, Nanchang University, Nanchang, China
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang of Jiangxi, Nanchang University, Nanchang, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, China
| | - Chao Yu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital, Nanchang of Jiangxi, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang of Jiangxi, Nanchang University, Nanchang, China.
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, China.
| |
Collapse
|
8
|
Tillmanns J, Weiglein JM, Neuser J, Fraccarollo D, Galuppo P, König T, Diekmann J, Ross T, Bengel FM, Bauersachs J, Derlin T. Circulating soluble fibroblast activation protein (FAP) levels are independent of cardiac and extra-cardiac FAP expression determined by targeted molecular imaging in patients with myocardial FAP activation. Int J Cardiol 2024; 406:132044. [PMID: 38614364 DOI: 10.1016/j.ijcard.2024.132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Tissue Fibroblast Activation Protein alpha (FAP) is overexpressed in various types of acute and chronic cardiovascular disease. A soluble form of FAP has been detected in human plasma, and low circulating FAP concentrations are associated with increased risk of death in patients with acute coronary syndrome. However, little is known about the regulation and release of FAP from fibroblasts, and whether circulating FAP concentration is associated with tissue FAP expression. This study characterizes the release of FAP in human cardiac fibroblasts (CF) and analyzes the association of circulating FAP concentrations with in vivo tissue FAP expression in patients with acute (ST-segment elevation myocardial infarction, STEMI) and chronic (severe aortic stenosis, AS) myocardial FAP expression. METHODS AND RESULTS FAP was released from CF in a time- and concentration-dependent manner. FAP concentration was higher in supernatant of TGFβ-stimulated CF, and correlated with cellular FAP concentration. Inhibition of metallo- and serine-proteases diminished FAP release in vitro. Median FAP concentrations of patients with acute (77 ng/mL) and chronic (75 ng/mL, p = 0.50 vs. STEMI) myocardial FAP expression did not correlate with myocardial nor extra-myocardial nor total FAP volume (P ≥ 0.61 in all cases) measured by whole-body FAP-targeted positron emission tomography. CONCLUSION We describe a time- and concentration dependent, protease-mediated release of FAP from cardiac fibroblasts. Circulating FAP concentrations were not associated with increased in vivo tissue FAP expression determined by molecular imaging in patients with both chronic and acute myocardial FAP expression. These data suggest that circulating FAP and tissue FAP expression provide complementary, non-interchangeable information.
Collapse
Affiliation(s)
- J Tillmanns
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.
| | - J M Weiglein
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - J Neuser
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - D Fraccarollo
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - P Galuppo
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - T König
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - J Diekmann
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - T Ross
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - F M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - J Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - T Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Liu G, Zhang Q, Zhou M, Li B, Zhao J, Bai R, Song X, Qin W, Zhang Y. Correlation between serum uric acid to high-density lipoprotein cholesterol ratio and atrial fibrillation in patients with NAFLD. PLoS One 2024; 19:e0305952. [PMID: 38913677 PMCID: PMC11195987 DOI: 10.1371/journal.pone.0305952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/09/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is independently associated with atrial fibrillation (AF) risk. The uric acid (UA) to high-density lipoprotein cholesterol (HDL-C) ratio (UHR) has been shown to be closely associated with cardiovascular disease (CVD) and NAFLD. The aim of this study is to clarify whether elevated UHR is associated with the occurrence of AF in patients with NAFLD and to determine whether UHR predicted AF. METHODS Patients diagnosed with NAFLD in the Department of Cardiovascular Medicine of the Second Hospital of Shanxi Medical University from January 1, 2020, to December 31, 2021, were retrospectively enrolled in this study. The study subjects were categorized into AF group and non-AF group based on the presence or absence of combined AF. Logistic regression was performed to evaluate the correlation between UHR and AF. Sensitivity analysis and subgroup interaction analysis were performed to verify the robustness of the study results. Receiver operating characteristic (ROC) curve analysis was used to determine the optimal cutoff value for UHR to predict the development of AF in patients with NAFLD. RESULTS A total of 421 patients with NAFLD were included, including 171 in the AF group and 250 in the non-AF group. In the univariate regression analysis, NAFLD patients with higher UHR were more likely to experience AF, and the risk of AF persisted after confounding factors were adjusted for (OR: 1.010, 95%CI: 1.007-1.013, P<0.001). AF risk increased with increasing UHR quartile (P for trend < 0.001). Despite normal serum UA and HDL-C, UHR was still connected with AF in patients with NAFLD. All subgroup variables did not interact significantly with UHR in the subgroup analysis. The ROC curve analysis showed that the areas under the curve for UA, HDL-C, and UHR were 0.702, 0.606, and 0.720, respectively, suggesting that UHR has a higher predictive value for AF occurrence in NAFLD patients compared to HDL-C or UA alone. CONCLUSION Increased UHR level was independently correlated with a high risk of AF in NAFLD patients.
Collapse
Affiliation(s)
- Gaizhen Liu
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qi Zhang
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng Zhou
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Baojie Li
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianqi Zhao
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui Bai
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaosu Song
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiwei Qin
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yonglai Zhang
- School of Software, North University of China, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Bogari NM, Naffadi HM, Babalghith AO, Azher ZA, Abumansour IS, Melibary EM, Qattan M, Alluhaibi AM, Amin AA, Bogari M, Bogari DN, Obaid R, Allam RM. Influence of matrix metalloproteinase 9 variant rs17576 on ischemic stroke risk and severity in acute coronary syndrome. J Stroke Cerebrovasc Dis 2024; 33:107824. [PMID: 38880366 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Ischemic injury is a common mechanism in both ischemic stroke (IS) and acute coronary syndrome (ACS). Matrix metalloproteinase 9 (MMP-9), an endopeptidase that degrades extracellular matrix, is important in the pathogenesis of IS. The purpose of this study is to evaluate the association between the SNP rs17576 in MMP-9 gene with (1) the risk and severity of acute ischemic stroke in Saudi Arab individuals with recent acute coronary syndrome, and (2) the risk of acute coronary syndrome in Saudi Arab individuals without ischemic stroke. METHODS A case control study of 200 IS patients, 520 ACS patients (without IS), and 500 aged-matched healthy controls were genotyped to detect the MMP-9 polymorphism rs17156. RESULTS Our study demonstrated a non-significant difference in the genotype and allele frequencies of the MMP9 rs17576 polymorphism between the patients with IS and patients with ACS without IS (P = 0.31 for the GA genotype, 0.25 for the AA genotype and P = 0.20 for the A allele). AA genotype was found to be statistically significant between IS and control groups; [OR=1.84, 95 % CI (1.08-3.14), p =0.015]. A allele showed a significant difference between the two groups [OR=1.28, 95 % CI (1.00-1.64), p =0.028]. By comparing ACS without IS and controls, AA genotype was significant [OR=1.46, 95 % CI (1.01-2.12), p =0.029]. Stratification by NIHSS score revealed higher mortality and early neurologic deterioration in IS patients with NIHSS score ≥ 16 (p < 0.001, 0.044 respectively). CONCLUSION We deduced the lack of association either with allele or genotype frequencies (p>0.05) between the IS cases and the cases of ACS without IS. In contrast there was a significant association of mutant genotype AA between either the IS group or ACS (without IS) group, and the control group. In addition, different rs17576 genotypes were not associated with raised mortality or a tendency to develop early neurologic deterioration.
Collapse
Affiliation(s)
- Neda M Bogari
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hind Mansour Naffadi
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zohor Asaad Azher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Iman Sabri Abumansour
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ehab M Melibary
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muneera Qattan
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Amr A Amin
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, KSA, Makkah, Saudi Arabia; Faculty of Medicine, Ain-Shams University, Egypt
| | - Mustafa Bogari
- Faculty of Life sciences and Medicine, King's College London, United Kingdom
| | - Dema Neda Bogari
- Faculty of Life sciences and Medicine, Women and children's health, King's College London, United Kingdom
| | - Rami Obaid
- Department of Medical Genetics, Faculty of Medicine at Al-Qunfudah, Umm Al-Qura University, Saudi Arabia
| | - Reem M Allam
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Egypt.
| |
Collapse
|
11
|
Sharma J, Bhargava P, Mishra P, Bhatia J, Arya DS. Molecular mechanisms of flavonoids in myocardial ischemia reperfusion injury: Evidence from in-vitro and in-vivo studies. Vascul Pharmacol 2024; 155:107378. [PMID: 38729253 DOI: 10.1016/j.vph.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVES Flavonoids are polyphenolic compounds found in a wide range of foods, including fruits, vegetables, tea plants, and other natural products. They have been mainly classified as flavanols, flavonols, flavones, isoflavones, flavanones, and flavanonols. In this comprehensive review, we will discuss preclinical pieces of evidence on the potential of flavonoids for the prevention/treatment of myocardial ischemia-reperfusion (IR) injury. KEY FINDINGS In-vitro and in-vivo studies have shown that flavonoids play an important role in preventing ischemic heart disease (IHD). They possess strong anti-oxidant, anti-inflammatory, anti-bacterial, anti-thrombotic, anti-apoptotic, and anti-carcinogenic activities. In addition, at a molecular level, flavonoids also modulate various pathways like MAPK, NFκB etc. to confer beneficial effects. SUMMARY The current review of flavonoids in myocardial ischemia-reperfusion injury furnishes updated information that could drive future research. The in-vitro and in-vivo experiments have demonstrated various favourable pharmacological properties of flavonoids. This review provides valuable information to conduct clinical studies, validating the safety aspects of flavonoids in the clinical domain.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Poorva Bhargava
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant Mishra
- Armed Forces Medical College, Pune, Maharashtra 411040, India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
12
|
Kaschina E, Lauer D, Lange C, Unger T. Angiotensin AT 2 receptors reduce inflammation and fibrosis in cardiovascular remodeling. Biochem Pharmacol 2024; 222:116062. [PMID: 38369211 DOI: 10.1016/j.bcp.2024.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The angiotensin AT2 receptor (AT2R), an important member of the "protective arm" of the renin-angiotensin system (RAS), has been recently defined as a therapeutic target in different pathological conditions. The AT2R activates complex signalling pathways linked to cellular proliferation, differentiation, anti-inflammation, antifibrosis, and induction or inhibition of apoptosis. The anti-inflammatory effect of AT2R activation is commonly associated with reduced fibrosis in different models. Current discoveries demonstrated a direct impact of AT2Rs on the regulation of cytokines, transforming growth factor beta1 (TGF-beta1), matrix metalloproteases (MMPs), and synthesis of the extracellular matrix components. This review article summarizes current knowledge on the AT2R in regard to immunity, inflammation and fibrosis in the heart and blood vessels. In particular, the differential influence of the AT2R on cardiovascular remodeling in preclinical models of myocardial infarction, heart failure and aneurysm formation are discussed. Overall, these studies demonstrate that AT2R stimulation represents a promising therapeutic approach to counteract myocardial and aortic damage in cardiovascular diseases.
Collapse
Affiliation(s)
- Elena Kaschina
- Charité - Universitätsmedizin Berlin, Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Berlin, Germany.
| | - Dilyara Lauer
- Charité - Universitätsmedizin Berlin, Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Berlin, Germany
| | - Christoph Lange
- Charité - Universitätsmedizin Berlin, Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Berlin, Germany
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
13
|
Vijayakumar A, Wang M, Kailasam S. The Senescent Heart-"Age Doth Wither Its Infinite Variety". Int J Mol Sci 2024; 25:3581. [PMID: 38612393 PMCID: PMC11011282 DOI: 10.3390/ijms25073581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality world-wide. While many factors like smoking, hypertension, diabetes, dyslipidaemia, a sedentary lifestyle, and genetic factors can predispose to cardiovascular diseases, the natural process of aging is by itself a major determinant of the risk. Cardiac aging is marked by a conglomerate of cellular and molecular changes, exacerbated by age-driven decline in cardiac regeneration capacity. Although the phenotypes of cardiac aging are well characterised, the underlying molecular mechanisms are far less explored. Recent advances unequivocally link cardiovascular aging to the dysregulation of critical signalling pathways in cardiac fibroblasts, which compromises the critical role of these cells in maintaining the structural and functional integrity of the myocardium. Clearly, the identification of cardiac fibroblast-specific factors and mechanisms that regulate cardiac fibroblast function in the senescent myocardium is of immense importance. In this regard, recent studies show that Discoidin domain receptor 2 (DDR2), a collagen-activated receptor tyrosine kinase predominantly located in cardiac fibroblasts, has an obligate role in cardiac fibroblast function and cardiovascular fibrosis. Incisive studies on the molecular basis of cardiovascular aging and dysregulated fibroblast function in the senescent heart would pave the way for effective strategies to mitigate cardiovascular diseases in a rapidly growing elderly population.
Collapse
Affiliation(s)
- Anupama Vijayakumar
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA;
| | - Shivakumar Kailasam
- Department of Biotechnology, University of Kerala, Kariavattom, Trivandrum 695581, India
| |
Collapse
|
14
|
Edwards CV, Ferri GM, Villegas-Galaviz J, Ghosh S, Bawa PS, Wang F, Klimtchuk E, Ajayi TB, Morgan GJ, Prokaeva T, Staron A, Ruberg FL, Sanchorawala V, Giadone RM, Murphy GJ. Abnormal global longitudinal strain and reduced serum inflammatory markers in cardiac AL amyloidosis patients without significant amyloid fibril deposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584987. [PMID: 38558967 PMCID: PMC10980073 DOI: 10.1101/2024.03.14.584987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Cardiac dysfunction in AL amyloidosis is thought to be partly related to the direct impact of AL LCs on cardiomyocyte function, with the degree of dysfunction at diagnosis as a major determinant of clinical outcomes. Nonetheless, mechanisms underlying LC-induced myocardial toxicity are not well understood. Methods We identified gene expression changes correlating with human cardiac cells exposed to a cardiomyopathy-associated κAL LC. We then sought to confirm these findings in a clinical dataset by focusing on clinical parameters associated with the pathways dysregulated at the gene expression level. Results Upon exposure to a cardiomyopathy-associated κAL LC, cardiac cells exhibited gene expression changes related to myocardial contractile function and inflammation, leading us to hypothesize that there could be clinically detectable changes in GLS on echocardiogram and serum inflammatory markers in patients. Thus, we identified 29 patients with normal IVSd but abnormal cardiac biomarkers suggestive of LC-induced cardiac dysfunction. These patients display early cardiac biomarker staging, abnormal GLS, and significantly reduced serum inflammatory markers compared to patients with clinically evident amyloid fibril deposition. Conclusion Collectively, our findings highlight early molecular and functional signatures of cardiac AL amyloidosis, with potential impact for developing improved patient biomarkers and novel therapeutics.
Collapse
|
15
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Pan H, Lu X, Ye D, Feng Y, Wan J, Ye J. The molecular mechanism of thrombospondin family members in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1337586. [PMID: 38516004 PMCID: PMC10954798 DOI: 10.3389/fcvm.2024.1337586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiovascular diseases have been identified as vital factors in global morbidity and mortality in recent years. The available evidence suggests that various cytokines and pathological proteins participate in these complicated and changeable diseases. The thrombospondin (TSP) family is a series of conserved, multidomain calcium-binding glycoproteins that cause cell-matrix and cell-cell effects via interactions with other extracellular matrix components and cell surface receptors. The TSP family has five members that can be divided into two groups (Group A and Group B) based on their different structures. TSP-1, TSP-2, and TSP-4 are the most studied proteins. Among recent studies and findings, we investigated the functions of several family members, especially TSP-5. We review the basic concepts of TSPs and summarize the relevant molecular mechanisms and cell interactions in the cardiovascular system. Targeting TSPs in CVD and other diseases has a remarkable therapeutic benefit.
Collapse
Affiliation(s)
- Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
17
|
Kupusovic J, Kessler L, Kazek S, Chodyla MK, Umutlu L, Zarrad F, Nader M, Fendler WP, Varasteh Z, Hermann K, Dobrev D, Wakili R, Rassaf T, Siebermair J, Rischpler C. Delayed 68Ga-FAPI-46 PET/MR imaging confirms ongoing fibroblast activation in patients after acute myocardial infarction. IJC HEART & VASCULATURE 2024; 50:101340. [PMID: 38313450 PMCID: PMC10835345 DOI: 10.1016/j.ijcha.2024.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Purpose of the Report Combined cardiac 68Ga-Fibroblast-Activation Protein-alpha inhibitor (FAPI) positron-emission tomography (PET) and cardiac magnetic resonance imaging (MRI) constitute a novel diagnostic tool in patients for the assessment of myocardial damage after an acute myocardial infarction (AMI). Purpose of this pilot study was to evaluate simultaneous Ga-68-FAPI-46-PET/MR imaging in the delayed phase after AMI. Material and Methods Eleven patients underwent hybrid 68Ga-FAPI-46 PET/MRI post AMI. Standardized uptake values and fibroblast activation volume (FAV) were calculated and correlated with serum biomarkers and MRI parameters. Results Significant 68Ga-FAPI-46 uptake could be demonstrated in 11 (100 %) patients after a mean period of 30.9 ± 22.0 days. FAV significantly exceeded the infarction size in MRI and showed a good correlation to MRI parameters as well as to serum biomarkers of myocardial damage. Conclusions 68Ga-FAPI-46 PET/MRI offers molecular and morphological imaging of affected myocardium after AMI. This study demonstrates ongoing fibroblast activation in a delayed phase after AMI and generates hypotheses for future studies while aiming for a better understanding of myocardial remodeling following ischemic tissue damage.
Collapse
Affiliation(s)
- Jana Kupusovic
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, Germany
- Department of Medicine and Cardiology, Goethe University, Frankfurt, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sandra Kazek
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michal Kamil Chodyla
- Department of Diagnostic and Interventional Radiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fadi Zarrad
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Nader
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang P. Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zohreh Varasteh
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Nuclear Medicine, Klinikum Rechts der Isar der TUM, Technical University of Munich, Munich, Germany
| | - Ken Hermann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Quebec, Canada
| | - Reza Wakili
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, Germany
- Department of Medicine and Cardiology, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner site Rhine-Main, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Siebermair
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Essen, Germany
- Department of Cardiology, Krankenhaus Göttlicher Heiland GmbH, Vienna, Austria
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Nuclear Medicine, Klinikum Stuttgart, Stuttgart, Germany
| |
Collapse
|
18
|
Higuchi Y, Ogata T, Nakanishi N, Nishi M, Tsuji Y, Tomita S, Conway SJ, Matoba S. Cavin-2 promotes fibroblast-to-myofibroblast trans-differentiation and aggravates cardiac fibrosis. ESC Heart Fail 2024; 11:167-178. [PMID: 37872863 PMCID: PMC10804157 DOI: 10.1002/ehf2.14571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
AIMS Transforming growth factor β (TGF-β) signalling is one of the critical pathways in fibroblast activation, and several drugs targeting the TGF-β/Smad signalling pathway in heart failure with cardiac fibrosis are being tested in clinical trials. Some caveolins and cavins, which are components of caveolae on the plasma membrane, are known for their association with the regulation of TGF-β signalling. Cavin-2 is particularly abundant in fibroblasts; however, the detailed association between Cavin-2 and cardiac fibrosis is still unclear. We tried to clarify the involvement and role of Cavin-2 in fibroblasts and cardiac fibrosis. METHODS AND RESULTS To clarify the role of Cavin-2 in cardiac fibrosis, we performed transverse aortic constriction (TAC) operations on four types of mice: wild-type (WT), Cavin-2 null (Cavin-2 KO), Cavin-2flox/flox , and activated fibroblast-specific Cavin-2 conditional knockout (Postn-Cre/Cavin-2flox/flox , Cavin-2 cKO) mice. We collected mouse embryonic fibroblasts (MEFs) from WT and Cavin-2 KO mice and investigated the effect of Cavin-2 in fibroblast trans-differentiation into myofibroblasts and associated TGF-β signalling. Four weeks after TAC, cardiac fibrotic areas in both the Cavin-2 KO and the Cavin-2 cKO mice were significantly decreased compared with each control group (WT 8.04 ± 1.58% vs. Cavin-2 KO 0.40 ± 0.03%, P < 0.01; Cavin-2flox/flox , 7.19 ± 0.50% vs. Cavin-2 cKO 0.88 ± 0.44%, P < 0.01). Fibrosis-associated mRNA expression (Col1a1, Ctgf, and Col3) was significantly attenuated in the Cavin-2 KO mice after TAC. α1 type I collagen deposition and non-vascular αSMA-positive cells (WT 43.5 ± 2.4% vs. Cavin-2 KO 25.4 ± 3.2%, P < 0.01) were reduced in the heart of the Cavin-2 cKO mice after TAC operation. The levels of αSMA protein (0.36-fold, P < 0.05) and fibrosis-associated mRNA expression (Col1a1, 0.69-fold, P < 0.01; Ctgf, 0.27-fold, P < 0.01; Col3, 0.60-fold, P < 0.01) were decreased in the Cavin-2 KO MEFs compared with the WT MEFs. On the other hand, αSMA protein levels were higher in the Cavin-2 overexpressed MEFs compared with the control MEFs (2.40-fold, P < 0.01). TGF-β1-induced Smad2 phosphorylation was attenuated in the Cavin-2 KO MEFs compared with WT MEFs (0.60-fold, P < 0.01). Heat shock protein 90 protein levels were significantly reduced in the Cavin-2 KO MEFs compared with the WT MEFs (0.69-fold, P < 0.01). CONCLUSIONS Cavin-2 loss suppressed fibroblast trans-differentiation into myofibroblasts through the TGF-β/Smad signalling. The loss of Cavin-2 in cardiac fibroblasts suppresses cardiac fibrosis and may maintain cardiac function.
Collapse
Affiliation(s)
- Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Department of Pathology and Cell Regulation, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masahiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Shinya Tomita
- Department of Cardiovascular Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Department of PediatricsIndiana University School of MedicineIndianapolisINUSA
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
19
|
Egorov D, Kopaliani I, Ameln AKV, Speier S, Deussen A. Mechanism of pro-MMP9 activation in co-culture of pro-inflammatory macrophages and cardiomyocytes. Exp Cell Res 2024; 434:113868. [PMID: 38043722 DOI: 10.1016/j.yexcr.2023.113868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVE A wide range of cardiac diseases is associated with inflammation. "Inflamed" heart tissue is infiltrated with pro-inflammatory macrophages which extensively secrete matrix metalloproteinase 9 (MMP9), a regulator of extracellular matrix turnover. As MMP9 is released from macrophages in a latent form, it requires activation. The present study addresses the role of cardiomyocytes in the course of this activation process. METHODS AND RESULTS In mono- and co-cultures of pro-inflammatory rat macrophages (bone marrow-derived and peritoneal) and cardiomyocytes (H9C2 cell line) gelatin zymography demonstrated that activated macrophages robustly secreted latent pro-MMP9, whereas cardiomyocytes could not produce the enzyme. Co-culturing of the two cell species was critical for pro-MMP9 activation and was also accompanied by processing of cardiomyocyte-secreted pro-MMP2. A cascade of pro-MMP9 activation was initiated on macrophage membrane with pro-MMP2 cleavage. Namely, pro-inflammatory macrophages expressed an active membrane type 1 MMP (MT1MMP), which activated pro-MMP2, which in turn converted pro-MMP9. Downregulation of MT1MMP in macrophages by siRNA abolished activation of both pro-MMP2 and pro-MMP9 in co-culture. In addition, both cell species secreted MMP13 as a further pro-MMP9 activator. In co-culture, activation of pro-MMP13 occurred on membranes of macrophages and was enhanced in presence of active MMP2. Using incubations with recombinant MMPs and isolated macrophage membranes, we demonstrated that while both MMP2 and MMP13 individually had the ability to activate pro-MMP9, their combined action provided a synergistic effect. CONCLUSION Activation of pro-MMP9 in a co-culture of pro-inflammatory macrophages and cardiomyocytes was the result of a complex interaction of several MMPs on the cell membrane and in the extracellular space. Both cell types contributed critically to pro-MMP9 processing.
Collapse
Affiliation(s)
- Dmitry Egorov
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Irakli Kopaliani
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anne Klotzsche-von Ameln
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zenrtum München at University Clinic Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andreas Deussen
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
21
|
Qiao B, Liu X, Wang B, Wei S. The role of periostin in cardiac fibrosis. Heart Fail Rev 2024; 29:191-206. [PMID: 37870704 DOI: 10.1007/s10741-023-10361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Cardiac fibrosis, which is the buildup of proteins in the connective tissues of the heart, can lead to end-stage extracellular matrix (ECM) remodeling and ultimately heart failure. Cardiac remodeling involves changes in gene expression in cardiac cells and ECM, which significantly leads to the morbidity and mortality in heart failure. However, despite extensive research, the elusive intricacies underlying cardiac fibrosis remain unidentified. Periostin, an extracellular matrix (ECM) protein of the fasciclin superfamily, acts as a scaffold for building complex architectures in the ECM, which improves intermolecular interactions and augments the mechanical properties of connective tissues. Recent research has shown that periostin not only contributes to normal ECM homeostasis in a healthy heart but also serves as a potent inducible regulator of cellular reorganization in cardiac fibrosis. Here, we reviewed the constitutive domain of periostin and its interaction with other ECM proteins. We have also discussed the critical pathophysiological functions of periostin in cardiac remodeling mechanisms, including two distinct yet potentially intertwined mechanisms. Furthermore, we will focus on the intrinsic complexities within periostin research, particularly surrounding the contentious issues observed in experimental findings.
Collapse
Affiliation(s)
- Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xuehao Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
22
|
Shulzhenko LV, Pershukov IV, Batyraliev TA, Karben ZA, Gurovich OV, Fettser DV, Kuznetsova TN, Ivanenkova EY, Akbalaeva BA, Rayimbek Uulu N N, Toygonbaev S, Mansharipova AT, Seidalin AO, Zyablova EI, Kalmatov RK, Imetova ZB, Vinogradskaia VV, Gaydukova EV. The Clinical Evolution of Diffuse Myocardial Fibrosis in Patients With Arterial Hypertension and Heart Failure With Mildly Reduced Ejection Fraction Treated by Olmesartan or Sacubitril / Valsartan. KARDIOLOGIIA 2023; 63:31-38. [PMID: 38156487 DOI: 10.18087/cardio.2023.12.n2557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/26/2023] [Indexed: 12/30/2023]
Abstract
Aim A 12-month evaluation of the potentialities of the angiotensin II receptor inhibitor olmesartan (Olme) and the angiotensin receptor and neprilysin inhibitor (ARNI) sacubitril/valsartan in patients with arterial hypertension (AH) and dyslipidemia in the dynamics of the following indicators of chronic heart failure (CHF): N-terminal pro-brain natriuretic peptide (NT-proBNP), left ventricular ejection fraction (LVEF), LV global longitudinal strain (LV GLS) in diffuse myocardial fibrosis (MF) previously diagnosed by magnetic resonance imaging (MRI).Material and methods Olmesartan medoxomil (n=56) and sacubitril/valsartan (n=63) were used for 12 months in patients with hypertension, dyslipidemia and NYHA functional class II-III CHF with mid-range LVEF (CHFmrEF). MF was diagnosed by the following MRI criteria: late gadolinium enhancement and an increased proportion of extracellular matrix (33% or more). The frequency of persisting late gadolinium enhancement and the increased proportion of extracellular matrix (33% or more) was evaluated at 12 months; changes in systolic blood pressure (SBP), diastolic blood pressure (DBP), NT-proBNP, and LV GLS were evaluated after 3, 6, and 12 months of follow-up.Results Baseline parameters did not differ between groups. The late gadolinium enhancement and increased proportion of extracellular matrix were present at baseline in all patients of both groups (100%; p=1.0). Already at 3 months, statistically significant decreases in SBP and DBP were observed in both groups. In addition, the LV GLS monitoring showed LV GLS significantly increased in both groups after 3 months and continued changing after 6 and 12 months. The NT-proBNP concentration significantly decreased in both groups already after 3 months and continued to decrease after 6 and 12 months. At 6 and 12 months, sacubitril/valsartan was superior to olmesartan in reducing SBP and NT-proBNP and in restoring LV GLS. At 12 months, the incidence of persisting, abnormal late gadolinium enhancement and increased proportion of extracellular matrix was significantly less in the ARNI group.Conclusion Olmesartan was demonstrated effective in the multi-modality therapy of CHFmrEF and MF in patients with AH and dyslipidemia. ARNI was superior to olmesartan in this regard, but further research of this issue is required.
Collapse
Affiliation(s)
| | - I V Pershukov
- Bobrov District Hospital, Bobrov of the Voronezh Region; Osh State University, Osh; Kazakh-Russian Medical University, Almaty
| | | | | | - O V Gurovich
- Burdenko Voronezh State Medical University, Voronezh
| | | | | | | | - B A Akbalaeva
- Osh State University, Osh; Aliev Osh-Cardio Medical Center, Osh
| | | | - S Toygonbaev
- Southern Regional Research Center of Cardiovascular Surgery, Jalal-Abad
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Vo HVT, Nguyen YT, Kim N, Lee HJ. Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity. Int J Mol Sci 2023; 24:17038. [PMID: 38069361 PMCID: PMC10707015 DOI: 10.3390/ijms242317038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative to the upkeep of various physiological processes including vision, bone health, immunity, and protection against oxidative stress. Current research highlights fat-soluble vitamins as potential therapeutics for human diseases, especially cancer. Fat-soluble vitamins exert their therapeutic effects through multiple pathways, including regulation of matrix metalloproteinases' (MMPs) expression and enzymatic activity. As MMPs have been reported to be involved in the pathology of various diseases, such as cancers, cardiovascular diseases, and neurological disorders, regulating the expression and/or activity of MMPs could be considered as a potent therapeutic strategy. Here, we summarize the properties of fat-soluble vitamins and their potential as promising candidates capable of effectively modulating MMPs through multiple pathways to treat human diseases.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
| | - Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
- Kongju National University Institute of Science Education, Kongju National University, Gongju 32588, Republic of Korea
- Kongju National University’s Physical Fitness for Health Research Lab (KNUPFHR), Kongju National University, Gongju 32588, Republic of Korea
| |
Collapse
|
24
|
Gebauer AM, Pfaller MR, Braeu FA, Cyron CJ, Wall WA. A homogenized constrained mixture model of cardiac growth and remodeling: analyzing mechanobiological stability and reversal. Biomech Model Mechanobiol 2023; 22:1983-2002. [PMID: 37482576 PMCID: PMC10613155 DOI: 10.1007/s10237-023-01747-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Cardiac growth and remodeling (G&R) patterns change ventricular size, shape, and function both globally and locally. Biomechanical, neurohormonal, and genetic stimuli drive these patterns through changes in myocyte dimension and fibrosis. We propose a novel microstructure-motivated model that predicts organ-scale G&R in the heart based on the homogenized constrained mixture theory. Previous models, based on the kinematic growth theory, reproduced consequences of G&R in bulk myocardial tissue by prescribing the direction and extent of growth but neglected underlying cellular mechanisms. In our model, the direction and extent of G&R emerge naturally from intra- and extracellular turnover processes in myocardial tissue constituents and their preferred homeostatic stretch state. We additionally propose a method to obtain a mechanobiologically equilibrated reference configuration. We test our model on an idealized 3D left ventricular geometry and demonstrate that our model aims to maintain tensional homeostasis in hypertension conditions. In a stability map, we identify regions of stable and unstable G&R from an identical parameter set with varying systolic pressures and growth factors. Furthermore, we show the extent of G&R reversal after returning the systolic pressure to baseline following stage 1 and 2 hypertension. A realistic model of organ-scale cardiac G&R has the potential to identify patients at risk of heart failure, enable personalized cardiac therapies, and facilitate the optimal design of medical devices.
Collapse
Affiliation(s)
- Amadeus M Gebauer
- Institute for Computational Mechanics, Technical University of Munich, 85748, Garching, Germany.
| | - Martin R Pfaller
- Pediatric Cardiology, Stanford Maternal & Child Health Research Institute, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, USA
| | - Fabian A Braeu
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christian J Cyron
- Institute of Continuum and Material Mechanics, Hamburg University of Technology, 21073, Hamburg, Germany
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
25
|
Li F, Wang Y, Li W, Wu J, Li S, Hu X, Tang T, Liu X. Enhanced protection against hypoxia/reoxygenation-induced apoptosis in H9c2 cells by puerarin-loaded liposomes modified with matrix metalloproteinases-targeting peptide and triphenylphosphonium. J Liposome Res 2023; 33:378-391. [PMID: 37017315 DOI: 10.1080/08982104.2023.2193845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Abstract
Based on the inhibition of mitochondrial permeability transition pore (mPTP) opening, puerarin (PUE) has a good potential to reduce myocardial ischemia/reperfusion injury (MI/RI). However, the lack of targeting of free PUE makes it difficult to reach the mitochondria. In this paper, we constructed matrix metalloproteinase-targeting peptide (MMP-TP) and triphenylphosphonium (TPP) cation co-modified liposomes loaded with PUE (PUE@T/M-L) for mitochondria-targeted drug delivery. PUE@T/M-L had a favorable particle size of 144.9 ± 0.8 nm, an encapsulation efficiency of 78.9 ± 0.6%, and a sustained-release behavior. The results of cytofluorimetric experiments showed that MMP-TP and TPP double-modified liposomes (T/M-L) enhanced intracellular uptake, escaped lysosomal capture, and promoted drug targeting into mitochondria. In addition, PUE@T/M-L enhanced the viability of hypoxia-reoxygenation (H/R) injured H9c2 cells by inhibiting mPTP opening and reactive oxygen species (ROS) production, reducing Bax expression and increasing Bcl-2 expression. It was inferred that PUE@T/M-L delivered PUE into the mitochondria of H/R injured H9c2 cells, resulting in a significant increase in cellular potency. Based on the ability of MMP-TP to bind the elevated expression of matrix metalloproteinases (MMPs), T/M-L had excellent tropism for Lipopolysaccharide (LPS) -stimulated macrophages and can significantly reduce TNF-α and ROS levels, thus allowing both drug accumulation in ischemic cardiomyocytes and reducing inflammatory stimulation during MI/RI. Fluorescence imaging results of the targeting effect using a DiR probe also indicated that DiR@T/M-L could accumulate and retain in the ischemic myocardium. Taken together, these results demonstrated the promising application of PUE@T/M-L for mitochondria-targeted drug delivery to achieve maximum therapeutic efficacy of PUE.
Collapse
Affiliation(s)
- Fengmei Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
26
|
Lin Y, Shi J, Shi B, Jia Z. MMP16 as NSCL ± P Susceptible Gene in Western Han Chinese. Cleft Palate Craniofac J 2023; 60:1625-1631. [PMID: 36120833 DOI: 10.1177/10556656221125392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The role of MMP16 in lip development is unclear. This study aimed to identify nonsyndromic cleft lip with or without palate (NSCL ± P) susceptible loci of MMP16 in western Han Chinese. DESIGN We performed targeted sequencing around MMP16 combined with a 2-phase association analysis on common variants. Phase 2 association analysis was performed with NSCL ± P specific subphenotypes (NSCL and NSCLP). Then we used rare variants burden analysis and genotyping, accompanied by motif analysis. SETTING This study was completed in a tertiary medical center. PATIENTS, PARTICIPANTS Phase 1 targeted sequencing included 159 patients with NSCL ± P and 542 normal controls; phase 2 included 1626 patients with NSCL ± P (1047 NSCL and 579 NSCLP) and 2255 normal controls. INTERVENTIONS Venous blood samples were collected from patients and used to extract DNA. MAIN OUTCOME MEASURES After Bonferroni correction, phase 1 significant threshold of p-value was 4.28 × 10-5 (0.05/1167 single nucleotide polymorphisms [SNPs]), and phase 2 was .00025 (0.05/200 SNPs). Burden analysis significant threshold p-value was .05. RESULTS Common variants phase 1 association analysis identified 11 statistically significant SNPs (lowest p = 1.90 × 10-9, odds ratio (OR) = 0.27, 95% CI: 0.17-0.44), phase 2 replication identified 16 SNPs in NSCL ± P (lowest p = 6.26 × 10-6, OR = 0.77, 95% CI: 0.69-0.86) and 9 in NSCL (lowest p = 8.44 × 10-5, OR = 0.76, 95% CI: 0.66-0.87). Rare variants burden analysis showed no significant results, genotyping results showed they were maternally inherited. CONCLUSIONS Our study identified MMP16 susceptible SNPs in NSCL ± P and NSCL, emphasizing its potential role in lip development. Our study also highlighted the importance to perform association analysis with subphenotypes divided.
Collapse
Affiliation(s)
- Yansong Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Okhovatian S, Shakeri A, Huyer LD, Radisic M. Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip. Biomacromolecules 2023; 24:4511-4531. [PMID: 37639715 PMCID: PMC10915885 DOI: 10.1021/acs.biomac.3c00387] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cardiovascular tissue constructs provide unique design requirements due to their functional responses to substrate mechanical properties and cyclic stretching behavior of cardiac tissue that requires the use of durable elastic materials. Given the diversity of polyester synthesis approaches, an opportunity exists to develop a new class of biocompatible, elastic, and immunomodulatory cardiovascular polymers. Furthermore, elastomeric polyester materials have the capability to provide tailored biomechanical synergy with native tissue and hence reduce inflammatory response in vivo and better support tissue maturation in vitro. In this review, we highlight underlying chemistry and design strategies of polyester elastomers optimized for cardiac tissue scaffolds. The major advantages of these materials such as their tunable elasticity, desirable biodegradation, and potential for incorporation of bioactive compounds are further expanded. Unique fabrication methods using polyester materials such as micromolding, 3D stamping, electrospinning, laser ablation, and 3D printing are discussed. Moreover, applications of these biomaterials in cardiovascular organ-on-a-chip devices and patches are analyzed. Finally, we outline unaddressed challenges in the field that need further study to enable the impactful translation of soft polyesters to clinical applications.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Amid Shakeri
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Locke Davenport Huyer
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Milica Radisic
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto; Ontario, M5S 3E5; Canada
| |
Collapse
|
28
|
Sullivan H, Liang Y, Worthington K, Luo C, Gianneschi NC, Christman KL. Enzyme-Responsive Nanoparticles for the Targeted Delivery of an MMP Inhibitor to Acute Myocardial Infarction. Biomacromolecules 2023; 24:4695-4704. [PMID: 37695847 PMCID: PMC10646957 DOI: 10.1021/acs.biomac.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Indexed: 09/13/2023]
Abstract
Herein, we have developed a drug-loaded matrix metalloproteinase (MMP)-responsive micellar nanoparticle (NP) intended for minimally invasive intravenous injection during the acute phase of myocardial infarction (MI) and prolonged retention in the heart for small-molecule drug delivery. Peptide-polymer amphiphiles (PPAs) bearing a small-molecule MMP inhibitor (MMPi), PD166793, were synthesized via ring-opening metathesis polymerization (ROMP) and formulated into spherical micelles by transitioning to aqueous solution. The resulting micellar NPs underwent MMP-induced aggregation, demonstrating enzyme responsiveness. Using a rat MI model, we observed that these NPs were capable of successfully extravasating into the infarcted region of the heart where they were retained due to the active, enzyme-mediated targeting, remaining detectable after 1 week post administration without increasing macrophage recruitment. Furthermore, in vitro studies show that these NPs demonstrated successful drug release following MMP treatment and maintained drug bioactivity as evidenced by comparable MMP inhibition to free MMPi. This work establishes a targeted NP platform for delivering small-molecule therapeutics to the heart after MI, opening possibilities for myocardial infarction treatment.
Collapse
Affiliation(s)
- Holly
L. Sullivan
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Yifei Liang
- Department
of Chemistry, International Institute for Nanotechnology, Simpson-Querrey
Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kendra Worthington
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Colin Luo
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry, International Institute for Nanotechnology, Simpson-Querrey
Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Departments
of Materials Science & Engineering, Biomedical Engineering and
Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry & Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Karen L. Christman
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Antonopoulos AS, Papastamos C, Cokkinos DV, Tsioufis K, Tousoulis D. Epicardial Adipose Tissue in Myocardial Disease: From Physiology to Heart Failure Phenotypes. Curr Probl Cardiol 2023; 48:101841. [PMID: 37244513 DOI: 10.1016/j.cpcardiol.2023.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Epicardial adipose tissue (EAT) is increasingly being recognized as a determinant of myocardial biology. The EAT-heart crosstalk suggests causal links between dysfunctional EAT and cardiomyocyte impairment. Obesity promotes EAT dysfunction and shifts in secreted adipokines which adversely affect cardiac metabolism, induce cardiomyocyte inflammation, redox imbalance and myocardial fibrosis. Thus, EAT determines cardiac phenotype via effects on cardiac energetics, contractility, diastolic function, and atrial conduction. Vice-versa the EAT is altered in heart failure (HF), and such phenotypic changes can be detected by noninvasive imaging or incorporated in Artificial Intelligence-enhanced tools to aid the diagnosis, subtyping or risk prognostication of HF. In the present article, we summarize the links between EAT and the heart, explaining how the study of epicardial adiposity can improve the understanding of cardiac disease, serve as a source of diagnostic and prognostic biomarkers, and as a potential therapeutic target in HF to improve clinical outcomes.
Collapse
Affiliation(s)
- Alexios S Antonopoulos
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece; Clinical, Experimental Surgery and Translational Research Centre, Biomedical Research Foundation Academy of Athens, Athens, Greece.
| | - Charalampos Papastamos
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Dennis V Cokkinos
- Clinical, Experimental Surgery and Translational Research Centre, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Hartley B, Bassiouni W, Schulz R, Julien O. The roles of intracellular proteolysis in cardiac ischemia-reperfusion injury. Basic Res Cardiol 2023; 118:38. [PMID: 37768438 DOI: 10.1007/s00395-023-01007-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Ischemic heart disease remains a leading cause of human mortality worldwide. One form of ischemic heart disease is ischemia-reperfusion injury caused by the reintroduction of blood supply to ischemic cardiac muscle. The short and long-term damage that occurs due to ischemia-reperfusion injury is partly due to the proteolysis of diverse protein substrates inside and outside of cardiomyocytes. Ischemia-reperfusion activates several diverse intracellular proteases, including, but not limited to, matrix metalloproteinases, calpains, cathepsins, and caspases. This review will focus on the biological roles, intracellular localization, proteolytic targets, and inhibitors of these proteases in cardiomyocytes following ischemia-reperfusion injury. Recognition of the intracellular function of each of these proteases includes defining their activation, proteolytic targets, and their inhibitors during myocardial ischemia-reperfusion injury. This review is a step toward a better understanding of protease activation and involvement in ischemic heart disease and developing new therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Wesam Bassiouni
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
31
|
Ma ZG, Yuan YP, Fan D, Zhang X, Teng T, Song P, Kong CY, Hu C, Wei WY, Tang QZ. IRX2 regulates angiotensin II-induced cardiac fibrosis by transcriptionally activating EGR1 in male mice. Nat Commun 2023; 14:4967. [PMID: 37587150 PMCID: PMC10432509 DOI: 10.1038/s41467-023-40639-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Cardiac fibrosis is a common feature of chronic heart failure. Iroquois homeobox (IRX) family of transcription factors plays important roles in heart development; however, the role of IRX2 in cardiac fibrosis has not been clarified. Here we report that IRX2 expression is significantly upregulated in the fibrotic hearts. Increased IRX2 expression is mainly derived from cardiac fibroblast (CF) during the angiotensin II (Ang II)-induced fibrotic response. Using two CF-specific Irx2-knockout mouse models, we show that deletion of Irx2 in CFs protect against pathological fibrotic remodelling and improve cardiac function in male mice. In contrast, Irx2 gain of function in CFs exaggerate fibrotic remodelling. Mechanistically, we find that IRX2 directly binds to the promoter of the early growth response factor 1 (EGR1) and subsequently initiates the transcription of several fibrosis-related genes. Our study provides evidence that IRX2 regulates the EGR1 pathway upon Ang II stimulation and drives cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China.
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China.
| |
Collapse
|
32
|
Fujimori ASS, Ribeiro APD, Pereira AG, Dias-Audibert FL, Tonon CR, dos Santos PP, Dantas D, Zanati SG, Catharino RR, Zornoff LAM, Azevedo PS, de Paiva SAR, Okoshi MP, Lima EO, Polegato BF. Effects of Pera Orange Juice and Moro Orange Juice in Healthy Rats: A Metabolomic Approach. Metabolites 2023; 13:902. [PMID: 37623846 PMCID: PMC10456557 DOI: 10.3390/metabo13080902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Heart failure is a cardiovascular disease with high prevalence, morbidity, and mortality. Several natural compounds have been studied for attenuating pathological cardiac remodeling. Orange juice has been associated with cardiovascular disease prevention by attenuating oxidative stress. However, most studies have evaluated isolated phytochemicals rather than whole orange juice and usually under pathological conditions. In this study, we evaluated plasma metabolomics in healthy rats receiving Pera or Moro orange juice to identify possible metabolic pathways and their effects on the heart. METHODS Sixty male Wistar rats were allocated into 3 groups: control (C), Pera orange juice (PO), and Moro orange juice (MO). PO and MO groups received Pera orange juice or Moro orange juice, respectively, and C received water with maltodextrin (100 g/L). Echocardiogram and euthanasia were performed after 4 weeks. Plasma metabolomic analysis was performed by high-resolution mass spectrometry. Type I collagen was evaluated in picrosirius red-stained slides and matrix metalloproteinase (MMP)-2 activity by zymography. MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2, TIMP-4, type I collagen, and TNF-α protein expression were evaluated by Western blotting. RESULTS We differentially identified three metabolites in PO (N-docosahexaenoyl-phenylalanine, diglyceride, and phosphatidylethanolamine) and six in MO (N-formylmaleamic acid, N2-acetyl-L-ornithine, casegravol isovalerate, abscisic alcohol 11-glucoside, cyclic phosphatidic acid, and torvoside C), compared to controls, which are recognized for their possible roles in cardiac remodeling, such as extracellular matrix regulation, inflammation, oxidative stress, and membrane integrity. Cardiac function, collagen level, MMP-2 activity, and MMP-9, TIMP-2, TIMP-4, type I collagen, and TNF-α protein expression did not differ between groups. CONCLUSION Ingestion of Pera and Moro orange juice induces changes in plasma metabolites related to the regulation of extracellular matrix, inflammation, oxidative stress, and membrane integrity in healthy rats. Moro orange juice induces a larger number of differentially expressed metabolites than Pera orange juice. Alterations in plasma metabolomics induced by both orange juice are not associated with modifications in cardiac extracellular matrix components. Our results allow us to postulate that orange juice may have beneficial effects on pathological cardiac remodeling.
Collapse
Affiliation(s)
- Anderson S. S. Fujimori
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Ana P. D. Ribeiro
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Amanda G. Pereira
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Flávia L. Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil; (F.L.D.-A.); (R.R.C.)
| | - Carolina R. Tonon
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Priscila P. dos Santos
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Danielle Dantas
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Silmeia G. Zanati
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Rodrigo R. Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil; (F.L.D.-A.); (R.R.C.)
| | - Leonardo A. M. Zornoff
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Paula S. Azevedo
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Sergio A. R. de Paiva
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Marina P. Okoshi
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Estela O. Lima
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| | - Bertha F. Polegato
- Internal Medicine Department, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.S.S.F.); (A.P.D.R.); (A.G.P.); (C.R.T.); (P.P.d.S.); (D.D.); (S.G.Z.); (L.A.M.Z.); (P.S.A.); (S.A.R.d.P.); (M.P.O.); (E.O.L.)
| |
Collapse
|
33
|
McNair BD, Shorthill SK, Bruns DR. More than just a small left ventricle: the right ventricular fibroblast and ECM in health and disease. Am J Physiol Heart Circ Physiol 2023; 325:H385-H397. [PMID: 37389951 PMCID: PMC10396282 DOI: 10.1152/ajpheart.00213.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Fibroblasts intricately organize and regulate the extracellular matrix (ECM) in cardiac health and disease. Excess deposition of ECM proteins causes fibrosis, resulting in disrupted signaling conduction and contributing to the development of arrhythmias and impaired cardiac function. Fibrosis is causally involved in cardiac failure in the left ventricle (LV). Fibrosis likely occurs in right ventricle (RV) failure, yet mechanisms remain unclear. Indeed, RV fibrosis is poorly understood with mechanisms often extrapolated from the LV to the RV. However, emerging data suggest that the LV and RV are distinct cardiac chambers and differ in regulation of the ECM and response to fibrotic stimuli. In the present review, we will discuss differences in ECM regulation in the healthy RV and LV. We will discuss the importance of fibrosis in the development of RV disease in pressure overload, inflammation, and aging. During this discussion, we will highlight mechanisms of fibrosis with respect to the synthesis of ECM proteins while acknowledging the importance of considering collagen breakdown. We will also discuss current knowledge of antifibrotic therapies in the RV and the need for additional research to help delineate the shared and distinct mechanisms of RV and LV fibrosis.
Collapse
Affiliation(s)
- Benjamin D McNair
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Samantha K Shorthill
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
- Wyoming WWAMI Medical Education, Laramie, Wyoming, United States
| |
Collapse
|
34
|
Zingaropoli MA, Latronico T, Pasculli P, Masci GM, Merz R, Ciccone F, Dominelli F, Del Borgo C, Lichtner M, Iafrate F, Galardo G, Pugliese F, Panebianco V, Ricci P, Catalano C, Ciardi MR, Liuzzi GM, Mastroianni CM. Tissue Inhibitor of Matrix Metalloproteinases-1 (TIMP-1) and Pulmonary Involvement in COVID-19 Pneumonia. Biomolecules 2023; 13:1040. [PMID: 37509076 PMCID: PMC10377146 DOI: 10.3390/biom13071040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Background: The aim of the study was to longitudinally evaluate the association between MMP-2, MMP-9, TIMP-1 and chest radiological findings in COVID-19 patients. Methods: COVID-19 patients were evaluated based on their hospital admission (baseline) and three months after hospital discharge (T post) and were stratified into ARDS and non-ARDS groups. As a control group, healthy donors (HD) were enrolled. Results: At the baseline, compared to HD (n = 53), COVID-19 patients (n = 129) showed higher plasma levels of MMP-9 (p < 0.0001) and TIMP-1 (p < 0.0001) and the higher plasma activity of MMP-2 (p < 0.0001) and MMP-9 (p < 0.0001). In the ARDS group, higher plasma levels of MMP-9 (p = 0.0339) and TIMP-1 (p = 0.0044) and the plasma activity of MMP-2 (p = 0.0258) and MMP-9 (p = 0.0021) compared to non-ARDS was observed. A positive correlation between the plasma levels of TIMP-1 and chest computed tomography (CT) score (ρ = 0.2302, p = 0.0160) was observed. At the T post, a reduction in plasma levels of TIMP-1 (p < 0.0001), whereas an increase in the plasma levels of MMP-9 was observed (p = 0.0088). Conclusions: The positive correlation between TIMP-1 with chest CT scores highlights its potential use as a marker of fibrotic burden. At T post, the increase in plasma levels of MMP-9 and the reduction in plasma levels of TIMP-1 suggested that inflammation and fibrosis resolution were still ongoing.
Collapse
Affiliation(s)
- Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giorgio Maria Masci
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberta Merz
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cosmo Del Borgo
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, 04100 Latina, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, 04100 Latina, Italy
- Department of Neurosciences Mental Health and Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Franco Iafrate
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Gioacchino Galardo
- Medical Emergency Unit, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Francesco Pugliese
- Department of Specialist Surgery and Organ Transplantation "Paride Stefanini", Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Valeria Panebianco
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Paolo Ricci
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Unit of Emergency Radiology, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
35
|
Zhang Z, Shayani G, Xu Y, Kim A, Hong Y, Feng H, Zhu H. Induction of Senescence by Loss of Gata4 in Cardiac Fibroblasts. Cells 2023; 12:1652. [PMID: 37371122 PMCID: PMC10297635 DOI: 10.3390/cells12121652] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac fibroblasts are a major source of cardiac fibrosis during heart repair processes in various heart diseases. Although it has been shown that cardiac fibroblasts become senescent in response to heart injury, it is unknown how the senescence of cardiac fibroblasts is regulated in vivo. Gata4, a cardiogenic transcription factor essential for heart development, is also expressed in cardiac fibroblasts. However, it remains elusive about the role of Gata4 in cardiac fibroblasts. To define the role of Gata4 in cardiac fibroblasts, we generated cardiac fibroblast-specific Gata4 knockout mice by cross-breeding Tcf21-MerCreMer mice with Gata4fl/fl mice. Using this mouse model, we could genetically ablate Gata4 in Tcf21 positive cardiac fibroblasts in an inducible manner upon tamoxifen administration. We found that cardiac fibroblast-specific deletion of Gata4 spontaneously induces senescence in cardiac fibroblasts in vivo and in vitro. We also found that Gata4 expression in both cardiomyocytes and non-myocytes significantly decreases in the aged heart. Interestingly, when αMHC-MerCreMer mice were bred with Gata4fl/fl mice to generate cardiomyocyte-specific Gata4 knockout mice, no senescent cells were detected in the hearts. Taken together, our results demonstrate that Gata4 deficiency in cardiac fibroblasts activates a program of cellular senescence, suggesting a novel molecular mechanism of cardiac fibroblast senescence.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Gabriella Shayani
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yanping Xu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Ashley Kim
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yurim Hong
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Haiyue Feng
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
36
|
Salomão R, Assis V, de Sousa Neto IV, Petriz B, Babault N, Durigan JLQ, de Cássia Marqueti R. Involvement of Matrix Metalloproteinases in COVID-19: Molecular Targets, Mechanisms, and Insights for Therapeutic Interventions. BIOLOGY 2023; 12:843. [PMID: 37372128 PMCID: PMC10295079 DOI: 10.3390/biology12060843] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
MMPs are enzymes involved in SARS-CoV-2 pathogenesis. Notably, the proteolytic activation of MMPs can occur through angiotensin II, immune cells, cytokines, and pro-oxidant agents. However, comprehensive information regarding the impact of MMPs in the different physiological systems with disease progression is not fully understood. In the current study, we review the recent biological advances in understanding the function of MMPs and examine time-course changes in MMPs during COVID-19. In addition, we explore the interplay between pre-existing comorbidities, disease severity, and MMPs. The reviewed studies showed increases in different MMP classes in the cerebrospinal fluid, lung, myocardium, peripheral blood cells, serum, and plasma in patients with COVID-19 compared to non-infected individuals. Individuals with arthritis, obesity, diabetes, hypertension, autoimmune diseases, and cancer had higher MMP levels when infected. Furthermore, this up-regulation may be associated with disease severity and the hospitalization period. Clarifying the molecular pathways and specific mechanisms that mediate MMP activity is important in developing optimized interventions to improve health and clinical outcomes during COVID-19. Furthermore, better knowledge of MMPs will likely provide possible pharmacological and non-pharmacological interventions. This relevant topic might add new concepts and implications for public health in the near future.
Collapse
Affiliation(s)
- Rebecca Salomão
- Laboratory of Molecular Analysis, Postgraduate Program in Health and Sciences and Technology, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil
| | - Victoria Assis
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-907, SP, Brazil;
| | - Bernardo Petriz
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia 71966-700, DF, Brazil;
- Laboratory of Exercise Molecular Physiology, University Center UDF, Brasília 71966-900, DF, Brazil
| | - Nicolas Babault
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France;
- Centre d’Expertise de la Performance, UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France
| | - João Luiz Quaglioti Durigan
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| | - Rita de Cássia Marqueti
- Laboratory of Molecular Analysis, Postgraduate Program in Health and Sciences and Technology, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| |
Collapse
|
37
|
Lin LC, Tu B, Song K, Liu ZY, Sun H, Zhou Y, Sha JM, Yang JJ, Zhang Y, Zhao JY, Tao H. Mitochondrial quality control in cardiac fibrosis: Epigenetic mechanisms and therapeutic strategies. Metabolism 2023:155626. [PMID: 37302693 DOI: 10.1016/j.metabol.2023.155626] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Cardiac fibrosis (CF) is considered an ultimate common pathway of a wide variety of heart diseases in response to diverse pathological and pathophysiological stimuli. Mitochondria are characterized as isolated organelles with a double-membrane structure, and they primarily contribute to and maintain highly dynamic energy and metabolic networks whose distribution and structure exert potent support for cellular properties and performance. Because the myocardium is a highly oxidative tissue with high energy demands to continuously pump blood, mitochondria are the most abundant organelles within mature cardiomyocytes, accounting for up to one-third of the total cell volume, and play an essential role in maintaining optimal performance of the heart. Mitochondrial quality control (MQC), including mitochondrial fusion, fission, mitophagy, mitochondrial biogenesis, and mitochondrial metabolism and biosynthesis, is crucial machinery that modulates cardiac cells and heart function by maintaining and regulating the morphological structure, function and lifespan of mitochondria. Certain investigations have focused on mitochondrial dynamics, including manipulating and maintaining the dynamic balance of energy demand and nutrient supply, and the resultant findings suggest that changes in mitochondrial morphology and function may contribute to bioenergetic adaptation during cardiac fibrosis and pathological remodeling. In this review, we discuss the function of epigenetic regulation and molecular mechanisms of MQC in the pathogenesis of CF and provide evidence for targeting MQC for CF. Finally, we discuss how these findings can be applied to improve the treatment and prevention of CF.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
38
|
Xu J, Zhou Z, Zheng Y, Yang S, Huang K, Li H. Roles of inflammasomes in viral myocarditis. Front Cell Infect Microbiol 2023; 13:1149911. [PMID: 37256114 PMCID: PMC10225676 DOI: 10.3389/fcimb.2023.1149911] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Viral myocarditis (VMC), characterized by viral infection-induced inflammation, is a life-threatening disease associated with dilated cardiomyopathy or heart failure. Innate immunity plays a crucial role in the progression of inflammation, in which inflammasomes provide a platform for the secretion of cytokines and mediate pyroptosis. Inflammasomes are rising stars gaining increasing attention. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the caspase recruitment domain-containing protein 8 (CARD8) inflammasome, and the caspase-11 inflammasome are three inflammasomes that were reported to affect the process and prognosis of VMC. These inflammasomes can be activated by a wide range of cellular events. Accumulating evidence has suggested that inflammasomes are involved in different stages of VMC, including the trigger and progression of myocardial injury and remodeling after infection. In this review, we summarized the pathways involving inflammasomes in VMC and discussed the potential therapies targeting inflammasomes and related pathways.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidan Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sai Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Tan R, Yuan M, Wang L, Liu J, Jiang G, Liao J, Xia YL, Yin X, Liu Y. The pathogenesis of aging-induced left atrial appendage thrombus formation and cardioembolic stroke in mice is influenced by inflammation-derived matrix metalloproteinases. Thromb Res 2023; 226:69-81. [PMID: 37121014 DOI: 10.1016/j.thromres.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
Elderly people without atrial fibrillation (AF) still have a high incidence of cardioembolic stroke, suggesting that thrombus formation within the left atrial appendage (LAA) may also occur in an AF-independent manner. In the present study, we explored the potential mechanisms for aging-induced LAA thrombus formation and stroke in mice. We monitored stroke events in 180 aging male mice (14-24 months) and assessed left atrium (LA) remodeling by echocardiography at different ages. Mice that had stroke were implanted with telemeters to confirm AF. Histological features of LA and LAA thrombi were examined, as well as collagen content, expression of matrix metalloproteinases (MMPs), and leukocyte density in the atria at different ages, in mice with or without stroke. Also, the effects of MMP inhibition on stroke incidence and atrial inflammation were tested. We detected 20 mice (11 %) with stroke, 60 % of which were within 18-19 months of age. Although we did not detect AF in mice with stroke, we detected the presence of LAA thrombi, suggesting that stroke originated from the hearts of these mice. Compared with 18-month-old mice without stroke, 18-month-old stroke mice had enlarged LA with a very thin endocardium, that was associated with less collagen and heightened MMP expression in the atria. During aging, we found that the expression of mRNAs for atrial MMP7, MMP8, and MMP9 peaked at 18 months, which closely correlated with reductions in collagen content and the time-window for cardioembolic stroke in these mice. Treatment of mice with an MMP inhibitor at 17-18 months of age reduced atrial inflammation and remodeling, and stroke incidence. Taken together, our study demonstrates that aging-induced LAA thrombus formation occurs through a mechanism involving upregulation of MMPs and breakdown of collagen, and that treatment with an MMP inhibitor may be effective as a treatment strategy for this heart condition.
Collapse
Affiliation(s)
- Ruopeng Tan
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mengyang Yuan
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Wang
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingjie Liu
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guinan Jiang
- Department of Interventional Therapy, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yun-Long Xia
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaomeng Yin
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yang Liu
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
40
|
Shiraishi M, Suzuki K, Yamaguchi A. Effect of mechanical tension on fibroblast transcriptome profile and regulatory mechanisms of myocardial collagen turnover. FASEB J 2023; 37:e22841. [PMID: 36856975 DOI: 10.1096/fj.202201899r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
Excess deposition of extracellular matrix in the myocardium is a predictor of reduced left ventricular function. Although reducing the hemodynamic load is known to improve myocardial fibrosis, the mechanisms underlying the reversal of the fibrosis have not been elucidated. We focused on the elasticity of myocardial tissue, which is assumed to influence the fibroblast phenotype. Normal and fibrotic myocardium were cultured in 16 kPa and 64 kPa silicone gel-coated dishes supplemented with recombinant TGFβ protein, respectively. Matrix-degrading myocardium was cultured in 64 kPa silicone gel-coated dishes with recombinant TGFβ protein and then in 16 kPa silicone gel-coated dishes. Cardiac fibroblasts were cultured in this three-part in vitro pathological models and compared. Fibroblasts differentiated into activated or matrix-degrading types in response to the pericellular environment. Comprehensive gene expression analysis of fibroblasts in each in vitro condition showed Selenbp1 to be one of the genes responsible for regulating differentiation of fibroblasts. In vitro knockdown of Selenbp1 enhanced fibroblast activation and inhibited conversion to the matrix-degrading form. In vivo knockdown of Selenbp1 resulted in structural changes in the left ventricle associated with progressive tissue fibrosis and left ventricular diastolic failure. Selenbp1 is involved in regulating fibroblast differentiation and appears to be one of the major molecules regulating collagen turnover in cardiac fibrosis.
Collapse
Affiliation(s)
- Manabu Shiraishi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Ken Suzuki
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Cerebral and Cardiovascular Center Hospital, Osaka, Japan
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
41
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
42
|
Li D, Son Y, Jang M, Wang S, Zhu W. Nanoparticle Based Cardiac Specific Drug Delivery. BIOLOGY 2023; 12:biology12010082. [PMID: 36671774 PMCID: PMC9856055 DOI: 10.3390/biology12010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Heart failure secondary to myocardial injuries is a leading cause of death worldwide. Recently, a growing number of novel therapies have emerged for injured myocardium repairment. However, delivering therapeutic agents specifically to the injured heart remains a significant challenge. Nanoparticles are the most commonly used vehicles for targeted drug delivery. Various nanoparticles have been synthesized to deliver drugs and other therapeutic molecules to the injured heart via passive or active targeting approaches, and their targeting specificity and therapeutic efficacies have been investigated. Here, we summarized nanoparticle-based, cardiac-specific drug delivery systems, their potency for treating heart diseases, and the mechanisms underlying these cardiac-targeting strategies. We also discussed the clinical studies that have employed nanoparticle-based cardiac-specific drug delivery.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Department of Cardiology, Dongfang Hospital, The Second Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yura Son
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Michelle Jang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (S.W.); (W.Z.)
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Correspondence: (S.W.); (W.Z.)
| |
Collapse
|
43
|
Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1162754. [PMID: 37065745 PMCID: PMC10102655 DOI: 10.3389/fendo.2023.1162754] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a main cardiovascular complication of diabetes, can eventually develop into heart failure and affect the prognosis of patients. Myocardial fibrosis is the main factor causing ventricular wall stiffness and heart failure in DCM. Early control of myocardial fibrosis in DCM is of great significance to prevent or postpone the progression of DCM to heart failure. A growing body of evidence suggests that cardiomyocytes, immunocytes, and endothelial cells involve fibrogenic actions, however, cardiac fibroblasts, the main participants in collagen production, are situated in the most central position in cardiac fibrosis. In this review, we systematically elaborate the source and physiological role of myocardial fibroblasts in the context of DCM, and we also discuss the potential action and mechanism of cardiac fibroblasts in promoting fibrosis, so as to provide guidance for formulating strategies for prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
44
|
Dalal S, Shook PL, Singh M, Singh K. Post-ischemic cardioprotective potential of exogenous ubiquitin in myocardial remodeling late after ischemia/reperfusion injury. Life Sci 2023; 312:121216. [PMID: 36435225 PMCID: PMC9784153 DOI: 10.1016/j.lfs.2022.121216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
AIMS Pretreatment with ubiquitin (UB) associates with preservation of heart function 3 days post-ischemia/reperfusion (I/R) injury. This study investigated the cardioprotective potential of exogenous UB late after myocardial I/R injury. To enhance the clinical relevance, UB treatment was started at the time of reperfusion and continued for 28 days post-I/R. MAIN METHODS Mice underwent ligation of the left anterior descending coronary artery for 45 min. At the time of reperfusion, mice were treated with UB or saline which was continued until 28 days post-I/R. Heart function was measured at 3, 7, 14 and 28 days post-I/R using echocardiography. Biochemical parameters of the heart and serum cytokines/chemokines levels were measured 28 days post-I/R. KEY FINDINGS I/R decreased heart function and induced LV dilation at all time points post-I/R. However, I/R + UB exhibited improved heart function throughout the observation period, while LV dilation was lower in I/R + UB group at 3, 14 and 28 days post-I/R. I/R-mediated increase in myocardial fibrosis, hypertrophy and apoptosis were significantly lower in I/R + UB vs. I/R. Collagen-1α1 and MMP-2 expression was lower, while MMP-9 and TIMP-2 expression was higher in I/R + UB vs. I/R. MYH-7B (hypertrophy marker) expression was lower in I/R + UB vs. I/R. GSK3β activation was lower (vs. Sham), while activation of ERK1/2 (vs. I/R) and AKT (vs. Sham) was higher in I/R + UB. Serum levels of IL-6, G-CSF and IL-2 were lower in I/R + UB vs. I/R. SIGNIFICANCE Post-ischemic UB treatment improves heart function, and associates with decreased myocardial fibrosis, apoptosis, hypertrophy and serum cytokine/chemokine levels.
Collapse
Affiliation(s)
- Suman Dalal
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA; Department of Health Sciences, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Paige L Shook
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA; James H Quillen Veterans Affairs Medical Center, Mountain Home, TN, USA.
| |
Collapse
|
45
|
Screening for Biomarkers Associated with Left Ventricular Function During Follow-up After Acute Coronary Syndrome. J Cardiovasc Transl Res 2023; 16:244-254. [PMID: 35727504 PMCID: PMC9944718 DOI: 10.1007/s12265-022-10285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
A proportion of patients with the acute coronary syndrome (ACS) will suffer progressive remodeling of the left ventricular (LV). The aim was to screen for important biomarkers from a large-scale protein profiling in 420 ACS patients and define biomarkers associated with reduced LV function early and 1 year after the ACS. Transferrin receptor protein 1 and NT-proBNP were associated with LV function early and after 1 year, whereas osteopontin and soluble ST2 were associated with LV function in the early phase and, tissue-type plasminogen activator after 1 year. Fatty-acid-binding protein and galectin 3 were related to worse GLS but not to LVEF 1 year after the ACS. Proteins involved in remodeling and iron transport in cardiomyocytes were related to worse LV function after ACS. Biomarkers for energy metabolism and fibrosis were exclusively related to worse LV function by GLS. Studies on the functions of these proteins might add knowledge to the biological processes involved in heart failure in long term after ACS.
Collapse
|
46
|
Jalilinejad N, Rabiee M, Baheiraei N, Ghahremanzadeh R, Salarian R, Rabiee N, Akhavan O, Zarrintaj P, Hejna A, Saeb MR, Zarrabi A, Sharifi E, Yousefiasl S, Zare EN. Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering. Bioeng Transl Med 2023; 8:e10347. [PMID: 36684103 PMCID: PMC9842069 DOI: 10.1002/btm2.10347] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.
Collapse
Affiliation(s)
- Negin Jalilinejad
- Biomaterial Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | | | - Reza Salarian
- Biomedical Engineering DepartmentMaziar UniversityRoyanMazandaranIran
| | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH), 77 Cheongam‐ro, Nam‐guPohangGyeongbukSouth Korea
| | - Omid Akhavan
- Department of PhysicsSharif University of TechnologyTehranIran
| | - Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Aleksander Hejna
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | | |
Collapse
|
47
|
Quercetin decreases cardiac hypertrophic mediators and maladaptive coronary arterial remodeling in renovascular hypertensive rats without improving cardiac function. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:939-949. [PMID: 36527481 DOI: 10.1007/s00210-022-02349-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Oxidative stress and MMP activity are found in the hearts and arteries in hypertension and contribute to the resulting hypertrophy and dysfunction. Quercetin is a flavonoid that reduces MMP-2 activity and ameliorates hypertrophic vascular remodeling of hypertension. The hypothesis is that treatment of hypertensive rats with quercetin ameliorates coronary maladaptive remodeling and decreases hypertrophic cardiac dysfunction by decreasing oxidative stress and MMP activity. Male Sprague-Dawley two-kidney, one-clip (2K1C) and Sham rats were treated with quercetin (10 mg/kg/day) or its vehicle for 8 weeks by gavage. Rats were analyzed at 10 weeks of hypertension. Systolic blood pressure (SBP) was examined by tail-cuff plethysmography. Cardiac left ventricles were used to determine MMP activity by in situ zymography and oxidative stress by dihydroethidium. Immunofluorescence was performed to detect transforming growth factor (TGF)-β and nuclear factor kappa B (NFkB). Morphological analyses of heart and coronary arteries were done by H&E and picrosirius red, and cardiac function was measured by Langendorff. SBP was increased in 2K1C rats, and quercetin did not reduce it. However, quercetin decreased both oxidative stress and TGF-β in the left ventricles of 2K1C rats. Quercetin also decreased the accentuated MMP activity in left ventricles and coronary arteries of 2K1C rats. Quercetin ameliorated hypertension-induced coronary arterial hypertrophic remodeling, although it did not reduce cardiac hypertrophic remodeling and dysfunction. Quercetin decreases cardiac oxidative stress and TGF-β and MMP activity in addition to improving coronary remodeling, yet does not ameliorate cardiac dysfunction in 2K1C rats.
Collapse
|
48
|
Han X, Yang Y, Zhang M, Li L, Xue Y, Jia Q, Wang X, Guan S. Liquiritin Protects Against Cardiac Fibrosis After Myocardial Infarction by Inhibiting CCL5 Expression and the NF-κB Signaling Pathway. Drug Des Devel Ther 2022; 16:4111-4125. [PMID: 36483459 PMCID: PMC9724582 DOI: 10.2147/dddt.s386805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose Despite significant advances in interventional treatment, myocardial infarction (MI) and subsequent cardiac fibrosis remain major causes of high mortality worldwide. Liquiritin (LQ) is a flavonoid extract from licorice that possesses a variety of pharmacological properties. However, to our knowledge, the effects of LQ on myocardial fibrosis after MI have not been reported in detail. The aim of our research was to explore the potential role and mechanism of LQ in MI-induced myocardial damage. Methods The MI models were established by ligating the left anterior descending branch of the coronary artery. Next, rats were orally administered LQ once a day for 14 days. Biochemical assays, histopathological observations, ELISA, and Western blotting analyses were then conducted. Results LQ improved the heart appearance and ECG, decreased cardiac weight index and reduced levels of cardiac-specific markers such as CK, CK-MB, LDH, cTnI and BNP. Meanwhile, LQ reduced myocardial infarct size and improved hemodynamic parameters such as LVEDP, LVSP and ±dp/dtmax. Moreover, H&E staining showed that LQ attenuated the pathological damage caused by MI. Masson staining showed that LQ alleviated myocardial cell disorder and fibrosis while reducing collagen deposition. LQ also decreased the levels of oxidative stress and inflammation. Western blotting demonstrated that LQ significantly down-regulated the expressions of Collagen I, Collagen III, TGF-β1, MMP-9, α-SMA, CCL5, and p-NF-κB. Conclusion LQ protected against myocardial fibrosis following MI by improving cardiac function, and attenuating oxidative damage and inflammatory response, which may be associated with inhibition of CCL5 expression and the NF-κB pathway.
Collapse
Affiliation(s)
- Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Yakun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Muqing Zhang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China,Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Li Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Yucong Xue
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiangting Wang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, People’s Republic of China,Correspondence: Xiangting Wang, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China, Email
| | - Shengjiang Guan
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China,School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China,Shengjiang Guan, Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China, Email
| |
Collapse
|
49
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
50
|
Martino F, Varadarajan NM, Perestrelo AR, Hejret V, Durikova H, Vukic D, Horvath V, Cavalieri F, Caruso F, Albihlal WS, Gerber AP, O'Connell MA, Vanacova S, Pagliari S, Forte G. The mechanical regulation of RNA binding protein hnRNPC in the failing heart. Sci Transl Med 2022; 14:eabo5715. [PMID: 36417487 DOI: 10.1126/scitranslmed.abo5715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cardiac pathologies are characterized by intense remodeling of the extracellular matrix (ECM) that eventually leads to heart failure. Cardiomyocytes respond to the ensuing biomechanical stress by reexpressing fetal contractile proteins via transcriptional and posttranscriptional processes, such as alternative splicing (AS). Here, we demonstrate that the heterogeneous nuclear ribonucleoprotein C (hnRNPC) is up-regulated and relocates to the sarcomeric Z-disc upon ECM pathological remodeling. We show that this is an active site of localized translation, where the ribonucleoprotein associates with the translation machinery. Alterations in hnRNPC expression, phosphorylation, and localization can be mechanically determined and affect the AS of mRNAs involved in mechanotransduction and cardiovascular diseases, including Hippo pathway effector Yes-associated protein 1. We propose that cardiac ECM remodeling serves as a switch in RNA metabolism by affecting an associated regulatory protein of the spliceosome apparatus. These findings offer new insights on the mechanism of mRNA homeostatic mechanoregulation in pathological conditions.
Collapse
Affiliation(s)
- Fabiana Martino
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Faculty of Medicine, Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic.,Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic.,Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Nandan Mysore Varadarajan
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Ana Rubina Perestrelo
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Vaclav Hejret
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Helena Durikova
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Dragana Vukic
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Vladimir Horvath
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Centre for Cardiovascular and Transplant Surgery, CZ-60200 Brno, Czech Republic
| | - Francesca Cavalieri
- Department of Chemical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.,Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Rome, Italy
| | - Frank Caruso
- Centre for Cardiovascular and Transplant Surgery, CZ-60200 Brno, Czech Republic
| | | | - André P Gerber
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Mary A O'Connell
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Stepanka Vanacova
- Central European Institute of Technology (CEITEC), Masaryk University, CZ-62500 Brno, Czech Republic
| | - Stefania Pagliari
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St. Anne's University Hospital, CZ-65691 Brno, Czech Republic.,Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic.,School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|