1
|
Zhang X, Chen J, Cui Y, Cui Y, Yan G, Tang H, Man Y, Yang J, Bi Y, Teng L. A size-switchable microsphere loaded with salmon calcitonin as two-weekly dosing for osteoporosis therapy. Eur J Pharm Biopharm 2024:114565. [PMID: 39454837 DOI: 10.1016/j.ejpb.2024.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Osteoporosis is a disease with an increased incidence of fractures due to decreased bone mass and destruction of the microstructure of bone tissue. Salmon calcitonin (sCT), as a peptide, possesses the ability to inhibit osteoclast activity and thus regulate bone metabolism in clinical. However, short half-life and unstable physicochemical properties leading to rapid degradation of sCT have severely limited its clinical application. In this study, a size-switchable microsphere was developed to solve the problem of frequent administration and poor stability of sCT. sCT was encapsulated into Egg PC to form anhydrous reverse micelles (ARM) and then ARM was encapsulated into microspheres (MS@ARM). The degradable composite microspheres were utilized to provide a drug reservoir for sustained release of ARM encapsulated with sCT to reduce the frequency of drug administration, while the released ARM encapsulated with sCT entered the blood circulation to further protect sCT. In vitro release experiments demonstrated that the microspheres could sustain the release of sCT for at least 16 days. The microspheres MS@ARM showed the advanced therapeutic effect on the mouse model of glucocorticoid-induced osteoporosis (GIOP) at a low dosing frequency. The size-switchable microsphere is expected to be a new strategy for delivering sCT for osteoporosis treatment.
Collapse
Affiliation(s)
- Xueyan Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jicong Chen
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yaxin Cui
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yiying Cui
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Guodong Yan
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Haifeng Tang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yuhong Man
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jie Yang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
2
|
Batoon L, Hawse JR, McCauley LK, Weivoda MM, Roca H. Efferocytosis and Bone Dynamics. Curr Osteoporos Rep 2024; 22:471-482. [PMID: 38914730 DOI: 10.1007/s11914-024-00878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW This review summarizes the recently published scientific evidence regarding the role of efferocytosis in bone dynamics and skeletal health. RECENT FINDINGS Several types of efferocytes have been identified within the skeleton, with macrophages being the most extensively studied. Efferocytosis is not merely a 'clean-up' process vital for maintaining skeletal homeostasis; it also plays a crucial role in promoting resolution pathways and orchestrating bone dynamics, such as osteoblast-osteoclast coupling during bone remodeling. Impaired efferocytosis has been associated with aging-related bone loss and various skeletal pathologies, including osteoporosis, osteoarthritis, rheumatoid arthritis, and metastatic bone diseases. Accordingly, emerging evidence suggests that targeting efferocytic mechanisms has the potential to alleviate these conditions. While efferocytosis remains underexplored in the skeleton, recent discoveries have shed light on its pivotal role in bone dynamics, with important implications for skeletal health and pathology. However, there are several knowledge gaps and persisting technical limitations that must be addressed to fully unveil the contributions of efferocytosis in bone.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Megan M Weivoda
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA.
| |
Collapse
|
3
|
Huang Q, Jiang Y, Cao Y, Ding Y, Cai J, Yang T, Zhou X, Wu Q, Li D, Liu Q, Li F. Bone-targeting engineered milk-derived extracellular vesicles for MRI-assisted therapy of osteoporosis. Regen Biomater 2024; 11:rbae112. [PMID: 39323741 PMCID: PMC11422186 DOI: 10.1093/rb/rbae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
The imbalance between osteoblasts and osteoclasts is the cause of osteoporosis. Milk-derived extracellular vesicles (mEVs), excellent drug delivery nanocarriers, can promote bone formation and inhibit bone resorption. In this study, we conjugated bone-targeting peptide (AspSerSer, DSS)6 to mEVs by click chemistry and then loaded with SRT2104, a SIRT1 (silent mating-type information regulation 2 homolog 1) agonist that was proofed to help reduce bone loss. The engineered (DSS)6-mEV-SRT2104 had the intrinsic anti-osteoporosis function of mEVs and SRT2104 to reverse the imbalance in bone homeostasis by simultaneously regulating osteogenesis and osteoclastogenesis. Furthermore, we labelled mEVs with MnB nanoparticles that can be used for the in vivo magnetic resonance imaging (MRI) visualization. The obtained nanocomposites significantly prevented bone loss in osteoporosis mice and increased bone mineral density, exhibiting superior bone accumulation under MRI. We believe the proposed (DSS)6-mEV-SRT2104/MnB provides a novel paradigm for osteoporosis treatment and monitoring.
Collapse
Affiliation(s)
- Qing Huang
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Jiang
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Cao
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yunchuan Ding
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jinghui Cai
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tingqian Yang
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xin Zhou
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Qiang Wu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Danyang Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Qingyu Liu
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Fangping Li
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Chen YJ, Jia LH, Han TH, Zhao ZH, Yang J, Xiao JP, Yang HJ, Yang K. Osteoporosis treatment: current drugs and future developments. Front Pharmacol 2024; 15:1456796. [PMID: 39188952 PMCID: PMC11345277 DOI: 10.3389/fphar.2024.1456796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.
Collapse
Affiliation(s)
- Ya-jing Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Li-hua Jia
- Department of Urology, Jinhua Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Jinhua, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Jiangxi, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
5
|
Batoon L, Koh AJ, Millard SM, Grewal J, Choo FM, Kannan R, Kinnaird A, Avey M, Teslya T, Pettit AR, McCauley LK, Roca H. Induction of osteoblast apoptosis stimulates macrophage efferocytosis and paradoxical bone formation. Bone Res 2024; 12:43. [PMID: 39103355 DOI: 10.1038/s41413-024-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 08/07/2024] Open
Abstract
Apoptosis is crucial for tissue homeostasis and organ development. In bone, apoptosis is recognized to be a main fate of osteoblasts, yet the relevance of this process remains underexplored. Using our murine model with inducible Caspase 9, the enzyme that initiates intrinsic apoptosis, we triggered apoptosis in a proportion of mature osteocalcin (OCN+) osteoblasts and investigated the impact on postnatal bone development. Osteoblast apoptosis stimulated efferocytosis by osteal macrophages. A five-week stimulation of OCN+ osteoblast apoptosis in 3-week-old male and female mice significantly enhanced vertebral bone formation while increasing osteoblast precursors. A similar treatment regimen to stimulate osterix+ cell apoptosis had no impact on bone volume or density. The vertebral bone accrual following stimulation of OCN+ osteoblast apoptosis did not translate in improved mechanical strength due to disruption of the lacunocanalicular network. The observed bone phenotype was not influenced by changes in osteoclasts but was associated with stimulation of macrophage efferocytosis and vasculature formation. Phenotyping of efferocytic macrophages revealed a unique transcriptomic signature and expression of factors including VEGFA. To examine whether macrophages participated in the osteoblast precursor increase following osteoblast apoptosis, macrophage depletion models were employed. Depletion of macrophages via clodronate-liposomes and the CD169-diphtheria toxin receptor mouse model resulted in marked reduction in leptin receptor+ and osterix+ osteoblast precursors. Collectively, this work demonstrates the significance of osteoblast turnover via apoptosis and efferocytosis in postnatal bone formation. Importantly, it exposes the potential of targeting this mechanism to promote bone anabolism in the clinical setting.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Amy Jean Koh
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Susan Marie Millard
- Mater Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Jobanpreet Grewal
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Fang Ming Choo
- Mater Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Rahasudha Kannan
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Aysia Kinnaird
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Megan Avey
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Tatyana Teslya
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Allison Robyn Pettit
- Mater Research Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA.
- Department of Pathology, University of Michigan, Medical School, Ann Arbor, MI, 48109, USA.
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Shin B, Hrdlicka HC, Karki S, Fraser B, Lee SK, Delany AM. The miR-29-3p family suppresses inflammatory osteolysis. J Cell Physiol 2024; 239:e31299. [PMID: 38764231 PMCID: PMC11324400 DOI: 10.1002/jcp.31299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
Osteoclasts are the cells primarily responsible for inflammation-induced bone loss, as is particularly seen in rheumatoid arthritis. Increasing evidence suggests that osteoclasts formed under homeostatic versus inflammatory conditions may differ in phenotype. While microRNA-29-3p family members (miR-29a-3p, miR-29b-3p, miR-29c-3p) promote the function of RANKL-induced osteoclasts, the role of miR-29-3p during inflammatory TNF-α-induced osteoclastogenesis is unknown. We used bulk RNA-seq, histology, qRT-PCR, reporter assays, and western blot analysis to examine bone marrow monocytic cell cultures and tissue from male mice in which the function of miR-29-3p family members was decreased by expression of a miR-29-3p tough decoy (TuD) competitive inhibitor in the myeloid lineage (LysM-cre). We found that RANKL-treated monocytic cells expressing the miR-29-3p TuD developed a hypercytokinemia/proinflammatory gene expression profile in vitro, which is associated with macrophages. These data support the concept that miR-29-3p suppresses macrophage lineage commitment and may have anti-inflammatory effects. In correlation, when miR-29-3p activity was decreased, TNF-α-induced osteoclast formation was accentuated in an in vivo model of localized osteolysis and in a cell-autonomous manner in vitro. Further, miR-29-3p targets mouse TNF receptor 1 (TNFR1/Tnfrsf1a), an evolutionarily conserved regulatory mechanism, which likely contributes to the increased TNF-α signaling sensitivity observed in the miR-29-3p decoy cells. Whereas our previous studies demonstrated that the miR-29-3p family promotes RANKL-induced bone resorption, the present work shows that miR-29-3p dampens TNF-α-induced osteoclastogenesis, indicating that miR-29-3p has pleiotropic effects in bone homeostasis and inflammatory osteolysis. Our data supports the concept that the knockdown of miR-29-3p activity could prime myeloid cells to respond to an inflammatory challenge and potentially shift lineage commitment toward macrophage, making the miR-29-3p family a potential therapeutic target for modulating inflammatory response.
Collapse
Affiliation(s)
- Bongjin Shin
- Center on Aging, UConn Health, Farmington, Connecticut, USA
| | - Henry C Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sangita Karki
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Brianna Fraser
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sun-Kyeong Lee
- Center on Aging, UConn Health, Farmington, Connecticut, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
7
|
Yang S, Yu S, Du Y, Feng Z, Jiao X, Li Q, Wu J, Sun L, Zuo J, Fu X, Li Z, Huang H, Zhou G, Yu F, Ba Y. Correlations between bone metabolism biomarkers and fluoride exposure in adults and children. J Trace Elem Med Biol 2024; 84:127419. [PMID: 38461620 DOI: 10.1016/j.jtemb.2024.127419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Increased exposure to fluoride, which notably affects bone metabolism, is a global concern. However, the correlations and sensitivity of bone metabolism to fluoride remain controversial. In this cross-sectional study, 549 children (aged 7-12 years) and 504 adults (≥ 18 years old) were recruited in the high-fluoride areas of the Henan Province. Urinary fluoride (UF) level was determined using a fluoride electrode. Fasting venous blood serum was collected to measure bone metabolism biomarkers. The selected bone metabolism biomarkers for children included bone alkaline phosphatase (BALP), serum alkaline phosphatase (ALP), osteocalcin (OCN), calcitonin (CT), parathyroid hormone (PTH), phosphorus (P5+), and calcium (Ca2+). For adults, the biomarkers included ALP, CT, PTH, β-CrossLaps (β-CTX), P5+, and Ca2+. The correlations between UF and bone metabolism biomarkers were analyzed using binary logistic regression, a trend test, a generalized additive model, and threshold effect analysis. Regression analysis indicated a significant correlation between serum OCN, PTH, and UF levels in children aged 7-9 years. Serum OCN, PTH, and BALP contents were significantly correlated with UF in boys (P < 0.05). Furthermore, the interaction between age and UF affected serum P5+ and PTH (P < 0.05). The generalized additive model revealed nonlinear dose-response relationships between P5+, BALP, and UF contents in children (P < 0.05). Serum OCN level was linearly correlated with the UF concentration (P < 0.05). Similarly, a significant correlation was observed between β-CTX and UF levels in adults. In addition, significant correlations were observed between UF-age and serum Ca2+, β-CTX, and PTH contents. There was a non-linear correlation between serum Ca2+, P5+, and β- CTX and UF levels (P < 0.05). Overall, serum OCN, BALP, and P5+ levels can serve as sensitive bone metabolism biomarkers in children, while β-CTX, P5+, and Ca2+ can be considered fluoride-sensitive bone metabolism biomarkers in adults.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Shuiyuan Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yuhui Du
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Zichen Feng
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xuecheng Jiao
- Department of Endemic Disease, Puyang Center for Disease Control and Prevention, Puyang, Henan 457000, China
| | - Qinyang Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jingjing Wu
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Lei Sun
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Juan Zuo
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiaoli Fu
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Zhiyuan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui Huang
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Fangfang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
8
|
Huang F, Huang J, Yan J, Liu Y, Lian J, Sun Q, Ding F, Sun Y. Molecular Insights into the Effects of F16L and F19L Substitutions on the Conformation and Aggregation Dynamics of Human Calcitonin. J Chem Inf Model 2024; 64:4500-4510. [PMID: 38745385 PMCID: PMC11349047 DOI: 10.1021/acs.jcim.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Human calcitonin (hCT) regulates calcium-phosphorus metabolism, but its amyloid aggregation disrupts physiological activity, increases thyroid carcinoma risk, and hampers its clinical use for bone-related diseases like osteoporosis and Paget's disease. Improving hCT with targeted modifications to mitigate amyloid formation while maintaining its function holds promise as a strategy. Understanding how each residue in hCT's amyloidogenic core affects its structure and aggregation dynamics is crucial for designing effective analogues. Mutants F16L-hCT and F19L-hCT, where Phe residues in the core are replaced with Leu as in nonamyloidogenic salmon calcitonin, showed different aggregation kinetics. However, the molecular effects of these substitutions in hCT are still unclear. Here, we systematically investigated the folding and self-assembly conformational dynamics of hCT, F16L-hCT, and F19L-hCT through multiple long-time scale independent atomistic discrete molecular dynamics (DMD) simulations. Our results indicated that the hCT monomer primarily assumed unstructured conformations with dynamic helices around residues 4-12 and 14-21. During self-assembly, the amyloidogenic core of hCT14-21 converted from dynamic helices to β-sheets. However, substituting F16L did not induce significant conformational changes, as F16L-hCT exhibited characteristics similar to those of wild-type hCT in both monomeric and oligomeric states. In contrast, F19L-hCT exhibited substantially more helices and fewer β-sheets than did hCT, irrespective of their monomers or oligomers. The substitution of F19L significantly enhanced the stability of the helical conformation for hCT14-21, thereby suppressing the helix-to-β-sheet conformational conversion. Overall, our findings elucidate the molecular mechanisms underlying hCT aggregation and the effects of F16L and F19L substitutions on the conformational dynamics of hCT, highlighting the critical role of F19 as an important target in the design of amyloid-resistant hCT analogs for future clinical applications.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Ningbo 315211, China
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jiahui Huang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yuying Liu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Ningbo 315211, China
| | - Qinxue Sun
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
9
|
Lai B, Jiang H, Gao R, Zhou X. Association between alcohol intake and bone mineral density: results from the NHANES 2005-2020 and two-sample Mendelian randomization. Arch Osteoporos 2024; 19:21. [PMID: 38546895 DOI: 10.1007/s11657-024-01382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
We used the data from the NHANES cross-sectional study among 14,113 participants and indicated a positive correlation between alcohol intake frequency and bone mineral density in different body sites. Mendelian randomization was conducted, and no causal relationship is significant between these two variables. The study can provide some suggestions on the daily consumption of alcohol for osteoporosis patients. PURPOSE The effect of alcohol intake on bone mineral density (BMD) remains unclear. This study explored the association and causality between alcohol intake and BMD. METHODS Based on the 2005-2020 National Health and Nutrition Examination Survey including 14,113 participants, we conducted co-variate-adjusted multilinear regression analyses to explore the association between alcohol intake levels and spine or femur BMD. To evaluate the causal association between alcohol intake frequency and bone mineral density, the inverse variance weighted approach of two-sample Mendelian randomization (MR) was used with genetic data from the Medical Research Council Integrative Epidemiology Unit (462,346 cases) for alcohol intake frequency and the Genetic Factors for Osteoporosis Consortium (28,496 cases) for lumbar spine and femur neck BMD (32,735 cases). RESULTS Compared with non-drinkers, total femur BMDs but not total spine BMD increased with daily alcohol intake in males (β = 3.63*10-2 for mild drinkers, β = 4.21*10-2 for moderate drinkers, and β = 4.26*10-2 for heavy drinkers). By contrast, the higher total spine BMD in females was related to higher alcohol intake levels (β = 2.15*10-2 for mild drinkers, β = 2.59*10-2 for moderate drinkers, and β = 3.88*10-2 for heavy drinkers). Regarding the two-sample MR results, no causal relationship was observed between alcohol intake frequency and lumbar spine BMD (odds ratio [OR] = 1.016, P = 0.789) or femur neck BMD (OR = 1.048, P = 0.333). CONCLUSION This study suggests a positive association between alcohol intake frequency and BMD, although the causal relationship was not significant.
Collapse
Affiliation(s)
- Bowen Lai
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rui Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
10
|
Conery M, Pippin JA, Wagley Y, Trang K, Pahl MC, Villani DA, Favazzo LJ, Ackert-Bicknell CL, Zuscik MJ, Katsevich E, Wells AD, Zemel BS, Voight BF, Hankenson KD, Chesi A, Grant SF. GWAS-informed data integration and non-coding CRISPRi screen illuminate genetic etiology of bone mineral density. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585778. [PMID: 38562830 PMCID: PMC10983984 DOI: 10.1101/2024.03.19.585778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Over 1,100 independent signals have been identified with genome-wide association studies (GWAS) for bone mineral density (BMD), a key risk factor for mortality-increasing fragility fractures; however, the effector gene(s) for most remain unknown. Informed by a variant-to-gene mapping strategy implicating 89 non-coding elements predicted to regulate osteoblast gene expression at BMD GWAS loci, we executed a single-cell CRISPRi screen in human fetal osteoblast 1.19 cells (hFOBs). The BMD relevance of hFOBs was supported by heritability enrichment from cross-cell type stratified LD-score regression involving 98 cell types grouped into 15 tissues. 24 genes showed perturbation in the screen, with four (ARID5B, CC2D1B, EIF4G2, and NCOA3) exhibiting consistent effects upon siRNA knockdown on three measures of osteoblast maturation and mineralization. Lastly, additional heritability enrichments, genetic correlations, and multi-trait fine-mapping revealed that many BMD GWAS signals are pleiotropic and likely mediate their effects via non-bone tissues that warrant attention in future screens.
Collapse
Affiliation(s)
- Mitchell Conery
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Khanh Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David A. Villani
- Colorado Program for Musculoskeletal Research, University of Colorado Anschutz Medical Campus, Aurora, CO
- Cell Biology, Stems Cells and Development Ph.D. Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lacey J. Favazzo
- Colorado Program for Musculoskeletal Research, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- University of Colorado Interdisciplinary Joint Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Cheryl L. Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- University of Colorado Interdisciplinary Joint Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michael J. Zuscik
- Colorado Program for Musculoskeletal Research, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- University of Colorado Interdisciplinary Joint Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Eugene Katsevich
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Babette S. Zemel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin F. Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
He Y, Jiang H, Dong S. Bioactives and Biomaterial Construction for Modulating Osteoclast Activities. Adv Healthc Mater 2024; 13:e2302807. [PMID: 38009952 DOI: 10.1002/adhm.202302807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Bone tissue constitutes 15-20% of human body weight and plays a crucial role in supporting the body, coordinating movement, regulating mineral homeostasis, and hematopoiesis. The maintenance of bone homeostasis relies on a delicate balance between osteoblasts and osteoclasts. Osteoclasts, as the exclusive "bone resorbers" in the human skeletal system, are of paramount significance yet often receive inadequate attention. When osteoclast activity becomes excessive, it frequently leads to various bone metabolic disorders, subsequently resulting in secondary bone injuries, such as fractures. This not only reduces life quality of patients, but also imposes a significant economic burden on society. In response to the pressing need for biomaterials in the treatment of osteoclast dysregulation, there is a surge of research and investigations aimed at osteoclast regulation. Promising progress is achieved in this domain. This review seeks to provide a comprehensive understanding of how to modulate osteoclast activities. It summarizes bioactive substances that influence osteoclasts and elucidates strategies for constructing related biomaterial systems. It offers practical insights and ideas for the development and application of biomaterials and tissue engineering, with the hope of guiding the clinical treatment of osteoclast-related bone diseases using biomaterials in the future.
Collapse
Affiliation(s)
- Yuwei He
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
12
|
Jiang S, Xie W, Knapstein PR, Donat A, Albertsen LC, Sevecke J, Erdmann C, Appelt J, Fuchs M, Hildebrandt A, Maleitzke T, Frosch KH, Baranowsky A, Keller J. Transcript-dependent effects of the CALCA gene on the progression of post-traumatic osteoarthritis in mice. Commun Biol 2024; 7:223. [PMID: 38396204 PMCID: PMC10891124 DOI: 10.1038/s42003-024-05889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Osteoarthritis represents a chronic degenerative joint disease with exceptional clinical relevance. Polymorphisms of the CALCA gene, giving rise to either a procalcitonin/calcitonin (PCT/CT) or a calcitonin gene-related peptide alpha (αCGRP) transcript by alternative splicing, were reported to be associated with the development of osteoarthritis. The objective of this study was to investigate the role of both PCT/CT and αCGRP transcripts in a mouse model of post-traumatic osteoarthritis (ptOA). WT, αCGRP-/- and CALCA-/- mice were subjected to anterior cruciate ligament transection (ACLT) to induce ptOA of the knee. Mice were sacrificed 4 and 8 weeks post-surgery, followed by micro-CT and histological evaluation. Here we show that the expression of both PCT/CT and αCGRP transcripts is induced in ptOA knees. CALCA-/- mice show increased cartilage degeneration and subchondral bone loss with elevated osteoclast numbers compared to αCGRP-/- and WT mice. Osteophyte formation is reduced to the same extent in CALCA-/- and αCGRP-/- mice compared to WT controls, while a reduced synovitis score is noticed exclusively in mice lacking CALCA. Our data show that expression of the PCT/CT transcript protects from the progression of ptOA, while αCGRP promotes osteophyte formation, suggesting that CALCA-encoded peptides may represent novel targets for the treatment of ptOA.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Richard Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lilly-Charlotte Albertsen
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Sevecke
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Erdmann
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Appelt
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Melanie Fuchs
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Alexander Hildebrandt
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Tazio Maleitzke
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
- Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma Surgery, Orthopedics and Sports Traumatology, BG Hospital Hamburg, Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
14
|
Wang A, Ma X, Bian J, Jiao Z, Zhu Q, Wang P, Zhao Y. Signalling pathways underlying pulsed electromagnetic fields in bone repair. Front Bioeng Biotechnol 2024; 12:1333566. [PMID: 38328443 PMCID: PMC10847561 DOI: 10.3389/fbioe.2024.1333566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Pulsed electromagnetic field (PEMF) stimulation is a prospective non-invasive and safe physical therapy strategy for accelerating bone repair. PEMFs can activate signalling pathways, modulate ion channels, and regulate the expression of bone-related genes to enhance osteoblast activity and promote the regeneration of neural and vascular tissues, thereby accelerating bone formation during bone repair. Although their mechanisms of action remain unclear, recent studies provide ample evidence of the effects of PEMF on bone repair. In this review, we present the progress of research exploring the effects of PEMF on bone repair and systematically elucidate the mechanisms involved in PEMF-induced bone repair. Additionally, the potential clinical significance of PEMF therapy in fracture healing is underscored. Thus, this review seeks to provide a sufficient theoretical basis for the application of PEMFs in bone repair.
Collapse
Affiliation(s)
- Aoao Wang
- Medical School of Chinese PLA, Beijing, China
| | - Xinbo Ma
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Jiaqi Bian
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | | | - Qiuyi Zhu
- Medical School of Chinese PLA, Beijing, China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Zhao
- Senior Department of Orthopaedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
16
|
Hartmann B, Longo M, Mathiesen DS, Hare KJ, Jørgensen NR, Esposito K, Deacon CF, Vilsbøll T, Holst JJ, Knop FK. Signs of a Glucose- and Insulin-Independent Gut-Bone Axis and Aberrant Bone Homeostasis in Type 1 Diabetes. J Clin Endocrinol Metab 2023; 109:e259-e265. [PMID: 37466204 DOI: 10.1210/clinem/dgad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/15/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
CONTEXT Gut hormones seem to play an important role in postprandial bone turnover, which also may be affected by postprandial plasma glucose excursions and insulin secretion. OBJECTIVE To investigate the effect of an oral glucose tolerance test (OGTT) and an isoglycemic intravenous glucose infusion (IIGI) on bone resorption and formation markers in individuals with type 1 diabetes and healthy controls. METHODS This observational case-control study, conducted at the Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark, included 9 individuals with C-peptide negative type 1 diabetes and 8 healthy controls matched for gender, age, and body mass index. Subjects underwent an OGTT and a subsequent IIGI. We analyzed changes in bone resorption assessed by measurements of carboxy-terminal type I collagen crosslinks (CTX) and in bone formation as assessed by procollagen type I N-terminal propeptide (PINP) concentrations. RESULTS Baseline CTX and PINP levels were similar in the 2 groups. Both groups exhibited significantly greater suppression of CTX during OGTT than IIGI. PINP levels were unaffected by OGTT and IIGI, respectively, in healthy controls. Participants with type 1 diabetes displayed impaired suppression of CTX-assessed bone resorption and inappropriate suppression of PINP-assessed bone formation during OGTT. CONCLUSION Our data suggest the existence of a gut-bone axis reducing bone resorption in response to oral glucose independently of plasma glucose excursions and insulin secretion. Subjects with type 1 diabetes showed impaired suppression of bone resorption and reduced bone formation during OGTT, which may allude to the reduced bone mineral density and increased fracture risk characterizing these individuals.
Collapse
Affiliation(s)
- Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Miriam Longo
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Advanced Medical and Surgical Sciences, Division of Endocrinology and Metabolic Diseases, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - David S Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Kristine J Hare
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Obstetrics and Gynaecology, Hvidovre Hospital, University of Copenhagen, DK-2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Centre of Diagnostic Investigation, Rigshospitalet, University of Copenhagen, DK-2100 Glostrup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, DK-2750 Herlev, Denmark
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, Division of Endocrinology and Metabolic Diseases, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, DK-2750 Herlev, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, DK-2750 Herlev, Denmark
| |
Collapse
|
17
|
Liu Q, Yu M, Liao M, Ran Z, Tang X, Hu J, Su B, Fu G, Wu Q. The ratio of alpha-calcitonin gene-related peptide to substance P is associated with the transition of bone metabolic states during aging and healing. J Mol Histol 2023; 54:689-702. [PMID: 37857924 DOI: 10.1007/s10735-023-10167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Alpha-calcitonin gene-related peptide (αCGRP) and substance P (SP) are functionally correlated sensory neuropeptides deeply involved in bone homeostasis. However, they are usually studied individually rather than as an organic whole. To figure out whether they are interdependent, we firstly recorded the real-time αCGRP and SP levels in aging bone and healing fracture, which revealed a moderate to high level of αCGRP coupled with a low αCGRP/SP ratio in an anabolic state, and a high level of αCGRP coupled with a high αCGRP/SP ratio in a catabolic state, suggesting the importance of αCGRP/SP ratio in driving aging and healing scenarios. During facture healing, increase in αCGRP/SP ratio by adding αCGRP led to better callus formation and faster callus remodeling, while simultaneous addition of αCGRP and SP resulted in hypertrophic callus and delayed remodeling. The characteristics in inflammation and osteoclast activation further confirmed the importance of high αCGRP/SP ratio during catabolic bone remodeling. In vitro assays using different mixtures of αCGRP-SP proved that the osteogenic potential of the mixtures depended mostly on αCGRP, while their effects on osteoclasts and neutrophils relied on both peptides. These results demonstrated that αCGRP and SP were spatiotemporally interdependent. The αCGRP/SP ratio may be more important than the dose of a single neuropeptide in managing age-related and trauma-related bone diseases.
Collapse
Affiliation(s)
- Qianzi Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Minxuan Yu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Menglin Liao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Zhiyue Ran
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Xiaofeng Tang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Jun Hu
- Department of Stomatology, Qijiang District People's Hospital, Chongqing, 401420, China
| | - Beiju Su
- Chongqing Dazu District Hospital of Traditional Chinese Medicine, Chongqing, 402360, China
| | - Gang Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
| |
Collapse
|
18
|
Ma S, Xu S, Li M, Du Y, Tian G, Deng J, Zhang W, Wei P, Zhao B, Zhang X, Liu Z, Wang Y. A Bone Targeting Nanoparticle Loaded OGP to Restore Bone Homeostasis for Osteoporosis Therapy. Adv Healthc Mater 2023; 12:e2300560. [PMID: 37562069 DOI: 10.1002/adhm.202300560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/27/2023] [Indexed: 08/12/2023]
Abstract
Restoring bone homeostasis is the key to the treatment of osteoporosis. How to increase osteogenic ability or inhibit osteoclast activity has always been a topic of great concern. In recent years, short peptides with biological activity have received great attention in bone repair. However, the application of short peptides is still limited due to the lack of a stable and targeted delivery system. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles modified by alendronate (AL) to transport osteogenic peptides (OGP) (AL-PLGA@P NPs) are designed. Benefiting from the high affinity of AL for hydroxyapatite, AL-PLGA@P NPs have the ability to target bone. In this delivery system, OGP that promotes osteogenesis synergizes with AL, which inhibits osteoclasts, to regulate bone homeostasis, which gives them more advantages in the treatment of osteoporosis. The data shows that nanoparticles can selectively deliver peptides to the bone surface without systemic toxicity. Moreover, nanoparticles can upregulate osteogenesis-related factors (ALP, Runx-2, and BMP2) and downregulate osteoclast-related factors (TRAP and CTSK) in vitro. With AL-PLGA@P NPs, bone microarchitecture and bone mass are improved in ovariectomized osteoporosis rats. Therefore, this study proposes a novel osteoporosis-based drug system that effectively improves bone density.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomatology, The Second Hospital of Tianjin medical university, Tianjin, 300211, China
| | - Shendan Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Minting Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Yaqi Du
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Guangjie Tian
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Wenyi Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co. Ltd., Beijing, 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co. Ltd., Beijing, 102600, China
| | - Xuesong Zhang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Zihao Liu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 30070, China
| |
Collapse
|
19
|
Ma M, Zeng H, Yang P, Xu J, Zhang X, He W. Drug Delivery and Therapy Strategies for Osteoporosis Intervention. Molecules 2023; 28:6652. [PMID: 37764428 PMCID: PMC10534890 DOI: 10.3390/molecules28186652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the advent of the aging society, osteoporosis (OP) risk increases yearly. Currently, the clinical usage of anti-OP drugs is challenged by recurrent side effects and poor patient compliance, regardless of oral, intravenous, or subcutaneous administration. Properly using a drug delivery system or formulation strategy can achieve targeted drug delivery to the bone, diminish side effects, improve bioavailability, and prolong the in vivo residence time, thus effectively curing osteoporosis. This review expounds on the pathogenesis of OP and the clinical medicaments used for OP intervention, proposes the design approach for anti-OP drug delivery, emphatically discusses emerging novel anti-OP drug delivery systems, and enumerates anti-OP preparations under clinical investigation. Our findings may contribute to engineering anti-OP drug delivery and OP-targeting therapy.
Collapse
Affiliation(s)
- Mingyang Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Huiling Zeng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, China;
| | - Jiabing Xu
- Taizhou Institute for Drug Control, Taizhou 225316, China;
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
20
|
Stoilov B, Truong VK, Gronthos S, Vasilev K. Noninvasive and Microinvasive Nanoscale Drug Delivery Platforms for Hard Tissue Engineering. ACS APPLIED BIO MATERIALS 2023; 6:2925-2943. [PMID: 37565698 DOI: 10.1021/acsabm.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Bone tissue plays a crucial role in protecting internal organs and providing structural support and locomotion of the body. Treatment of hard tissue defects and medical conditions due to physical injuries, genetic disorders, aging, metabolic syndromes, and infections is more often a complex and drawn out process. Presently, dealing with hard-tissue-based clinical problems is still mostly conducted via surgical interventions. However, advances in nanotechnology over the last decades have led to shifting trends in clinical practice toward noninvasive and microinvasive methods. In this review article, recent advances in the development of nanoscale platforms for bone tissue engineering have been reviewed and critically discussed to provide a comprehensive understanding of the advantages and disadvantages of noninvasive and microinvasive methods for treating medical conditions related to hard tissue regeneration and repair.
Collapse
Affiliation(s)
- Borislav Stoilov
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide/SAHMRI, North Terrace, Adelaide, South Australia 5001, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
21
|
Sinha S, Kumar S, Narwaria M, Singh A, Haque M. Severe Acute Bronchial Asthma with Sepsis: Determining the Status of Biomarkers in the Diagnosis of the Disease. Diagnostics (Basel) 2023; 13:2691. [PMID: 37627950 PMCID: PMC10453001 DOI: 10.3390/diagnostics13162691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Bronchial asthma is a widely prevalent illness that substantially impacts an individual's health standard worldwide and has a significant financial impact on society. Global guidelines for managing asthma do not recommend the routine use of antimicrobial agents because most episodes of the condition are linked to viral respiratory tract infections (RTI), and bacterial infection appears to have an insignificant impact. However, antibiotics are recommended when there is a high-grade fever, a consolidation on the chest radiograph, and purulent sputum that contains polymorphs rather than eosinophils. Managing acute bronchial asthma with sepsis, specifically the choice of whether or not to initiate antimicrobial treatment, remains difficult since there are currently no practical clinical or radiological markers that allow for a simple distinction between viral and bacterial infections. Researchers found that serum procalcitonin (PCT) values can efficiently and safely minimize antibiotic usage in individuals with severe acute asthma. Again, the clinical manifestations of acute asthma and bacterial RTI are similar, as are frequently used test values, like C-reactive protein (CRP) and white blood cell (WBC) count, making it harder for doctors to differentiate between viral and bacterial infections in asthma patients. The role and scope of each biomarker have not been precisely defined yet, although they have all been established to aid healthcare professionals in their diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, 33 KDA Avenue, Hotel Royal Crossing, Khulna Sadar, Khulna 9100, Bangladesh
| | - Santosh Kumar
- Department of Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar 382422, Gujarat, India
| | - Mahendra Narwaria
- Asian Bariatrics Plus Hospital, V Wing-Mondeal Business Park, SG Highways, Ahmedabad 380054, Gujarat, India
| | - Arya Singh
- Asian Bariatrics Plus Hospital, V Wing-Mondeal Business Park, SG Highways, Ahmedabad 380054, Gujarat, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
- Department of Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar 382422, Gujarat, India
| |
Collapse
|
22
|
Zheng XQ, Huang J, Lin JL, Song CL. Pathophysiological mechanism of acute bone loss after fracture. J Adv Res 2023; 49:63-80. [PMID: 36115662 PMCID: PMC10334135 DOI: 10.1016/j.jare.2022.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Acute bone loss after fracture is associated with various effects on the complete recovery process and a risk of secondary fractures among patients. Studies have reported similarities in pathophysiological mechanisms involved in acute bone loss after fractures and osteoporosis. However, given the silence nature of bone loss and bone metabolism complexities, the actual underlying pathophysiological mechanisms have yet to be fully elucidated. AIM OF REVIEW To elaborate the latest findings in basic research with a focus on acute bone loss after fracture. To briefly highlight potential therapeutic targets and current representative drugs. To arouse researchers' attention and discussion on acute bone loss after fracture. KEY SCIENTIFIC CONCEPTS OF REVIEW Bone loss after fracture is associated with immobilization, mechanical unloading, blood supply damage, sympathetic nerve regulation, and crosstalk between musculoskeletals among other factors. Current treatment strategies rely on regulation of osteoblasts and osteoclasts, therefore, there is a need to elucidate on the underlying mechanisms of acute bone loss after fractures to inform the development of efficacious and safe drugs. In addition, attention should be paid towards ensuring long-term skeletal health.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
23
|
Jiang Y, Zhu Z, Wang B, Yuan Y, Zhang Q, Li Y, Du Y, Gong P. Neuronal TRPV1-CGRP axis regulates bone defect repair through Hippo signaling pathway. Cell Signal 2023:110779. [PMID: 37336315 DOI: 10.1016/j.cellsig.2023.110779] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is highly expressed on sensory neurons where it serves as a polymodal receptor for detecting physical and chemical stimuli. However, the role of TRPV1 in bone metabolism remains largely unclear. This study aimed to investigate the underlying mechanism of neuronal TRPV1 in regulating bone defect repair. In vivo experiment verified that TRPV1 activation could trigger dorsal root ganglion (DRG) producing the neuropeptide calcitonin gene-related peptide (CGRP) in mice. The accelerated bone healing of femoral defect in this process was observed compared to the control group (p < 0.05). Conversely, Trpv1 knockdown led to the reduced CGRP expression in DRG and nerves innervating femur bone tissue, following impaired bone formation and osteogenic capability in the defect region (p < 0.05), which could be rescued by local CGRP treatment. In vitro, results revealed that TRPV1 function in DRG neurons contributed essentially to the regulation of osteoblast physiology through affecting the production and secretion of CGRP. The capsaicin-activated neuronal TRPV1-CGRP axis could enhance the proliferation, migration and differentiation of osteoblasts (p < 0.05). Furthermore, we found that the promoting role of neuronal TRPV1 in osteogenesis were associated with Hippo signaling pathway, reflected by the phosphorylation protein level of large tumor suppressor 1 (LATS1), MOB kinase activator 1 (MOB1) and Yes-associated protein (YAP), as well as the subcellular location of YAP. Our study clarified the effects and intrinsic mechanisms of neuronal TRPV1 on bone defect repair, which might offer us a therapeutic implication for bone disorders.
Collapse
Affiliation(s)
- Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanfeng Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Wee NKY, Novak S, Ghosh D, Root SH, Dickerson IM, Kalajzic I. Inhibition of CGRP signaling impairs fracture healing in mice. J Orthop Res 2023; 41:1228-1239. [PMID: 36281531 PMCID: PMC10123175 DOI: 10.1002/jor.25474] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide produced by sensory nerves and functions as a pain sensor. It acts by binding to the calcitonin-like receptor (CLR, protein; Calcrl, gene). CGRP inhibition has been recently introduced as therapeutic treatment of migraine-associated pain. Previous studies have shown that CGRP stimulates bone formation. The aim of our study is to determine whether the inhibition of CGRP signaling negatively impacted fracture healing. Using α-smooth muscle actin (αSMA) Cre animals crossed with Ai9 reporter mice, we showed that CGRP-expressing nerves are near αSMA + cells in the periosteum. In vitro experiments revealed that periosteal cells express Calcrl and receptor activity modifying protein 1; and CGRP stimulation increased periosteal cell proliferation. Using a tamoxifen-inducible model αSMACre/CLRfl/fl , we targeted the deletion of CLR to periosteal progenitor cells and examined fracture healing. Microcomputed tomography of fractured femurs showed a reduction in bone mass in αSMACre+/CLRfl/fl female mice relative to controls and callus volume in males. Pharmacological CGRP-CLR inhibition was achieved by subcutaneous delivery of customized pellets with small molecule inhibitor olcegepant (BIBN-4096) at a dose of 10 μg/day. BIBN-4096-treated C57BL/6J mice had a higher latency toward thermal nociception than placebo-treated mice, indicating impaired sensory function through CGRP inhibition. CGRP inhibition also resulted in reduced callus volume, bone mass, and bone strength compared to placebo controls. These results indicate that inhibiting CGRP by deleting CLR or by using BIBN-4096, contributes to delayed bone healing.
Collapse
Affiliation(s)
- Natalie KY Wee
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Bone Cell Biology and Disease Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Sanja Novak
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Debolina Ghosh
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Sierra H Root
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ian M Dickerson
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
25
|
Wang H, Luo Y, Wang H, Li F, Yu F, Ye L. Mechanistic advances in osteoporosis and anti-osteoporosis therapies. MedComm (Beijing) 2023; 4:e244. [PMID: 37188325 PMCID: PMC10175743 DOI: 10.1002/mco2.244] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
Osteoporosis is a type of bone loss disease characterized by a reduction in bone mass and microarchitectural deterioration of bone tissue. With the intensification of global aging, this disease is now regarded as one of the major public health problems that often leads to unbearable pain, risk of bone fractures, and even death, causing an enormous burden at both the human and socioeconomic layers. Classic anti-osteoporosis pharmacological options include anti-resorptive and anabolic agents, whose ability to improve bone mineral density and resist bone fracture is being gradually confirmed. However, long-term or high-frequency use of these drugs may bring some side effects and adverse reactions. Therefore, an increasing number of studies are devoted to finding new pathogenesis or potential therapeutic targets of osteoporosis, and it is of great importance to comprehensively recognize osteoporosis and develop viable and efficient therapeutic approaches. In this study, we systematically reviewed literatures and clinical evidences to both mechanistically and clinically demonstrate the state-of-art advances in osteoporosis. This work will endow readers with the mechanistical advances and clinical knowledge of osteoporosis and furthermore present the most updated anti-osteoporosis therapies.
Collapse
Affiliation(s)
- Haiwei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuchuan Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haisheng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
26
|
Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol 2023. [PMID: 37183350 DOI: 10.1002/jcp.31036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Osteoclasts, the bone-resorbing cells, are essential for the bone remodeling process and are involved in the pathophysiology of several bone-related diseases. The extensive corpus of in vitro research and crucial mouse model studies in the 1990s demonstrated the key roles of monocyte/macrophage colony-stimulating factor, receptor activator of nuclear factor kappa B ligand (RANKL) and integrin αvβ3 in osteoclast biology. Our knowledge of the molecular mechanisms by which these variables control osteoclast differentiation and function has significantly advanced in the first decade of this century. Recent developments have revealed a number of novel insights into the fundamental mechanisms governing the differentiation and functional activity of osteoclasts; however, these mechanisms have not yet been adequately documented. Thus, in the present review, we discuss various regulatory factors including local and hormonal factors, innate as well as adaptive immune cells, noncoding RNAs (ncRNAs), etc., in the molecular regulation of the intricate and tightly regulated process of osteoclastogenesis. ncRNAs have a critical role as epigenetic controllers of osteoclast physiologic activities, including differentiation and bone resorption. The primary ncRNAs, which include micro-RNAs, circular RNAs, and long noncoding RNAs, form a complex network that affects gene transcription activities associated with osteoclast biological activity. Greater knowledge of the involvement of ncRNAs in osteoclast biological activities will contribute to the treatment and management of several skeletal diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc. Moreover, we further outline potential therapies targeting these regulatory pathways of osteoclastogenesis in distinct bone pathologies.
Collapse
Affiliation(s)
- Aleena Anwar
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Navita Gupta
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, India
| | - Rudra P Ojha
- Department of Zoology, Nehru Gram Bharati University, Prayagraj, Uttar Pradesh, India
| | - Bhupendra Verma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
27
|
Li Z, Wen X, Li N, Zhong C, Chen L, Zhang F, Zhang G, Lyu A, Liu J. The roles of hepatokine and osteokine in liver-bone crosstalk: Advance in basic and clinical aspects. Front Endocrinol (Lausanne) 2023; 14:1149233. [PMID: 37091847 PMCID: PMC10117885 DOI: 10.3389/fendo.2023.1149233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Both the liver and bone are important secretory organs in the endocrine system. By secreting organ factors (hepatokines), the liver regulates the activity of other organs. Similarly, bone-derived factors, osteokines, are created during bone metabolism and act in an endocrine manner. Generally, the dysregulation of hepatokines is frequently accompanied by changes in bone mass, and osteokines can also disrupt liver metabolism. The crosstalk between the liver and bone, particularly the function and mechanism of hepatokines and osteokines, has increasingly gained notoriety as a topic of interest in recent years. Here, based on preclinical and clinical evidence, we summarize the potential roles of hepatokines and osteokines in liver-bone interaction, discuss the current shortcomings and contradictions, and make recommendations for future research.
Collapse
Affiliation(s)
- Zhanghao Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Xiaoxin Wen
- Department of Anatomy, Jinzhou Medical University, Jinzhou, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- *Correspondence: Jin Liu, ; Aiping Lyu,
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- *Correspondence: Jin Liu, ; Aiping Lyu,
| |
Collapse
|
28
|
Taheri M, Behnaz F, Ghasemi M. Efficacy of Intramuscular Injection of Calcitonin on Pain Functional Status of Patients with Knee Osteoarthritis. Anesth Pain Med 2023; 13:e133992. [PMID: 37601958 PMCID: PMC10439726 DOI: 10.5812/aapm-133992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 08/22/2023] Open
Abstract
Background Recently, increased attention has been paid to calcitonin for the management of osteoarthritis (OA) regarding its metabolic properties for bone turnover and cartilage. Objectives This study was designed to assess the efficacy of intramuscular calcitonin injection in the functional status of individuals suffering from knee OA. Methods A total of 40 eligible cases with OA were randomly assigned into intervention and control groups. At baseline, pain intensity and functional ability were evaluated based on the Numeric Rating scale (NRS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaires. Both groups were prescribed with AcetaGel (500 mg) and piroxicam (0.5% topical gel) every 8 hours as needed, and the patients were instructed about conservative treatments and lifestyle modifications. In the case group, the patients received calcitonin (50 IU/mL solution for injection; Aburaihan Pharmaceutical Co., Iran) intramuscularly (gluteal muscle) once a week for 4 consecutive weeks. One month after the last dose, the patients were evaluated based on NRS and WOMAC questionnaires. Results Demographic data did not show any statistically significant difference. A total of 40 cases (male and female) with mean age values of 53.10 ± 5.28 and 54.55 ± 5.26 years were included in the case and control groups, respectively. The mean body mass index values of the case and control groups were 27.45 ± 1.57 and 27.15 ± 1.53 kg/m2, respectively. After 1 month of treatment with calcitonin, significant improvements were observed in NRS outcomes (P < 0.001). The total WOMAC score was also statistically improved (P < 0.001). Conclusions The findings of the present study revealed that the weekly administration of 50 IU calcitonin for 28 days could significantly improve physical ability and pain intensity in OA patients.
Collapse
Affiliation(s)
- Mehrdad Taheri
- Department of Anesthesiology, Imam Hossein Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faranak Behnaz
- Department of Anesthesiology, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Ghasemi
- Department of Anesthesiology, Akhtar Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Procalcitonin and Adrenomedullin in Infectious Diseases. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Calcitonin (CT) and adrenomedullin (ADM) are members of the CT family. Procalcitonin (PCT) is a prohormone of CT. Elevations in serum PCT and ADM levels are associated with severe sepsis and coronavirus disease 2019 (COVID-19). PCT enhances sepsis mortality and it binds to the CGRP receptor, which is a heterodimer of CT receptor-like receptor and receptor activity-modifying protein 1. The N-terminal truncated form of PCT, PCT3-116, is produced by the cleavage of PCT by dipeptidyl peptidase 4 (DPP-4) and is the main form of PCT in serum during sepsis, inducing microvascular permeability. Mid-regional pro-adrenomedullin (MR-proADM) is used instead of ADM as a biological indicator because ADM is rapidly degraded, and MR-proADM is released at the same rate as ADM. ADM reduces endothelial permeability and promotes endothelial stability. Endothelial dysfunction is responsible for multiple organ failure in sepsis and COVID-19 patients. Therefore, ADM may be an important molecule for improving the severity associated with sepsis and COVID-19. This review focuses on the current knowledge of PCT and ADM in sepsis and COVID-19.
Collapse
|
30
|
Maagensen H, Helsted MM, Gasbjerg LS, Vilsbøll T, Knop FK. The Gut-Bone Axis in Diabetes. Curr Osteoporos Rep 2023; 21:21-31. [PMID: 36441432 DOI: 10.1007/s11914-022-00767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW To describe recent advances in the understanding of how gut-derived hormones regulate bone homeostasis in humans with emphasis on pathophysiological and therapeutic perspectives in diabetes. RECENT FINDINGS The gut-derived incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is important for postprandial suppression of bone resorption. The other incretin hormone, glucagon-like peptide 1 (GLP-1), as well as the intestinotrophic glucagon-like peptide 2 (GLP-2) has been shown to suppress bone resorption in pharmacological concentrations, but the role of the endogenous hormones in bone homeostasis is uncertain. For ambiguous reasons, both patients with type 1 and type 2 diabetes have increased fracture risk. In diabetes, the suppressive effect of endogenous GIP on bone resorption seems preserved, while the effect of GLP-2 remains unexplored both pharmacologically and physiologically. GLP-1 receptor agonists, used for the treatment of type 2 diabetes and obesity, may reduce bone loss, but results are inconsistent. GIP is an important physiological suppressor of postprandial bone resorption, while GLP-1 and GLP-2 may also exert bone-preserving effects when used pharmacologically. A better understanding of the actions of these gut hormones on bone homeostasis in patients with diabetes may lead to new strategies for the prevention and treatment of skeletal frailty related to diabetes.
Collapse
Affiliation(s)
- Henrik Maagensen
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
| | - Mads M Helsted
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
Li Y, Ju XJ, Fu H, Zhou CH, Gao Y, Wang J, Xie R, Wang W, Liu Z, Chu LY. Composite Separable Microneedles for Transdermal Delivery and Controlled Release of Salmon Calcitonin for Osteoporosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:638-650. [PMID: 36576723 DOI: 10.1021/acsami.2c19241] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A composite separable microneedles (MNs) system consisting of silk fibroin (SF) needle tips and hyaluronic acid (HA) base is developed for transdermal delivery of salmon calcitonin (sCT) for therapy of osteoporosis. Poly(ethylene glycol) (PEG) is used to modulate the conformation structure of SF to achieve controllable sustained release of sCT. The prepared MNs can effectively penetrate the skin stratum corneum. After application to the skin, the HA base is dissolved within 2 min, allowing these SF drug depots to be implanted into the skin for controllable sustained release of sCT. The release kinetics of sCT can be controlled by regulating the conformation of SF with PEG and the interaction between sCT peptide and SF proteins. Compared with traditional needle injection, delivery of sCT using optimized HA-PEG/SF MNs shows better trabecular bone repair for ovariectomized-induced osteoporosis in mice. The proposed MNs system provides a new noninjection strategy for therapy of osteoporosis.
Collapse
Affiliation(s)
- Yao Li
- School of Chemical Engineering, Sichuan University, Chengdu610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, China
| | - Han Fu
- School of Chemical Engineering, Sichuan University, Chengdu610065, China
| | - Chang-Hai Zhou
- School of Chemical Engineering, Sichuan University, Chengdu610065, China
| | - Yi Gao
- West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Jun Wang
- West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Rui Xie
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, China
| | - Wei Wang
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, China
| | - Zhuang Liu
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
32
|
Liu Y, Wang Y, Zhang Y, Zou Y, Wei G, Ding F, Sun Y. Structural Perturbation of Monomers Determines the Amyloid Aggregation Propensity of Calcitonin Variants. J Chem Inf Model 2023; 63:308-320. [PMID: 36456917 PMCID: PMC9839651 DOI: 10.1021/acs.jcim.2c01202] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Human calcitonin (hCT) is a polypeptide hormone that participates in calcium-phosphorus metabolism. Irreversible aggregation of 32-amino acid hCT into β-sheet-rich amyloid fibrils impairs physiological activity and increases the risk of medullary carcinoma of the thyroid. Amyloid-resistant hCT derivatives substituting critical amyloidogenic residues are of particular interest for clinical applications as therapeutic drugs against bone-related diseases. Uncovering the aggregation mechanism of hCT at the molecular level, therefore, is important for the design of amyloid-resistant hCT analogues. Here, we investigated the aggregation dynamics of hCT, non-amyloidogenic salmon calcitonin (sCT), and two hCT analogues with reduced aggregation tendency─TL-hCT and phCT─using long timescale discrete molecular dynamics simulations. Our results showed that hCT monomers mainly adopted unstructured conformations with dynamically formed helices around the central region. hCT self-assembled into helix-rich oligomers first, followed by a conformational conversion into β-sheet-rich oligomers with β-sheets formed by residues 10-30 and stabilized by aromatic and hydrophobic interactions. Our simulations confirmed that TL-hCT and phCT oligomers featured more helices and fewer β-sheets than hCT. Substitution of central aromatic residues with leucine in TL-hCT and replacing C-terminal hydrophobic residue with hydrophilic amino acid in phCT only locally suppressed β-sheet propensities in the central region and C-terminus, respectively. Having mutations in both central and C-terminal regions, sCT monomers and dynamically formed oligomers predominantly adopted helices, confirming that both central aromatic and C-terminal hydrophobic residues played important roles in the fibrillization of hCT. We also observed the formation of β-barrel intermediates, postulated as the toxic oligomers in amyloidosis, for hCT but not for sCT. Our computational study depicts a complete picture of the aggregation dynamics of hCT and the effects of mutations. The design of next-generation amyloid-resistant hCT analogues should consider the impact on both amyloidogenic regions and also take into account the amplification of transient β-sheet population in monomers upon aggregation.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Physics, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, P. R. China
| | - Ying Wang
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Yu Zhang
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, P. R. China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, P. R. China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
33
|
Pizzo-Reis PM, Coêlho MC, Azevedo RB, Faber J. Calcitonin as a pharmacological anchorage in orthodontics. Indian J Dent Res 2023; 34:14-18. [PMID: 37417050 DOI: 10.4103/ijdr.ijdr_30_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Objective This study aimed to evaluate the effects of salmon calcitonin administration as a pharmacological anchoring agent in orthodontics and to determine the influence of locally applied calcitonin on serum calcium levels. The secondary aim was to observe the response of dental and periodontal tissues using light microscopy. Methods Fourteen healthy male adult Wistar rats with an average weight of 250 g had their teeth moved, seven of which received a local injection of salmon calcitonin in the furcation region of the left upper first molar. Concurrently, the remaining seven were used as controls. In the control group, saline solution was injected in the bifurcation region of tooth 26 to subject these animals to the same stress level as those of the experimental group. After 14 days, a 6 mm diameter orthodontic elastic band was inserted between teeth 26 and 27 in all animals to induce the movement of these teeth. The rats were anaesthetised and exsanguinated on day 21. In both groups, tooth movement and serum calcium levels were measured. The jaws were dissected with straight scissors, and tissue blocks containing gingiva, bone and teeth were identified, fixed and demineralised. Then, the pieces were cut into semi-serial slices, stained with hematoxylin, eosin, and Mallory's trichrome, and analysed under an Axiophot light microscope. Results There was significantly less tooth movement in the experimental group (X̄; 0,150 mm ± 0,037) than in the control group (0,236 mm ± 0,044; P = 0,003), while there was no significant difference in serum calcium levels between the two groups (controlX̄; 9,53 mg/dl ± 1,53; experimental 10,81 mg/dl ± 1,47; P = 0,15). Conclusion While calcitonin did not completely inhibit osteoclast activity, it promoted orthodontic anchorage, apparently, by local action.
Collapse
Affiliation(s)
- Patrcia M Pizzo-Reis
- Department of Orthodontics, School of Health Sciences, University of Brasília, Albany Medical Center, Brasília, DF, Brazil
| | - Monica C Coêlho
- Department of Orthodontics, Bueno Dental Clinic, Goiânia, GO, Brazil
| | - Ricardo B Azevedo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Jorge Faber
- Graduate Program in Dentistry, School of Health Sciences, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
34
|
Bernar A, Gebetsberger JV, Bauer M, Streif W, Schirmer M. Optimization of the Alizarin Red S Assay by Enhancing Mineralization of Osteoblasts. Int J Mol Sci 2022; 24:ijms24010723. [PMID: 36614166 PMCID: PMC9821450 DOI: 10.3390/ijms24010723] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The alizarin red S assay is considered the gold standard for quantification of osteoblast mineralization and is thus widely used among scientists. However, there are several restrictions to this method, e.g., moderate sensitivity makes it difficult to uncover slight but significant effects of potentially clinically relevant substances. Therefore, an adaptation of the staining method is appropriate and might be obtained by increasing the mineralization ability of osteoblasts. In this study, cell culture experiments with human (SaOs-2) and murine (MC3T3-E1) osteoblasts were performed under the addition of increasing concentrations of calcium chloride (1, 2.5, 5, and 10 mM) or calcitonin (1, 2.5, 5, and 10 nM). After three or four weeks, the mineralization matrix was stained with alizarin red S and the concentration was quantified photometrically. Only calcium chloride was able to significantly increase mineralization, and therefore enhanced the sensitivity of the alizarin red S staining in a dose-dependent manner in both osteoblastic cell lines as well as independent of the cell culture well surface area. This cost- and time-efficient optimization enables a more sensitive analysis of potentially clinically relevant substances in future bone research.
Collapse
Affiliation(s)
- Aline Bernar
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Monika Bauer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Werner Streif
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: (W.S.); (M.S.)
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: (W.S.); (M.S.)
| |
Collapse
|
35
|
Liang B, Burley G, Lin S, Shi YC. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett 2022; 27:72. [PMID: 36058940 PMCID: PMC9441049 DOI: 10.1186/s11658-022-00371-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractOsteoporotic fractures lead to increased disability and mortality in the elderly population. With the rapid increase in the aging population around the globe, more effective treatments for osteoporosis and osteoporotic fractures are urgently required. The underlying molecular mechanisms of osteoporosis are believed to be due to the increased activity of osteoclasts, decreased activity of osteoblasts, or both, which leads to an imbalance in the bone remodeling process with accelerated bone resorption and attenuated bone formation. Currently, the available clinical treatments for osteoporosis have mostly focused on factors influencing bone remodeling; however, they have their own limitations and side effects. Recently, cytokine immunotherapy, gene therapy, and stem cell therapy have become new approaches for the treatment of various diseases. This article reviews the latest research on bone remodeling mechanisms, as well as how this underpins current and potential novel treatments for osteoporosis.
Collapse
|
36
|
Idrees M, Sohail A. Optimizing the dynamics of bone turnover with genetic algorithm. MODELING EARTH SYSTEMS AND ENVIRONMENT 2022; 9:1937-1947. [PMID: 36465412 PMCID: PMC9684795 DOI: 10.1007/s40808-022-01606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/06/2022] [Indexed: 05/21/2023]
Abstract
Control systems and the modeling strategies are not only limited to engineering problems. These approaches can be used in the field of bio-mathematics as well and modern studies have promoted this approach to a great extent. The computational modeling and simulation of bone metastasis is painful yet critical after cancer invades the body. This vicious cycle is complex, and several research centers worldwide are devoted to understanding the dynamics and setting up a treatment strategy for this life-threatening behavior of cancer. Cancerous cells activation and the corresponding process of metastasis is reported to boost during the periodic waves of COVID-19, due to the inflammatory nature of the infection associated with SARS-2 and its variants. The bone cells are comprised of two types of cells responsible for bone formation and resorption. The computational framework of such cells, in spatial form, can help the researchers forecast the bone dynamics in a robust manner where the impact of cancer is incorporated into the computational model as a source of perturbation. A series of computational models are presented to explore the complex behavior of bone metastasis with COVID-19 induced infection. The finite difference algorithm is used to simulate the nonlinear computational model. The results obtained are in close agreement with the experimental findings. The computational results can help explore the vicious cycle's fate and help set up control strategies through drug therapies.
Collapse
Affiliation(s)
- Muhammad Idrees
- Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
| | - Ayesha Sohail
- Department of Mathematics, Comsats University Islamabad, Lahore, 54000 Pakistan
| |
Collapse
|
37
|
Nogueira TAC, Kaefer IL, Sartim MA, Pucca MB, Sachett J, Barros AL, Júnior MBA, Baía-da-Silva DC, Bernarde PS, Koolen HHF, Monteiro WM. The Amazonian kambô frog Phyllomedusa bicolor (Amphibia: Phyllomedusidae): Current knowledge on biology, phylogeography, toxinology, ethnopharmacology and medical aspects. Front Pharmacol 2022; 13:997318. [PMID: 36278168 PMCID: PMC9582840 DOI: 10.3389/fphar.2022.997318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Phyllomedusa bicolor (Phyllomedusidae), popularly known as the kambô in Brazil, is a tree frog that is widely distributed in South American countries and is known for producing a skin secretion that is rich in bioactive peptides, which are often used in indigenous rituals. The biological effects of the skin secretion were observed in the first studies with indigenous communities. Over the last six decades, researchers have been studying the chemical composition in detail, as well as the potential pharmacological applications of its constituents. For this reason, indigenous communities and health agents fear the misuse of the kambô, or the inappropriate use of the species, which can result in health complications or even death of users. This article seeks to provide a transdisciplinary review that integrates knowledge regarding the biology of P. bicolor, ethnoknowledge about the ritual of the kambô, and the chemistry and pharmacology of the skin secretion of this species, in addition to medical aspects of the indiscriminate use of the kambô. Furthermore, this review seeks to shed light on perspectives on the future of research related to the kambô.
Collapse
Affiliation(s)
- Thais A. C. Nogueira
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Igor Luis Kaefer
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Marco A. Sartim
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Pós-Graduação, Universidade Nilton Lins, Manaus, Amazonas, Brazil
| | - Manuela B. Pucca
- Curso de Medicina, Universidade Federal de Roraima, Boa Vista, Roraima, Brazil
| | - Jacqueline Sachett
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Ensino e Pesquisa, Fundação Alfredo da Matta, Manaus, Amazonas, Brazil
| | - André L. Barros
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Moysés B. A. Júnior
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas, Brazil
| | - Djane C. Baía-da-Silva
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Paulo S. Bernarde
- Laboratório de Herpetologia, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, Acre, Brazil
| | - Hector H. F. Koolen
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Wuelton M. Monteiro
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
38
|
Ohsugi Y, Hatasa M, Katagiri S, Hirota T, Shimohira T, Shiba T, Komatsu K, Tsuchiya Y, Fukuba S, Lin P, Toyoshima K, Maekawa S, Niimi H, Iwata T, Aoki A. High-frequency pulsed diode laser irradiation inhibits bone resorption in mice with ligature-induced periodontitis. J Clin Periodontol 2022; 49:1275-1288. [PMID: 35817415 DOI: 10.1111/jcpe.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 11/26/2022]
Abstract
AIM The purpose of this study was to elucidate the suppressive effect of high-frequency pulsed diode laser irradiation on bone resorption and its biological effects for gene expression and microbiome composition on the gingival tissue in ligature-induced periodontitis in mice. MATERIALS AND METHODS Ligating ligature around the teeth and/or laser irradiation was performed on the gingival tissue in mice as follows: Co (no ligature and no laser irradiation), Li (ligation without laser irradiation), La (no ligature but with laser irradiation), and LiLa (ligation with laser irradiation). Bone resorption was evaluated using micro-computed tomography. RNA-seq analysis was performed on gingival tissues of all four groups at 3 days post ligation. The differences in microbial composition between Li and LiLa were evaluated based on the number of 16S rRNA gene sequences. RESULTS Bone resorption caused by ligation was significantly suppressed by laser irradiation. RNA-seq in Co and La gingival tissue revealed many differentially expressed genes, suggesting diode laser irradiation altered gene expression. Gene set enrichment analysis revealed mTORC1 signaling and E2F target gene sets were enriched in gingival tissues both in La and LiLa compared to that in Co and Li, respectively. The amount of extracted DNA from ligatures was reduced by laser irradiation, and bacterial network structure was altered between the Li and LiLa. CONCLUSIONS High-frequency pulsed diode laser irradiation showed biological effects and suppressed bone resorption in ligature-induced periodontitis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Hatasa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomitsu Hirota
- Division of Molecular Genetics, Research Center for Medical Science, The Jikei University School of Medicine, Japan
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsuke Fukuba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shogo Maekawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
39
|
Dai F, Zhang Y, Xu D, Liu C, Cao Q, Gui L, Lu Y, Zhang Q. Effects of long term diabetogenic high fat diet on bone in ovariectomized female rats. Biotech Histochem 2022; 98:20-28. [PMID: 35762155 DOI: 10.1080/10520295.2022.2083685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A diabetogenic high fat diet (HFD) can be used to induce insulin resistance and obesity in animal models; however, its effects on bone are unknown. We investigated the effects of long term HFD on bone in ovariectomized (OVX) female rats. We used 12-week-old female rats divided randomly into four groups: sham operation (sham), sham operation with HFD (SHFD), OVX and OVX with HFD (OVX + HFD). Ovaries were removed in the OVX and OVX + HFD groups and the SHFD and OVX + HFD groups were fed a HFD for 28 weeks. Serum estrogen, testosterone, lipid, adiponectin, leptin, tartrate-resistant acid phosphatase (TRAP) and N-mid fragment of osteocalcin (N-MID-OT) levels were measured. Structure, apoptosis and specific transcription factors in bone were evaluated using pathologic, densitometric and immunohistochemical analysis. Body weight, serum leptin, TRAP and testosterone levels were increased, while serum N-MID-OT, estrogen and adiponectin levels were decreased in the SHFD, OVX and OVX + HFD groups. Expression of BCL2-associated X protein, caspase-3, matrix metalloproteinase-9 and calcitonin was increased, while bone mineral density (BMD) and content (BMC) in femurs and lumbar spine, and expression of B cell lymphoma 2, type 1 collagen and osteocalcin were decreased in the bones of the SHFD, OVX and OVX + HFD groups. All indices were greatest in the OVX + HFD group and HFD produced a detrimental effect on bone in both normal and OVX rats, which may be due to increased apoptosis in bone and increased leptin and decreased adiponectin levels in serum. The effects of HFD and OVX may be synergistic.
Collapse
Affiliation(s)
- Fang Dai
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui
| | - Yi Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Dongmei Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Chao Liu
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui
| | - Qiongqiong Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Li Gui
- The Comprehensive Laboratory, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China.,The Comprehensive Laboratory, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Qiu Zhang
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui
| |
Collapse
|
40
|
Li J, Xue S, Liu Z, Yao D, Ting J. Distribution of mature and newly regenerated nerve fibers after tooth extraction and dental implant placement: an immunohistological study. J Oral Rehabil 2022; 49:796-805. [PMID: 35576051 DOI: 10.1111/joor.13338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The time-dependent peri-implant innervation needs to be elucidated in detail. OBJECTIVES To examine the distribution of mature and newly regenerated nerves around the implant with immunofluorescence during 28-days follow-up after implantation. METHODS 35 male Sprague-Dawley rats were grouped into non-operated(n=5), extraction(n=5), and implant(n=25) groups. For rats in the extraction and implant groups, three right maxillary molars were extracted. One month later, a titanium implant was placed into the healed alveolar ridge in the implant group. The implant group was further divided into 5 subgroups according to day 1, 3, 7, 14, or 28 after implantation, on which day serial histological sections were prepared for immunohistochemistry. On day 28, the serial sections were also prepared in the non-operated and extraction groups. Soluble protein-100 and growth-associated protein-43 were used to immunolabel mature and newly regenerated nerve fibers respectively. RESULTS In the peri-implant soft tissues, the number of both mature and newly regenerated nerves showed an increasing trend in 28 days. In the bone tissues, the number of mature or newly regenerated nerves in both areas at less than 100 μm and 100-200 μm from the implant surface on day 28 grew significantly compared with that on day 1 or 3. In addition, the closest distance from mature nerves to the implant surface decreased evidently. CONCLUSION The number of peri-implant nerves increased in 28 days since implantation. The innervation in the soft tissue took place faster than in the bone tissue. The mature nerves in the bone tissue approached the implant gradually.
Collapse
Affiliation(s)
- Jian Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| | - Shenghao Xue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| | - Dongyuan Yao
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang Medical College, Jiangxi, P.R. China
| | - Jiang Ting
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, P.R. China
| |
Collapse
|
41
|
Zhang Z, Yang W, Zhu T, Wang L, Zhao X, Zhao G, Qu L, Jia Y. Genetic Parameter Estimation and Whole Sequencing Analysis of the Genetic Architecture of Chicken Keel Bending. Front Genet 2022; 13:833132. [PMID: 35401685 PMCID: PMC8984200 DOI: 10.3389/fgene.2022.833132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Bone health is particularly important for high-yielding commercial layer chickens. The keel of poultry is an extension of the abdomen side of the sternum along the sagittal plane and is one of the most important bones. In this study, the keel phenotype of White Leghorns laying hen flocks showed significant individual differences. To clarify its genetic mechanism, we first estimated the heritability of keel bend (KB) in White Leghorn, recorded the production performance of the chicken flock, examined the blood biochemical indexes and bone quality in KB and keel normal (KN) chickens, and performed whole-genome pooled sequencing in KB and KN chickens. We then performed selection elimination analysis to determine the genomic regions that may affect the keel phenotypes. The results show that KB is a medium heritability trait. We found that cage height had a significant effect on the KB (p < 0.01). At 48 weeks, there were significant differences in the number of eggs, the number of normal eggs, and eggshell strength (p < 0.05). The content of parathyroid hormone was lower (p < 0.01) and that of calcitonin was higher (p < 0.01) in KB chickens than in KN chickens. The differences in bone mineral density, bone strength, and bone cortical thickness of the humerus and femur were extremely significant (p < 0.01), with all being lower in KB chickens than in KN chickens. In addition, the bones of KB chickens contained more fat organization. A total of 128 genes were identified in selective sweep regions. We identified 10 important candidate genes: ACP5, WNT1, NFIX, CNN1, CALR, FKBP11, TRAPPC5, MAP2K7, RELA, and ENSGALG00000047166. Among the significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways found, we identifed two bone-related pathways, one involving “osteoclast differentiation” and the other the “MAPK signaling pathway.” These results may help us better understand the molecular mechanism of bone traits in chickens and other birds and provide new insights for the genetic breeding of chickens.
Collapse
Affiliation(s)
- Zhihao Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Science, Beijing, China
| | - Weifang Yang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Tao Zhu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Xiaoyu Zhao
- Hebei Dawu Poultry Breeding Co., Ltd., Hebei, China
| | | | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Lujiang Qu, ; Yaxiong Jia,
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Science, Beijing, China
- *Correspondence: Lujiang Qu, ; Yaxiong Jia,
| |
Collapse
|
42
|
CGRP: A New Endogenous Cell Stemness Maintenance Molecule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107433. [PMID: 35132349 PMCID: PMC8817839 DOI: 10.1155/2022/4107433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Stem cells have the ability of self-replication and multidirectional differentiation, but the mechanism of how stem cells “maintain” this ability and how to “decide” to give up this state and differentiate into cells with specific functions is still unknown. The Nobel Prize in physiology and medicine in 2021 was awarded to “temperature and tactile receptor,” which made the pain receptor TRPV1-calcitonin gene-related peptide (CGRP) pathway active again. The activation and blocking technology of CGRP has been applied to many clinical diseases. CGRP gene has complex structure and transcription process, with multiple methylation and other modification sites. It has been considered as a research hotspot and difficulty since its discovery. Drug manipulation of TRPV1 and inhibition of CGRP might improve metabolism and prolong longevity. However, whether the TRPV1-neuropeptide-CGRP pathway is directly or indirectly involved in stem cell self-replication and multidirectional differentiation is unclear. Recent studies have found that CGRP is closely related to the migration and differentiation of tumor stem cells, which may be realized by turning off or turning on the CGRP gene expression in stem cells and activating a variety of ways to regulate stem cell niches. In this study, we reviewed the advances in researches concentrated on the biological effects of CGRP as a new endogenous switching of cell stemness.
Collapse
|
43
|
Deng Y, Wei W, Tang P. Applications of Calcium-Based Nanomaterials in Osteoporosis Treatment. ACS Biomater Sci Eng 2022; 8:424-443. [PMID: 35080365 DOI: 10.1021/acsbiomaterials.1c01306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With rapidly aging populations worldwide, osteoporosis has become a serious global public health problem. Caused by disordered systemic bone remodeling, osteoporosis manifests as progressive loss of bone mass and microarchitectural deterioration of bone tissue, increasing the risk of fractures and eventually leading to osteoporotic fragility fractures. As fracture risk increases, antiosteoporosis treatments transition from nonpharmacological management to pharmacological intervention, and finally to the treatment of fragility fractures. Calcium-based nanomaterials (CBNMs) have unique advantages in osteoporosis treatment because of several characteristics including similarity to natural bone, excellent biocompatibility, easy preparation and functionalization, low pH-responsive disaggregation, and inherent pro-osteogenic properties. By combining additional ingredients, CBNMs can play multiple roles to construct antiosteoporotic biomaterials with different forms. This review covers recent advances in CBNMs for osteoporosis treatment. For ease of understanding, CBNMs for antiosteoporosis treatment can be classified as locally applied CBNMs, such as implant coatings and filling materials for osteoporotic bone regeneration, and systemically administered CBNMs for antiosteoporosis treatment. Locally applied CBNMs for osteoporotic bone regeneration develop faster than the systemically administered CBNMs, an important consideration given the serious outcomes of fragility fractures. Nevertheless, many innovations in construction strategies and preparation methods have been applied to build systemically administered CBNMs. Furthermore, with increasing interest in delaying osteoporosis progression and avoiding fragility fracture occurrence, research into systemic administration of CBNMs for antiosteoporosis treatment will have more development prospects. Deep understanding of the CBNM preparation process and optimizing CBNM properties will allow for increased application of CBNMs in osteoporosis treatments in the future.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences No. 1 Bei-Er-Tiao, Beijing 100190, P. R. China
| | - Peifu Tang
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing 100000, China
| |
Collapse
|
44
|
Jiang Y, Xin N, Xiong Y, Guo Y, Yuan Y, Zhang Q, Gong P. αCGRP Regulates Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells Through ERK1/2 and p38 MAPK Signaling Pathways. Cell Transplant 2022; 31:9636897221107636. [PMID: 35758252 PMCID: PMC9247368 DOI: 10.1177/09636897221107636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As a typical neuropeptide richly distributed in central and peripheral nervous
systems, α-calcitonin-gene-related peptide (αCGRP) has recently been found to
play a crucial role in bone development and metabolism, but the mechanisms
involved are not fully uncovered. Here, this study aimed to investigate the
effects and underlying molecular mechanisms of αCGRP in regulating the
osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Using
microarray technology, gene ontology (GO) and kyoto encyclopedia of genes and
genomes (KEGG) analyses revealed that osteogenic properties of BMSCs were
facilitated and mitogen-activated protein kinase (MAPK) signaling pathway was
upregulated by αCGRP in this process. Through western blot assay, we proved that
αCGRP led to an increased phosphorylation level of extracellular
signal-regulated kinases 1 and 2 (ERK1/2) and p38 MAPK signaling cascades in a
time-dependent manner. And αCGRP could promote differentiative capacity of
BMSCs, showing upregulated mRNA and protein expression level of alkaline
phosphatase (Alp), collagen type 1 (Col-1), osteopontin (Opn), and runt-related
transcription factor 2 (Runx2), as well as increased ALP activity and calcified
nodules. The addition of ERK1/2 or p38 MAPK inhibitor—U0126 or SB203580,
resulted in an impaired osteogenic differentiation of BMSCs. Besides,
inactivation of this signal transduction had negative impacts on proliferative
activity and apoptotic process of αCGRP-mediated BMSCs. Our findings
demonstrated that MAPK signaling pathway, at least in part, was responsible for
the enhanced BMSCs’ osteogenesis induced by αCGRP, which might offer us
promising strategies for bone-related disorders.
Collapse
Affiliation(s)
- Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Na Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Chen Y, Zhou Y, Lin J, Zhang S. Challenges to Improve Bone Healing Under Diabetic Conditions. Front Endocrinol (Lausanne) 2022; 13:861878. [PMID: 35418946 PMCID: PMC8996179 DOI: 10.3389/fendo.2022.861878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) can affect bone metabolism and the bone microenvironment, resulting in impaired bone healing. The mechanisms include oxidative stress, inflammation, the production of advanced glycation end products (AGEs), etc. Improving bone healing in diabetic patients has important clinical significance in promoting fracture healing and improving bone integration. In this paper, we reviewed the methods of improving bone healing under diabetic conditions, including drug therapy, biochemical cues, hyperbaric oxygen, ultrasound, laser and pulsed electromagnetic fields, although most studies are in preclinical stages. Meanwhile, we also pointed out some shortcomings and challenges, hoping to provide a potential therapeutic strategy for accelerating bone healing in patients with diabetes.
Collapse
Affiliation(s)
- Yiling Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Lin, ; Shiwen Zhang,
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Lin, ; Shiwen Zhang,
| |
Collapse
|
46
|
Liu S, Chen T, Wang R, Huang H, Fu S, Zhao Y, Wang S, Wan L. Exploring the effect of the "quaternary regulation" theory of "peripheral nerve-angiogenesis-osteoclast-osteogenesis" on osteoporosis based on neuropeptides. Front Endocrinol (Lausanne) 2022; 13:908043. [PMID: 35983518 PMCID: PMC9379541 DOI: 10.3389/fendo.2022.908043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is a common bone metabolic disease among the middle-aged and elderly, with its high incidence rate and a major cause of disability and mortality. Early studies found that bone metabolic homeostasis is achieved through osteogenesis-osteoclast coupling. Although current anti-osteoporosis drugs can attenuate bone loss caused by aging, they present specific side effects. With the discovery of CD31hi Emcnhi blood vessels in 2014, the effect of H-type blood vessels on bone metabolism has been valued by researchers, and the ternary regulation theory of bone metabolism of "Angiogenesis-Osteoclast-Osteogenesis" has also been recognized. Nowadays, more studies have confirmed that peripheral nerves substantially impact bone metabolism. However, due to the complex function of peripheral nerves, the crosstalk mechanism of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis" has not yet been fully revealed. Neuropeptide serves as signaling molecules secreted by peripheral nerves that regulate blood vessels, osteoblasts, and osteoclasts' functions. It is likely to be the breakthrough point of the quaternary regulation theory of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis". Here, we discuss the effect of peripheral nerves on osteoporosis based on neuropeptides.
Collapse
Affiliation(s)
- Shuhua Liu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongying Chen
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruolin Wang
- Department of Nephrology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongxing Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sai Fu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhao
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihao Wang
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wan
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Lei Wan,
| |
Collapse
|
47
|
Lei Y, Zhao C, Chang H, Zhang D, Li Y, Anderson GJ, Shen Y, Duan X, Chang YZ. Calcitonin increases hepatic hepcidin expression through the BMP6 of kidney in mice. J Trace Elem Med Biol 2021; 68:126796. [PMID: 34098241 DOI: 10.1016/j.jtemb.2021.126796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Osteoporosis is frequently accompanied by iron disorders. Calcitonin (CT) was approved as a clinical drug to treat osteoporosis. Hepcidin is a peptide hormone that is secreted by the liver and controls body iron homeostasis. Hepcidin deficiency leads to iron overload diseases. This study was aimed at investigating the effect of CT on hepatic hepcidin and the mechanism by which CT modulates hepatic hepcidin pathways and iron metabolism. METHOD RT-PCR, Western blot, ELISA and siRNA were used to detect the effect of CT on iron metabolism in vivo and in vitro. In addition, the regulatory signal molecules of hepcidin were measured to explore the molecular mechanism of its regulation. RESULTS The results showed that CT strongly increased hepcidin expression and altered iron homeostasis, after mice were intraperitoneal injection of CT. In response to CT administration, BMP6 level in kidney and the serum BMP6 was increased significantly. The phosphorylation of Smad1/5/8 proteins in liver was increased at 3 h and 6 h. Moreover, the Bmp inhibitor LDN-193,189 pretreatment significantly attenuated the CT-mediated increases in phosphorylated Smad1/5/8 and Hamp1 mRNA levels. Calcitonin receptor (CTR) siRNA transfection significant suppressed the role of CT on BMP6 expression in Caki-1 cells. CONCLUSION Our results suggest that CT strongly induces hepcidin expression and affected iron metabolism. It will provide a new strategy for the treatment of calcium iron related diseases.
Collapse
Affiliation(s)
- Yuhua Lei
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China; College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chenyang Zhao
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Hengrui Chang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Dong Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Yaru Li
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Gregory J Anderson
- Iron Metabolism Laboratory, Queensland Institute of Medical Res, PO Royal Brisbande Hospital, Brisbane, Australia
| | - Yongqing Shen
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Xianglin Duan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
48
|
McMullan P, Maye P, Yang Q, Rowe DW, Germain‐Lee EL. Parental Origin of
Gsα
Inactivation Differentially Affects Bone Remodeling in a Mouse Model of Albright Hereditary Osteodystrophy. JBMR Plus 2021; 6:e10570. [PMID: 35079678 PMCID: PMC8771002 DOI: 10.1002/jbm4.10570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
Albright hereditary osteodystrophy (AHO) is caused by heterozygous inactivation of GNAS, a complex locus that encodes the alpha‐stimulatory subunit of heterotrimeric G proteins (Gsα) in addition to NESP55 and XLαs due to alternative first exons. AHO skeletal manifestations include brachydactyly, brachymetacarpia, compromised adult stature, and subcutaneous ossifications. AHO patients with maternally‐inherited GNAS mutations develop pseudohypoparathyroidism type 1A (PHP1A) with resistance to multiple hormones that mediate their actions through G protein‐coupled receptors (GPCRs) requiring Gsα (eg, parathyroid hormone [PTH], thyroid‐stimulating hormone [TSH], growth hormone–releasing hormone [GHRH], calcitonin) and severe obesity. Paternally‐inherited GNAS mutations cause pseudopseudohypoparathyroidism (PPHP), in which patients have AHO skeletal features but do not develop hormonal resistance or marked obesity. These differences between PHP1A and PPHP are caused by tissue‐specific reduction of paternal Gsα expression. Previous reports in mice have shown loss of Gsα causes osteopenia due to impaired osteoblast number and function and suggest that AHO patients could display evidence of reduced bone mineral density (BMD). However, we previously demonstrated PHP1A patients display normal‐increased BMD measurements without any correlation to body mass index or serum PTH. Due to these observed differences between PHP1A and PPHP, we utilized our laboratory's AHO mouse model to address whether Gsα heterozygous inactivation differentially affects bone remodeling based on the parental inheritance of the mutation. We identified fundamental distinctions in bone remodeling between mice with paternally‐inherited (GnasE1+/−p) versus maternally‐inherited (GnasE1+/−m) mutations, and these findings were observed predominantly in female mice. Specifically, GnasE1+/−p mice exhibited reduced bone parameters due to impaired bone formation and enhanced bone resorption. GnasE1+/−m mice, however, displayed enhanced bone parameters due to both increased osteoblast activity and normal bone resorption. These in vivo distinctions in bone remodeling between GnasE1+/−p and GnasE1+/−m mice could potentially be related to changes in the bone microenvironment driven by calcitonin‐resistance within GnasE1+/−m osteoclasts. Further studies are warranted to assess how Gsα influences osteoblast–osteoclast coupling. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Patrick McMullan
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - Peter Maye
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - Qingfen Yang
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - David W. Rowe
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
| | - Emily L. Germain‐Lee
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
- Department of Reconstructive Sciences University of Connecticut School of Dental Medicine Farmington CT USA
- Center for Regenerative Medicine and Skeletal Development University of Connecticut School of Dental Medicine Farmington CT USA
- Albright Center, Division of Pediatric Endocrinology Connecticut Children's Farmington CT USA
| |
Collapse
|
49
|
So WH, Bao Y, Chen X, Xia J. On-Resin Ugi Reaction for C-Terminally Modified and Head-to-Tail Cyclized Antibacterial Peptides. Org Lett 2021; 23:8277-8281. [PMID: 34623168 DOI: 10.1021/acs.orglett.1c03014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report a method to synthesize C-terminally modified peptides on resin. A four-component Ugi reaction of isocyanide resin, an Fmoc-protected amino acid, an amine, and a 6-nitroveratrylaldehyde gives C-terminal photocaged peptide amides, which can be photolyzed to generate C-terminal peptide amides. Changing the amine component in the Ugi reaction gives peptides with different C-terminal modifications including substituted anilides, alkyne, and azide. By installing an N-terminal azide and C-terminal alkyne, we synthesized a head-to-tail cyclized antibacterial peptide through copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The cyclized peptide exhibited higher proteolytic stability and antibacterial activity than the linear peptide.
Collapse
Affiliation(s)
- Wing Ho So
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xi Chen
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
50
|
Alexander R, Debiec N, Razzaque MS, He P. Inorganic phosphate-induced cytotoxicity. IUBMB Life 2021; 74:117-124. [PMID: 34676972 DOI: 10.1002/iub.2561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Phosphate, an essential nutrient, is available in organic and inorganic forms. The balance of phosphate is central for cellular homeostasis through the genomic roles of DNA and RNA synthesis and cell signaling processes. Therefore, an imbalance of this nutrient, manifested, either as a deficiency or excess in phosphate levels, can result in pathology, ranging from cytotoxicity to musculoskeletal defects. Inorganic phosphate (Pi) overdosing can result in a wide spectrum of cytotoxicity processes, as noted in both animal models and human studies. These include rewired cell signaling pathways, impaired bone mineralization, infertility, premature aging, vascular calcification, and renal dysfunction. This article briefly reviews the regulation of phosphate homeostasis and elaborates on cytotoxic effects of excessive Pi, as documented in cell-based models.
Collapse
Affiliation(s)
- Rachel Alexander
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Nicholas Debiec
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Mohammad S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| |
Collapse
|