1
|
Ruiz A, Noreen F, Meier H, Buczak K, Zorzato F, Treves S. 5-aza-2-deoxycytidine improves skeletal muscle function in a mouse model for recessive RYR1-related congenital myopathy. Hum Mol Genet 2025; 34:790-805. [PMID: 39946277 DOI: 10.1093/hmg/ddaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 01/31/2025] [Indexed: 04/22/2025] Open
Abstract
RYR1-related congenital myopathies are rare disorders that severely impair muscle function and the quality of life of patients and their families. To date no pharmacological therapies are available to treat the severe muscle weakness of affected patients. The most severe forms of RYR1-related congenital myopathies are caused by compound heterozygous mutations (nonsense/frameshift in one allele and a missense mutation in the other), leading to reduced RyR1 protein levels and altered biochemical composition of muscles. In this pre-clinical study, we treated a mouse model carrying the RyR1 p.Q1970fsX16 + p.A4329D compound heterozygous pathogenic variants (dHT mice) for 15 weeks with 0.05 mg/kg 5-aza-2'-deoxycytidine, an FDA-approved drug targeting DNA methyltransferases. We evaluated muscle strength, calcium homeostasis and muscle proteome and report that drug treatment improves all investigated parameters in dHT mice. Importantly, the beneficial effects were particularly significant in fast twitch muscles which are the first muscles to be impaired in patients. In conclusion, this study provides proof of concept for the pharmacological treatment of patients with recessive RYR1-related congenital myopathies with the FDA approved 5-aza-2'-deoxycytidine, supporting its use in a phase 1/2 clinical trial.
Collapse
Affiliation(s)
- Alexis Ruiz
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Faiza Noreen
- Genome plasticity group, Department of Biomedicine, University of Basel, Mattenstrasse 28 4058, Basel, Switzerland
| | - Hervé Meier
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, Spitalstrasse 41 4056 Basel, Switzerland
| | - Francesco Zorzato
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
- Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy
| | - Susan Treves
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
- Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Tikhonoff V, Casiglia E. Prognostic cardiovascular cut-off values of dietary caffeine in a cohort of unselected men and women from general population. Nutr Metab Cardiovasc Dis 2023; 33:2160-2168. [PMID: 37567788 DOI: 10.1016/j.numecd.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND AND AIMS Among an unselected cohort of men and women from general population (n = 1.668), the prognostic effects of being over the cut-off of all-source dietary caffeine intake were studied. METHODS AND RESULTS Prognostic cut-off values for coronary events, incident heart failure (HF), cerebrovascular events (CBV) and arrhythmic events (ARR) were found by means of the receiver-operating-characteristic curves method. Those for HF (>230 mg/day), for CBV (>280 mg/day) and for ARR (>280 mg/day) were confirmed in multivariate Cox analysis adjusted for age, body mass index, circulating thyroid hormone, diabetes mellitus, arterial hypertension, smoking, dietary intake of ethanol, basal heart rate, low-density-lipoprotein cholesterol, forced expiratory volume in 1 s and β-blocking therapy. Being over these cut-off values was associated to a reduced hazard ratio during the follow-up in the whole cohort (HR 0.678, 95%CI 0.567-0.908, p = 0.009 for HF; 0.651, 95%CI 0.428-0.994, p = 0.018 for CBV; 0.395, 95%CI 0.395-0.933, p = 0.022 for ARR) and in men (0.652, 0.442-0.961, p = 0.029; 0.432, 0.201-0.927, p = 0.03; 0.553, 0.302-1.000, p = 0.05, respectively) but not in women. The caffeine-induced risk decrease observed in the whole cohort is therefore entirely attributable to men. In the case of HF, heart rate entered the risk equation in a positive manner without rejecting caffeine. The -163C>A polymorphism of the CYP1A2 gene, codifying for ability to metabolize caffeine, introduced in sensitivity analysis, did not alter the prognostic models. CONCLUSION Men introducing >230 mg/day caffeine show a reduced risk of HF, and those introducing >280 mg/day a reduced risk of CBV and ARR independent of genetic pattern.
Collapse
Affiliation(s)
- Valérie Tikhonoff
- Department of Medicine, Unit of Clinical Nutrition, University of Padua, Padua, Italy.
| | - Edoardo Casiglia
- Department of Medicine, Studium Patavinum, University of Padua, Padua, Italy
| |
Collapse
|
3
|
Bkaily G, Jacques D. Calcium Homeostasis, Transporters, and Blockers in Health and Diseases of the Cardiovascular System. Int J Mol Sci 2023; 24:ijms24108803. [PMID: 37240147 DOI: 10.3390/ijms24108803] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium is a highly positively charged ionic species. It regulates all cell types' functions and is an important second messenger that controls and triggers several mechanisms, including membrane stabilization, permeability, contraction, secretion, mitosis, intercellular communications, and in the activation of kinases and gene expression. Therefore, controlling calcium transport and its intracellular homeostasis in physiology leads to the healthy functioning of the biological system. However, abnormal extracellular and intracellular calcium homeostasis leads to cardiovascular, skeletal, immune, secretory diseases, and cancer. Therefore, the pharmacological control of calcium influx directly via calcium channels and exchangers and its outflow via calcium pumps and uptake by the ER/SR are crucial in treating calcium transport remodeling in pathology. Here, we mainly focused on selective calcium transporters and blockers in the cardiovascular system.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
4
|
Synthesis of Dihydropyrimidines: Isosteres of Nifedipine and Evaluation of Their Calcium Channel Blocking Efficiency. Molecules 2023; 28:molecules28020784. [PMID: 36677842 PMCID: PMC9867414 DOI: 10.3390/molecules28020784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Hypertension and cardiovascular diseases related to it remain the leading medical challenges globally. Several drugs have been synthesized and commercialized to manage hypertension. Some of these drugs have a dihydropyrimidine skeleton structure, act as efficient calcium channel blockers, and affect the calcium ions' intake in vascular smooth muscle, hence managing hypertension. The synthesis of such moieties is crucial, and documenting their structure-activity relationship, their evolved and advanced synthetic procedures, and future opportunities in this area is currently a priority. Tremendous efforts have been made after the discovery of the Biginelli condensation reaction in the synthesis of dihydropyrimidines. From the specific selection of Biginelli adducts to the variation in the formed intermediates to achieve target compounds containing heterocylic rings, aldehydes, a variety of ketones, halogens, and many other desired functionalities, extensive studies have been carried out. Several substitutions at the C3, C4, and C5 positions of dihydropyrimidines have been explored, aiming to produce feasible derivatives with acceptable yields as well as antihypertensive activity. The current review aims to cover this requirement in detail.
Collapse
|
5
|
Takada S, Fumoto Y, Kinugawa S. Ergogenic effects of caffeine are mediated by myokines. Front Sports Act Living 2022; 4:969623. [PMID: 36570495 PMCID: PMC9774489 DOI: 10.3389/fspor.2022.969623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Exercise has long been known to effectively improve and enhance skeletal muscle function and performance. The favorable effects of exercise on remote organs other than skeletal muscle are well known, but the underlying mechanism has remained elusive. Recent studies have indicated that skeletal muscle not only enables body movement, but also contributes to body homeostasis and the systemic stress response via the expression and/or secretion of cytokines (so-called myokines). Not only the induction of muscle contraction itself, but also changes in intracellular calcium concentration ([Ca2+]i) have been suggested to be involved in myokine production and secretion. Caffeine is widely known as a Ca2+ ionophore, which improves skeletal muscle function and exercise performance (i.e., an "ergogenic aid"). Interestingly, some studies reported that caffeine or an increase in [Ca2+]i enhances the expression and/or secretion of myokines. In this review, we discuss the association between caffeine as an ergogenic aid and myokine regulation.
Collapse
Affiliation(s)
- Shingo Takada
- Department of Lifelong Sport, School of Sports Education, Hokusho University, Ebetsu, Japan,Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan,*Correspondence: Shingo Takada ;
| | - Yoshizuki Fumoto
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan,Shintaro Kinugawa
| |
Collapse
|
6
|
Blazev R, Carl CS, Ng YK, Molendijk J, Voldstedlund CT, Zhao Y, Xiao D, Kueh AJ, Miotto PM, Haynes VR, Hardee JP, Chung JD, McNamara JW, Qian H, Gregorevic P, Oakhill JS, Herold MJ, Jensen TE, Lisowski L, Lynch GS, Dodd GT, Watt MJ, Yang P, Kiens B, Richter EA, Parker BL. Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metab 2022; 34:1561-1577.e9. [PMID: 35882232 DOI: 10.1016/j.cmet.2022.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
Exercise induces signaling networks to improve muscle function and confer health benefits. To identify divergent and common signaling networks during and after different exercise modalities, we performed a phosphoproteomic analysis of human skeletal muscle from a cross-over intervention of endurance, sprint, and resistance exercise. This identified 5,486 phosphosites regulated during or after at least one type of exercise modality and only 420 core phosphosites common to all exercise. One of these core phosphosites was S67 on the uncharacterized protein C18ORF25, which we validated as an AMPK substrate. Mice lacking C18ORF25 have reduced skeletal muscle fiber size, exercise capacity, and muscle contractile function, and this was associated with reduced phosphorylation of contractile and Ca2+ handling proteins. Expression of C18ORF25 S66/67D phospho-mimetic reversed the decreased muscle force production. This work defines the divergent and canonical exercise phosphoproteome across different modalities and identifies C18ORF25 as a regulator of exercise signaling and muscle function.
Collapse
Affiliation(s)
- Ronnie Blazev
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Yaan-Kit Ng
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey Molendijk
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Yuanyuan Zhao
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Di Xiao
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Paula M Miotto
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Vanessa R Haynes
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Justin P Hardee
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Jin D Chung
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - James W McNamara
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Hongwei Qian
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Gregorevic
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | | | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Thomas E Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Leszek Lisowski
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; Military Institute of Medicine, Warsaw, Poland
| | - Gordon S Lynch
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Matthew J Watt
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Pengyi Yang
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Bente Kiens
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark.
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark.
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Nomura T, Hayakawa K, Sato N, Obinata T. Periodic Stretching of Cultured Myotubes Enhances Myofibril Assembly. Zoolog Sci 2022; 39. [DOI: 10.2108/zs220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Takahiro Nomura
- Department of Biology, Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan
| | - Kimihide Hayakawa
- Department of Biology, Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan
| | - Naruki Sato
- Department of Biology, Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan
| | - Takashi Obinata
- Department of Biology, Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan
| |
Collapse
|
8
|
Kurebayashi N, Murayama T, Ota R, Suzuki J, Kanemaru K, Kobayashi T, Ohno S, Horie M, Iino M, Yamashita F, Sakurai T. Cytosolic Ca2+-dependent Ca2+ release activity primarily determines the ER Ca2+ level in cells expressing the CPVT-linked mutant RYR2. J Gen Physiol 2022; 154:213175. [PMID: 35446340 PMCID: PMC9037340 DOI: 10.1085/jgp.202112869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 11/28/2021] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
Type 2 ryanodine receptor (RYR2) is a cardiac Ca2+ release channel in the ER. Mutations in RYR2 are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT is associated with enhanced spontaneous Ca2+ release, which tends to occur when [Ca2+]ER reaches a threshold. Mutations lower the threshold [Ca2+]ER by increasing luminal Ca2+ sensitivity or enhancing cytosolic [Ca2+] ([Ca2+]cyt)-dependent activity. Here, to establish the mechanism relating the change in [Ca2+]cyt-dependent activity of RYR2 and the threshold [Ca2+]ER, we carried out cell-based experiments and in silico simulations. We expressed WT and CPVT-linked mutant RYR2s in HEK293 cells and measured [Ca2+]cyt and [Ca2+]ER using fluorescent Ca2+ indicators. CPVT RYR2 cells showed higher oscillation frequency and lower threshold [Ca2+]ER than WT cells. The [Ca2+]cyt-dependent activity at resting [Ca2+]cyt, Arest, was greater in CPVT mutants than in WT, and we found an inverse correlation between threshold [Ca2+]ER and Arest. In addition, lowering RYR2 expression increased the threshold [Ca2+]ER and a product of Arest, and the relative expression level for each mutant correlated with threshold [Ca2+]ER, suggesting that the threshold [Ca2+]ER depends on the net Ca2+ release rate via RYR2. Modeling reproduced Ca2+ oscillations with [Ca2+]cyt and [Ca2+]ER changes in WT and CPVT cells. Interestingly, the [Ca2+]cyt-dependent activity of specific mutations correlated with the age of disease onset in patients carrying them. Our data suggest that the reduction in threshold [Ca2+]ER for spontaneous Ca2+ release by CPVT mutation is explained by enhanced [Ca2+]cyt-dependent activity without requiring modulation of the [Ca2+]ER sensitivity of RYR2.
Collapse
Affiliation(s)
- Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan,Correspondence to Nagomi Kurebayashi:
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryosaku Ota
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Junji Suzuki
- Department of Physiology, University of California San Francisco, San Francisco, CA
| | - Kazunori Kanemaru
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Masamitsu Iino
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan,Fumiyoshi Yamashita:
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Calcium Channels in the Heart: Disease States and Drugs. Cells 2022; 11:cells11060943. [PMID: 35326393 PMCID: PMC8945986 DOI: 10.3390/cells11060943] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Calcium ions are the major signaling ions in the cells. They regulate muscle contraction, neurotransmitter secretion, cell growth and migration, and the activity of several proteins including enzymes and ion channels and transporters. They participate in various signal transduction pathways, thereby regulating major physiological functions. Calcium ion entry into the cells is regulated by specific calcium channels and transporters. There are mainly six types of calcium channels, of which only two are prominent in the heart. In cardiac tissues, the two types of calcium channels are the L type and the T type. L-type channels are found in all cardiac cells and T-type are expressed in Purkinje cells, pacemaker and atrial cells. Both these types of channels contribute to atrioventricular conduction as well as pacemaker activity. Given the crucial role of calcium channels in the cardiac conduction system, mutations and dysfunctions of these channels are known to cause several diseases and disorders. Drugs targeting calcium channels hence are used in a wide variety of cardiac disorders including but not limited to hypertension, angina, and arrhythmias. This review summarizes the type of cardiac calcium channels, their function, and disorders caused by their mutations and dysfunctions. Finally, this review also focuses on the types of calcium channel blockers and their use in a variety of cardiac disorders.
Collapse
|
10
|
Louch WE, Perdreau-Dahl H, Edwards AG. Image-Driven Modeling of Nanoscopic Cardiac Function: Where Have We Come From, and Where Are We Going? Front Physiol 2022; 13:834211. [PMID: 35356084 PMCID: PMC8959215 DOI: 10.3389/fphys.2022.834211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Complementary developments in microscopy and mathematical modeling have been critical to our understanding of cardiac excitation-contraction coupling. Historically, limitations imposed by the spatial or temporal resolution of imaging methods have been addressed through careful mathematical interrogation. Similarly, limitations imposed by computational power have been addressed by imaging macroscopic function in large subcellular domains or in whole myocytes. As both imaging resolution and computational tractability have improved, the two approaches have nearly merged in terms of the scales that they can each be used to interrogate. With this review we will provide an overview of these advances and their contribution to understanding ventricular myocyte function, including exciting developments over the last decade. We specifically focus on experimental methods that have pushed back limits of either spatial or temporal resolution of nanoscale imaging (e.g., DNA-PAINT), or have permitted high resolution imaging on large cellular volumes (e.g., serial scanning electron microscopy). We also review the progression of computational approaches used to integrate and interrogate these new experimental data sources, and comment on near-term advances that may unify understanding of the underlying biology. Finally, we comment on several outstanding questions in cardiac physiology that stand to benefit from a concerted and complementary application of these new experimental and computational methods.
Collapse
Affiliation(s)
- William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Harmonie Perdreau-Dahl
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | | |
Collapse
|
11
|
Ruiz A, Benucci S, Duthaler U, Bachmann C, Franchini M, Noreen F, Pietrangelo L, Protasi F, Treves S, Zorzato F. Improvement of muscle strength in a mouse model for congenital myopathy treated with HDAC and DNA methyltransferase inhibitors. eLife 2022; 11:73718. [PMID: 35238775 PMCID: PMC8956288 DOI: 10.7554/elife.73718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
To date there are no therapies for patients with congenital myopathies, muscle disorders causing poor quality of life of affected individuals. In approximately 30% of the cases, patients with congenital myopathies carry either dominant or recessive mutations in the RYR1 gene; recessive RYR1 mutations are accompanied by reduction of RyR1 expression and content in skeletal muscles and are associated with fiber hypotrophy and muscle weakness. Importantly, muscles of patients with recessive RYR1 mutations exhibit increased content of class II histone de-acetylases and of DNA genomic methylation. We recently created a mouse model knocked-in for the p.Q1970fsX16+p.A4329D RyR1 mutations, which are isogenic to those carried by a severely affected child suffering from a recessive form of RyR1-related multi-mini core disease. The phenotype of the RyR1 mutant mice recapitulates many aspects of the clinical picture of patients carrying recessive RYR1 mutations. We treated the compound heterozygous mice with a combination of two drugs targeting DNA methylases and class II histone de-acetylases. Here we show that treatment of the mutant mice with drugs targeting epigenetic enzymes improves muscle strength, RyR1 protein content and muscle ultrastructure. This study provides proof of concept for the pharmacological treatment of patients with congenital myopathies linked to recessive RYR1 mutations.
Collapse
Affiliation(s)
- Alexis Ruiz
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Sofia Benucci
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Urs Duthaler
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Christoph Bachmann
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Martina Franchini
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Faiza Noreen
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Pietrangelo
- Department of Neuroscience, Imaging and Clinical Science, University G d' Annunzio of Chieti, Chieti, Italy
| | - Feliciano Protasi
- Department of Neuroscience, Imaging and Clinical Science, University G d' Annunzio of Chieti, Chieti, Italy
| | - Susan Treves
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Francesco Zorzato
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| |
Collapse
|
12
|
Lewalle A, Campbell KS, Campbell SG, Milburn GN, Niederer SA. Functional and structural differences between skinned and intact muscle preparations. J Gen Physiol 2022; 154:e202112990. [PMID: 35045156 PMCID: PMC8929306 DOI: 10.1085/jgp.202112990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Myofilaments and their associated proteins, which together constitute the sarcomeres, provide the molecular-level basis for contractile function in all muscle types. In intact muscle, sarcomere-level contraction is strongly coupled to other cellular subsystems, in particular the sarcolemmal membrane. Skinned muscle preparations (where the sarcolemma has been removed or permeabilized) are an experimental system designed to probe contractile mechanisms independently of the sarcolemma. Over the last few decades, experiments performed using permeabilized preparations have been invaluable for clarifying the understanding of contractile mechanisms in both skeletal and cardiac muscle. Today, the technique is increasingly harnessed for preclinical and/or pharmacological studies that seek to understand how interventions will impact intact muscle contraction. In this context, intrinsic functional and structural differences between skinned and intact muscle pose a major interpretational challenge. This review first surveys measurements that highlight these differences in terms of the sarcomere structure, passive and active tension generation, and calcium dependence. We then highlight the main practical challenges and caveats faced by experimentalists seeking to emulate the physiological conditions of intact muscle. Gaining an awareness of these complexities is essential for putting experiments in due perspective.
Collapse
Affiliation(s)
- Alex Lewalle
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Kenneth S. Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY
| | - Stuart G. Campbell
- Departments of Biomedical Engineering and Cellular and Molecular Physiology, Yale University, New Haven, CT
| | - Gregory N. Milburn
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY
| | - Steven A. Niederer
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
13
|
Prakash O, Held M, McCormick LF, Gupta N, Lian LY, Antonyuk S, Haynes LP, Thomas NL, Helassa N. CPVT-associated calmodulin variants N53I and A102V dysregulate Ca2+ signalling via different mechanisms. J Cell Sci 2022; 135:274029. [PMID: 34888671 PMCID: PMC8917356 DOI: 10.1242/jcs.258796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear. Focusing on the interaction with the cardiac ryanodine receptor (RyR2), we determined the effect of CPVT-associated variants N53I and A102V on the structural characteristics of CaM and on Ca2+ fluxes in live cells. We provide novel data showing that interaction of both Ca2+/CaM-N53I and Ca2+/CaM-A102V with the RyR2 binding domain is decreased. Ca2+/CaM-RyR23583-3603 high-resolution crystal structures highlight subtle conformational changes for the N53I variant, with A102V being similar to wild type (WT). We show that co-expression of CaM-N53I or CaM-A102V with RyR2 in HEK293 cells significantly increased the duration of Ca2+ events; CaM-A102V exhibited a lower frequency of Ca2+ oscillations. In addition, we show that CaMKIIδ (also known as CAMK2D) phosphorylation activity is increased for A102V, compared to CaM-WT. This paper provides novel insight into the molecular mechanisms of CPVT-associated CaM variants and will facilitate the development of strategies for future therapies.
Collapse
Affiliation(s)
- Ohm Prakash
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Marie Held
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Liam F. McCormick
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Nitika Gupta
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Lu-Yun Lian
- Nuclear Magnetic Resonance Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Svetlana Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - N. Lowri Thomas
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, Redwood Building, CF10 3NB, UK
| | - Nordine Helassa
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK,Author for correspondence ()
| |
Collapse
|
14
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
15
|
Gu XY, Jin B, Qi ZD, Yin XF. MicroRNA is a potential target for therapies to improve the physiological function of skeletal muscle after trauma. Neural Regen Res 2021; 17:1617-1622. [PMID: 34916449 PMCID: PMC8771090 DOI: 10.4103/1673-5374.330620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
MicroRNAs can regulate the function of ion channels in many organs. Based on our previous study we propose that miR-142a-39, which is highly expressed in denervated skeletal muscle, might affect cell excitability through similar mechanisms. In this study, we overexpressed or knocked down miR-142a-3p in C2C12 cells using a lentivirus method. After 7 days of differentiation culture, whole-cell currents were recorded. The results showed that overexpression of miR-142a-3p reduced the cell membrane capacitance, increased potassium current density and decreased calcium current density. Knockdown of miR-142a-3p reduced sodium ion channel current density. The results showed that change in miR-142a-3p expression affected the ion channel currents in C2C12 cells, suggesting its possible roles in muscle cell electrophysiology. This study was approved by the Animal Ethics Committee of Peking University in July 2020 (approval No. LA2017128).
Collapse
Affiliation(s)
- Xin-Yi Gu
- Department of Orthopedics and Traumatology, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Bo Jin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu Province, China
| | - Zhi-Dan Qi
- Department of Orthopedics and Traumatology, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Xiao-Feng Yin
- Department of Orthopedics and Traumatology, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| |
Collapse
|
16
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
17
|
Eckhardt J, Bachmann C, Benucci S, Elbaz M, Ruiz A, Zorzato F, Treves S. Molecular basis of impaired extraocular muscle function in a mouse model of congenital myopathy due to compound heterozygous Ryr1 mutations. Hum Mol Genet 2021; 29:1330-1339. [PMID: 32242214 DOI: 10.1093/hmg/ddaa056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 01/20/2023] Open
Abstract
Mutations in the RYR1 gene are the most common cause of human congenital myopathies, and patients with recessive mutations are severely affected and often display ptosis and/or ophthalmoplegia. In order to gain insight into the mechanism leading to extraocular muscle (EOM) involvement, we investigated the biochemical, structural and physiological properties of eye muscles from mouse models we created knocked-in for Ryr1 mutations. Ex vivo force production in EOMs from compound heterozygous RyR1p.Q1970fsX16+p.A4329D mutant mice was significantly reduced compared with that observed in wild-type, single heterozygous mutant carriers or homozygous RyR1p.A4329D mice. The decrease in muscle force was also accompanied by approximately a 40% reduction in RyR1 protein content, a decrease in electrically evoked calcium transients, disorganization of the muscle ultrastructure and a decrease in the number of calcium release units. Unexpectedly, the superfast and ocular-muscle-specific myosin heavy chain-EO isoform was almost undetectable in RyR1p.Q1970fsX16+p.A4329D mutant mice. The results of this study show for the first time that the EOM phenotype caused by the RyR1p.Q1970fsX16+p.A4329D compound heterozygous Ryr1 mutations is complex and due to a combination of modifications including a direct effect on the macromolecular complex involved in calcium release and indirect effects on the expression of myosin heavy chain isoforms.
Collapse
Affiliation(s)
- Jan Eckhardt
- Departments of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland
| | - Christoph Bachmann
- Departments of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland
| | - Sofia Benucci
- Departments of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland
| | - Moran Elbaz
- Departments of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland
| | - Alexis Ruiz
- Departments of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland
| | - Francesco Zorzato
- Departments of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland.,Department of Life Science and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
| | - Susan Treves
- Departments of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland.,Department of Life Science and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
18
|
A novel RyR1-selective inhibitor prevents and rescues sudden death in mouse models of malignant hyperthermia and heat stroke. Nat Commun 2021; 12:4293. [PMID: 34257294 PMCID: PMC8277899 DOI: 10.1038/s41467-021-24644-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Mutations in the type 1 ryanodine receptor (RyR1), a Ca2+ release channel in skeletal muscle, hyperactivate the channel to cause malignant hyperthermia (MH) and are implicated in severe heat stroke. Dantrolene, the only approved drug for MH, has the disadvantages of having very poor water solubility and long plasma half-life. We show here that an oxolinic acid-derivative RyR1-selective inhibitor, 6,7-(methylenedioxy)-1-octyl-4-quinolone-3-carboxylic acid (Compound 1, Cpd1), effectively prevents and treats MH and heat stroke in several mouse models relevant to MH. Cpd1 reduces resting intracellular Ca2+, inhibits halothane- and isoflurane-induced Ca2+ release, suppresses caffeine-induced contracture in skeletal muscle, reduces sarcolemmal cation influx, and prevents or reverses the fulminant MH crisis induced by isoflurane anesthesia and rescues animals from heat stroke caused by environmental heat stress. Notably, Cpd1 has great advantages of better water solubility and rapid clearance in vivo over dantrolene. Cpd1 has the potential to be a promising candidate for effective treatment of patients carrying RyR1 mutations. Mutations in ryanodine receptor 1 (RyR1), a Ca2+ release channel in skeletal muscle, cause malignant hyperthermia (MH) and are involved in heat stroke. Here, the authors show that an oxolinic acid-derivative RyR1 inhibitor effectively prevents and treats MH and heat stroke in various MH mouse models.
Collapse
|
19
|
Protasi F, Pietrangelo L, Boncompagni S. Improper Remodeling of Organelles Deputed to Ca 2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. Int J Mol Sci 2021; 22:6195. [PMID: 34201319 PMCID: PMC8228829 DOI: 10.3390/ijms22126195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
20
|
Dayal A, Fernández-Quintero ML, Liedl KR, Grabner M. Pore mutation N617D in the skeletal muscle DHPR blocks Ca 2+ influx due to atypical high-affinity Ca 2+ binding. eLife 2021; 10:63435. [PMID: 34061024 PMCID: PMC8184209 DOI: 10.7554/elife.63435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle excitation-contraction (EC) coupling roots in Ca2+-influx-independent inter-channel signaling between the sarcolemmal dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR1) in the sarcoplasmic reticulum. Although DHPR Ca2+ influx is irrelevant for EC coupling, its putative role in other muscle-physiological and developmental pathways was recently examined using two distinct genetically engineered mouse models carrying Ca2+ non-conducting DHPRs: DHPR(N617D) (Dayal et al., 2017) and DHPR(E1014K) (Lee et al., 2015). Surprisingly, despite complete block of DHPR Ca2+-conductance, histological, biochemical, and physiological results obtained from these two models were contradictory. Here, we characterize the permeability and selectivity properties and henceforth the mechanism of Ca2+ non-conductance of DHPR(N617). Our results reveal that only mutant DHPR(N617D) with atypical high-affinity Ca2+ pore-binding is tight for physiologically relevant monovalent cations like Na+ and K+. Consequently, we propose a molecular model of cooperativity between two ion selectivity rings formed by negatively charged residues in the DHPR pore region.
Collapse
Affiliation(s)
- Anamika Dayal
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Manfred Grabner
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Abstract
The purine alkaloid caffeine is the most widely consumed psychostimulant drug in the world and has multiple beneficial pharmacological activities, for example, in neurodegenerative diseases. However, despite being an extensively studied bioactive natural product, the mechanistic understanding of caffeine's pharmacological effects is incomplete. While several molecular targets of caffeine such as adenosine receptors and phosphodiesterases have been known for decades and inspired numerous medicinal chemistry programs, new protein interactions of the xanthine are continuously discovered providing potentially improved pharmacological understanding and a molecular basis for future medicinal chemistry. In this Perspective, we gather knowledge on the confirmed protein interactions, structure activity relationship, and chemical biology of caffeine on well-known and upcoming targets. The diversity of caffeine's molecular activities on receptors and enzymes, many of which are abundant in the CNS, indicates a complex interplay of several mechanisms contributing to neuroprotective effects and highlights new targets as attractive subjects for drug discovery.
Collapse
Affiliation(s)
- Giuseppe Faudone
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
22
|
Monti E, Reggiani C, Franchi MV, Toniolo L, Sandri M, Armani A, Zampieri S, Giacomello E, Sarto F, Sirago G, Murgia M, Nogara L, Marcucci L, Ciciliot S, Šimunic B, Pišot R, Narici MV. Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. J Physiol 2021; 599:3037-3061. [PMID: 33881176 PMCID: PMC8359852 DOI: 10.1113/jp281365] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Key points Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Abstract Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)‐positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C‐terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross‐sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation–contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading. Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, 35124, Italy
| | - Emiliana Giacomello
- Clinical Department of Medical, Surgical and Health Sciences, Strada di Fiume, 447, Trieste, 34149, Italy
| | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Stefano Ciciliot
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Boštjan Šimunic
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Rado Pišot
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia.,CIR-MYO Myology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
23
|
Role of protons in calcium signaling. Biochem J 2021; 478:895-910. [PMID: 33635336 DOI: 10.1042/bcj20200971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/03/2023]
Abstract
Thirty-six years after the publication of the important article by Busa and Nuccitelli on the variability of intracellular pH (pHi) and the interdependence of pHi and intracellular Ca2+ concentration ([Ca2+]i), little research has been carried out on pHi and calcium signaling. Moreover, the results appear to be contradictory. Some authors claim that the increase in [Ca2+]i is due to a reduction in pHi, others that it is caused by an increase in pHi. The reasons for these conflicting results have not yet been discussed and clarified in an exhaustive manner. The idea that variations in pHi are insignificant, because cellular buffers quickly stabilize the pHi, may be a limiting and fundamentally wrong concept. In fact, it has been shown that protons can move and react in the cell before they are neutralized. Variations in pHi have a remarkable impact on [Ca2+]i and hence on some of the basic biochemical mechanisms of calcium signaling. This paper focuses on the possible triggering role of protons during their short cellular cycle and it suggests a new hypothesis for an IP3 proton dependent mechanism of action.
Collapse
|
24
|
Palahniuk C, Mutawe M, Gilchrist JSC. Luminal Ca 2+ regulation of RyR1 Ca 2+ channel leak activation and inactivation in sarcoplasmic reticulum membrane vesicles. Can J Physiol Pharmacol 2021; 99:192-206. [PMID: 33161753 DOI: 10.1139/cjpp-2020-0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we tested the hypothesis that the RyR1 Ca2+ channel closure is sensitive to outward trans-SR membrane Ca2+ gradients established by SERCA1 pumping. To perform these studies, we employed stopped-flow rapid-kinetic fluorescence methods to measure and assess how variation in trans-SR membrane Ca2+ distribution affects evolution of RyR1 Ca2+ leaks in RyR1/ CASQ1/SERCA1-rich membrane vesicles. Our studies showed that rapid filling of a Mag-Fura-2-sensitive free Ca2+ pool during SERCA1-mediated Ca2+ sequestration appears to be a crucial condition allowing RyR1 Ca2+ channels to close once reloading of luminal Ca2+ stores is complete. Disruption in the filling of this pool caused activation of Ruthenium Red inhibitable RyR1 Ca2+ leaks, suggesting that SERCA1 pump formation of outward Ca2+ gradients is an important aspect of Ca2+ flux control channel opening and closing. In addition, our observed ryanodine-induced shift in luminal Ca2+ from free to a CTC-Ca+-sensitive, CASQ1-associated bound compartment underscores the complex organization and regulation of SR luminal Ca2+. Our study provides strong evidence that RyR1 functional states directly and indirectly influence the compartmentation of luminal Ca2+. This, in turn, is influenced by the activity of SERCA1 pumps to fill luminal pools while synchronously reducing Ca2+ levels on the cytosolic face of RyR1 channels.
Collapse
Affiliation(s)
- C Palahniuk
- Department of Biology, St. Catherine University, 2004 Randolph Ave., St. Paul, MN 55105, USA
| | - M Mutawe
- Genome Analysis Core (GAC), 13-66 Stabile Building, MAYO Clinic, Rochester, MN 55905, USA
| | - J S C Gilchrist
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, MB R3E 0W2, Canada
| |
Collapse
|
25
|
|
26
|
Guo W, Sun B, Estillore JP, Wang R, Chen SRW. The central domain of cardiac ryanodine receptor governs channel activation, regulation, and stability. J Biol Chem 2020; 295:15622-15635. [PMID: 32878990 DOI: 10.1074/jbc.ra120.013512] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/25/2020] [Indexed: 11/06/2022] Open
Abstract
Structural analyses identified the central domain of ryanodine receptor (RyR) as a transducer converting conformational changes in the cytoplasmic platform to the RyR gate. The central domain is also a regulatory hub encompassing the Ca2+-, ATP-, and caffeine-binding sites. However, the role of the central domain in RyR activation and regulation has yet to be defined. Here, we mutated five residues that form the Ca2+ activation site and 10 residues with negatively charged or oxygen-containing side chains near the Ca2+ activation site. We also generated eight disease-associated mutations within the central domain of RyR2. We determined the effect of these mutations on Ca2+, ATP, and caffeine activation and Mg2+ inhibition of RyR2. Mutating the Ca2+ activation site markedly reduced the sensitivity of RyR2 to Ca2+ and caffeine activation. Unexpectedly, Ca2+ activation site mutation E3848A substantially enhanced the Ca2+-independent basal activity of RyR2, suggesting that E3848A may also affect the stability of the closed state of RyR2. Mutations in the Ca2+ activation site also abolished the effect of ATP/caffeine on the Ca2+-independent basal activity, suggesting that the Ca2+ activation site is also a critical determinant of ATP/caffeine action. Mutating residues with negatively charged or oxygen-containing side chains near the Ca2+ activation site significantly altered Ca2+ and caffeine activation and reduced Mg2+ inhibition. Furthermore, disease-associated RyR2 mutations within the central domain significantly enhanced Ca2+ and caffeine activation and reduced Mg2+ inhibition. Our data demonstrate that the central domain plays an important role in channel activation, channel regulation, and closed state stability.
Collapse
Affiliation(s)
- Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Bo Sun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Medical School, Kunming University of Science and Technology, Kunming, China
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
27
|
Wang Q, Michalak M. Calsequestrin. Structure, function, and evolution. Cell Calcium 2020; 90:102242. [PMID: 32574906 DOI: 10.1016/j.ceca.2020.102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022]
Abstract
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada.
| |
Collapse
|
28
|
Hypoxia/reoxygenation decreases endothelial glycocalyx via reactive oxygen species and calcium signaling in a cellular model for shock. J Trauma Acute Care Surg 2020; 87:1070-1076. [PMID: 31658237 DOI: 10.1097/ta.0000000000002427] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ischemia/reperfusion injury (IRI) has been shown to cause endothelial glycocalyx (EG) damage.Whether the hypoxic/ischemic insult or the oxidative and inflammatory stress of reperfusion plays a greater part in glycocalyx damage is not known. Furthermore, the mechanisms by which IRI causes EG damage have not been fully elucidated. The aims of this study were to determine if hypoxia alone or hypoxia/reoxygenation (H/R) caused greater damage to the glycocalyx, and if this damage was mediated by reactive oxygen species (ROS) and Ca signaling. METHODS Human umbilical vein endothelial cells were cultured to confluence and exposed to either normoxia (30 minutes), hypoxia (2% O2 for 30 minutes), or H/R (30 minutes hypoxia followed by 30 minutes normoxia). Some cells were pretreated with ROS scavengers TEMPOL, MitoTEMPOL, Febuxostat, or Apocynin, or with the Ca chelator BAPTA or Ca channel blockers 2-aminoethoxydiphenyl borate, A967079, Pyr3, or ML204. Intracellular ROS was quantified for all groups. Endothelial glycocalyx was measured using fluorescently tagged wheat germ agglutinin and imaged with fluorescence microscopy. RESULTS Glycocalyx thickness was decreased in both hypoxia and H/R groups, with the decrease being greater in the H/R group. TEMPOL, MitoTEMPOL, BAPTA, and 2-aminoethoxydiphenyl borate prevented loss of glycocalyx in H/R. The ROS levels were likewise elevated compared with normoxia in both groups, but were increased in the H/R group compared with hypoxia alone. BAPTA did not prevent ROS production in either group. CONCLUSION In our cellular model for shock, we demonstrate that although hypoxia alone is sufficient to produce glycocalyx loss, H/R causes a greater decrease in glycocalyx thickness. Under both conditions damage is dependent on ROS and Ca signaling. Notably, we found that ROS are generated upstream of Ca, but that ROS-mediated damage to the glycocalyx is dependent on Ca.
Collapse
|
29
|
Solís C, Robinson JM. Cardiac troponin and tropomyosin bind to F-actin cooperatively, as revealed by fluorescence microscopy. FEBS Open Bio 2020; 10:1362-1372. [PMID: 32385956 PMCID: PMC7327902 DOI: 10.1002/2211-5463.12876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
In cardiac muscle, binding of troponin (Tn) and tropomyosin (Tpm) to filamentous (F)‐actin forms thin filaments capable of Ca2+‐dependent regulation of contraction. Tpm binds to F‐actin in a head‐to‐tail fashion, while Tn stabilizes these linkages. Valuable structural and functional information has come from biochemical, X‐ray, and electron microscopy data. However, the use of fluorescence microscopy to study thin filament assembly remains relatively underdeveloped. Here, triple fluorescent labeling of Tn, Tpm, and F‐actin allowed us to track thin filament assembly by fluorescence microscopy. It is shown here that Tn and Tpm molecules self‐organize on actin filaments and give rise to decorated and undecorated regions. Binding curves based on colocalization of Tn and Tpm on F‐actin exhibit cooperative binding with a dissociation constant Kd of ~ 0.5 µm that is independent of the Ca2+ concentration. Binding isotherms based on the intensity profile of fluorescently labeled Tn and Tpm on F‐actin show that binding of Tn is less cooperative relative to Tpm. Computational modeling of Tn‐Tpm binding to F‐actin suggests two equilibrium steps involving the binding of an initial Tn‐Tpm unit (nucleation) and subsequent recruitment of adjacent Tn‐Tpm units (elongation) that stabilize the assembly. The results presented here highlight the utility of employing fluorescence microscopy to study supramolecular protein assemblies.
Collapse
Affiliation(s)
- Christopher Solís
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | | |
Collapse
|
30
|
Ranum PT, Goodwin AT, Yoshimura H, Kolbe DL, Walls WD, Koh JY, He DZZ, Smith RJH. Insights into the Biology of Hearing and Deafness Revealed by Single-Cell RNA Sequencing. Cell Rep 2020; 26:3160-3171.e3. [PMID: 30865901 PMCID: PMC6424336 DOI: 10.1016/j.celrep.2019.02.053] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/16/2018] [Accepted: 02/13/2019] [Indexed: 01/03/2023] Open
Abstract
Single-cell RNA sequencing is a powerful tool by which to characterize the transcriptional profile of low-abundance cell types, but its application to the inner ear has been hampered by the bony labyrinth, tissue sparsity, and difficulty dissociating the ultra-rare cells of the membranous cochlea. Herein, we present a method to isolate individual inner hair cells (IHCs), outer hair cells (OHCs), and Deiters' cells (DCs) from the murine cochlea at any post-natal time point. We harvested more than 200 murine IHCs, OHCs, and DCs from post-natal days 15 (p15) to 228 (p228) and leveraged both short- and long-read single-cell RNA sequencing to profile transcript abundance and structure. Our results provide insights into the expression profiles of these cells and document an unappreciated complexity in isoform variety in deafness-associated genes. This refined view of transcription in the organ of Corti improves our understanding of the biology of hearing and deafness.
Collapse
Affiliation(s)
- Paul T Ranum
- Interdisciplinary Graduate Program in Molecular & Cellular Biology, University of Iowa Graduate College, University of Iowa, Iowa City, IA 52242, USA; Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexander T Goodwin
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hidekane Yoshimura
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Diana L Kolbe
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - William D Walls
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jin-Young Koh
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David Z Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Richard J H Smith
- Interdisciplinary Graduate Program in Molecular & Cellular Biology, University of Iowa Graduate College, University of Iowa, Iowa City, IA 52242, USA; Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
31
|
Elbaz M, Ruiz A, Bachmann C, Eckhardt J, Pelczar P, Venturi E, Lindsay C, Wilson AD, Alhussni A, Humberstone T, Pietrangelo L, Boncompagni S, Sitsapesan R, Treves S, Zorzato F. Quantitative RyR1 reduction and loss of calcium sensitivity of RyR1Q1970fsX16+A4329D cause cores and loss of muscle strength. Hum Mol Genet 2020; 28:2987-2999. [PMID: 31044239 DOI: 10.1093/hmg/ddz092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/10/2023] Open
Abstract
Recessive ryanodine receptor 1 (RYR1) mutations cause congenital myopathies including multiminicore disease (MmD), congenital fiber-type disproportion and centronuclear myopathy. We created a mouse model knocked-in for the Q1970fsX16+A4329D RYR1 mutations, which are isogenic with those identified in a severely affected child with MmD. During the first 20 weeks after birth the body weight and the spontaneous running distance of the mutant mice were 20% and 50% lower compared to wild-type littermates. Skeletal muscles from mutant mice contained 'cores' characterized by severe myofibrillar disorganization associated with misplacement of mitochondria. Furthermore, their muscles developed less force and had smaller electrically evoked calcium transients. Mutant RyR1 channels incorporated into lipid bilayers were less sensitive to calcium and caffeine, but no change in single-channel conductance was observed. Our results demonstrate that the phenotype of the RyR1Q1970fsX16+A4329D compound heterozygous mice recapitulates the clinical picture of multiminicore patients and provide evidence of the molecular mechanisms responsible for skeletal muscle defects.
Collapse
Affiliation(s)
- Moran Elbaz
- Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Alexis Ruiz
- Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Christoph Bachmann
- Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Jan Eckhardt
- Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Elisa Venturi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Chris Lindsay
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.,Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Abigail D Wilson
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Ahmed Alhussni
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Thomas Humberstone
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Laura Pietrangelo
- Center for Research on Ageing and Translational Medicine and Department of Neuroscience, Imaging and Clinical Sciences, Università G. d'Annunzio, 66100 Chieti, Italy
| | - Simona Boncompagni
- Center for Research on Ageing and Translational Medicine and Department of Neuroscience, Imaging and Clinical Sciences, Università G. d'Annunzio, 66100 Chieti, Italy
| | - Rebecca Sitsapesan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Susan Treves
- Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland.,Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| | - Francesco Zorzato
- Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland.,Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| |
Collapse
|
32
|
Reggiani C. Caffeine as a tool to investigate sarcoplasmic reticulum and intracellular calcium dynamics in human skeletal muscles. J Muscle Res Cell Motil 2020; 42:281-289. [PMID: 32034582 DOI: 10.1007/s10974-020-09574-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Caffeine is worldwide used for its power to increase cognitive and physical performance. The ergogenic effects of caffeine, however, do not depend on a direct action on muscles. Actually, the actions of caffeine on skeletal muscles, take place at millimolar concentrations which are far above the micromolar level reached after a regular consumption of coffee or similar drinks, and close to a lethal concentration. At millimolar concentrations caffeine exerts a powerful effect on sarcoplasmic reticulum (SR) activating the release of calcium via ryanodine receptors and, possibly, inhibiting calcium reuptake. For this reason caffeine has become a valuable tool for studying SR function and for diagnostics of SR related muscle disorders. This review aims to briefly describe the effects and the mechanism of action of caffeine on sarcoplasmic reticulum and to focus on its use to study intracellular calcium dynamics in human muscle fibers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35131, Padua, Italy. .,ZRS-Science and Research Center, Koper, Slovenia.
| |
Collapse
|
33
|
Mackrill JJ, Shiels HA. Evolution of Excitation-Contraction Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:281-320. [DOI: 10.1007/978-3-030-12457-1_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Hughes LJ, Banyard HG, Dempsey AR, Scott BR. Using a Load-Velocity Relationship to Predict One repetition maximum in Free-Weight Exercise: A Comparison of the Different Methods. J Strength Cond Res 2019; 33:2409-2419. [PMID: 31460988 DOI: 10.1519/jsc.0000000000002550] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hughes, LJ, Banyard, HG, Dempsey, AR, and Scott, BR. Using a load-velocity relationship to predict one repetition maximum in free-weight exercise: a comparison of the different methods. J Strength Cond Res 33(9): 2409-2419, 2019-The purpose of this study was to investigate the reliability and validity of predicting 1 repetition maximum (1RM) in trained individuals using a load-velocity relationship. Twenty strength-trained men (age: 24.3 ± 2.9 years, height: 180.1 ± 5.9 cm, and body mass: 84.2 ± 10.5 kg) were recruited and visited the laboratory on 3 occasions. The load-velocity relationship was developed using the mean concentric velocity of repetitions performed at loads between 20 and 90% 1RM. Predicted 1RM was calculated using 3 different methods discussed in existing research: minimal velocity threshold 1RM (1RMMVT), load at zero velocity 1RM (1RMLD0), and force-velocity 1RM methods (1RMFV). The reliability of 1RM predictions was examined using intraclass correlation coefficient (ICC) and coefficient of variation (CV). 1RMMVT demonstrated the highest reliability (ICC = 0.92-0.96, CV = 3.6-5.0%), followed by 1RMLD0 (ICC = 0.78-0.82, CV = 8.2-8.6%) and 1RMFV (ICC = -0.28 to 0.00, CV = N/A). Both 1RMMVT and 1RMLD0 were very strongly correlated with measured 1RM (r = 0.91-0.95). The only method which was not significantly different to measured 1RM was the 1RMLD0 method. However, when analyzed on an individual basis (using Bland-Altman plots), all methods exhibited a high degree of variability. Overall, the results suggest that the 1RMMVT and 1RMLD0 predicted 1RM values could be used to monitor strength progress in trained individuals without the need for maximal testing. However, given the significant differences between 1RMMVT and measured 1RM, and the high variability associated with individual predictions performed using each method, they cannot be used interchangeably; therefore, it is recommended that predicted 1RM is not used to prescribe training loads as has been previously suggested.
Collapse
Affiliation(s)
- Liam J Hughes
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia
| | - Harry G Banyard
- Center for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia
| | - Alasdair R Dempsey
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia
| | - Brendan R Scott
- School of Psychology and Exercise Science, Murdoch University, Murdoch, Western Australia
| |
Collapse
|
35
|
Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. Proc Natl Acad Sci U S A 2019; 116:25575-25582. [PMID: 31792195 PMCID: PMC6926060 DOI: 10.1073/pnas.1914451116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As a switch for the release of Ca2+ from the sarco(endo)plasmic reticulum of cardiomyocytes, the type 2 ryanodine receptor (RyR2) is subject to sophisticated regulation by a broad spectrum of modulators. Dysregulation of RyR2-mediated Ca2+ release is linked to life-threatening cardiac arrhythmias. The regulatory mechanism of RyR2 by key modulators, such as Ca2+, FKBP12.6, ATP, and caffeine, remains unclear. This study provides important insights into the long-range allosteric regulation of RyR2 channel gating by these modulators and serves as an important framework for mechanistic understanding of the regulation of this key player in the excitation–contraction coupling of cardiac muscles. The type 2 ryanodine receptor (RyR2) is responsible for releasing Ca2+ from the sarcoplasmic reticulum of cardiomyocytes, subsequently leading to muscle contraction. Here, we report 4 cryo-electron microscopy (cryo-EM) structures of porcine RyR2 bound to distinct modulators that, together with our published structures, provide mechanistic insight into RyR2 regulation. Ca2+ alone induces a contraction of the central domain that facilitates the dilation of the S6 bundle but is insufficient to open the pore. The small-molecule agonist PCB95 helps Ca2+ to overcome the barrier for opening. FKBP12.6 induces a relaxation of the central domain that decouples it from the S6 bundle, stabilizing RyR2 in a closed state even in the presence of Ca2+ and PCB95. Although the channel is open when PCB95 is replaced by caffeine and adenosine 5′-triphosphate (ATP), neither of the modulators alone can sufficiently counter the antagonistic effect to open the channel. Our study marks an important step toward mechanistic understanding of the sophisticated regulation of this key channel whose aberrant activity engenders life-threatening cardiac disorders.
Collapse
|
36
|
Steinkey D, Lari E, Woodman SG, Steinkey R, Luong KH, Wong CS, Pyle GG. The effects of diltiazem on growth, reproduction, energy reserves, and calcium-dependent physiology in Daphnia magna. CHEMOSPHERE 2019; 232:424-429. [PMID: 31158637 DOI: 10.1016/j.chemosphere.2019.05.176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 05/27/2023]
Abstract
With the growth of both the pharmaceutical industry and the human population and longevity, more drugs are used and processed each day. Inevitably, these pharmaceuticals enter wastewater through human excretion and improper disposal of leftovers. One such medication, diltiazem, a calcium channel blocker, is of importance due to its widespread consumption, and prevalence in aquatic environments. To study the sub-lethal effects of diltiazem on aquatic animals, we investigated its impacts no feeding behaviour, heart rate, respiration, growth, and reproduction of a bioindicator species, Daphnia magna. When exposed to environmentally relevant concentrations, D. magna increased their heart rate by 12% and oxygen consumption by 48%. However, exposure did not have any effects on thoracic limb movement frequency or peristalsis (i.e. feeding behaviour). Individuals exposed to diltiazem for a longer duration (16 days) showed a 44% decrease in lipid reserves and produced between 17 and 28% fewer neonates which were 10-12% larger. Our study demonstrated that exposure to diltiazem creates an energy imbalance in D. magna which could, in the long run, influence their populations.
Collapse
Affiliation(s)
- Dylan Steinkey
- Dept. of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Ebrahim Lari
- Dept. of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; Department of Cell & Systems Biology, 25 Harbord Street, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Samuel G Woodman
- Dept. of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Rylan Steinkey
- Dept. of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Kim H Luong
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Charles S Wong
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Greg G Pyle
- Dept. of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
37
|
Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2019; 123:224-243. [PMID: 29976690 DOI: 10.1161/circresaha.118.311209] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life threatening ventricular arrhythmias leading to sudden cardiac death are a major cause of morbidity and mortality. In the absence of structural heart disease, these arrhythmias, especially in the younger population, are often an outcome of genetic defects in specialized membrane proteins called ion channels. In the heart, exceptionally well-orchestrated activity of a diversity of ion channels mediates the cardiac action potential. Alterations in either the function or expression of these channels can disrupt the configuration of the action potential, leading to abnormal electrical activity of the heart that can sometimes initiate an arrhythmia. Understanding the pathophysiology of inherited arrhythmias can be challenging because of the complexity of the disorder and lack of appropriate cellular and in vivo models. Recent advances in human induced pluripotent stem cell technology have provided remarkable progress in comprehending the underlying mechanisms of ion channel disorders or channelopathies by modeling these complex arrhythmia syndromes in vitro in a dish. To fully realize the potential of induced pluripotent stem cells in elucidating the mechanistic basis and complex pathophysiology of channelopathies, it is crucial to have a basic knowledge of cardiac myocyte electrophysiology. In this review, we will discuss the role of the various ion channels in cardiac electrophysiology and the molecular and cellular mechanisms of arrhythmias, highlighting the promise of human induced pluripotent stem cell-cardiomyocytes as a model for investigating inherited arrhythmia syndromes and testing antiarrhythmic strategies. Overall, this review aims to provide a basic understanding of the electrical activity of the heart and related channelopathies, especially to clinicians or research scientists in the cardiovascular field with limited electrophysiology background.
Collapse
Affiliation(s)
- Priyanka Garg
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | - Vivek Garg
- Stanford University School of Medicine, CA; Department of Physiology, University of California San Francisco (V.G.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | | | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison (T.J.K.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.) .,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| |
Collapse
|
38
|
Alzugaray ME, Gavazzi MV, Ronderos JR. Calcium signalling in early divergence of Metazoa: mechanisms involved in the control of muscle-like cell contraction in Hydra plagiodesmica. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our laboratory has previously examined the effect of neuropeptides on the activity of the hypostome of the hydra Hydra plagiodesmica Dioni, 1968 (Cnidaria: Hydrozoa). These results showed that the hypostome, a structure extruded during feeding, responds to myoregulatory peptides and that this mechanism might be regulated by changes in the cytosolic levels of calcium (Ca2+). We analyse now the ways in which Ca2+ modulates hypostome activity during feeding. The use of calcium chelators confirms that Ca2+ is relevant in inducing hypostome extrusion. The assay of compounds that modulate the activity of Ca2+ channels in the endoplasmic reticulum suggests that, beyond the extracellular influx of calcium, intracellular sources of the ion are involved and might include both ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate receptor (IP3R). Bioinformatic searches based on sequences of RyR and IP3R of humans (Homo sapiens Linnaeus, 1758) show that IP3Rs are present in all groups analysed, including Fungi and Choanoflagellata. Although H. plagiodesmica responds to caffeine and ryanodine, which are known to modulate RyRs, this family of receptors seems not to be predicted in Cnidaria, suggesting that this phylum either lacks these kinds of channels or that they possess a different structure compared with those possessed by other Metazoa.
Collapse
Affiliation(s)
- María Eugenia Alzugaray
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - María Victoria Gavazzi
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
| | - Jorge Rafael Ronderos
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
| |
Collapse
|
39
|
Eckhardt J, Bachmann C, Sekulic-Jablanovic M, Enzmann V, Park KH, Ma J, Takeshima H, Zorzato F, Treves S. Extraocular muscle function is impaired in ryr3 -/- mice. J Gen Physiol 2019; 151:929-943. [PMID: 31085573 PMCID: PMC6605690 DOI: 10.1085/jgp.201912333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/13/2019] [Indexed: 01/16/2023] Open
Abstract
Extraocular muscles are specialized skeletal muscles expressing a particular set
of proteins involved in calcium homeostasis, including RYR3. Eckhardt et al.
investigate extraocular muscle function in
ryr3−/− mice and show that
ablation of RYR3 significantly impacts vision. Calcium is an ubiquitous second messenger mediating numerous physiological
processes, including muscle contraction and neuronal excitability.
Ca2+ is stored in the ER/SR and is released into the cytoplasm
via the opening of intracellular inositol trisphosphate receptor and ryanodine
receptor calcium channels. Whereas in skeletal muscle, isoform 1 of the RYR is
the main channel mediating calcium release from the SR leading to muscle
contraction, the function of ubiquitously expressed ryanodine receptor 3 (RYR3)
is far from clear; it is not known whether RYR3 plays a role in
excitation–contraction coupling. We recently reported that human
extraocular muscles express high levels of RYR3, suggesting that such muscles
may be useful to study the function of this isoform of the Ca2+
channel. In the present investigation, we characterize the visual function of
ryr3−/− mice. We observe that
ablation of RYR3 affects both mechanical properties and calcium homeostasis in
extraocular muscles. These changes significantly impact vision. Our results
reveal for the first time an important role for RYR3 in extraocular muscle
function.
Collapse
Affiliation(s)
- Jan Eckhardt
- Department of Anesthesia, Basel University Hospital, Basel, Switzerland.,Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Christoph Bachmann
- Department of Anesthesia, Basel University Hospital, Basel, Switzerland.,Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | | | - Volker Enzmann
- Department of Ophthalmology, University Hospital of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Ki Ho Park
- Department of Surgery, Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, OH
| | - Jianjie Ma
- Department of Surgery, Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, OH
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Francesco Zorzato
- Department of Anesthesia, Basel University Hospital, Basel, Switzerland.,Department of Biomedicine, Basel University Hospital, Basel, Switzerland.,Department of Life Sciences, Microbiology and Applied Pathology section, University of Ferrara, Ferrara, Italy
| | - Susan Treves
- Department of Anesthesia, Basel University Hospital, Basel, Switzerland .,Department of Biomedicine, Basel University Hospital, Basel, Switzerland.,Department of Life Sciences, Microbiology and Applied Pathology section, University of Ferrara, Ferrara, Italy
| |
Collapse
|
40
|
Liu Y, Sugiura Y, Chen F, Lee KF, Ye Q, Lin W. Blocking skeletal muscle DHPRs/Ryr1 prevents neuromuscular synapse loss in mutant mice deficient in type III Neuregulin 1 (CRD-Nrg1). PLoS Genet 2019; 15:e1007857. [PMID: 30870432 PMCID: PMC6417856 DOI: 10.1371/journal.pgen.1007857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022] Open
Abstract
Schwann cells are integral components of vertebrate neuromuscular synapses; in their absence, pre-synaptic nerve terminals withdraw from post-synaptic muscles, leading to muscle denervation and synapse loss at the developing neuromuscular junction (NMJ). Here, we report a rescue of muscle denervation and neuromuscular synapses loss in type III Neuregulin 1 mutant mice (CRD-Nrg1-/-), which lack Schwann cells. We found that muscle denervation and neuromuscular synapse loss were prevented in CRD-Nrg1-/-mice when presynaptic activity was blocked by ablating a specific gene, such as Snap25 (synaptosomal-associated 25 kDa protein) or Chat (choline acetyltransferase). Further, these effects were mediated by a pathway that requires postsynaptic acetylcholine receptors (AChRs), because ablating Chrna1 (acetylcholine receptor α1 subunit), which encodes muscle-specific AChRs in CRD-Nrg1-/-mice also rescued muscle denervation. Moreover, genetically ablating muscle dihydropyridine receptor (DHPR) β1 subunit (Cacnb1) or ryanodine receptor 1 (Ryr1) also rescued muscle denervation and neuromuscular synapse loss in CRD-Nrg1-/-mice. Thus, these genetic manipulations follow a pathway-from presynaptic to postsynaptic, and, ultimately to muscle activity mediated by DHPRs and Ryr1. Importantly, electrophysiological analyses reveal robust synaptic activity in the rescued, Schwann-cell deficient NMJs in CRD-Nrg1-/-Cacnb1-/-or CRD-Nrg1-/-Ryr1-/-mutant mice. Thus, a blockade of synaptic activity, although sufficient, is not necessary to preserve NMJs that lack Schwann cells. Instead, a blockade of muscle activity mediated by DHRPs and Ryr1 is both necessary and sufficient for preserving NMJs that lack Schwann cells. These findings suggest that muscle activity mediated by DHPRs/Ryr1 may destabilize developing NMJs and that Schwann cells play crucial roles in counteracting such a destabilizing activity to preserve neuromuscular synapses during development.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Yoshie Sugiura
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Fujun Chen
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Kuo-Fen Lee
- The Salk Institute, La Jolla, United States of America
| | - Qiaohong Ye
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| | - Weichun Lin
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States of America
| |
Collapse
|
41
|
Jiang J, Tang M, Huang Z, Chen L. Junctophilins emerge as novel therapeutic targets. J Cell Physiol 2019; 234:16933-16943. [DOI: 10.1002/jcp.28405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| |
Collapse
|
42
|
Wilk M, Krzysztofik M, Maszczyk A, Chycki J, Zajac A. The acute effects of caffeine intake on time under tension and power generated during the bench press movement. J Int Soc Sports Nutr 2019; 16:8. [PMID: 30777094 PMCID: PMC6379960 DOI: 10.1186/s12970-019-0275-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The ability to generate high levels of power is one of the key factors determining success in many sport disciplines. Although there are studies confirming ergogenic effects of caffeine (CAF) on different physical and mental abilities, much controversy remains about its influence on power. The main goal of this study was to assess the effects of caffeine supplementation on time under tension (TUT) and the number of performed repetitions (REP). The second objective was to determine the effects of CAF supplementation on power (P) and movement velocity (V) during the bench press movement. Additionally the authors evaluated whether CAF has a significant effect on velocity of the bar in the eccentric (ECC) phase (VEMEAN) of the bench press movement. METHODS The study included 20 men (20-31 yrs., 87.3 ± 7.7 kg) with at least 2 years of experience in resistance training. The study participants were divided randomly into two groups: the supplemented group ingested caffeine before exercise (GCAF), while the control group was given a placebo (GCON). The exercise protocol consisted of performing the bench press movement with a load equal to 70%1RM with maximal possible velocity (X/0/X/0). The experimental sets were performed to momentary muscular failure. RESULTS The repeated measures ANOVA between the GCAF and GCON groups revealed statistically significant differences in 2 variables. Post-hoc tests demonstrated statistically significant differences in TUT when comparing the group supplemented with caffeine (13.689 s GCAF) to the one ingesting a placebo (15.332 s GCON) at p = 0.002. Significant differences were also observed in mean velocity during the eccentric phase of movement (0.690 m/s in the GCAF to 0.609 in GCON with p = 0.002). There were no significant differences in generated power and velocity in the CON phase of the movement between the GCAF and GCON. CONCLUSIONS: The main finding of the study is that CAF ingestion increases movement velocity of the bar in the eccentric phase of the movement, what results in shortening of the time under tension (TUT) needed for performing a specific number of repetitions, without decreasing power and velocity in the CON phase of the movement.
Collapse
Affiliation(s)
- Michal Wilk
- Department of Sports Training, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Michal Krzysztofik
- Department of Sports Training, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Adam Maszczyk
- Department of Statistics and Methodology, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Jakub Chycki
- Department of Sports Training, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Adam Zajac
- Department of Sports Training, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
43
|
Herden L, Weissert R. The Impact of Coffee and Caffeine on Multiple Sclerosis Compared to Other Neurodegenerative Diseases. Front Nutr 2018; 5:133. [PMID: 30622948 PMCID: PMC6308803 DOI: 10.3389/fnut.2018.00133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Background: The literature concerning the effect of coffee and caffeine on Multiple Sclerosis (MS) with focus on fatigue is investigated in this review. Potentially clinically relevant effects were also assessed in studies concerning comparable neurodegenerative diseases, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Since the existing studies obtained very inconclusive results, we systematically reviewed these studies to summarize the evidence on the possible effects of coffee and caffeine on those disease entities. Previous studies suggested that coffee and caffeine intake is associated with a reduced risk of developing MS and other neurological diseases. Methods: The PubMed database was searched using the keywords “coffee” OR “caffeine” in combination with keywords for each of the different diseases. Besides the keyword search, we included studies by reference list search. Studies on the effects of coffee and caffeine on the single neurological diseases were included for this review. A total of 51 articles met our inclusion criteria. The reviewed articles assessed the impact of coffee and caffeine on the susceptibility for neurological diseases, as well as the effect of coffee and caffeine on disease progression and possible symptomatic effects like on performance enhancement. Results: Higher intake of coffee and caffeine was associated with a lower risk of developing PD. In some of the MS studies there, is evidence for a similar effect and experimental studies confirmed the positive impact. Interestingly in MS coffee and caffeine may have a stronger impact on disease course compared to effects on disease susceptibility. In ALS no such beneficial effect could be observed in the clinical and experimental studies. Conclusion: This literature assessment revealed that coffee and especially caffeine could have a preventative role in the development of several neurodegenerative diseases if provided in comparatively high doses. The systematic assessment indicates that coffee and caffeine intake must not be considered as a health risk. Additional clinical studies are needed to fully understand how far coffee and caffeine intake should be considered as a potential therapeutic approach for certain disease entities and conditions.
Collapse
Affiliation(s)
- Lena Herden
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Robert Weissert
- Department of Neurology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
44
|
Butala B, Busada M, Cormican D. Malignant Hyperthermia: Review of Diagnosis and Treatment during Cardiac Surgery with Cardiopulmonary Bypass. J Cardiothorac Vasc Anesth 2018; 32:2771-2779. [DOI: 10.1053/j.jvca.2018.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 11/11/2022]
|
45
|
Cho CH, Lee KJ, Lee EH. With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing. BMB Rep 2018; 51:378-387. [PMID: 29898810 PMCID: PMC6130827 DOI: 10.5483/bmbrep.2018.51.8.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, Ca2+ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic Ca2+ level in skeletal muscle fibers is governed mainly by movements of Ca2+ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated Ca2+ entry (SOCE), a Ca2+ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.
Collapse
Affiliation(s)
- Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 08826, Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
46
|
Lamb GD, Stephenson DG. Measurement of force and calcium release using mechanically skinned fibers from mammalian skeletal muscle. J Appl Physiol (1985) 2018; 125:1105-1127. [DOI: 10.1152/japplphysiol.00445.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanically skinned (or “peeled”) skeletal muscle fiber technique is a highly versatile procedure that allows controlled examination of each of the steps in the excitation-contraction (EC)-coupling sequence in skeletal muscle fibers, starting with excitation/depolarization of the transverse tubular (T)-system through to Ca2+ release from sarcoplasmic reticulum (SR) and finally force development by the contractile apparatus. It can also show the overall response of the whole EC-coupling sequence together, such as in twitch and tetanic force responses. A major advantage over intact muscle fiber preparations is that it is possible to set and rapidly manipulate the “intracellular” conditions, allowing examination of the effects of key variables (e.g., intracellular pH, ATP levels, redox state, etc.) on each individual step in EC coupling. This Cores of Reproducibility in Physiology (CORP) article describes the rationale, procedures, and experimental details of the various ways in which the mechanically skinned fiber technique is used in our laboratory to examine the physiological mechanisms controlling Ca2+ release and contraction in skeletal muscle fibers and the aberrations and dysfunction occurring with exercise and disease.
Collapse
Affiliation(s)
- Graham D. Lamb
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - D. George Stephenson
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Asano T, Igarashi H, Ishizuka T, Yawo H. Organelle Optogenetics: Direct Manipulation of Intracellular Ca 2+ Dynamics by Light. Front Neurosci 2018; 12:561. [PMID: 30174581 PMCID: PMC6107701 DOI: 10.3389/fnins.2018.00561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
As one of the ubiquitous second messengers, the intracellular Ca2+, has been revealed to be a pivotal regulator of various cellular functions. Two major sources are involved in the initiation of Ca2+-dependent signals: influx from the extracellular space and release from the intracellular Ca2+ stores such as the endoplasmic/sarcoplasmic reticulum (ER/SR). To manipulate the Ca2+ release from the stores under high spatiotemporal precision, we established a new method termed “organelle optogenetics.” That is, one of the light-sensitive cation channels (channelrhodopsin-green receiver, ChRGR), which is Ca2+-permeable, was specifically targeted to the ER/SR. The expression specificity as well as the functional operation of the ER/SR-targeted ChRGR (ChRGRER) was evaluated using mouse skeletal myoblasts (C2C12): (1) the ChRGRER co-localized with the ER-marker KDEL; (2) no membrane current was generated by light under whole-cell clamp of cells expressing ChRGRER; (3) an increase of fluorometric Ca2+ was evoked by the optical stimulation (OS) in the cells expressing ChRGRER in a manner independent on the extracellular Ca2+ concentration ([Ca2+]o); (4) the ΔF/F0 was sensitive to the inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and (5) the store-operated Ca2+ entry (SOCE) was induced by the OS in the ChRGRER-expressing cells. Our organelle optogenetics effectively manipulated the ER/SR to release Ca2+ from intracellular stores. The use of organelle optogenetics would reveal the neuroscientific significance of intracellular Ca2+ dynamics under spatiotemporal precision.
Collapse
Affiliation(s)
- Toshifumi Asano
- Department of Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Igarashi
- Department of Physiology and Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Hiromu Yawo
- Department of Physiology and Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| |
Collapse
|
48
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Ferguson RA, Hunt JEA, Lewis MP, Martin NRW, Player DJ, Stangier C, Taylor CW, Turner MC. The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction. Eur J Sport Sci 2018; 18:397-406. [DOI: 10.1080/17461391.2017.1422281] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Richard A. Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Julie E. A. Hunt
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford, UK
| | - Mark P. Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Neil R. W. Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Darren J. Player
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Carolin Stangier
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Conor W. Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark C. Turner
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
50
|
Oh MR, Lee KJ, Huang M, Kim JO, Kim DH, Cho CH, Lee EH. STIM2 regulates both intracellular Ca 2+ distribution and Ca 2+ movement in skeletal myotubes. Sci Rep 2017; 7:17936. [PMID: 29263348 PMCID: PMC5738411 DOI: 10.1038/s41598-017-18256-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) along with Orai1 mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism in various tissues including skeletal muscle. However, the role(s) of STIM2, a homolog of STIM1, in skeletal muscle has not been well addressed. The present study, first, was focused on searching for STIM2-binding proteins from among proteins mediating skeletal muscle functions. This study used a binding assay, quadrupole time-of-flight mass spectrometry, and co-immunoprecipitation assay with bona-fide STIM2- and SERCA1a-expressing rabbit skeletal muscle. The region for amino acids from 453 to 729 of STIM2 binds to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a). Next, oxalate-supported 45Ca2+-uptake experiments and various single-myotube Ca2+ imaging experiments using STIM2-knockdown mouse primary skeletal myotubes have suggested that STIM2 attenuates SERCA1a activity during skeletal muscle contraction, which contributes to the intracellular Ca2+ distribution between the cytosol and the SR at rest. In addition, STIM2 regulates Ca2+ movement through RyR1 during skeletal muscle contraction as well as SOCE. Therefore, via regulation of SERCA1a activity, STIM2 regulates both intracellular Ca2+ distribution and Ca2+ movement in skeletal muscle, which makes it both similar to, yet different from, STIM1.
Collapse
Affiliation(s)
- Mi Ri Oh
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mei Huang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin Ock Kim
- School of Life Sciences, GIST, Gwangju, 61005, Republic of Korea
| | - Do Han Kim
- School of Life Sciences, GIST, Gwangju, 61005, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|