1
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
2
|
Moreno J, Nielsen H, Winther O, Teufel F. Predicting the subcellular location of prokaryotic proteins with DeepLocPro. Bioinformatics 2024; 40:btae677. [PMID: 39540738 PMCID: PMC11645106 DOI: 10.1093/bioinformatics/btae677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
MOTIVATION Protein subcellular location prediction is a widely explored task in bioinformatics because of its importance in proteomics research. We propose DeepLocPro, an extension to the popular method DeepLoc, tailored specifically to archaeal and bacterial organisms. RESULTS DeepLocPro is a multiclass subcellular location prediction tool for prokaryotic proteins, trained on experimentally verified data curated from UniProt and PSORTdb. DeepLocPro compares favorably to the PSORTb 3.0 ensemble method, surpassing its performance across multiple metrics in our benchmark experiment. AVAILABILITY AND IMPLEMENTATION The DeepLocPro prediction tool is available online at https://ku.biolib.com/deeplocpro and https://services.healthtech.dtu.dk/services/DeepLocPro-1.0/.
Collapse
Affiliation(s)
- Jaime Moreno
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
- AI & Digital Research, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Henrik Nielsen
- Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Ole Winther
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Felix Teufel
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
- AI & Digital Research, Novo Nordisk A/S, 2760 Måløv, Denmark
| |
Collapse
|
3
|
Martínez-Espinosa RM. Molecular Advances in Microbial Metabolism 2.0. Int J Mol Sci 2024; 25:1361. [PMID: 38279361 PMCID: PMC10816377 DOI: 10.3390/ijms25021361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
The advances in molecular biology techniques and omics approaches have made it possible to take giant steps in applied research in life sciences [...].
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Department of Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Alicante, Spain
| |
Collapse
|
4
|
Coker JA. 'All About' Extremophiles. Fac Rev 2023; 12:27. [PMID: 38027090 PMCID: PMC10630985 DOI: 10.12703/r/12-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Despite common perception, most of Earth is what is often referred to as an 'extreme environment.' Yet to the organisms that call these places home, it is simply that (home). They have adapted to thrive in these environments and, in the process, have evolved many unique adaptations at the molecular- and 'omic-level. Scientists' interest in these organisms has typically been in how they and their products can be harnessed for biotechnological applications and the environments where they are found, while the general public's veers more toward a fascination with their deviation from the 'norm'. However, these organisms have so much more to tell us about Life and the myriad ways there are to perform 'simple' biological processes.
Collapse
Affiliation(s)
- James A Coker
- Center for Biotechnology Education, Advanced Academic Programs, Krieger School of Arts and Sciences, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Aparici-Carratalá D, Esclapez J, Bautista V, Bonete MJ, Camacho M. Archaea: current and potential biotechnological applications. Res Microbiol 2023; 174:104080. [PMID: 37196775 DOI: 10.1016/j.resmic.2023.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Archaea are microorganisms with great ability to colonize some of the most inhospitable environments in nature, managing to survive in places with extreme characteristics for most microorganisms. Its proteins and enzymes are stable and can act under extreme conditions in which other proteins and enzymes would degrade. These attributes make them ideal candidates for use in a wide range of biotechnological applications. This review describes the most important applications, both current and potential, that archaea present in Biotechnology, classifying them according to the sector to which the application is directed. It also analyzes the advantages and disadvantages of its use.
Collapse
Affiliation(s)
- David Aparici-Carratalá
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Vanesa Bautista
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| |
Collapse
|
6
|
Rastädter K, Wurm DJ, Spadiut O, Quehenberger J. k La based scale-up cultivation of the extremophilic archaeon Sulfolobus acidocaldarius: from benchtop to pilot scale. Front Bioeng Biotechnol 2023; 11:1160012. [PMID: 37609112 PMCID: PMC10441222 DOI: 10.3389/fbioe.2023.1160012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
The two major scale-up criteria in continuously stirred bioreactors are 1) constant aerated power input per volume (Pg/Vl), and 2) the volumetric O2 mass transfer coefficient (kla). However, Pg/Vl is only influenced by the stirrer geometry, stirrer speed, aeration and working volume, while the kla is additionally affected by physiochemical properties of the medium (temperature, pH, salt content, etc.), sparging of gas and also by the bioreactor design. The extremophilic archaeon Sulfolobus acidocaldarius, thriving at 75°C and pH 3.0, has the potential for many biotechnological applications. However, previous studies imply that the family Sulfolobaceae might be affected by higher oxygen concentration in the headspace (>26%). Hence, adequate oxygen supply without being toxic has to be ensured throughout the different scales. In this study, the scale-up criteria Pg/Vl and kla were analyzed and compared in a 2 L chemostat cultivation of S. acidocaldarius on a defined growth medium at 75°C and a pH value of 3.0, using two different types of spargers at the same aerated power input. The scale-up criterion kLa, ensuring a high specific growth rate as well as viability, was then used for scaleup to 20 L and 200 L. By maintaining a constant kla comparable dry cell weight, specific growth rate, specific substrate uptake rates and viability were observed between all investigated scales. This procedure harbors the potential for further scale-up to industrial size bioreactors.
Collapse
Affiliation(s)
- Kerstin Rastädter
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | | | - Oliver Spadiut
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Julian Quehenberger
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- NovoArc GmbH, Vienna, Austria
| |
Collapse
|
7
|
Morilla MJ, Ghosal K, Romero EL. More Than Pigments: The Potential of Astaxanthin and Bacterioruberin-Based Nanomedicines. Pharmaceutics 2023; 15:1828. [PMID: 37514016 PMCID: PMC10385456 DOI: 10.3390/pharmaceutics15071828] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Carotenoids are natural products regulated by the food sector, currently used as feed dyes and as antioxidants in dietary supplements and composing functional foods for human consumption. Of the nearly one thousand carotenoids described to date, only retinoids, derived from beta carotene, have the status of a drug and are regulated by the pharmaceutical sector. In this review, we address a novel field: the transformation of xanthophylls, particularly the highly marketed astaxanthin and the practically unknown bacterioruberin, in therapeutic agents by altering their pharmacokinetics, biodistribution, and pharmacodynamics through their formulation as nanomedicines. The antioxidant activity of xanthophylls is mediated by routes different from those of the classical oral anti-inflammatory drugs such as corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs): remarkably, xanthophylls lack therapeutic activity but also lack toxicity. Formulated as nanomedicines, xanthophylls gain therapeutic activity by mechanisms other than increased bioavailability. Loaded into ad hoc tailored nanoparticles to protect their structure throughout storage and during gastrointestinal transit or skin penetration, xanthophylls can be targeted and delivered to selected inflamed cell groups, achieving a massive intracellular concentration after endocytosis of small doses of formulation. Most first reports showing the activities of oral and topical anti-inflammatory xanthophyll-based nanomedicines against chronic diseases such as inflammatory bowel disease, psoriasis, atopic dermatitis, and dry eye disease emerged between 2020 and 2023. Here we discuss in detail their preclinical performance, mostly targeted vesicular and polymeric nanoparticles, on cellular models and in vivo. The results, although preliminary, are auspicious enough to speculate upon their potential use for oral or topical administration in the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| |
Collapse
|
8
|
Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm 2023; 634:122632. [PMID: 36690132 DOI: 10.1016/j.ijpharm.2023.122632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| | - Maria Jose Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
9
|
Explainable artificial intelligence as a reliable annotator of archaeal promoter regions. Sci Rep 2023; 13:1763. [PMID: 36720898 PMCID: PMC9889792 DOI: 10.1038/s41598-023-28571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/20/2023] [Indexed: 02/02/2023] Open
Abstract
Archaea are a vast and unexplored cellular domain that thrive in a high diversity of environments, having central roles in processes mediating global carbon and nutrient fluxes. For these organisms to balance their metabolism, the appropriate regulation of their gene expression is essential. A key momentum in regulating genes responsible for the life maintenance of archaea is when transcription factor proteins bind to the promoter element. This DNA segment is conserved, which enables its exploration by machine learning techniques. Here, we trained and tested a support vector machine with 3935 known archaeal promoter sequences. All promoter sequences were coded into DNA Duplex Stability. After, we performed a model interpretation task to map the decision pattern of the classification procedure. We also used a dataset of known-promoter sequences for validation. Our results showed that an AT rich region around position - 27 upstream (relative to the start TSS) is the most conserved in the analyzed organisms. In addition, we were able to identify the BRE element (- 33), the PPE (at - 10) and a position at + 3, that provides a more understandable picture of how promoters are organized in all the archaeal organisms. Finally, we used the interpreted model to identify potential promoter sequences of 135 unannotated organisms, delivering regulatory regions annotation of archaea in a scale never accomplished before ( https://pcyt.unam.mx/gene-regulation/ ). We consider that this approach will be useful to understand how gene regulation is achieved in other organisms apart from the already established transcription factor binding sites.
Collapse
|
10
|
Carr S, Buan NR. Insights into the biotechnology potential of Methanosarcina. Front Microbiol 2022; 13:1034674. [PMID: 36590411 PMCID: PMC9797515 DOI: 10.3389/fmicb.2022.1034674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Methanogens are anaerobic archaea which conserve energy by producing methane. Found in nearly every anaerobic environment on earth, methanogens serve important roles in ecology as key organisms of the global carbon cycle, and in industry as a source of renewable biofuels. Environmentally, methanogenic archaea play an essential role in the reintroducing unavailable carbon to the carbon cycle by anaerobically converting low-energy, terminal metabolic degradation products such as one and two-carbon molecules into methane which then returns to the aerobic portion of the carbon cycle. In industry, methanogens are commonly used as an inexpensive source of renewable biofuels as well as serving as a vital component in the treatment of wastewater though this is only the tip of the iceberg with respect to their metabolic potential. In this review we will discuss how the efficient central metabolism of methanoarchaea could be harnessed for future biotechnology applications.
Collapse
Affiliation(s)
| | - Nicole R. Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
11
|
Mapping Archaeal Diversity in Soda Lakes by Coupling 16S rRNA PCR-DGGE Analysis with Remote Sensing and GIS Technology. FERMENTATION 2022. [DOI: 10.3390/fermentation8080365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The haloarchaeal diversity of four hypersaline alkaline lakes from the Wadi El-Natrun depression (Northern Egypt) was investigated using culture-independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S rRNA gene phylotypes, which was combined with remote sensing and geographic information system (GIS) data to highlight the distribution pattern of the microbial diversity in water and sediment samples. The majority of archaeal sequences identified in all four lakes belonged to the phyla Euryarchaeota and Crenarchaeota. Sediment samples from Beida Lake and water samples from El-Hamra Lake showed the highest levels of archaeal diversity. Sequence similarities ≥ 95% were found between six of the acquired clones and uncultured Halorhabdus, Euryarchaeota, and archaeon clones. In addition, two clones shared a high level of sequence similarity (97%) with unclassified archaea, while other nine clones exhibited 96% to 99% sequence similarity with uncultured archaeon clones, and only one clone showed 97% identity with an uncultured Crenarchaeota. Likewise, 7 DGGE bands presented a sequence similarity of 90 to 98% to Halogranum sp., Halalkalicoccus tibetensis, Halalkalicoccus jeotgali, uncultured Halorubrum, Halobacteriaceae sp., or uncultured haloarchaeon. In conclusion, while the variety of alkaliphilic haloarchaea in the examined soda lakes was restricted, the possibility of uncovering novel species for biotechnological applications from these extreme habitats remains promising.
Collapse
|
12
|
Amin K, Tranchimand S, Benvegnu T, Abdel-Razzak Z, Chamieh H. Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology. Biomolecules 2021; 11:1557. [PMID: 34827555 PMCID: PMC8615776 DOI: 10.3390/biom11111557] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 01/18/2023] Open
Abstract
Hyperthermophilic Archaea colonizing unnatural habitats of extremes conditions such as volcanoes and deep-sea hydrothermal vents represent an unmeasurable bioresource for enzymes used in various industrial applications. Their enzymes show distinct structural and functional properties and are resistant to extreme conditions of temperature and pressure where their mesophilic homologs fail. In this review, we will outline carbohydrate-active enzymes (CAZymes) from hyperthermophilic Archaea with specific focus on the two largest families, glycoside hydrolases (GHs) and glycosyltransferases (GTs). We will present the latest advances on these enzymes particularly in the light of novel accumulating data from genomics and metagenomics sequencing technologies. We will discuss the contribution of these enzymes from hyperthermophilic Archaea to industrial applications and put the emphasis on newly identifed enzymes. We will highlight their common biochemical and distinct features. Finally, we will overview the areas that remain to be explored to identify novel promising hyperthermozymes.
Collapse
Affiliation(s)
- Khadija Amin
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Sylvain Tranchimand
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Thierry Benvegnu
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; (S.T.); (T.B.)
| | - Ziad Abdel-Razzak
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Beirut P.O. Box 6573, Lebanon
| | - Hala Chamieh
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, Lebanese University, Mitein Street, Tripoli P.O. Box 210, Lebanon; (K.A.); (Z.A.-R.)
- Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Beirut P.O. Box 6573, Lebanon
| |
Collapse
|
13
|
Sysoev M, Grötzinger SW, Renn D, Eppinger J, Rueping M, Karan R. Bioprospecting of Novel Extremozymes From Prokaryotes-The Advent of Culture-Independent Methods. Front Microbiol 2021; 12:630013. [PMID: 33643258 PMCID: PMC7902512 DOI: 10.3389/fmicb.2021.630013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Extremophiles are remarkable organisms that thrive in the harshest environments on Earth, such as hydrothermal vents, hypersaline lakes and pools, alkaline soda lakes, deserts, cold oceans, and volcanic areas. These organisms have developed several strategies to overcome environmental stress and nutrient limitations. Thus, they are among the best model organisms to study adaptive mechanisms that lead to stress tolerance. Genetic and structural information derived from extremophiles and extremozymes can be used for bioengineering other nontolerant enzymes. Furthermore, extremophiles can be a valuable resource for novel biotechnological and biomedical products due to their biosynthetic properties. However, understanding life under extreme conditions is challenging due to the difficulties of in vitro cultivation and observation since > 99% of organisms cannot be cultivated. Consequently, only a minor percentage of the potential extremophiles on Earth have been discovered and characterized. Herein, we present a review of culture-independent methods, sequence-based metagenomics (SBM), and single amplified genomes (SAGs) for studying enzymes from extremophiles, with a focus on prokaryotic (archaea and bacteria) microorganisms. Additionally, we provide a comprehensive list of extremozymes discovered via metagenomics and SAGs.
Collapse
Affiliation(s)
- Maksim Sysoev
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefan W. Grötzinger
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dominik Renn
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jörg Eppinger
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Ram Karan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
14
|
Verma DK, Vasudeva G, Sidhu C, Pinnaka AK, Prasad SE, Thakur KG. Biochemical and Taxonomic Characterization of Novel Haloarchaeal Strains and Purification of the Recombinant Halotolerant α-Amylase Discovered in the Isolate. Front Microbiol 2020; 11:2082. [PMID: 32983058 PMCID: PMC7490331 DOI: 10.3389/fmicb.2020.02082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Haloarchaea are salt-loving archaea and potential source of industrially relevant halotolerant enzymes. In the present study, three reddish-pink, extremely halophilic archaeal strains, namely wsp1 (wsp-water sample Pondicherry), wsp3, and wsp4, were isolated from the Indian Solar saltern. The phylogenetic analysis based on 16S rRNA gene sequences suggests that both wsp3 and wsp4 strains belong to Halogeometricum borinquense while wsp1 is closely related to Haloferax volcanii species. The comparative genomics revealed an open pangenome for both genera investigated here. Whole-genome sequence analysis revealed that these isolates have multiple copies of industrially/biotechnologically important unique genes and enzymes. Among these unique enzymes, for recombinant expression and purification, we selected four putative α-amylases identified in these three isolates. We successfully purified functional halotolerant recombinant Amy2, from wsp1 using pelB signal sequence-based secretion strategy using Escherichia coli as an expression host. This method may prove useful to produce functional haloarchaeal secretory recombinant proteins suitable for commercial or research applications. Biochemical analysis of Amy2 suggests the halotolerant nature of the enzyme having maximum enzymatic activity observed at 1 M NaCl. We also report the isolation and characterization of carotenoids purified from these isolates. This study highlights the presence of several industrially important enzymes in the haloarchaeal strains which may potentially have improved features like stability and salt tolerance suitable for industrial applications.
Collapse
Affiliation(s)
- Dipesh Kumar Verma
- G. N. Ramachandran Protein Centre, Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Gunjan Vasudeva
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Chandni Sidhu
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anil K Pinnaka
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Senthil E Prasad
- Biochemical Engineering Research and Process Development Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Krishan Gopal Thakur
- G. N. Ramachandran Protein Centre, Structural Biology Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
15
|
Irla M, Drejer EB, Brautaset T, Hakvåg S. Establishment of a functional system for recombinant production of secreted proteins at 50 °C in the thermophilic Bacillus methanolicus. Microb Cell Fact 2020; 19:151. [PMID: 32723337 PMCID: PMC7389648 DOI: 10.1186/s12934-020-01409-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/20/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The suitability of bacteria as microbial cell factories is dependent on several factors such as price of feedstock, product range, production yield and ease of downstream processing. The facultative methylotroph Bacillus methanolicus is gaining interest as a thermophilic cell factory for production of value-added products from methanol. The aim of this study was to expand the capabilities of B. methanolicus as a microbial cell factory by establishing a system for secretion of recombinant proteins. RESULTS Native and heterologous signal peptides were tested for secretion of α-amylases and proteases, and we have established the use of the thermostable superfolder green fluorescent protein (sfGFP) as a valuable reporter protein in B. methanolicus. We demonstrated functional production and secretion of recombinant proteases, α-amylases and sfGFP in B. methanolicus MGA3 at 50 °C and showed that the choice of signal peptide for optimal secretion efficiency varies between proteins. In addition, we showed that heterologous production and secretion of α-amylase from Geobacillus stearothermophilus enables B. methanolicus to grow in minimal medium with starch as the sole carbon source. An in silico signal peptide library consisting of 169 predicted peptides from B. methanolicus was generated and will be useful for future studies, but was not experimentally investigated any further here. CONCLUSION A functional system for recombinant production of secreted proteins at 50 °C has been established in the thermophilic B. methanolicus. In addition, an in silico signal peptide library has been generated, that together with the tools and knowledge presented in this work will be useful for further development of B. methanolicus as a host for recombinant protein production and secretion at 50 °C.
Collapse
Affiliation(s)
- Marta Irla
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eivind B Drejer
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sigrid Hakvåg
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
16
|
Singla P, Bhardwaj RD. Enzyme promiscuity – A light on the “darker” side of enzyme specificity. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1696779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Prabhjot Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | | |
Collapse
|
17
|
Abstract
Despite the typical human notion that the Earth is a habitable planet, over three quarters of our planet is uninhabitable by us without assistance. The organisms that live and thrive in these “inhospitable” environments are known by the name extremophiles and are found in all Domains of Life. Despite our general lack of knowledge about them, they have already assisted humans in many ways and still have much more to give. In this review, I describe how they have adapted to live/thrive/survive in their niches, helped scientists unlock major scientific discoveries, advance the field of biotechnology, and inform us about the boundaries of Life and where we might find it in the Universe.
Collapse
Affiliation(s)
- James A Coker
- Department of Sciences, University of Maryland Global Campus, Adelphi, MD, USA
| |
Collapse
|
18
|
Giani M, Garbayo I, Vílchez C, Martínez-Espinosa RM. Haloarchaeal Carotenoids: Healthy Novel Compounds from Extreme Environments. Mar Drugs 2019; 17:md17090524. [PMID: 31500208 PMCID: PMC6780574 DOI: 10.3390/md17090524] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023] Open
Abstract
Haloarchaea are halophilic microorganisms belonging to the archaea domain that inhabit salty environments (mainly soils and water) all over the world. Most of the genera included in this group can produce carotenoids at significant concentrations (even wild-type strains). The major carotenoid produced by the cells is bacterioruberin (and its derivatives), which is only produced by this kind of microbes and few bacteria, like Micrococcus roseus. Nevertheless, the understanding of carotenoid metabolism in haloarchaea, its regulation, and the roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. Besides, potential biotechnological uses of haloarchaeal pigments are poorly explored. This work summarises what it has been described so far about carotenoids from haloarchaea and their production at mid- and large-scale, paying special attention to the most recent findings on the potential uses of haloarchaeal pigments in biomedicine.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - Inés Garbayo
- Algal Biotechnology Group, University of Huelva and Marine International Campus of Excellence (CEIMAR), CIDERTA and Faculty of Sciences, 21071 Huelva, Spain.
| | - Carlos Vílchez
- Algal Biotechnology Group, University of Huelva and Marine International Campus of Excellence (CEIMAR), CIDERTA and Faculty of Sciences, 21071 Huelva, Spain.
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| |
Collapse
|
19
|
Kaur A, Capalash N, Sharma P. Communication mechanisms in extremophiles: Exploring their existence and industrial applications. Microbiol Res 2019; 221:15-27. [DOI: 10.1016/j.micres.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
20
|
Tinta T, Kogovšek T, Klun K, Malej A, Herndl GJ, Turk V. Jellyfish-Associated Microbiome in the Marine Environment: Exploring Its Biotechnological Potential. Mar Drugs 2019; 17:E94. [PMID: 30717239 PMCID: PMC6410321 DOI: 10.3390/md17020094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Despite accumulating evidence of the importance of the jellyfish-associated microbiome to jellyfish, its potential relevance to blue biotechnology has only recently been recognized. In this review, we emphasize the biotechnological potential of host⁻microorganism systems and focus on gelatinous zooplankton as a host for the microbiome with biotechnological potential. The basic characteristics of jellyfish-associated microbial communities, the mechanisms underlying the jellyfish-microbe relationship, and the role/function of the jellyfish-associated microbiome and its biotechnological potential are reviewed. It appears that the jellyfish-associated microbiome is discrete from the microbial community in the ambient seawater, exhibiting a certain degree of specialization with some preferences for specific jellyfish taxa and for specific jellyfish populations, life stages, and body parts. In addition, different sampling approaches and methodologies to study the phylogenetic diversity of the jellyfish-associated microbiome are described and discussed. Finally, some general conclusions are drawn from the existing literature and future research directions are highlighted on the jellyfish-associated microbiome.
Collapse
Affiliation(s)
- Tinkara Tinta
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Tjaša Kogovšek
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Katja Klun
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Alenka Malej
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| | - Gerhard J Herndl
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, 1790 AB Den Burg, The Netherlands.
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia.
| |
Collapse
|
21
|
Li J, Liu W, Cai W, Wang B, Ajibade FO, Zhang Z, Tian X, Wang A. Applying rhamnolipid to enhance hydrolysis and acidogenesis of waste activated sludge: retarded methanogenic community evolution and methane production. RSC Adv 2019; 9:2034-2041. [PMID: 35516123 PMCID: PMC9059744 DOI: 10.1039/c8ra08993k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 12/04/2022] Open
Abstract
Recently, bio-surfactants, like rhamnolipid (RL), have been used as efficient pre-treatments to enhance the accumulation of short-chain fatty acids (SCFAs) from waste activated sludge (WAS). The current study found that SCFA accumulation occurred with evolutional variation in methanogen with RL (0.04 g RL g-1 TSS), resulting in a retarded methane production over a period of 20 days. However, a slow methane production was only detected before the 18th day, while the concentration of acetic acid (HAc) accumulated to a peak at 2616.94 ± 310.77 mg L-1 in the presence of RL, which was 2.58-fold higher than the control assay. During the retarded methane production, the concentration of dissolved hydrogen also increased to 49.27 ± 6.02 μmol L-1, in comparison with 22.45 μmol L-1 of control WAS without RL. According to the analysis of archaea communities induced by RL, hydrogenotrophic methanogens, like Methanobrevibacter, had been substantially promoted at the beginning of quick SCFA and hydrogen production, but their percentage decreased from 70% to 35% with time. Intrinsically, the growth of acetotrophic methanogens were postponed but they contributed most to the methane production in this research according to the correlation analysis.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Weiwei Cai
- School of Civil Engineering, Beijing Jiaotong University Beijing 100044 China
| | - Bo Wang
- Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
- Sino-Danish College, University of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish Centre for Education and Research Beijing 100190 China
| | - Fidelis Odedishemi Ajibade
- Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhaojing Zhang
- Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
- State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xiadi Tian
- Beijing Drainage Group Co. Ltd (BDG) Beijing China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT) Harbin 150090 P. R. China
| |
Collapse
|
22
|
Archaeal cell biology: diverse functions of tubulin-like cytoskeletal proteins at the cell envelope. Emerg Top Life Sci 2018; 2:547-559. [DOI: 10.1042/etls20180026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022]
Abstract
The tubulin superfamily of cytoskeletal proteins is widespread in all three domains of life — Archaea, Bacteria and Eukarya. Tubulins build the microtubules of the eukaryotic cytoskeleton, whereas members of the homologous FtsZ family construct the division ring in prokaryotes and some eukaryotic organelles. Their functions are relatively poorly understood in archaea, yet these microbes contain a remarkable diversity of tubulin superfamily proteins, including FtsZ for division, a newly described major family called CetZ that is involved in archaeal cell shape control, and several other divergent families of unclear function that are implicated in a variety of cell envelope-remodelling contexts. Archaeal model organisms, particularly halophilic archaea such as Haloferax volcanii, have sufficiently developed genetic tools and we show why their large, flattened cells that are capable of controlled differentiation are also well suited to cell biological investigations by live-cell high-resolution light and electron microscopy. As most archaea only have a glycoprotein lattice S-layer, rather than a peptidoglycan cell wall like bacteria, the activity of the tubulin-like cytoskeletal proteins at the cell envelope is expected to vary significantly, and may involve direct membrane remodelling or directed synthesis or insertion of the S-layer protein subunits. Further studies of archaeal cell biology will provide fresh insight into the evolution of cells and the principles in common to their fundamental activities across the full spectrum of cellular life.
Collapse
|
23
|
Enzmann F, Mayer F, Rother M, Holtmann D. Methanogens: biochemical background and biotechnological applications. AMB Express 2018; 8:1. [PMID: 29302756 PMCID: PMC5754280 DOI: 10.1186/s13568-017-0531-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 02/05/2023] Open
Abstract
Since fossil sources for fuel and platform chemicals will become limited in the near future, it is important to develop new concepts for energy supply and production of basic reagents for chemical industry. One alternative to crude oil and fossil natural gas could be the biological conversion of CO2 or small organic molecules to methane via methanogenic archaea. This process has been known from biogas plants, but recently, new insights into the methanogenic metabolism, technical optimizations and new technology combinations were gained, which would allow moving beyond the mere conversion of biomass. In biogas plants, steps have been undertaken to increase yield and purity of the biogas, such as addition of hydrogen or metal granulate. Furthermore, the integration of electrodes led to the development of microbial electrosynthesis (MES). The idea behind this technique is to use CO2 and electrical power to generate methane via the microbial metabolism. This review summarizes the biochemical and metabolic background of methanogenesis as well as the latest technical applications of methanogens. As a result, it shall give a sufficient overview over the topic to both, biologists and engineers handling biological or bioelectrochemical methanogenesis.
Collapse
Affiliation(s)
- Franziska Enzmann
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Florian Mayer
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Michael Rother
- Technische Universität Dresden, Institut für Mikrobiologie, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Dirk Holtmann
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| |
Collapse
|
24
|
Huguet C, Fietz S, Rosell-Melé A, Daura X, Costenaro L. Molecular dynamics simulation study of the effect of glycerol dialkyl glycerol tetraether hydroxylation on membrane thermostability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:966-974. [DOI: 10.1016/j.bbamem.2017.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 01/21/2023]
|
25
|
Guschinskaya N, Brunel R, Tourte M, Lipscomb GL, Adams MWW, Oger P, Charpentier X. Random mutagenesis of the hyperthermophilic archaeon Pyrococcus furiosus using in vitro mariner transposition and natural transformation. Sci Rep 2016; 6:36711. [PMID: 27824140 PMCID: PMC5099854 DOI: 10.1038/srep36711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/19/2016] [Indexed: 11/15/2022] Open
Abstract
Transposition mutagenesis is a powerful tool to identify the function of genes, reveal essential genes and generally to unravel the genetic basis of living organisms. However, transposon-mediated mutagenesis has only been successfully applied to a limited number of archaeal species and has never been reported in Thermococcales. Here, we report random insertion mutagenesis in the hyperthermophilic archaeon Pyrococcus furiosus. The strategy takes advantage of the natural transformability of derivatives of the P. furiosus COM1 strain and of in vitro Mariner-based transposition. A transposon bearing a genetic marker is randomly transposed in vitro in genomic DNA that is then used for natural transformation of P. furiosus. A small-scale transposition reaction routinely generates several hundred and up to two thousands transformants. Southern analysis and sequencing showed that the obtained mutants contain a single and random genomic insertion. Polyploidy has been reported in Thermococcales and P. furiosus is suspected of being polyploid. Yet, about half of the mutants obtained on the first selection are homozygous for the transposon insertion. Two rounds of isolation on selective medium were sufficient to obtain gene conversion in initially heterozygous mutants. This transposition mutagenesis strategy will greatly facilitate functional exploration of the Thermococcales genomes.
Collapse
Affiliation(s)
- Natalia Guschinskaya
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69100, Villeurbanne, France
- Univ Lyon, ENS de Lyon, CNRS UMR 5276, Lyon, France
| | - Romain Brunel
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69100, Villeurbanne, France
| | - Maxime Tourte
- Univ Lyon, ENS de Lyon, CNRS UMR 5276, Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 11 Avenuue Jean Capelle, 69621 Villeurbanne cedex, France
| | - Gina L. Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia USA
| | - Philippe Oger
- Univ Lyon, ENS de Lyon, CNRS UMR 5276, Lyon, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 11 Avenuue Jean Capelle, 69621 Villeurbanne cedex, France
| | - Xavier Charpentier
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69100, Villeurbanne, France
| |
Collapse
|
26
|
Abstract
Biotechnology has almost unlimited potential to change our lives in very exciting ways. Many of the chemical reactions that produce these products can be fully optimized by performing them at extremes of temperature, pressure, salinity, and pH for efficient and cost-effective outcomes. Fortunately, there are many organisms (extremophiles) that thrive in extreme environments found in nature and offer an excellent source of replacement enzymes in lieu of mesophilic ones currently used in these processes. In this review, I discuss the current uses and some potential new applications of extremophiles and their products, including enzymes, in biotechnology.
Collapse
Affiliation(s)
- James A Coker
- Department of Biotechnology, University of Maryland, Adelphi, MD, USA
| |
Collapse
|
27
|
Galimzyanov TR, Kuzmin PI, Pohl P, Akimov SA. Elastic deformations of bolalipid membranes. SOFT MATTER 2016; 12:2357-64. [PMID: 26791255 PMCID: PMC7116075 DOI: 10.1039/c5sm02635k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Archaeal membranes have unique mechanical properties that enable these organisms to survive under extremely aggressive environmental conditions. The so-called bolalipids contribute to this exceptional stability. They have two polar heads joined by two hydrocarbon chains. The two headgroups can face different sides of the membrane (O-shape conformation) or the same side (U-shape conformation). We have developed an elasticity theory for bolalipid membranes and show that the energetic contributions of (i) tilt deformations, (ii) area compression/stretching deformations, (iii) as well as those of Gaussian splay from the two membrane surfaces are additive, while splay deformations yield a cross-term. The presence of a small fraction of U-shaped molecules resulted in spontaneous membrane curvature. We estimated the tilt modulus to be approximately equal to that of membranes in eukaryotic cells. In contrast to conventional lipids, the bolalipid membrane possesses two splay moduli, one of which is estimated to be an order of magnitude larger than that of conventional lipids. The projected values of elastic moduli act to hamper pore formation and to decelerate membrane fusion and fission.
Collapse
Affiliation(s)
- Timur R Galimzyanov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia. and Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", 4 Leninskiy Prospect, Moscow 119049, Russia
| | - Peter I Kuzmin
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40-42, Linz, 4020, Austria
| | - Sergey A Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia. and Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", 4 Leninskiy Prospect, Moscow 119049, Russia
| |
Collapse
|
28
|
Velikonja A, Kramar P, Miklavčič D, Maček Lebar A. Specific electrical capacitance and voltage breakdown as a function of temperature for different planar lipid bilayers. Bioelectrochemistry 2016; 112:132-7. [PMID: 26948707 DOI: 10.1016/j.bioelechem.2016.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022]
Abstract
The breakdown voltage and specific electrical capacitance of planar lipid bilayers formed from lipids isolated from the membrane of archaeon Aeropyrum pernix K1 as a function of temperature were studied and compared with data obtained previously in MD simulation studies. Temperature dependence of breakdown voltage and specific electrical capacitance was measured also for dipalmitoylphosphatidylcholine (DPPC) bilayers and bilayers formed from mixture of diphytanoylphosphocholine (DPhPC) and DPPC in ratio 80:20. The breakdown voltage of archaeal lipids planar lipid bilayers is more or less constant until 50°C, while at higher temperatures a considerable drop is observed, which is in line with the results from MD simulations. The breakdown voltage of DPPC planar lipid bilayer at melting temperature is considerably higher than in the gel phase. Specific electrical capacitance of planar lipid bilayers formed from archaeal lipids is approximately constant for temperatures up to 40°C and then gradually decreases. The difference with MD simulation predictions is discussed. Specific electrical capacitance of DPPC planar lipid bilayers in fluid phase is 1.75 times larger than that of the gel phase and it follows intermediated phases before phase transition. Increase in specific electrical capacitance while approaching melting point of DPPC is visible also for DPhPC:DPPC mixture.
Collapse
Affiliation(s)
- Aljaž Velikonja
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia
| | - Peter Kramar
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia
| | | |
Collapse
|
29
|
Calegari-Santos R, Diogo RA, Fontana JD, Bonfim TMB. Carotenoid Production by Halophilic Archaea Under Different Culture Conditions. Curr Microbiol 2016; 72:641-51. [PMID: 26750123 DOI: 10.1007/s00284-015-0974-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/22/2015] [Indexed: 12/16/2022]
Abstract
Carotenoids are pigments that may be used as colorants and antioxidants in food, pharmaceutical, and cosmetic industries. Since they also benefit human health, great efforts have been undertaken to search for natural sources of carotenoids, including microbial ones. The optimization of culture conditions to increase carotenoid yield is one of the strategies used to minimize the high cost of carotenoid production by microorganisms. Halophilic archaea are capable of producing carotenoids according to culture conditions. Their main carotenoid is bacterioruberin with 50 carbon atoms. In fact, the carotenoid has important biological functions since it acts as cell membrane reinforcement and it protects the microorganism against DNA damaging agents. Moreover, carotenoid extracts from halophilic archaea have shown high antioxidant capacity. Therefore, current review summarizes the effect of different culture conditions such as salt and carbon source concentrations in the medium, light incidence, and oxygen tension on carotenoid production by halophilic archaea and the strategies such as optimization methodology and two-stage cultivation already used to increase the carotenoid yield of these microorganisms.
Collapse
Affiliation(s)
- Rossana Calegari-Santos
- Department of Pharmacy, Enzymology and Fermentation Technology Laboratory, Federal University of Paraná, Av. Pref. Lothário Meissner, 632, Curitiba, Paraná, 80210-170, Brazil
| | - Ricardo Alexandre Diogo
- Polytechnic School, Control and Automation Engineering, Pontifical Catholic University of Paraná, Rua Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil
| | - José Domingos Fontana
- Department of Chemistry and Biology, Federal Technological University of Paraná, Rua Deputado Heitor Alencar Furtado, 5000, Curitiba, Paraná, 81280-340, Brazil
| | - Tania Maria Bordin Bonfim
- Department of Pharmacy, Enzymology and Fermentation Technology Laboratory, Federal University of Paraná, Av. Pref. Lothário Meissner, 632, Curitiba, Paraná, 80210-170, Brazil.
| |
Collapse
|
30
|
Bang C, Schmitz RA. Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol Rev 2015; 39:631-48. [DOI: 10.1093/femsre/fuv010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
|
31
|
Beznosov SN, Veluri PS, Pyatibratov MG, Chatterjee A, MacFarlane DR, Fedorov OV, Mitra S. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode. Sci Rep 2015; 5:7736. [PMID: 25583370 PMCID: PMC4291565 DOI: 10.1038/srep07736] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/10/2014] [Indexed: 11/09/2022] Open
Abstract
Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g(-1) after 50 cycles and with high rate capability, delivering 770 mAh g(-1) at 5 A g(-1) (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.
Collapse
Affiliation(s)
- Sergei N Beznosov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Pavan S Veluri
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai 400076 Mumbai, India
| | - Mikhail G Pyatibratov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Abhijit Chatterjee
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India
| | - Douglas R MacFarlane
- Australian Center of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Oleg V Fedorov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sagar Mitra
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai 400076 Mumbai, India
| |
Collapse
|
32
|
Enhancing bio-hydrogen production from sodium formate by hyperthermophilic archaeon, Thermococcus onnurineus NA1. Bioprocess Biosyst Eng 2014; 38:989-93. [PMID: 25537236 DOI: 10.1007/s00449-014-1336-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Hyperthermophilic archaeon, Thermococcus onnurineus NA1 was reported to grow on formate producing hydrogen (H2). In this study, to sustain high H2 production rate and demonstrate the feasibility of mass production of H2, high cell density cultivation of T. onnurineus NA1 on sodium formate was employed under optimized conditions. From batch cultures, it was observed that the salinity of medium, significantly changed by the addition of formate salt and pH-adjusting agent, crucially affected cell growth and H2 production. With salinity carefully controlled between 3.7 and 4.6 %, 400 mM sodium formate was found to be an optimal initial concentration for maximizing cell growth-associated H2 production. Under optimal conditions, the repeated batch culture with cell recycling showed high cell density of OD600 of 1.7 in 3 and 30 L bioreactor, and the volumetric H2 production rate was enhanced up to 235.7 mmol L(-1) h(-1), which is one of the highest values reported to date.
Collapse
|
33
|
Zavec AB, Ota A, Zupancic T, Komel R, Ulrih NP, Liovic M. Archaeosomes can efficiently deliver different types of cargo into epithelial cells grown in vitro. J Biotechnol 2014; 192 Pt A:130-5. [DOI: 10.1016/j.jbiotec.2014.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 11/28/2022]
|
34
|
Ren X, Liu K, Zhang Q, Noh HM, Kumbur EC, Yuan WW, Zhou JG, Chong PLG. Design, fabrication, and characterization of archaeal tetraether free-standing planar membranes in a PDMS- and PCB-based fluidic platform. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12618-12628. [PMID: 24937508 DOI: 10.1021/am502613x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The polar lipid fraction E (PLFE) isolated from the thermoacidophilic archaeon Sulfolobus acidocaldarius contains exclusively bipolar tetraether lipids, which are able to form extraordinarily stable vesicular membranes against a number of chemical, physical, and mechanical stressors. PLFE liposomes have thus been considered appealing biomaterials holding great promise for biotechnology applications such as drug delivery and biosensing. Here we demonstrated that PLFE can also form free-standing "planar" membranes on micropores (∼100 μm) of polydimethylsiloxane (PDMS) thin films embedded in printed circuit board (PCB)-based fluidics. To build this device, two novel approaches were employed: (i) an S1813 sacrificial layer was used to facilitate the fabrication of the PDMS thin film, and (ii) oxygen plasma treatment was utilized to conveniently bond the PDMS thin film to the PCB board and the PDMS fluidic chamber. Using electrochemical impedance spectroscopy, we found that the dielectric properties of PLFE planar membranes suspended on the PDMS films are distinctly different from those obtained from diester lipid and triblock copolymer membranes. In addition to resistance (R) and capacitance (C) that were commonly seen in all the membranes examined, PLFE planar membranes showed an inductance (L) component. Furthermore, PLFE planar membranes displayed a relatively large membrane resistance, suggesting that, among the membranes examined, PLFE planar membrane would be a better matrix for studying channel proteins and transmembrane events. PLFE planar membranes also exhibited a sharp decrease in phase angle with the frequency of the input AC signal at ∼1 MHz, which could be utilized to develop sensors for monitoring PLFE membrane integrity in fluidics. Since the stability of free-standing planar lipid membranes increases with increasing membrane packing tightness and PLFE lipid membranes are more tightly packed than those made of diester lipids, PLFE free-standing planar membranes are expected to be considerably stable. All these salient features make PLFE planar membranes particularly attractive for model studies of channel proteins and transmembrane events and for high-throughput drug screening and artificial photosynthesis. This work can be extended to nanopores of PDMS thin films in microfluidics and eventually aid in membrane-based new lab-on-a-chip applications.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Mechanical Engineering and Mechanics, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mayer F, Müller V. Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev 2014; 38:449-72. [DOI: 10.1111/1574-6976.12043] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
|
36
|
|
37
|
MALIK AMARILA, SANTOSO IMAN, YEHUDA ANDI, K.U. FREISLEBEN SERUNI, INAWATIWANAND SEPTELIAI, HUBER HARALD, LUTHFA ZESSINDA, SALEH ROSARI, FREISLEBEN HANSJOACHIM. Characterization of Thermoplasma Species Cultured from Sampling on Tangkuban Perahu, Indonesia. MICROBIOLOGY INDONESIA 2014. [DOI: 10.5454/mi.8.1.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
The potent in vitro skin permeation of archaeosome made from lipids extracted of Sulfolobus acidocaldarius. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:782012. [PMID: 24453698 PMCID: PMC3888715 DOI: 10.1155/2013/782012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/17/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022]
Abstract
Archaeosomes are a new generation of liposomes that exhibit higher stabilities under different conditions, such as high temperatures, alkaline or acidic pH, and presence of bile salts in comparison with liposomes, and can be used in biotechnology including drug, gene, and vaccine delivery. The objective of this study was to prepare archaeosomes using lipid extracted from Sulfolobus acidocaldarius and evaluate their physicochemical properties. The lipids were extracted from S. acidocaldarius and assayed by High Performance Thin-Layer Chromatography (HPTLC). Archaeosomes were prepared using film method and methylene blue was used as drug model. They were characterized for their vesicle size and Differential Scanning Calorimetry (DSC) was used to investigate changes in their thermal behavior. The released amount of methylene blue was determined using a dialysis membrane and rat skin. HPTLC analysis of the extracted lipids showed that glycerol ether may be the major lipid with more than 78 percent probability. Results of particle size determination showed a mean size of 158.33 nm and the results of DSC indicated the possible interaction of methylene blue with lipids during the preparation of archaeosome. The addition of cholesterol significantly improved the encapsulation of methylene blue in the archaeosome so that the encapsulation efficiency was 61.66 ± 2.88%. The result of in vitro skin permeation showed that methylene blue could pass through skin model according to Peppas model and there was about 41.66% release after 6 h, whereas no release was observed through dialysis membrane. According to the results of the study, it is concluded that archaeosome may be successfully used as drug delivery system.
Collapse
|
39
|
Dragosits M, Mattanovich D. Adaptive laboratory evolution -- principles and applications for biotechnology. Microb Cell Fact 2013; 12:64. [PMID: 23815749 PMCID: PMC3716822 DOI: 10.1186/1475-2859-12-64] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022] Open
Abstract
Adaptive laboratory evolution is a frequent method in biological studies to gain insights into the basic mechanisms of molecular evolution and adaptive changes that accumulate in microbial populations during long term selection under specified growth conditions. Although regularly performed for more than 25 years, the advent of transcript and cheap next-generation sequencing technologies has resulted in many recent studies, which successfully applied this technique in order to engineer microbial cells for biotechnological applications. Adaptive laboratory evolution has some major benefits as compared with classical genetic engineering but also some inherent limitations. However, recent studies show how some of the limitations may be overcome in order to successfully incorporate adaptive laboratory evolution in microbial cell factory design. Over the last two decades important insights into nutrient and stress metabolism of relevant model species were acquired, whereas some other aspects such as niche-specific differences of non-conventional cell factories are not completely understood. Altogether the current status and its future perspectives highlight the importance and potential of adaptive laboratory evolution as approach in biotechnological engineering.
Collapse
Affiliation(s)
- Martin Dragosits
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria.
| | | |
Collapse
|
40
|
Jia B, Cheong GW, Zhang S. Multifunctional enzymes in archaea: promiscuity and moonlight. Extremophiles 2013; 17:193-203. [PMID: 23283522 DOI: 10.1007/s00792-012-0509-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
Enzymes from many archaea colonizing extreme environments are of great interest because of their potential for various biotechnological processes and scientific value of evolution. Many enzymes from archaea have been reported to catalyze promiscuous reactions or moonlight in different functions. Here, we summarize known archaeal enzymes of both groups that include different kinds of proteins. Knowledge of their biochemical properties and three-dimensional structures has proved invaluable in understanding mechanism, application, and evolutionary implications of this manifestation. In addition, the review also summarizes the methods to unravel the extra function which almost was discovered serendipitously. The study of these amazing enzymes will provide clues to optimize protein engineering applications and how enzymes might have evolved on Earth.
Collapse
Affiliation(s)
- Baolei Jia
- College of Plant Sciences, Jilin University, Changchun, China.
| | | | | |
Collapse
|
41
|
Copeland E, Choy N, Gabani P, Singh OV. Biosynthesis of Extremolytes: Radiation Resistance and Biotechnological Implications. Extremophiles 2012. [DOI: 10.1002/9781118394144.ch15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
42
|
HANDAYANI SRI, SANTOSO IMAN, FREISLEBEN HANSJOACHIM, HUBER HARALD, ANDI, ARDIANSYAH FERY, MULYANTO CENMI, LUTHFA ZESSINDA, SALEH ROSARI, FREISLEBEN SERUNIKUSUMAUDYANINGSIH, WANANDI SEPTELIAINAWATI, THOMM MICHAEL. Archaeal Life on Tangkuban Perahu-Sampling and Culture Growth in Indonesian Laboratories. HAYATI JOURNAL OF BIOSCIENCES 2012. [DOI: 10.4308/hjb.19.3.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
43
|
Lobasso S, Lopalco P, Angelini R, Pollice A, Laera G, Milano F, Agostiano A, Corcelli A. Isolation of Squarebop I bacteriorhodopsin from biomass of coastal salterns. Protein Expr Purif 2012; 84:73-9. [PMID: 22580037 DOI: 10.1016/j.pep.2012.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 04/24/2012] [Accepted: 04/25/2012] [Indexed: 11/28/2022]
Abstract
Squarebop I bacteriorhodopsin is a light-activated proton pump present in the membranes of the archeon Haloquadratum walsbyi, a square-shaped organism representing 50-60% of microbial population in the crystallizer ponds of the coastal salterns. Here we describe: (1) the operating mode of a bioreactor designed to concentrate the saltern biomass through a microfiltration process based on polyethersulfone hollow fibers; (2) the isolation of Squarebop I bacteriorhodopsin from solubilized biomass by means of a single chromatographic step; (3) tightly bound lipids to the isolated and purified protein as revealed by MALDI-TOF/MS analysis; (4) the photoactivity of Squarebop I bacteriorhodopsin isolated from environmental samples by flash spectroscopy. Yield of the isolation process is 150 μg of Squarebop I bacteriorhodopsin from 1l of 25-fold concentrated biomass. The possibility of using the concentrated biomass of salterns, as renewable resource for the isolation of functional bacteriorhodopsin and possibly other valuable bioproducts, is briefly discussed.
Collapse
Affiliation(s)
- Simona Lobasso
- Department of Basic Medical Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Ruiz DM, Iannuci NB, Cascone O, De Castro RE. Peptide synthesis catalysed by a haloalkaliphilic serine protease from the archaeon Natrialba magadii (Nep). Lett Appl Microbiol 2010; 51:691-6. [PMID: 21039670 DOI: 10.1111/j.1472-765x.2010.02955.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Haloarchaeal proteases function optimally in high salt (low water activity); thus, they offer an advantage over the nonhalophilic counterparts as biocatalysts for protease-catalysed peptide synthesis. The haloalkaliphilic archaeon Natrialba magadii secretes a solvent-tolerant protease, Nep (Natrialba magadii extracellular protease). In this work, the ability of Nep to catalyse peptide synthesis was examined. METHODS AND RESULTS The tripeptide Ac-Phe-Gly-Phe-NH(2) was synthesized using Ac-Phe-OEt and Gly-Phe-NH(2) substrates as building blocks in the presence of Nep, 30% (v/v) dimethyl sulfoxide (DMSO) and 1.5 or 0.5 mol l(-1) NaCl. Purification and identification of the peptide product was achieved by RP-HPLC and ESI-MS, respectively. The native as well as the recombinant enzyme produced in Haloferax volcanii (HvNep) was similarly effective as catalysts for the synthesis of this model tripeptide with yields of up to 60% and without secondary hydrolysis of the product. HvNep catalysed the synthesis of various tripeptides with preference for those having aromatic amino acids in the P1 site. CONCLUSION Nep is able to catalyse peptide synthesis under different salt concentrations in the presence of DMSO. SIGNIFICANCE AND IMPACT OF STUDY The catalytic property of Nep in peptide synthesis combined with overproduction of this protease in Hfx. volcanii anticipates the potential applicability of this haloarchaeal protease in biotechnology.
Collapse
Affiliation(s)
- D M Ruiz
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
| | | | | | | |
Collapse
|
46
|
Fooladi J, Sajjadian A. Screening the thermophilic and hyperthermophilic bacterial population of three Iranian hot-springs to detect the thermostable α-amylase producing strain. IRANIAN JOURNAL OF MICROBIOLOGY 2010; 2:46-50. [PMID: 22347550 PMCID: PMC3279768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Screening is a routine procedure for isolation of microorganisms which are able to produce special metabolites. Purified thermostable α-amylase from bacterial sources is widely used in different industries. In this study we analyzed samples collected from three different hot springs in Iran to detect any strains capable of producing thermostable α-amylase. MATERIALS AND METHODS Hot water samples from Larijan (67°C, pH 6.5), Mahallat (46°C, pH 7), and Meshkinshahr (82°C, pH 6), were cultivated in screening starch agar plates and incubated at 65°C for 24 hours. Thereafter, the plates were stained with Gram's iodine solution. RESULTS AND DISCUSSION The bacterial colonies from the Meshkinshahr hot-spring produced the largest haloforming zone. Based on the phenotypic tests, the strain was identified as Bacillus sp. The culture condition was optimized for biosynthesis of α-amylase. The enzyme was produced at maximum level when it was incubated at 70°C in the presence of soluble starch (1%) at pH 6. The addition of calcium (10 mM) and peptone (1%) to the mineral medium, shortened the lag period and improved the growth and α-amylase synthesis. The addition of glucose (1%) to the culture greatly diminished the syntheses of α -amylase. Importantly, the enzyme extract retained 100% activity when incubated for 45 minutes at 100°C. CONCLUSION The Meshkinshahr hot-spring is rich in the Bacillus spp thermostable α-amylase producing strain of the thermophilic bacterial population. Iranian hot-springs like Meshkinshahr, have large microbial storages and can be used as sources of different biological products like enzymes. The enzyme which was produced with Bacillus sp. could hydrolyse polymers like starch and was used at laboratory scale successfully.
Collapse
Affiliation(s)
- J Fooladi
- Department of Biology, Faculty of Sciences, Alzahra University, Vanak, Tehran, Iran
| | - A Sajjadian
- Department of Biology, Faculty of Sciences, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
47
|
Ferguson JT, Wenger CD, Metcalf WW, Kelleher NL. Top-down proteomics reveals novel protein forms expressed in Methanosarcina acetivorans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1743-50. [PMID: 19577935 PMCID: PMC2832193 DOI: 10.1016/j.jasms.2009.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/29/2009] [Accepted: 05/23/2009] [Indexed: 05/12/2023]
Abstract
Using both automated nanospray and online liquid chromatography mass spectrometry LC-MS strategies, 99 proteins have been newly identified by top-down tandem mass spectrometry (MS/MS) in Methanosarcina acetivorans, the methanogen with the largest known genome [5.7 mega base pairs (Mb)] for an Archaeon. Because top-down MS/MS was used, 15 proteins were detected with mispredicted start sites along with an additional five from small open reading frames (SORFs). Beyond characterization of these more common discrepancies in genome annotation, one SORF resulted from a rare start codon (AUA) as the initiation site for translation of this protein. Also, a methylation on a 30S ribosomal protein (MA1259) was localized to Pro59-Val69, contrasting sharply from its homologue in Escherichia coli (rp S12) known to harbor an unusual beta-thiomethylated aspartic acid residue.
Collapse
Affiliation(s)
- Jonathan T Ferguson
- Department of Chemistry at University of Illinois at Urbana-Champaign, Urbana, Illinois 6180, USA
| | | | | | | |
Collapse
|
48
|
Kim S, Lee SB. Soluble expression of archaeal proteins in Escherichia coli by using fusion-partners. Protein Expr Purif 2008; 62:116-9. [PMID: 18657619 DOI: 10.1016/j.pep.2008.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 06/24/2008] [Accepted: 06/30/2008] [Indexed: 11/19/2022]
Abstract
Expression of archaeal proteins in soluble form is of importance because archaeal proteins are usually produced as insoluble inclusion bodies in Escherichia coli. In this study, we investigated the use of soluble fusion tags to enhance the solubility of two archaeal proteins, d-gluconate dehydratase (GNAD) and 2-keto-3-deoxy-D-gluconate kinase (KDGK), key enzymes in the glycolytic pathway of the thermoacidophilic archaeon Sulfolobus solfataricus. These two proteins were produced as inclusion bodies in E. coli when polyhistidine was used as a fusion tag. To reduce inclusion body formation in E. coli, GNAD and KDGK were fused with three partners, thioredoxin (Trx), glutathione-S-transferase (GST), and N-utilization substance A (NusA). With the use of fusion-partners, the solubility of the archaeal proteins was remarkably enhanced, and the soluble fraction of the recombinant proteins was increased in this order: Trx>GST>NusA. Furthermore, In the case of recombinant KDGKs, the enzyme activity of the Trx-fused proteins was 200-fold higher than that of the polyhistidine-fusion protein. The strategy presented in this work may contribute to the production of other valuable proteins from hyperthermophilic archaea in E. coli.
Collapse
Affiliation(s)
- Seonghun Kim
- School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, Republic of Korea
| | | |
Collapse
|
49
|
|
50
|
Park SC, Pham BP, Van Duyet L, Jia B, Lee S, Yu R, Han SW, Yang JK, Hahm KS, Cheong GW. Structural and functional characterization of osmotically inducible protein C (OsmC) from Thermococcus kodakaraensis KOD1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:783-8. [PMID: 18319068 DOI: 10.1016/j.bbapap.2008.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 01/14/2008] [Accepted: 02/04/2008] [Indexed: 11/26/2022]
Abstract
Osmotically inducible protein C (OsmC) is involved in the cellular defense mechanism against oxidative stress caused by exposure to hyperoxides or elevated osmolarity. OsmC was identified by two-dimensional electrophoresis (2DE) analysis as a protein that is overexpressed in response to osmotic stress, but not under heat and oxidative stress. Here, an OsmC gene from T. kodakaraensis KOD1 was cloned and expressed in Escherichia coli. TkOsmC showed a homotetrameric structure based on gel filtration and electron microscopic analyses. TkOsmC has a significant peroxidase activity toward both organic and inorganic peroxides in high, but not in low temperature.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Division of Applied Life Sciences (BK21 Program), Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|