1
|
Shan Q, Liu J, Qu F, Chen A, He W. Polychlorinated biphenyls exposure and type 2 diabetes: Molecular mechanism that causes insulin resistance and islet damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2466-2476. [PMID: 38305644 DOI: 10.1002/tox.24094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants that have been associated with type 2 diabetes (T2DM) in cohort studies. This review aims to comprehensively assess the molecular mechanisms of PCBs-induced T2DM. Recent progress has been made in the research of PCBs in liver tissue, adipose tissue, and other tissues. By influencing the function of nuclear receptors, such as the aryl hydrocarbon receptor (AhR), pregnancy X receptor (PXR), and peroxisome proliferator activated receptor γ (PPARγ), as well as the inflammatory response, PCBs disrupt the balance of hepatic glucose and lipid metabolism. This is associated with insulin resistance (IR) in the target organ of insulin. Through androgen receptor (AR), estrogen receptor α/β (ERα/β), and pancreato-duodenal-homeobox gene-1 (PDX-1), PCBs affect the secretion of insulin and increase blood glucose. Thus, this review is a discussion on the relationship between PCBs exposure and the pathogenesis of T2DM. It is hoped to provide basic concepts for diabetes research and disease treatment.
Collapse
Affiliation(s)
- Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jingyu Liu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Wenxing He
- College of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
2
|
Augimeri G, Bonofiglio D. PPARgamma: A Potential Intrinsic and Extrinsic Molecular Target for Breast Cancer Therapy. Biomedicines 2021; 9:biomedicines9050543. [PMID: 34067944 PMCID: PMC8152061 DOI: 10.3390/biomedicines9050543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decades, the breast tumor microenvironment (TME) has been increasingly recognized as a key player in tumor development and progression and as a promising prognostic and therapeutic target for breast cancer patients. The breast TME, representing a complex network of cellular signaling—deriving from different stromal cell types as well as extracellular matrix components, extracellular vesicles, and soluble growth factors—establishes a crosstalk with cancer cells sustaining tumor progression. A significant emphasis derives from the tumor surrounding inflammation responsible for the failure of the immune system to effectively restrain breast cancer growth. Thus, effective therapeutic strategies require a deeper understanding of the interplay between tumor and stroma, aimed at targeting both the intrinsic neoplastic cells and the extrinsic surrounding stroma. In this scenario, peroxisome proliferator-activated receptor (PPAR) γ, primarily known as a metabolic regulator, emerged as a potential target for breast cancer treatment since it functions in breast cancer cells and several components of the breast TME. In particular, the activation of PPARγ by natural and synthetic ligands inhibits breast cancer cell growth, motility, and invasiveness. Moreover, activated PPARγ may educate altered stromal cells, counteracting the pro-inflammatory milieu that drive breast cancer progression. Interestingly, using Kaplan–Meier survival curves, PPARγ also emerges as a prognostically favorable factor in breast cancer patients. In this perspective, we briefly discuss the mechanisms by which PPARγ is implicated in tumor biology as well as in the complex regulatory networks within the breast TME. This may help to profile approaches that provide a simultaneous inhibition of epithelial cells and TME components, offering a more efficient way to treat breast cancer.
Collapse
|
3
|
Augimeri G, Giordano C, Gelsomino L, Plastina P, Barone I, Catalano S, Andò S, Bonofiglio D. The Role of PPARγ Ligands in Breast Cancer: From Basic Research to Clinical Studies. Cancers (Basel) 2020; 12:cancers12092623. [PMID: 32937951 PMCID: PMC7564201 DOI: 10.3390/cancers12092623] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), belonging to the nuclear receptor superfamily, is a ligand-dependent transcription factor involved in a variety of pathophysiological conditions such as inflammation, metabolic disorders, cardiovascular disease, and cancers. In this latter context, PPARγ is expressed in many tumors including breast cancer, and its function upon binding of ligands has been linked to the tumor development, progression, and metastasis. Over the last decade, much research has focused on the potential of natural agonists for PPARγ including fatty acids and prostanoids that act as weak ligands compared to the strong and synthetic PPARγ agonists such as thiazolidinedione drugs. Both natural and synthetic compounds have been implicated in the negative regulation of breast cancer growth and progression. The aim of the present review is to summarize the role of PPARγ activation in breast cancer focusing on the underlying cellular and molecular mechanisms involved in the regulation of cell proliferation, cell cycle, and cell death, in the modulation of motility and invasion as well as in the cross-talk with other different signaling pathways. Besides, we also provide an overview of the in vivo breast cancer models and clinical studies. The therapeutic effects of natural and synthetic PPARγ ligands, as antineoplastic agents, represent a fascinating and clinically a potential translatable area of research with regards to the battle against cancer.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (G.A.); (C.G.); (L.G.); (P.P.); (I.B.); (S.C.); (S.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: ; Tel.: +39-0984-496208
| |
Collapse
|
4
|
Yang Z, Yu Y, Sun N, Zhou L, Zhang D, Chen H, Miao W, Gao W, Zhang C, Liu C, Yang X, Wu X, Gao Y. Ginsenosides Rc, as a novel SIRT6 activator, protects mice against high fat diet induced NAFLD. J Ginseng Res 2020; 47:376-384. [DOI: 10.1016/j.jgr.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022] Open
|
5
|
Chu XY, Yang SZ, Zhu MQ, Zhang DY, Shi XC, Xia B, Yuan Y, Liu M, Wu JW. Isorhapontigenin Improves Diabetes in Mice via Regulating the Activity and Stability of PPARγ in Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3976-3985. [PMID: 32178518 DOI: 10.1021/acs.jafc.0c00515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isorhapontigenin is a natural bioactive stilbene isolated from various plants and fruits. It has been reported to exhibit several physiological activities including anticancer and anti-inflammation activity in vitro and in experimental animal models. This study aimed to investigate whether isorhapontigenin exerts antidiabetic effects in vivo. To this end, diabetic db/db mice were treated with either 25 mg kg-1 of isorhapontigenin or vehicle intraperitoneally for a period of 5 weeks. The results show that isorhapontigenin treatment significantly reduced postprandial levels of glucose, insulin, as well as free fatty acid, three markers of diabetes. Further studies show that isorhapontigenin treatment markedly improves insulin sensitivity and glucose tolerance of db/db mice as shown by ITT and GTT. Together, these physiological results show that isorhapontigenin possesses antidiabetic properties in vivo. Mechanistically, the isorhapontigenin-mediated antidiabetic effect is caused by favorable changes in adipose tissue, including reductions in adipocyte diameter and improved adipose insulin sensitivity. Further studies with 3T3-L1 cells show that isorhapontigenin treatment promotes preadipocyte differentiation by upregulation of the activity of the master adipogenic regulator PPARγ and deceleration of its proteasomal degradation. Together, our results establish for the first time an important role of isorhapontigenin as a potential nutraceutical agent for diabetes treatment.
Collapse
Affiliation(s)
- Xin Yi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shi Zhen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Yang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Chen Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
El Ouarrat D, Isaac R, Lee YS, Oh DY, Wollam J, Lackey D, Riopel M, Bandyopadhyay G, Seo JB, Sampath-Kumar R, Olefsky JM. TAZ Is a Negative Regulator of PPARγ Activity in Adipocytes and TAZ Deletion Improves Insulin Sensitivity and Glucose Tolerance. Cell Metab 2020; 31:162-173.e5. [PMID: 31708444 PMCID: PMC7784082 DOI: 10.1016/j.cmet.2019.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022]
Abstract
Insulin resistance is a major factor in obesity-linked type 2 diabetes. PPARγ is a master regulator of adipogenesis, and small molecule agonists, termed thiazolidinediones, are potent therapeutic insulin sensitizers. Here, we studied the role of transcriptional co-activator with PDZ-binding motif (TAZ) as a transcriptional co-repressor of PPARγ. We found that adipocyte-specific TAZ knockout (TAZ AKO) mice demonstrate a constitutively active PPARγ state. Obese TAZ AKO mice show improved glucose tolerance and insulin sensitivity compared to littermate controls. PPARγ response genes are upregulated in adipose tissue from TAZ AKO mice and adipose tissue inflammation was also decreased. In vitro and in vivo mechanistic studies revealed that the TAZ-PPARγ interaction is partially dependent on ERK-mediated Ser112 PPARγ phosphorylation. As adipocyte PPARγ Ser112 phosphorylation is increased in obesity, repression of PPARγ activity by TAZ could contribute to insulin resistance. These results identify TAZ as a new factor in the development of obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Dalila El Ouarrat
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Roi Isaac
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yun Sok Lee
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Wollam
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Denise Lackey
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Matthew Riopel
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jong Bae Seo
- Department of Biosciences, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| | | | - Jerrold M Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Naiman S, Huynh FK, Gil R, Glick Y, Shahar Y, Touitou N, Nahum L, Avivi MY, Roichman A, Kanfi Y, Gertler AA, Doniger T, Ilkayeva OR, Abramovich I, Yaron O, Lerrer B, Gottlieb E, Harris RA, Gerber D, Hirschey MD, Cohen HY. SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα. Cell Rep 2019; 29:4127-4143.e8. [PMID: 31851938 PMCID: PMC7165364 DOI: 10.1016/j.celrep.2019.11.067] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/11/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
The pro-longevity enzyme SIRT6 regulates various metabolic pathways. Gene expression analyses in SIRT6 heterozygotic mice identify significant decreases in PPARα signaling, known to regulate multiple metabolic pathways. SIRT6 binds PPARα and its response element within promoter regions and activates gene transcription. Sirt6+/- results in significantly reduced PPARα-induced β-oxidation and its metabolites and reduced alanine and lactate levels, while inducing pyruvate oxidation. Reciprocally, starved SIRT6 transgenic mice show increased pyruvate, acetylcarnitine, and glycerol levels and significantly induce β-oxidation genes in a PPARα-dependent manner. Furthermore, SIRT6 mediates PPARα inhibition of SREBP-dependent cholesterol and triglyceride synthesis. Mechanistically, SIRT6 binds PPARα coactivator NCOA2 and decreases liver NCOA2 K780 acetylation, which stimulates its activation of PPARα in a SIRT6-dependent manner. These coordinated SIRT6 activities lead to regulation of whole-body respiratory exchange ratio and liver fat content, revealing the interactions whereby SIRT6 synchronizes various metabolic pathways, and suggest a mechanism by which SIRT6 maintains healthy liver.
Collapse
Affiliation(s)
- Shoshana Naiman
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Frank K Huynh
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA; Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Reuven Gil
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yair Glick
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yael Shahar
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Noga Touitou
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Liat Nahum
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Matan Y Avivi
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Asael Roichman
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yariv Kanfi
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Asaf A Gertler
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Tirza Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Ifat Abramovich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa, Israel
| | - Orly Yaron
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Batia Lerrer
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa, Israel
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Doron Gerber
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel; Bar Ilan Institute for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Matthew D Hirschey
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Haim Y Cohen
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
8
|
Analysis of Tks4 Knockout Mice Suggests a Role for Tks4 in Adipose Tissue Homeostasis in the Context of Beigeing. Cells 2019; 8:cells8080831. [PMID: 31387265 PMCID: PMC6721678 DOI: 10.3390/cells8080831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Obesity and adipocyte malfunction are related to and arise as consequences of disturbances in signaling pathways. Tyrosine kinase substrate with four Src homology 3 domains (Tks4) is a scaffold protein that establishes a platform for signaling cascade molecules during podosome formation and epidermal growth factor receptor (EGFR) signaling. Several lines of evidence have also suggested that Tks4 has a role in adipocyte biology; however, its roles in the various types of adipocytes at the cellular level and in transcriptional regulation have not been studied. Therefore, we hypothesized that Tks4 functions as an organizing molecule in signaling networks that regulate adipocyte homeostasis. Our aims were to study the white and brown adipose depots of Tks4 knockout (KO) mice using immunohistology and western blotting and to analyze gene expression changes regulated by the white, brown, and beige adipocyte-related transcription factors via a PCR array. Based on morphological differences in the Tks4-KO adipocytes and increased uncoupling protein 1 (UCP1) expression in the white adipose tissue (WAT) of Tks4-KO mice, we concluded that the beigeing process was more robust in the WAT of Tks4-KO mice compared to the wild-type animals. Furthermore, in the Tks4-KO WAT, the expression profile of peroxisome proliferator-activated receptor gamma (PPARγ)-regulated adipogenesis-related genes was shifted in favor of the appearance of beige-like cells. These results suggest that Tks4 and its downstream signaling partners are novel regulators of adipocyte functions and PPARγ-directed white to beige adipose tissue conversion.
Collapse
|
9
|
Hall JM, Powell HR, Rajic L, Korach KS. The Role of Dietary Phytoestrogens and the Nuclear Receptor PPARγ in Adipogenesis: An in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:37007. [PMID: 30920877 PMCID: PMC6768326 DOI: 10.1289/ehp3444] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Phytoestrogens, naturally occurring plant chemicals, have long been thought to confer beneficial effects on human cardiovascular and metabolic health. However, recent epidemiological studies, have yielded conflicting outcomes, in which phytoestrogen consumption was both positively and negatively correlated with adiposity. Interestingly, several dietary phytoestrogens are known to stimulate or inhibit the activity of the peroxisome proliferator-activated receptor gamma (PPARγ), a key physiological regulator of adipogenesis. OBJECTIVE The objective of this study was to test the hypothesis that the pro- or anti-adipogenic activity of phytoestrogen chemicals is related to the ability to activate PPARγ in adipocytes. METHODS The effects of resveratrol and the soy isoflavones genistein and daidzein on adipogenesis were examined in cell-based assays using the 3T3-L1 cell model. In parallel, ligand-mediated alterations in PPARγ target gene expression were measured by quantitative polymerase chain reaction. The agonist/antagonist activities of phytoestrogens on PPARγ were further assessed by quantifying their ability to affect recruitment of transcriptional cofactors to the receptor. RESULTS Resveratrol displayed significant anti-adipogenic activities as exhibited by the ability to antagonize PPARγ-dependent adipocyte differentiation, down-regulate genes involved in lipid metabolism, block cofactor recruitment to PPARγ, and antagonize the effects of the PPARγ agonist rosiglitazone. In contrast, genistein and daidzein functioned as PPARγ agonists while also displaying pro-adipogenic activities. CONCLUSIONS These data provide biological evidence that the pro- or anti-obesity effects of phytoestrogens are related to their relative agonist/antagonist activity on PPARγ. Thus, PPARγ-activation assays may enable the screening of dietary components and identification of agents with adipogenic activities. https://doi.org/10.1289/EHP3444.
Collapse
Affiliation(s)
- Julie M. Hall
- Department of Medical Sciences, Frank H. Netter MD School of Medicine NH-MED, Quinnipiac University, North Haven, Connecticut, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Heather R. Powell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Lara Rajic
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Kenneth S. Korach
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
10
|
Han HS, Jeon H, Kang SC. Phellopterin isolated from Angelica dahurica reduces blood glucose level in diabetic mice. Heliyon 2018; 4:e00577. [PMID: 29862342 PMCID: PMC5968131 DOI: 10.1016/j.heliyon.2018.e00577] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/05/2018] [Accepted: 03/13/2018] [Indexed: 01/14/2023] Open
Abstract
Insulin resistance is the critical condition for the development of metabolic syndromes including type II diabetes and heart disease. To investigate the active components of Angelica dahurica root which is known to increase insulin sensitivity, its methanol extract was subfractionated. The ethyl acetate (EtOAc) fraction of the Angelica dahurica root extract significantly promoted adipocyte differentiation in 3T3-L1 preadipocyte cells. Among the three compounds isolated from the EtOAc extract (bergapten (1), imperatorin (2) and phellopterin (3)), phellopterin (3) induced the highest adipocyte differentiation at 25 and 50 μg/mL. In addition, treatment with imperatorin (2) and phellopterin (3) increased the mRNA expression of peroxisome proliferator-activated receptors γ (PPARγ). In diabetic animal model induced by high-fat diets (HFD) and streptozotocin (STZ), administration of phellopterin ((3), 1 mg/kg and 2 mg/kg) significantly reduced the levels of blood glucose, triglycerides and total cholesterol. Taken together, these results indicate that phellopterin (3) enhances adipocytes differentiation in 3T3-L1 preadipocytes, phellopterin (3) significantly prevents HFD/STZ-induced type Ⅱ diabetes. The present study also provides phellopterin (3) may be a valuable therapeutic alternative for enhancing insulin sensitivity through promotion of adipocyte differentiation and by increasing mRNA expression levels of PPARγ, which is a major mediator of insulin sensitivity.
Collapse
Affiliation(s)
- Hyo Sang Han
- Department of Health Administration, JoongBu University, Geumsan, 32713, South Korea
| | - Hyelin Jeon
- Department of Oriental Medicine Biotechnology, KyungHee University, Yongin, 17104, South Korea
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, KyungHee University, Yongin, 17104, South Korea
- Corresponding author.
| |
Collapse
|
11
|
Zinc enhances the cellular energy supply to improve cell motility and restore impaired energetic metabolism in a toxic environment induced by OTA. Sci Rep 2017; 7:14669. [PMID: 29116164 PMCID: PMC5676743 DOI: 10.1038/s41598-017-14868-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/12/2017] [Indexed: 02/08/2023] Open
Abstract
Exogenous nutrient elements modulate the energetic metabolism responses that are prerequisites for cellular homeostasis and metabolic physiology. Although zinc is important in oxidative stress and cytoprotection processes, its role in the regulation of energetic metabolism remains largely unknown. In this study, we found that zinc stimulated aspect in cell motility and was essential in restoring the Ochratoxin A (OTA)-induced energetic metabolism damage in HEK293 cells. Moreover, using zinc supplementation and zinc deficiency models, we observed that zinc is conducive to mitochondrial pyruvate transport, oxidative phosphorylation, carbohydrate metabolism, lipid metabolism and ultimate energy metabolism in both normal and toxic-induced oxidative stress conditions in vitro, and it plays an important role in restoring impaired energetic metabolism. This zinc-mediated energetic metabolism regulation could also be helpful for DNA maintenance, cytoprotection and hereditary cancer traceability. Therefore, zinc can widely adjust energetic metabolism and is essential in restoring the impaired energetic metabolism of cellular physiology.
Collapse
|
12
|
Brust R, Lin H, Fuhrmann J, Asteian A, Kamenecka TM, Kojetin DJ. Modification of the Orthosteric PPARγ Covalent Antagonist Scaffold Yields an Improved Dual-Site Allosteric Inhibitor. ACS Chem Biol 2017; 12:969-978. [PMID: 28165718 DOI: 10.1021/acschembio.6b01015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
GW9662 and T0070907 are widely used commercially available irreversible antagonists of peroxisome proliferator-activated receptor gamma (PPARγ). These antagonists covalently modify Cys285 located in an orthosteric ligand-binding pocket embedded in the PPARγ ligand-binding domain and are used to block binding of other ligands. However, we recently identified an alternate/allosteric ligand-binding site in the PPARγ LBD to which ligand binding is not inhibited by these orthosteric covalent antagonists. Here, we developed a series of analogs based on the orthosteric covalent antagonist scaffold with the goal of inhibiting both orthosteric and allosteric cellular activation of PPARγ by MRL20, an orthosteric agonist that also binds to an allosteric site. Our efforts resulted in the identification of SR16832 (compound 22), which functions as a dual-site covalent inhibitor of PPARγ transcription by PPARγ-binding ligands. Molecular modeling, protein NMR spectroscopy structural analysis, and biochemical assays indicate the inhibition of allosteric activation occurs in part through expansion of the 2-chloro-5-nitrobenzamidyl orthosteric covalent antagonist toward the allosteric site, weakening of allosteric ligand binding affinity, and inducing conformational changes not competent for cellular PPARγ activation. Furthermore, SR16832 better inhibits binding of rosiglitazone, a thiazolidinedione (TZD) that weakly activates PPARγ when cotreated with orthosteric covalent antagonists, and may better inhibit binding of endogenous PPARγ ligands such as docosahexaenoic acid (DHA) compared to orthosteric covalent antagonists. Compounds such as SR16832 may be useful chemical tools to use as a dual-site bitopic orthosteric and allosteric covalent inhibitor of ligand binding to PPARγ.
Collapse
Affiliation(s)
- Richard Brust
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Hua Lin
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Jakob Fuhrmann
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Alice Asteian
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Theodore M. Kamenecka
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Douglas J. Kojetin
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| |
Collapse
|
13
|
Chiang HC, Wang CH, Yeh SC, Lin YH, Kuo YT, Liao CW, Tsai FY, Lin WY, Chuang WH, Tsou TC. Comparative microarray analyses of mono(2-ethylhexyl)phthalate impacts on fat cell bioenergetics and adipokine network. Cell Biol Toxicol 2017; 33:511-526. [DOI: 10.1007/s10565-016-9380-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
14
|
Zhou P, Robles-Murguia M, Mathew D, Duffield GE. Impaired Thermogenesis and a Molecular Signature for Brown Adipose Tissue in Id2 Null Mice. J Diabetes Res 2016; 2016:6785948. [PMID: 27144179 PMCID: PMC4842059 DOI: 10.1155/2016/6785948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/06/2016] [Accepted: 03/16/2016] [Indexed: 11/18/2022] Open
Abstract
Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT). Here we further explored the role of Id2 in the regulation of core body temperature over the circadian cycle and the impact of Id2 deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature in Id2-/- mice. Moreover, in Id2-/- BAT, 30 genes including Irs1, PPARs, and PGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact of Id2 deficiency on energy homeostasis of mice in a sex-specific manner.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maricela Robles-Murguia
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Deepa Mathew
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Giles E. Duffield
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- *Giles E. Duffield:
| |
Collapse
|
15
|
Hallenborg P, Petersen RK, Kouskoumvekaki I, Newman JW, Madsen L, Kristiansen K. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Prog Lipid Res 2016; 61:149-62. [DOI: 10.1016/j.plipres.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
|
16
|
Rebhun JF, Glynn KM, Missler SR. Identification of glabridin as a bioactive compound in licorice (Glycyrrhiza glabra L.) extract that activates human peroxisome proliferator-activated receptor gamma (PPARγ). Fitoterapia 2015; 106:55-61. [DOI: 10.1016/j.fitote.2015.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
|
17
|
Abstract
Circadian clocks optimize the timing of physiological processes in synchrony with daily recurring and therefore predictable changes in the environment. Until the late 1990s, circadian clocks were thought to exist only in the central nervous systems of animals; elegant studies in cultured fibroblasts and using genetically encoded reporters in Drosophila melanogaster and in mice showed that clocks are ubiquitous and cell autonomous. These findings inspired investigations of the advantages construed by enabling each organ to independently adjust its function to the time of day. Studies of rhythmic gene expression in several organs suggested that peripheral organ clocks might play an important role in optimizing metabolic physiology by synchronizing tissue-intrinsic metabolic processes to cycles of nutrient availability and energy requirements. The effects of clock disruption in liver, pancreas, muscle, and adipose tissues support that hypothesis. Adipose tissues coordinate energy storage and utilization and modulate behavior and the physiology of other organs by secreting hormones known as "adipokines." Due to behavior- and environment-driven diurnal variations in supply and demand for chemical and thermal energy, adipose tissues might represent an important peripheral location for coordinating circadian energy balance (intake, storage, and utilization) over the whole organism. Given the complexity of adipose cell types and depots, the sensitivity of adipose tissue biology to age and diet composition, and the plethora of known and yet-to-be-discovered adipokines and lipokines, we have just begun to scratch the surface of understanding the role of circadian clocks in adipose tissues.
Collapse
Affiliation(s)
- Emma Henriksson
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA Department of Clinical Sciences, Lund University, CRC, Malmö, Sweden
| | - Katja A Lamia
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
18
|
de Picoli Souza K, da Silva ED, Batista EC, Reis FCG, Silva SMA, Castro CHM, Luz J, Pesquero JL, Dos Santos EL, Pesquero JB. Early pharmacological inhibition of angiotensin-I converting enzyme activity induces obesity in adulthood. Front Pharmacol 2015; 6:75. [PMID: 25926796 PMCID: PMC4396349 DOI: 10.3389/fphar.2015.00075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/19/2015] [Indexed: 01/05/2023] Open
Abstract
We have investigated early programming of body mass in order to understand the multifactorial etiology of obesity. Considering that the renin-angiotensin system (RAS) is expressed and functional in the white adipose tissue (WAT) and modulates its development, we reasoned whether early transitory inhibition of angiotensin-I converting enzyme activity after birth could modify late body mass development. Therefore, newborn Wistar rats were treated with enalapril (10 mg/kg of body mass) or saline, starting at the first day of life until the age of 16 days. Between days ninetieth and hundred and eightieth, a group of these animals received high fat diet (HFD). Molecular, biochemical, histological, and physiological data were collected. Enalapril treated animals presented hyperphagia, overweight, and increased serum level of triglycerides, total cholesterol and leptin, in adult life. Body composition analyses revealed higher fat mass with increased adipocyte size in these animals. Molecular analyses revealed that enalapril treatment increases neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) gene expression in hypothalamus, fatty acid synthase (FAS), and hormone-sensitive lipase (HSL) gene expression in retroperitoneal WAT, and decreases peroxixome proliferators-activated receptor (PPAR)γ, PPARα, uncoupling protein (UCP)2, and UCP3 gene expression in WAT. The results of the current study indicate that enalapril administration during early postnatal development increases body mass, adiposity and serum lipids in adulthood associated with enhanced food intake and decreased metabolic activity in WAT, predisposing to obesity in adulthood.
Collapse
Affiliation(s)
- Kely de Picoli Souza
- School of Environmental and Biological Science, Universidade Federal da Grande Dourados Dourados, Brazil
| | - Elton D da Silva
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Elice C Batista
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Felipe C G Reis
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Sylvia M A Silva
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Charlles H M Castro
- Department of Rheumatology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Jaqueline Luz
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Jorge L Pesquero
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Edson L Dos Santos
- School of Environmental and Biological Science, Universidade Federal da Grande Dourados Dourados, Brazil
| | - João B Pesquero
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
19
|
Screening for bioactive metabolites in plant extracts modulating glucose uptake and fat accumulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:156398. [PMID: 25254050 PMCID: PMC4164421 DOI: 10.1155/2014/156398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 01/19/2023]
Abstract
Dichloromethane and methanol extracts of seven different food and medicinal plants were tested in a screening platform for identification of extracts with potential bioactivity related to insulin-dependent glucose uptake and fat accumulation. The screening platform included a series of in vitro bioassays, peroxisome proliferator-activated receptor (PPAR) γ-mediated transactivation, adipocyte differentiation of 3T3-L1 cell cultures, and glucose uptake in both 3T3-L1 adipocytes and primary porcine myotubes, as well as one in vivo bioassay, fat accumulation in the nematode Caenorhabditis elegans. We found that dichloromethane extracts of aerial parts of golden root (Rhodiola rosea) and common elder (Sambucus nigra) as well as the dichloromethane extracts of thyme (Thymus vulgaris) and carrot (Daucus carota) were able to stimulate insulin-dependent glucose uptake in both adipocytes and myotubes while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes but were not able to activate PPARγ, indicating a PPARγ-independent effect on glucose uptake.
Collapse
|
20
|
Giby VG, Ajith TA. Role of adipokines and peroxisome proliferator-activated receptors in nonalcoholic fatty liver disease. World J Hepatol 2014; 6:570-579. [PMID: 25232450 PMCID: PMC4163740 DOI: 10.4254/wjh.v6.i8.570] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/29/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Intrahepatic fat deposition has been demonstrated in patients with nonalcoholic fatty liver disease (NAFLD). Genetic and environmental factors are important for the development of NAFLD. Diseases such as obesity, diabetes, and hypertension have been found to be closely associated with the incidence of NAFLD. Evidence suggests that obesity and insulin resistance are the major factors that contribute to the development of NAFLD. In comparing the factors that contribute to the buildup of excess calories in obesity, an imbalance of energy homeostasis can be considered as the basis. Among the peripheral signals that are generated to regulate the uptake of food, signals from adipose tissue are of major relevance and involve the maintenance of energy homeostasis through processes such as lipogenesis, lipolysis, and oxidation of fatty acids. Advances in research on adipose tissue suggest an integral role played by adipokines in NAFLD. Cytokines secreted by adipocytes, such as tumor necrosis factor-α, transforming growth factor-β, and interleukin-6, are implicated in NAFLD. Other adipokines, such as leptin and adiponectin and, to a lesser extent, resistin and retinol binding protein-4 are also involved. Leptin and adiponectin can augment the oxidation of fatty acid in liver by activating the nuclear receptor super-family of transcription factors, namely peroxisome proliferator-activated receptor (PPAR)-α. Recent studies have proposed downregulation of PPAR-α in cases of hepatic steatosis. This review discusses the role of adipokines and PPARs with regard to hepatic energy metabolism and progression of NAFLD.
Collapse
|
21
|
Koo HJ, Kwak JH, Kang SC. Anti-diabetic properties of Daphniphyllum macropodum fruit and its active compound. Biosci Biotechnol Biochem 2014; 78:1392-401. [DOI: 10.1080/09168451.2014.923289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
We evaluated in vitro anti-diabetic activities of 497 native plants of Jeju Island (South Korea) by measuring the induction of adipocyte differentiation. Among the plants, Daphniphyllum macropodum fruit extract (DME) had the highest peroxisome proliferator-activated receptor γ (PPARγ) agonist activity and was therefore selected as a potential source of anti-diabetic agents. To elucidate the active components of DME, constituent compounds were purified and their effects on the adipocyte differentiation were studied. Using activity-guided fractionation, four compounds were isolated from DME and their adipogenic effects were evaluated. Among the compounds isolated, 5,7-dihydroxychromone potently induced the differentiation of mouse 3T3-L1 preadipocytes. DME and 5,7-dihydroxychromone increased PPARγ and liver X receptor α (LXRα) mRNA expression levels. To determine whether the adipogenic effects we observed might affect serum glucose levels, we undertook in vivo experiment using streptozotocin-/high-fat diet-induced type 2 diabetes mouse model. DME supplementation reduced serum glucose, total cholesterol, and triacylglycerol levels in diabetes mice. These results suggest that DME may be useful for the prevention and treatment of type 2 diabetes mellitus. Moreover, it was proposed that 5,7-dihydroxychromone isolated from DME is one of the active compounds that may contribute to regulate blood glucose levels.
Collapse
Affiliation(s)
- Hyun Jung Koo
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Se Chan Kang
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
22
|
Wilbanks MS, Gust KA, Atwa S, Sunesara I, Johnson D, Ang CY, Meyer SA, Perkins EJ. Validation of a genomics-based hypothetical adverse outcome pathway: 2,4-dinitrotoluene perturbs PPAR signaling thus impairing energy metabolism and exercise endurance. Toxicol Sci 2014; 141:44-58. [PMID: 24893713 DOI: 10.1093/toxsci/kfu104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
2,4-dinitrotoluene (2,4-DNT) is a nitroaromatic used in industrial dyes and explosives manufacturing processes that is found as a contaminant in the environment. Previous studies have implicated antagonism of PPARα signaling as a principal process affected by 2,4-DNT. Here, we test the hypothesis that 2,4-DNT-induced perturbations in PPARα signaling and resultant downstream deficits in energy metabolism, especially from lipids, cause organism-level impacts on exercise endurance. PPAR nuclear activation bioassays demonstrated inhibition of PPARα signaling by 2,4-DNT whereas PPARγ signaling increased. PPARα (-/-) and wild-type (WT) female mice were exposed for 14 days to vehicle or 2,4-DNT (134 mg/kg/day) and performed a forced swim to exhaustion 1 day after the last dose. 2,4-DNT significantly decreased body weights and swim times in WTs, but effects were significantly mitigated in PPARα (-/-) mice. 2,4-DNT decreased transcript expression for genes downstream in the PPARα signaling pathway, principally genes involved in fatty acid transport. Results indicate that PPARγ signaling increased resulting in enhanced cycling of lipid and carbohydrate substrates into glycolytic/gluconeogenic pathways favoring energy production versus storage in 2,4-DNT-exposed WT and PPARα (-/-) mice. PPARα (-/-) mice appear to have compensated for the loss of PPARα by shifting energy metabolism to PPARα-independent pathways resulting in lower sensitivity to 2,4-DNT when compared with WT mice. Our results validate 2,4-DNT-induced perturbation of PPARα signaling as the molecular initiating event for impaired energy metabolism, weight loss, and decreased exercise performance.
Collapse
Affiliation(s)
| | - Kurt A Gust
- Army Engineer Research and Development Center, Vicksburg, Mississippi 39180
| | - Sahar Atwa
- University of Louisiana at Monroe, Monroe, Louisiana 71201
| | - Imran Sunesara
- University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - David Johnson
- Army Engineer Research and Development Center, Vicksburg, Mississippi 39180 Conestoga-Rovers & Associates, Dallas, Texas 75234
| | - Choo Yaw Ang
- Badger Technical Services, San Antonio, Texas 71286
| | - Sharon A Meyer
- University of Louisiana at Monroe, Monroe, Louisiana 71201
| | - Edward J Perkins
- Army Engineer Research and Development Center, Vicksburg, Mississippi 39180
| |
Collapse
|
23
|
PPARG in Human Adipogenesis: Differential Contribution of Canonical Transcripts and Dominant Negative Isoforms. PPAR Res 2014; 2014:537865. [PMID: 24790595 PMCID: PMC3981527 DOI: 10.1155/2014/537865] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 12/30/2022] Open
Abstract
The nuclear receptor PPARγ is a key regulator of adipogenesis, and alterations of its function are associated with different pathological processes related to metabolic syndrome. We recently identified two PPARG transcripts encoding dominant negative PPARγ isoforms. The existence of different PPARG variants suggests that alternative splicing is crucial to modulate PPARγ function, underlying some underestimated aspects of its regulation. Here we investigate PPARG expression in different tissues and cells affected in metabolic syndrome and, in particular, during adipocyte differentiation of human mesenchymal stem cells. We defined the transcript-specific expression pattern of PPARG variants encoding both canonical and dominant negative isoforms and identified a novel PPARG transcript, γ1ORF4. Our analysis indicated that, during adipogenesis, the transcription of alternative PPARG variants is regulated in a time-specific manner through differential usage of distinct promoters. In addition, our analysis describes—for the first time—the differential contribution of three ORF4 variants to this process, suggesting a still unexplored role for these dominant negative isoforms during adipogenesis. Therefore, our results highlight crucial aspects of PPARG regulation, suggesting the need of further investigation to rule out the differential impact of all PPARG transcripts in both physiologic and pathologic conditions, such as metabolism-related disorders.
Collapse
|
24
|
Kim TH, Kim MY, Jo SH, Park JM, Ahn YH. Modulation of the transcriptional activity of peroxisome proliferator-activated receptor gamma by protein-protein interactions and post-translational modifications. Yonsei Med J 2013; 54:545-59. [PMID: 23549795 PMCID: PMC3635639 DOI: 10.3349/ymj.2013.54.3.545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a nuclear receptor superfamily; members of which play key roles in the control of body metabolism principally by acting on adipose tissue. Ligands of PPARγ, such as thiazolidinediones, are widely used in the treatment of metabolic syndromes and type 2 diabetes mellitus (T2DM). Although these drugs have potential benefits in the treatment of T2DM, they also cause unwanted side effects. Thus, understanding the molecular mechanisms governing the transcriptional activity of PPARγ is of prime importance in the development of new selective drugs or drugs with fewer side effects. Recent advancements in molecular biology have made it possible to obtain a deeper understanding of the role of PPARγ in body homeostasis. The transcriptional activity of PPARγ is subject to regulation either by interacting proteins or by modification of the protein itself. New interacting partners of PPARγ with new functions are being unveiled. In addition, post-translational modification by various cellular signals contributes to fine-tuning of the transcriptional activities of PPARγ. In this review, we will summarize recent advancements in our understanding of the post-translational modifications of, and proteins interacting with, PPARγ, both of which affect its transcriptional activities in relation to adipogenesis.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Young Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Seong-Ho Jo
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Man Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Ho Ahn
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Yin KJ, Fan Y, Hamblin M, Zhang J, Zhu T, Li S, Hawse JR, Subramaniam M, Song CZ, Urrutia R, Lin JD, Chen YE. KLF11 mediates PPARγ cerebrovascular protection in ischaemic stroke. ACTA ACUST UNITED AC 2013; 136:1274-87. [PMID: 23408111 DOI: 10.1093/brain/awt002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is emerging as a major regulator in neurological diseases. However, the role of (PPARγ) and its co-regulators in cerebrovascular endothelial dysfunction after stroke is unclear. Here, we have demonstrated that (PPARγ) activation by pioglitazone significantly inhibited both oxygen-glucose deprivation-induced cerebral vascular endothelial cell death and middle cerebral artery occlusion-triggered cerebrovascular damage. Consistent with this finding, selective (PPARγ) genetic deletion in vascular endothelial cells resulted in increased cerebrovascular permeability and brain infarction in mice after focal ischaemia. Moreover, we screened for (PPARγ) co-regulators using a genome-wide and high-throughput co-activation system and revealed KLF11 as a novel (PPARγ) co-regulator, which interacted with (PPARγ) and regulated its function in mouse cerebral vascular endothelial cell cultures. Interestingly, KLF11 was also found as a direct transcriptional target of (PPARγ). Furthermore, KLF11 genetic deficiency effectively abolished pioglitazone cytoprotection in mouse cerebral vascular endothelial cell cultures after oxygen-glucose deprivation, as well as pioglitazone-mediated cerebrovascular protection in a mouse middle cerebral artery occlusion model. Mechanistically, we demonstrated that KLF11 enhanced (PPARγ) transcriptional suppression of the pro-apoptotic microRNA-15a (miR-15a) gene, resulting in endothelial protection in cerebral vascular endothelial cell cultures and cerebral microvasculature after ischaemic stimuli. Taken together, our data demonstrate that recruitment of KLF11 as a novel (PPARγ) co-regulator plays a critical role in the cerebrovascular protection after ischaemic insults. It is anticipated that elucidating the coordinated actions of KLF11 and (PPARγ) will provide new insights into understanding the molecular mechanisms underlying (PPARγ) function in the cerebral vasculature and help to develop a novel therapeutic strategy for the treatment of stroke.
Collapse
Affiliation(s)
- Ke-Jie Yin
- Cardiovascular Centre, Department of Internal Medicine, University of Michigan Medical Centre, NCRC Bld 26, Rm 361S, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tsai YC, Tsai SH, Chang EYC, Hee SW, Chen WH, Lee SC, Chuang LM. Cytoskeletal protein vimentin interacts with and regulates peroxisome proliferator-activated receptor gamma via a proteasomal degradation process. J Cell Biochem 2013; 114:1559-67. [PMID: 23297177 DOI: 10.1002/jcb.24497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 12/21/2012] [Indexed: 01/28/2023]
Abstract
Peroxisome proliferators-activated receptor gamma (PPARγ) receptor is a transcription factor that is located in and functions primarily in the nucleus. PPARγ is exported from the nucleus upon mitogen and ligand stimulation under certain circumstances. However, a cytoplasmic PPARγ interacting protein and its function have not been previously identified. Here, we report for the first time that cytosolic PPARγ interacts directly with cytoskeletal vimentin. We performed PPARγ immunoprecipitation followed by mass spectrometry to identify the vimentin-PPARγ complex. This interaction was confirmed by reciprocal vimentin and PPARγ immunoprecipitation and co-immunofluorescence examination. We demonstrated that PPARγ colocalized with vimentin in certain organelles that is golgi, mitochondria, and endoplasmic reticulum. In cells depleted of vimentin, PPARγ was ubiquitinated and targeted to a proteasomal degradation pathway. Together, these findings indicate a direct interaction of PPARγ with vimentin in the cytosolic compartment, in which vimentin appears to play a role in regulating the turnover rate of PPARγ, which may further regulate genomic or non-genomic activities through the regulation of PPARγ protein degradation.
Collapse
Affiliation(s)
- Yun-Chih Tsai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Prashantha Kumar B, Baig NR, Sudhir S, Kar K, Kiranmai M, Pankaj M, Joghee NM. Discovery of novel glitazones incorporated with phenylalanine and tyrosine: Synthesis, antidiabetic activity and structure–activity relationships. Bioorg Chem 2012; 45:12-28. [DOI: 10.1016/j.bioorg.2012.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/22/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
|
28
|
Gene expression profiling in developing pig adipose tissue: non-secreted regulatory proteins. Animal 2012; 5:1071-81. [PMID: 22440102 DOI: 10.1017/s1751731110002727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The expression of many genes encoding secreted and non-secreted factors have been studied in human and rodent adipose tissue with cDNA microarrays, but few such studies in adipose tissue from growing pigs have been reported. Total RNA was collected at slaughter from outer subcutaneous adipose tissue (OSQ) and middle subcutaneous adipose tissue (MSQ) samples from gilts at 90, 150 and 210 days (n = 5/age). Dye-labeled cDNA probes were hybridized to custom microarrays (70-mer oligonucleotides) representing about 600 pig genes involved in growth and reproduction. Gene expression intensity ratios changed little with age for 100 transcription factors, nuclear receptors, enzymes and other regulatory proteins in OSQ and MSQ from pigs between 90 and 210 days of age. However, the relative expression of 13 genes distinguished OSQ and MSQ depots in growing pigs. The expression of several genes were influenced by age including an increase in CCND3, HSF1 and PTGR1 expression in MSQ and a decrease in UCP2 and REA (prohibitin-2) expression in OSQ. These studies demonstrate for the first time the expression of several key regulatory genes in pig adipose tissue. Simple linear regression analysis showed that leptin gene expression was associated with expression of some of these regulatory genes. Negative associations between expression of some regulatory factors and leptin gene expression indicated that local leptin may decrease or antagonize adipogenesis.
Collapse
|
29
|
Jana M, Mondal S, Gonzalez FJ, Pahan K. Gemfibrozil, a lipid-lowering drug, increases myelin genes in human oligodendrocytes via peroxisome proliferator-activated receptor-β. J Biol Chem 2012; 287:34134-48. [PMID: 22879602 DOI: 10.1074/jbc.m112.398552] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An increase in CNS remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis. Earlier studies have shown that gemfibrozil, a lipid-lowering drug, has anti-inflammatory properties. The current study identified another novel property of gemfibrozil in stimulating the expression of myelin-specific genes (myelin basic protein, myelin oligodendrocyte glycoprotein, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, and proteolipid protein (PLP)) in primary human oligodendrocytes, mixed glial cells, and spinal cord organotypic cultures. Although gemfibrozil is a known activator of peroxisome proliferator-activated receptor-α (PPAR-α), we were unable to detect PPAR-α in either gemfibrozil-treated or untreated human oligodendrocytes, and gemfibrozil increased the expression of myelin genes in oligodendrocytes isolated from both wild type and PPAR-α(-/-) mice. On the other hand, gemfibrozil markedly increased the expression of PPAR-β but not PPAR-γ. Consistently, antisense knockdown of PPAR-β, but not PPAR-γ, abrogated the stimulatory effect of gemfibrozil on myelin genes in human oligodendrocytes. Gemfibrozil also did not up-regulate myelin genes in oligodendroglia isolated from PPAR-β(-/-) mice. Chromatin immunoprecipitation analysis showed that gemfibrozil induced the recruitment of PPAR-β to the promoter of PLP and myelin oligodendrocyte glycoprotein genes in human oligodendrocytes. Furthermore, gemfibrozil treatment also led to the recruitment of PPAR-β to the PLP promoter in vivo in the spinal cord of experimental autoimmune encephalomyelitis mice and suppression of experimental autoimmune encephalomyelitis symptoms in PLP-T cell receptor transgenic mice. These results suggest that gemfibrozil stimulates the expression of myelin genes via PPAR-β and that gemfibrozil, a prescribed drug for humans, may find further therapeutic use in demyelinating diseases.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
30
|
Jeong YS, Hong JH, Cho KH, Jung HK. Grape skin extract reduces adipogenesis- and lipogenesis-related gene expression in 3T3-L1 adipocytes through the peroxisome proliferator-activated receptor-γ signaling pathway. Nutr Res 2012; 32:514-21. [PMID: 22901559 DOI: 10.1016/j.nutres.2012.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 11/17/2022]
Abstract
We previously reported that grape skin ethanol extract (GSE) decreases adipogenic transcription factor gene expression, inhibiting triglyceride accumulation in 3T3-L1 adipocytes. In this study, we hypothesized that GSE may induce differential expression profiles in adipocytes, thus providing protection against obesity. Thirty-five genes involved in the peroxisome proliferator-activated receptor-γ (PPARγ) signaling pathway, lipid metabolism, or adipogenesis were identified through microarray analysis of adipocytes treated with GSE. Expression of the genes involved in PPARγ signaling, Adipoq, Scd1, Nr1h3, Fabp5, Scd2, and Pparg decreased with GSE treatment, whereas expression of Ppargc1a increased. Lipid metabolism-associated genes Mlxp1, Stat5a, Hsl, Plin1, and Vdr were down-regulated. Interestingly, GSE also affected expression of genes related to the mitogen-activated protein kinases pathway. GSE extract treatment decreased expression of aP2, Fas, and Tnfa, known markers of adipogenesis, as measured by real-time polymerase reaction. These findings demonstrate the antiadipogenic effects of GSE on 3T3-L1 adipocytes at the genetic level, primarily on the PPARγ signaling pathway.
Collapse
Affiliation(s)
- Yoo Seok Jeong
- Bio Industry Center, Daegu Technopark, 891-5 Daecheon-dong, Daegu 704-801, Korea
| | | | | | | |
Collapse
|
31
|
Harmon GS, Lam MT, Glass CK. PPARs and lipid ligands in inflammation and metabolism. Chem Rev 2012; 111:6321-40. [PMID: 21988241 DOI: 10.1021/cr2001355] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gregory S Harmon
- Department of Medicine, Division of Digestive Diseases, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
32
|
Omega-3 Fatty Acids and PPARgamma in Cancer. PPAR Res 2011; 2008:358052. [PMID: 18769551 PMCID: PMC2526161 DOI: 10.1155/2008/358052] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/30/2008] [Accepted: 06/24/2008] [Indexed: 01/25/2023] Open
Abstract
Omega-3 (or n-3) polyunsaturated fatty acids (PUFAs) and their metabolites are natural ligands for peroxisome proliferator receptor activator (PPAR)gamma and, due to the effects of PPARgamma on cell proliferation, survival, and differentiation, are potential anticancer agents. Dietary intake of omega-3 PUFAs has been associated with a reduced risk of certain cancers in human populations and in animal models. In vitro studies have shown that omega-3 PUFAs inhibit cell proliferation and induce apoptosis in cancer cells through various pathways but one of which involves PPARgamma activation. The differential activation of PPARgamma and PPARgamma-regulated genes by specific dietary fatty acids may be central to their distinct roles in cancer. This review summarizes studies relating PUFAs to PPARgamma and cancer and offers a new paradigm relating an n-3 PUFA through PPARgamma to the expression of the cell surface proteoglycan, syndecan-1, and to the death of cancer cells.
Collapse
|
33
|
In vivo and in vitro evidence that PPARγ ligands are antagonists of leptin signaling in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1030-40. [PMID: 21704006 DOI: 10.1016/j.ajpath.2011.04.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/30/2011] [Accepted: 04/22/2011] [Indexed: 12/19/2022]
Abstract
Obesity is a major risk factor for the development and progression of breast cancer. Leptin, a cytokine mainly produced by adipocytes, plays a crucial role in mammary carcinogenesis and is elevated in hyperinsulinemia and insulin resistance. The antidiabetic thiazolidinediones inhibit leptin gene expression through ligand activation of the peroxisome proliferator-activated receptor-γ (PPARγ) and exert antiproliferative and apoptotic effects on breast carcinoma. In this study, we investigated the ability of PPARγ ligands to counteract leptin stimulatory effects on breast cancer growth in either in vivo or in vitro models. The results show that activation of PPARγ prevented the development of leptin-induced MCF-7 tumor xenografts and inhibited the increased cell-cell aggregation and proliferation observed on leptin exposure. PPARγ ligands abrogated the leptin-induced up-regulation of leptin gene expression and its receptors in breast cancer. PPARγ-mediated repression of leptin gene involved the recruitment of nuclear receptor corepressor protein and silencing mediator of retinoid and thyroid hormone receptors corepressors on the glucocorticoid responsive element site in the leptin gene expression regulatory region in the presence of glucocorticoid receptor and PPARγ. In addition, PPARγ ligands inhibited leptin signaling mediated by MAPK/STAT3/Akt phosphorylation and counteracted leptin stimulatory effect on estrogen signaling. These findings suggest that PPARγ ligands may have potential therapeutic benefits in the treatment of breast cancer.
Collapse
|
34
|
Wang N, Yin R, Liu Y, Mao G, Xi F. Role of Peroxisome Proliferator-Activated Receptor-.GAMMA. in Atherosclerosis - An Update -. Circ J 2011; 75:528-35. [DOI: 10.1253/circj.cj-11-0060] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nanping Wang
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Ruiying Yin
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Yan Liu
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Guangmei Mao
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Fang Xi
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| |
Collapse
|
35
|
Denis GV, Nikolajczyk BS, Schnitzler GR. An emerging role for bromodomain-containing proteins in chromatin regulation and transcriptional control of adipogenesis. FEBS Lett 2010; 584:3260-8. [PMID: 20493850 DOI: 10.1016/j.febslet.2010.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/16/2010] [Indexed: 12/11/2022]
Abstract
Transcriptional co-activators, co-repressors and chromatin remodeling machines are essential elements in the transcriptional programs directed by the master adipogenic transcription factor PPARgamma. Many of these components have orthologs in other organisms, where they play roles in development and pattern formation, suggesting new links between cell fate decision-making and adipogenesis. This review focuses on bromodomain-containing protein complexes recently shown to play a critical role in adipogenesis. Deeper understanding of these pathways is likely to have major impact on treatment of obesity-associated diseases, including metabolic syndrome, cardiovascular disease and Type 2 diabetes. The research effort is urgent because the obesity epidemic is serious; the medical community is ill prepared to cope with the anticipated excess morbidity and mortality associated with diet-induced obesity.
Collapse
Affiliation(s)
- Gerald V Denis
- Cancer Research Center, Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
36
|
Koh YJ, Park BH, Park JH, Han J, Lee IK, Park JW, Koh GY. Activation of PPAR gamma induces profound multilocularization of adipocytes in adult mouse white adipose tissues. Exp Mol Med 2010; 41:880-95. [PMID: 19745605 DOI: 10.3858/emm.2009.41.12.094] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We sought to determine the effects of activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) on multilocularization of adipocytes in adult white adipose tissue (WAT). Male C57BL/6 normal, db/db, and ob/ob mice were treated with agonists of PPAR-gamma, PPAR-alpha, or beta(3)-adrenoceptor for 3 weeks. To distinguish multilocular adipocytes from unilocular adipocytes, whole- mounted adipose tissues were co-immunostained for perilipin and collagen IV. PPAR-gamma activation with rosiglitazone or pioglitazone induced a profound change of unilocular adipocytes into smaller, multilocular adipocytes in adult WAT in a time-dependent, dose-dependent, and reversible manner. PPAR-alpha activation with fenofibrate did not affect the number of locules or remodeling. db/db and ob/ob obese mice exhibited less multilocularization in response to PPAR-gamma activation compared to normal mice. Nevertheless, all adipocytes activated by PPAR-gamma contained a single nucleus regardless of locule number. Multilocular adipocytes induced by PPAR-gamma activation contained substantially increased mitochondrial content and enhanced expression of uncoupling protein-1, PPAR-gamma coactivator-1-alpha, and perilipin. Taken together, PPAR-gamma activation induces profound multilocularization and enhanced mitochondrial biogenesis in the adipocytes of adult WAT. These changes may affect the overall function of WAT.
Collapse
Affiliation(s)
- Young Jun Koh
- National Research Laboratory of Vascular Biology and Graduate School of Medical Science and Engineering, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Kuhn P, Xu W. Protein arginine methyltransferases: nuclear receptor coregulators and beyond. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:299-342. [PMID: 20374708 DOI: 10.1016/s1877-1173(09)87009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that play a crucial role in diverse cellular functions. Several PRMTs have been associated with gene expression regulation, in which PRMTs act as histone methyltransferases, secondary coregulators of transcription, or facilitate mRNA splicing and stability. Additional functions include modulation of protein localization, ribosomal assembly, and signal transduction. At the organismal level, several PRMTs appear to be important for development and may play an important role in cancer. The relationships between their cellular and organismal functions are poorly understood; at least in part due to the large body of enzymatic substrates for PRMTs and their transcriptional targets that remain to be determined. Specific PRMT inhibitors have been developed in recent years, which should help to shed light on their diverse biological roles. Connecting PRMT cellular functions with their global effects on an organism will facilitate development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Peter Kuhn
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
38
|
Velayudham A, Dolganiuc A, Ellis M, Petrasek J, Kodys K, Mandrekar P, Szabo G. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology 2009; 49:989-97. [PMID: 19115316 PMCID: PMC3756672 DOI: 10.1002/hep.22711] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its advanced stage, nonalcoholic steatohepatitis (NASH), are the most common causes of chronic liver disease in the United States. NASH features the metabolic syndrome, inflammation, and fibrosis. Probiotics exhibit immunoregulatory and anti-inflammatory activity. We tested the hypothesis that probiotic VSL#3 may ameliorate the methionine-choline-deficient (MCD) diet-induced mouse model of NASH. MCD diet resulted in NASH in C57BL/6 mice compared to methionine-choline-supplemented (MCS) diet feeding evidenced by liver steatosis, increased triglycerides, inflammatory cell accumulation, increased tumor necrosis factor alpha levels, and fibrosis. VSL#3 failed to prevent MCD-induced liver steatosis or inflammation. MCD diet, even in the presence of VSL#3, induced up-regulation of serum endotoxin and expression of the Toll-like receptor 4 signaling components, including CD14 and MD2, MyD88 adaptor, and nuclear factor kappaB activation. In contrast, VSL#3 treatment ameliorated MCD diet-induced liver fibrosis resulting in diminished accumulation of collagen and alpha-smooth muscle actin. We identified increased expression of liver peroxisome proliferator-activated receptors and decreased expression of procollagen and matrix metalloproteinases in mice fed MCD+VSL#3 compared to MCD diet alone. MCD diet triggered up-regulation of transforming growth factor beta (TGFbeta), a known profibrotic agent. In the presence of VSL#3, the MCD diet-induced expression of TGFbeta was maintained; however, the expression of Bambi, a TGFbeta pseudoreceptor with negative regulatory function, was increased. In summary, our data indicate that VSL#3 modulates liver fibrosis but does not protect from inflammation and steatosis in NASH. The mechanisms of VSL#3-mediated protection from MCD diet-induced liver fibrosis likely include modulation of collagen expression and impaired TGFbeta signaling.
Collapse
Affiliation(s)
- Arumugam Velayudham
- Department of Medicine, Liver Center, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
HIV-1 infection and the PPARγ-dependent control of adipose tissue physiology. PPAR Res 2008; 2009:607902. [PMID: 19081837 PMCID: PMC2593159 DOI: 10.1155/2009/607902] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/23/2008] [Indexed: 01/03/2023] Open
Abstract
PPARγ is a ligand-dependent master transcription factor controlling adipocyte differentiation as well as multiple biological processes taking place in other cells present in adipose tissue depots such as macrophages. Recent research indicates that HIV-1 infection-related events may alter adipose tissue biology through several mechanisms involving PPARγ, ranging from direct effects of HIV-1-encoded proteins on adipocytes to the promotion of a proinflammatory environment that interferes with PPARγ actions. This effect of HIV-1 on adipose tissue cells can occur even in the absence of direct infection of adipocytes, as soluble HIV-1-encoded proteins such as Vpr may enter cells and inhibit PPARγ action. Moreover, repression of PPARγ actions may relieve inhibitory pathways of HIV-1 gene transcription, thus enhancing HIV-1 effects in infected cells. HIV-1 infection-mediated interference of PPARγ-dependent pathways in adipocytes and other cells inside adipose depots such as macrophages is likely to create an altered local environment that, after antiretroviral treatment, leads to lipodystrophy in HIV-1-infected and HAART-treated patients.
Collapse
|
40
|
Abstract
The nuclear receptor PPARgamma is a ligand-activated transcription factor that plays an important role in the control of gene expression linked to a variety of physiological processes. PPARgamma was initially characterized as the master regulator for the development of adipose cells. Ligands for PPARgamma include naturally occurring fatty acids and the thiazolidinedione (TZD) class of antidiabetic drugs. Activation of PPARgamma improves insulin sensitivity in rodents and humans through a combination of metabolic actions, including partitioning of lipid stores and the regulation of metabolic and inflammatory mediators termed adipokines. PPARgamma signaling has also been implicated in the control of cell proliferation, atherosclerosis, macrophage function, and immunity. Here, we review recent advances in our understanding of the diverse biological actions of PPARgamma with an eye toward the expanding therapeutic potential of PPARgamma agonist drugs.
Collapse
Affiliation(s)
- Peter Tontonoz
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California-Los Angeles, CA 90095, USA.
| | | |
Collapse
|
41
|
|
42
|
Frith J, Genever P. Transcriptional control of mesenchymal stem cell differentiation. TRANSFUSION MEDICINE AND HEMOTHERAPY : OFFIZIELLES ORGAN DER DEUTSCHEN GESELLSCHAFT FUR TRANSFUSIONSMEDIZIN UND IMMUNHAMATOLOGIE 2008; 35:216-27. [PMID: 21547119 DOI: 10.1159/000127448s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 01/31/2008] [Indexed: 12/23/2022]
Abstract
SUMMARY In recent years, transcriptomics and proteomics have provided us with a great deal of information about the expression profiles of various cell types and how these change under different conditions. Stem cell research is one area where this has had a major impact by providing an insight into events at the molecular level that control stem cell growth and differentiation. This includes mesenchymal stem cell (MSC) biology where knowledge about the mechanisms governing differentiation is vital for the development of future therapeutic strategies. Although there is still much to learn, we are starting to build up a picture of the main events in these differentiation processes. This review will discuss control of MSC differentiation at the transcriptional level. Not all the factors which have been shown to play a role in lineage-specific mesenchymal differentiation can be covered here. Instead, we will focus specifically on the key factors that contribute to the regulation of osteogenesis, adipogenesis, and chondrogenesis.
Collapse
Affiliation(s)
- Jess Frith
- Department of Biology (Area 9), University of York, UK
| | | |
Collapse
|
43
|
The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPARgamma. Biochem Biophys Res Commun 2008; 370:264-8. [PMID: 18381063 DOI: 10.1016/j.bbrc.2008.03.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 03/17/2008] [Indexed: 11/21/2022]
Abstract
DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) gamma is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPARgamma. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPARgamma in a dose-dependent manner. DAX-1 directly competed with the PPARgamma coactivator (PGC)-1alpha for binding to PPARgamma. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpression downregulates the expression of PPARgamma target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPARgamma and performs a potential function in the regulation of PPARgamma-mediated cellular differentiation.
Collapse
|